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Exact moment calculations for genetic models with migration, mu-
tation, and drift1
Rongwei Fu�, Alan E. Gelfand�, and Kent E. Holsingery
�Department of Statistics, U-4120, University of Connecticut, Storrs, CT 06296-4120

yDepartment of Ecology & Evolutionary Biology, U-3043, University of Connecticut, Storrs,

CT 06269-3043

Abstract

Using properties of moment stationarity we develop exact expressions for the mean and

covariance of allele frequencies at a single locus for a set of populations subject to drift,

mutation, and migration. Some general results can be obtained even for arbitrary mutation

and migration matrices, for example: (1) Under quite general conditions, the mean vector

depends only on mutation rates, not on migration rates or the number of populations. (2)

Allele frequencies covary among all pairs of populations connected by migration. As a result,

the drift, mutation, migration process is not ergodic when any �nite number of populations

is exchanging genes. In addition, we provide closed form expressions for the mean and

covariance of allele frequencies in Wright's �nite-island model of migration under several

simple models of mutation, and we show that the correlation in allele frequencies among

populations can be very large for realistic rates of mutation unless an enormous number

of populations are exchanging genes. As a result, the traditional di�usion approximation

provides a poor approximation of the stationary distribution of allele frequencies among

populations. Finally, we discuss some implications of our results for measures of population

structure based on Wright's F -statistics.

1 Introduction

Most plant and animal species consist of many populations between which genetic exchange

is limited. Since Wright (1931) �rst illustrated that limited gene exchange can lead to non-

adaptive divergence among populations as a result of genetic drift, analytical and simulation

studies of how local population size, migration rate, and mutation rate interact to a�ect

the genetic structure of local populations and the degree of di�erentation among them have

been a mainstay of theoretical population genetics (e.g., Mal�ecot 1948; Kimura and Weiss

1964; Nei and Feldman 1972; Felsenstein 1975; Nagylaki 1976; Maruyama 1977; Crow and

Aoki 1984; Slatkin 1991). Interest has centered both on predicting the consequences of

known rates of mutation and migration and on making inferences about those rates from

1Theoretical Population Biology (in press, �nal revision 8 August 2002)
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the pattern of genetic variation found in samples from natural populations (e.g., Slatkin and

Barton 1989; Cockerham and Weir 1993; Kuhner et al. 1995; Beerli and Felsenstein 1999).

Wright's (1931) initial analyses of the process were heuristic and informal. Mal�ecot's

(1948) analysis, using probabilities of identity-by-descent, was the �rst formal analysis of

the problem. Since then several other authors have used moment stationarity or stationarity

of identity-by-descent measures to investigate similar problems (e.g., Kimura and Weiss 1964,

stepping-stone models; Crow and Kimura 1970, single-population models of drift and muta-

tion, p. 440; Cockerham and Weir 1987, �nite-island models; Rousset 2001). Kimura (1964)

introduced a second modeling framework in which a partial di�erential equation is used to

approximate the Markov chain describing the Wright-Fisher drift process with migration and

mutation. Analysis of this model for one locus with two alleles showed that the stationary

distribution attained is a beta distribution with parameters that Wright intuited correctly

(see Crow and Kimura 1970 and Ewens 1979 for extensive reviews of results obtained from

di�usion models). More recently, analyses of models derived from Kingman's (1982a, 1982b)

coalescent have received much attention (e.g., Takahata 1989; Notohara 1990, 2000, 2001;

Slatkin 1991; Bahlo and GriÆths 2000, 2001).

While both di�usion and coalescent models have led to great insights, they rely on ap-

proximations. Di�usion models use a Markov process with a continuous state space to ap-

proximate a Markov chain with a discrete state space. The discrete-time model from which

the coalescent process is derived as a continuous limit assumes that the population size is

large enough that only one coalescent event can occur in any generation and that a migration

event and a coalescent event cannot happen simultaneously. In this paper we use moment s-

tationarity to derive exact expressions for the mean and covariance structure of discrete-time

models that include arbitrary patterns and rates of mutation, arbitrary numbers of alleles,

arbitrary patterns and rates of migration, arbitrary numbers of populations, and arbitrary

(including variable) local population sizes. We illustrate how familiar analytical solutions

emerge for two simple models (the �nite-island and the one-dimensional stepping stone),

and show how those results are a�ected for a model including stochastic variation in local

population sizes (assuming that a stationary distribution of local population size exists).

One particularly striking result emerges from these analyses: The mutation, migration,

drift process is not ergodic when any �nite number of populations is exchanging genes. More-

over, when mutation is rare, the correlation in allele frequency among populations at any

one time does not approach zero unless thousands or tens of thousands of populations are

exchanging genes. Under these circumstances our simulations illustrate that the di�usion

approximation provides a very poor approximation to the stationary distribution of allele fre-

quencies. We conclude the paper by discussing the implications of these results for measures

of population structure based on Wright's F -statistics.
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2 Theoretical Results and Examples

Our approach is to model allele frequencies at the population level. Focusing on a single

locus, assume that we have A allele types, b1; b2; � � � ; bA and k populations indexed by i. Let

VA�A, be a general mutation matrix, i.e. Vrs is the probability of mutation from allele type

br to allele type bs. So V is row stochastic. Let Mk�k be a general (backward) migration

matrix, i.e.Mij =
(
mij is the probability that the allele in population i came from population

j (compare Nagylaki 1982; Rousset 1999, 2001). So M is also row stochastic. Let p
(t)
i be

the A � 1 vector of allele frequencies in population i at generation t (10p
(t)
i = 1). Then let

P(t) be the k � A matrix whose ith row is (p
(t)
i )0. So P(t) is, as well, row stochastic.

We propose a �rst order stationary Markov transition model to provide the generation to

generation transition in allele frequencies. In particular we specify the distribution of P(t+1)

given P(t) as follows: let

P�(t) =MP(t)V (1)

That is, P�(t) is a deterministic function of P(t). P�(t) is, evidently, row stochastic. The rows

of P�(t),
�
p
�(t)
i

�0
provide the allele frequency vectors for the stochastic part of speci�cation.

We note that (1) is invariant to whether mutation precedes migration or vice versa. That

is, in either case the contribution to p
�(t)
ir from p

(t)
js is

(
mij�sr.

Suppose population i is of size Ni, where Ni is the number of alleles in the i
th population.

With Ni diploid individuals, Ni is replaced by 2Ni. In analytical solutions common Ni

across i is often assumed (see, for example, Crow and Kimura 1970; Crow and Aoki 1984;

see Rousset 2001 for a more general treatment). We allow Ni to vary across populations.

In fact, at the end of this section, we allow Ni to vary randomly across generations. Then,

given P�(t) and Ni, the stochastic speci�cation assumes that the p
(t+1)
i are conditionally

independent and

2N ip
(t+1)
i � Mult(2N i;p

�(t)
i ) (2)

Through (1) and (2) we pass from P(t) �! P�(t) �! P(t+1).

In the preceding formulation we assembled the p
(t)
i into a k�AmatrixP(t). An alternative

is to concatenate the p
(t)
i to a kA�1 vector p(t). Using the foregoing notation it follows that

p�(t) = (M
V0)p(t) (3)

where 
 denotes the Kronecker product. If B(M;V) � M 
 V0 we can, for convenience,

write p�(t) = B(M;V)p(t). B is naturally partitioned into A�A blocks which we denote by

Bij. In fact, from (3), Bij =
(
mijV

0. So, in general, the Bij are not symmetric.
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2.1 Stationary equations for means

The Markov chain de�ned through (1) and (2) has a �nite state space. If all entries of V0

are nonzero for some t � 1, then this chain has no absorbing states. In fact, it is aperiodic

and irreducible and thus has a unique stationary distribution (compare Ewens 1979). We

now develop �rst and second moments of this stationary distribution. At stationarity, the

distribution for P(t) is the same for all t. Thus, let Uk�A denote the stationary mean matrix,

i.e. E(P(t)jM;V;N) where N is the vector of population sizes. Also, let �; kA� kA be

the stationary covariance matrix, i.e., �p(t)jM;V;N. The stationary mean matrix is calculated

iteratively. Speci�cally, the law of iterated expectations says that for random variables X

and Y , provided expections exist, E(X) = E (E(XjY )) (see, for example, Casella and Berger

1990, p. 154.). Thus,

E(P(t+1)jM;V;N) = E
�
E(P(t+1)jM;V;N;P�(t))

�
:

Because E(P(t+1)jM;V;N;P�(t)) = P�(t) and E(P�(t)) = ME(P(t)jM;V;N)V, it follows

immediately that

E(P(t+1)jM;V;N) =ME(P(t)jM;V;N)V :

Thus, at stationarity

U =MUV : (4)

Notice that, as expected since the deterministic processes a�ecting allele frequencies do not

depend on population size, U does not depend on N. U is also row stochastic. Expression

(4) is attractive in its simplicity but explicit solution of this linear system is not possible.

Assume that Uk�A = 1k�1uA1�A. Then, since M is row stochastic, (4) can be rewritten

as

1k�1uA = 1k�1uAV ;

i.e.,

1k�1uA(I�V) = 0k�A : (5)

Obviously, uA satisfying

uA(I�V) = 01�A (6)

is a solution of (5). Moreover, uA is the left eigenvector ofV corresponding to an eigenvalue of

1, and the Perron-Frobenius theorem (Gantmacher 1960, p. 53) guarantees that uA is unique

(up to normalization to 10ua = 1) with all positive elements whenever V is irreducible. For

example, under a constant mutation rate matrix, i.e., �ll = 1 � u; �ll0 = u=(A � 1), we

immediately can obtain uA = 1
A
1A�1. When there are only two alleles (A = 2), u1 =

�21
1�(�11��21)

. In more customary notation, if �12 = �1, �21 = �2, we obtain u1 =
�2

(�1+�2)
.

Thus, all populations have the same stationary mean vector when V is irreducible and

this vector does not depend upon M or even upon the number of populations. In other

words, the vector describing expected allele frequencies is the same in all populations and
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does not depend on the pattern of migration, the fraction of any population composed of

migrants, or the number of populations among which migration is happening. Indeed, it does

not depend on whether any or all of the populations are completely isolated. The stationary

vector of allele frequencies in each population depends only on the pattern and magnitude

of mutation rates. This is in distinct contrast to patterns of identity by descent, in which

both migration and mutation rates are involved in the stationary equations (Rousset 2001).

In the absence of mutation, V = I and UA = 1k�1u
0

A solves (6) for any uA. This is

expected. In the absense of mutation, the chain in (1) and (2) has absorbing states, e.g.

p
(t)
il = 1 for some l and all i. It has no stationary distribution. In analyzing this case in

the literature, one either studies �xation time properties of the model or speci�es a �xed

population allele frequency vector as a constant input to all populations as in the di�usion

approximation (see, for example, Crow and Kimura 1970 and the related discussion in the

section below on comparison of exact results with the di�usion approximations).

We note that, passing to stationarity, the identical results can be obtained using (3).

Speci�cally, let u = E(p(t)jM;V;N). Then we obtain the general linear system equivalent

to (4), i.e.,

u = B(M;V)u : (7)

Analogous to (6), it can be shown that the solution to this equation is given by u = 1k�1 


uAA�1 satisfying (I�V0)uA = 0.

2.2 Stationary equations for covariances

Turning to stationary covariances, it is most convenient to work with (3). Using iterat-

ed expectations, which for variance says that for random variables X and Y Var(X) =

Var(E(XjY )) + E(Var(XjY )) provided that the expectations exist (see Casella and Berger

1990, p158),

�p(t+1)jM;V;N = �E(p(t+1)jp(t);M;V;N) + E(�p(t+1)jp(t);M;V;N): (8)

Since E(p(t+1)jp(t);M;V;N) = p�(t) and p�(t) is a linear transformation of p(t), i.e., p�(t) =

Bp(t), we have �E(p(t+1)jp(t);M;V;N) = B�p(t)jM;V;NB
0. Furthermore, the conditional indepen-

dence of the p
(t+1)
i given p(t), M, V and N along with the multinomial distribution in (2)

implies that �p(t+1)jp(t);M;V;N is block diagonal with ith block

�i =
1

2Ni

fDiag(p
�(t)
i )� p

�(t)
i (p

�(t)
i )0g ;

where Diag(p
�(t)
i ) is the A� A diagonal matrix with lth diagonal entry equal to p

�(t)
il . Using

(3),

E(�i) =
1

2Ni

fDiag
�X

BijE(p
(t)
j jM;V;N)

�
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�
X
j

X
j0

BijE(p
(t)
j jM;V;N)E(p

(t)
j0 jM;V;N)0B0

ij0

�
X
j

X
j0

Bij�p(t)
j

;p
(t)

j0
jM;V;N

B0

ij0g:

Again, passing to stationarity, E(�i) becomes

1

2Ni

fDiag(ui)� uiu
0

i � (B�B)0iig

since ui =
P
Bijuj and thus (8) becomes

�ii =
�
1� 1

2N i

�
(B�B0)ii +

1
2N i

(Diag(ui)� uiu
0

i)

�ij = (B�B0)ij:

(9)

The equations in (9) provide a linear system to solve for the entries in � given M, V, N

and U, but this system is not full rank, e.g., �ii is symmetric and singular. As k increases,

solving (9) when �ii and �ij vary with i and j becomes analytically untractable, although

numerical solution of (9) may still be feasible for small k. Nonetheless, some general results

are possible.

Suppose that the populations are partitioned with respect to migration, i.e., that the

migration matrix is reducible and populations in one partition have no connection through

migration with populations in any other partition. Then, grouping populations appropri-

ately, the migration matrix can be written in block diagonal form. In particular with L

partitions, we can write

M =

0
BBBB@

M1 0 � � � 0

0 M2 � � � 0
...

...
. . .

...

0 0 � � � ML

1
CCCCA :

But then B becomes block diagonal with lth block equal to Ml 
 V
0. Suppose we look at

the (l; l0) block of �. This block denotes the stationary covariance beteween populations

in partition l and populations in partition l0. Denoting the block by �(ll0) we �nd �(ll0) =

Bl�
(ll0)Bl0. Bl and B

0

l0 are full rank. If they are symmetric, i.e., if V and the Ml are

symmetric, and are not identity matrices, this equality implies �(ll0) = 0.

To make further analytical progress we ask when the marginal distribution for p
(t)
i will

be the same for all i at stationarity. If so, �ii = �11 for all i, �ij = �12 for all i and j.

We can simplify (9) to solving only for �11 and �12 regardless of k. A suÆcient condition

is that, if all Ni = N and the entries in M do not depend on i and j, i.e.,
(
mij is constant,

then a common distribution for all p
(t)
i will arise, regardless of V. So,M must be a constant

migration rate matrix. We denote the entries in such an M by Mii = 1 � m, Mij =
m
k�1

.
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This corresponds to the �nite-island model studied by Crow and Aoki (1984) and Cockerham

and Weir (1987).

2.3 Results for the �nite island model

Laborious calculation reveals that

(B�B)11 = V0 f(1� r(m; k))�11 + r(m; k)�12gV

(B�B)12 = V0

n
r(m;k)

k�1
�11 +

�
1� r(m;k)

k�1

�
�12

o
V

where r(m; k) = 2m� m2k
k�1

. Finally,

�11 =
�
1� 1

2N

�
V0 f(1� r(m; k))�11 + r(m; k)�12gV

+ 1
2N

(Diag(u1)� u1u
0

1)

�12 = V0
n
r(m;k)

k�1
�11 +

�
1� r(m;k)

k�1

�
�12

o
V:

(10)

An immediate conclusion from (10) is that for any �nite k, p
(t)
i and p

(t)
j are correlated.

However, as k !1, r(m; k)! 2m�m2 and thus r(m;k)

k�1
! 0. Hence, in the limit, we obtain

�12 = V
0�12V. So, as long as V 6= I, this equality can hold only if �12 = 0. Thus, �12 ! 0

as k !1, implying that p
(t)
i and p

(t)
j are asymptotically uncorrelated.

In general, we need consider only the upper left a� a submatrix of �11 and �12. In fact,

when A = 2, �11 reduces to say �2(k) and �12 reduces to, say �(k)�2(k). That is, for a given

k, �(k) is the correlation between p
(t)
i and p

(t)
j . Hence (10) produces two equations in two

unknowns. The solution is:

�2(k) =
u1 � u21

2N � (2N � 1)(�11 � �21)
2
�
1� r(m; k) + r(m; k)�(k)

�

�(k) =

r(m;k)

k�1
(�11 � �21)

2

1� (�11 � �21)
2
�
1� r(m;k)

k�1

�
(11)

where u1 =
�21

�12+�21
. So as k !1, �2(k) ! �2(1) =

u1�u
2
1

2N�(2N�1)(�11��21)2(1�m)2
. Again, �(1) = 0.

For an arbitrary number of alleles A with a constant mutation rate (i.e., �ii = 1��; �ij =

�=(A � 1)) in addition to a constant migration rate, each component of p
(t)
i has the same

marginal distribution. Also, the correlation between any pair of components is the same.

Hence �11 has a constant diagonal say �2(k) and all o�-diagonal entries are say �
(k)
1 �2(k).

Similarly, �12 will have a constant diagonal say �
(k)
2 �2(k) and all o�-diagonal entries are say

�
(k)
3 �2(k). Hence given k, �

(k)
1 is the correlation between p

(t)
il and p

(t)
il0 , �

(k)
2 is the correlation

between p
(t)
il and p

(t)
jl , and �

(k)
3 is the correlation between p

(t)
il and p

(t)
jl0 . Solving explicitly
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yields:

�2(k) =
(A� 1)=A2

2N � (2N � 1)
�
1� A

A�1
�
�2 �

1� r(m; k) + r(m; k)�
(k)
2

�

�
(k)
1 = � 1

A� 1

�
(k)
2 =

�
1� A

A�1
�
�2 r(m;k)

k�1

1�
�
1� A

A�1
�
�2 �

1� r(m;k)

k�1

�
�
(k)
3 = �

(k)
1 �

(k)
2 :

(12)

As k !1, �2(k) ! �2(1) = (A�1)=A2

2N�(2N�1)(1� A
A�1

�)
2
(1�m)2

, �
(k)
2 ! �

(1)
2 = 0 and �

(k)
3 ! �

(1)
3 = 0.

Another example where we can explicitly solve (10) arises when �rs = �s for all r 6= s.

If �rs is free of r, the intepretation is that the rate of mutation to bs does not depend upon

the current allele type. This corresponds to Kingman's (1980) \house of cards" model of

mutation. In this setting, the variance and correlation arising in �11 are:

�
2(k)
i =

PA
j 6=i �j�i=

�PA
j=1 �j

�2

2N � (2N � 1)
�
1�

PA
j=1 �j

�2 �
1� r(m; k) + r(m; k)�(k)

�

�
(k)
ii0 = � �i�i0r�PA

j 6=i �j�i
� �PA

j 6=i0 �j�i0
� :

(13)

Interestingly, �12 = �(k)�11 where

�(k) =

�
1�

PA
j=1 �j

�2 r(m;k)

k�1

1�
�
1�

PA
j=1 �j

�2 �
1� r(m;k)

k�1

� : (14)

2.4 Results for the one-dimensional stepping stone

As a �nal illustration, we again let A = 2 but consider a nonconstant migration matrix. In

fact, we look at the one-dimensional, circular stepping stone model proposed originally in

Kimura and Weiss (1964) and Weiss and Kimura (1965). For k populations, M takes the

form of mii = 1�m,
(
mi;i+1 =

(
mi;i�1 = m=2,

(
mij = 0 otherwise. Note that, we have chosen

to align the diagonal of this migration matrix M with that of the constant migration rate

matrix. Hence, here m is twice the value used in Kimura and Weiss (1964). Again it is

clear that if all Ni = N , then all p
(t)
i have the same marginal distribution. Indeed, from the

discussion above (6), the stationary mean is �21
1�(�11��21)

. In (9), �ii is a constant �
2(k), while

�ii0 = �
(k)
ji�i0j�

2(k). A recursion for �
(k)
l introduces �

(k)
l0 ; l0 = l� 1; l� 2; l+ 1 and l+ 2. In the

linear stepping stone model, assuming k = 1, Kimura and Weiss achieved an approximate

solution starting from �l of the form �l. Maruyama (1977) shows that exact calculations

8



� = 5� 10�6 � = 5� 10�3

2N 2N

k 102 104 106 102 104 106

50 0.2476 0.1255 2.496 �10�3 0.0839 1.245 �10�3) 1.251 �10�5

(2.273 �10�2) (2.497 �10�4) (2.500 �10�6) (2.232 �10�2) (2.449 �10�4) (2.451 �10�6)

100 0.2453 0.0852 1.285 �10�3 0.0839 1.245 �10�3) 1.251 �10�5

(2.273 �10�2) (2.497 �10�4) (2.500 �10�6) (2.232 �10�2) (2.449 �10�4) (2.451 �10�6)

300 0.2389 0.0441 5.337 �10�4 0.0839 1.245 �10�3) 1.251 �10�5

(2.273 �10�2) (2.497 �10�4) (2.500 �10�6) (2.232 �10�2) (2.449 �10�4) (2.451 �10�6)

500 0.2364 0.0367 4.296 �10�4 0.0839 1.245�10�3) 1.251 �10�5

(2.273 �10�2) (2.497 �10�4) (2.500 �10�6) (2.232 �10�2) (2.449 �10�4) (2.451 �10�6)

Table I: Stationary variance for the two allele circular stepping stone model for m = 0:05

and selected values of �, k and N . Values in parentheses are from the single-population

di�usion approximation.

based on probabilities of identity by descent converge to those of Kimura and Weiss (1964)

as k !1. Table I provides values of �2(k) for �12 = �21 = 5�10�6 and 5�10�3,m = 0:05 and

k = 50; 100; 300; 500, N = 102; 104; 106. The parenthetic entries in the table will be discussed

below in the section on accuracy of the di�usion approximation. Figure 1 shows the decline

in correlation between p
(t)
i and p

(t)
i0 as a function of ji � i0j. Correlation between nearby

populations is always quite strong and only for the largest k does it eventually become 0 at

k=2. Notice that in contrast to the results provided in Kimura and Weiss (1964) and Weiss

and Kimura (1965), the results presented here are for the correlation of allele frequencies

between populations, not for the correlation of allele frequencies within individuals, which

is derived from a continuous approximation to the discrete process modeled here (compare

Cox and Durrett 2001).

2.5 Variable population sizes

We conclude this section with some results on extending the stationary Markov transition

model to allow Ni to vary across generations. Let N(t)0 = (N
(t)
1 ; � � � ; N

(t)
k ) and suppose

trajectories of N(t) vs t arise from a stationary Markov chain with parametric transition

distribution q(N(t+1)jN(t); �) (compare Karlin 1968). Suppose N(t) has a stationary distri-

bution and, further, that under this distribution E(N
(t)
i )�1 exists. Then the transition from

(P(t);N(t)) ! (P(t+1);N(t+1)) proceeds to update N(t+1) given N(t) and � and then P(t+1)

given P(t), N(t+1), M and V. Figure 2 shows a graphical model for this �rst order dynamic

Markov speci�cation. If N(t) is degenerate at say N then we have the original model de�ned

through (1) and (2). Hence, with a stationary chain for N(t), overall we have a station-

ary chain for (P(t);N(t)). Again, we will have a stationary distribution for (P(t);N(t)), and

interest focuses on the marginal stationary distribution for P(t).

9
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Figure 1: Correlation as a function of distance apart around the circle for the two - allele

circular stepping stone model.

N(0) ! N(1) ! N(2) ! � � � � � � � � � ! N(t) ! N(t+1)

# # # #

P(0) ! P(1) ! P(2) ! � � � � � � � � � ! P(t) ! P(t+1)

Figure 2: A dynamic Markov model for generational transition.

Since equation (1) is free ofN, expression (4) again emerges as the stationary equation for

U. All of the subsequent discussion to (4) is applicable here. In particular, the mean vector

of allele frequencies does not depend on either the pattern or magnitude of migration or on

the distribution of population sizes. Turning to the stationary covariance, again writing P(t)

as p(t), the analogue of (8) is, suppressing M and V,

�p(t+1) = �E(p(t+1)jp(t);N(t+1)) + E(�p(t+1)jp(t);N(t+1)): (15)

As below (8), the �rst term on the right side of (15) is B�p(t)B
0. For the second term

on the right side, again the p
(t+1)
i are conditionally independent given p

(t)
i and N(t+1). It is

straightforward to show, using calculations similar to those leading to (9), that (15) yields

�ii = (1� E(2N
(t)
i )�1)(B�B)0ii + E(2N

(t)
i )�1(Diag(ui) + uiu

0

i)

�ij = (B�B)0ij:

(16)

A stochastic model for N(t+1)jN(t) would probably view the population sizes N
(t)
i as

10



exchangeable, and might even regard them as independent. If the N
(t)
i are regarded as

exchangeable, the stationary marginal distribution for each one is the same, i.e. E(N
(t)
i )�1 is

a constant, say 1=N0. Hence, the analyses for equation (9) are all still applicable with 1=N0

replacing 1=N .

Recall that when population size varies from one generation to the next, the inbreeding

e�ective size of the population (i.e., the size of an ideal population in which identity by

descent accumulates at the same rate as this one) is approximately equal to the harmonic

mean of the N
(t)
i (Ewens 1979; Karlin 1968). To estimate 1=N0 with a sample of population

size N1; N2; � � � ; Nk, we would use k�1
P
(1=Ni). That is, the harmonic mean of population

sizes would also provide an appropriate measure for the e�ect of genetic drift on the covari-

ance structure of allele frequencies within and among populations in �nite island models of

migration.

3 Comparison of Exact results with the Di�usion Ap-

proximation

The familiar di�usion approximation (Kimura 1964; Crow and Kimura 1970) in the case of

one locus with two alleles focuses on one population and assumes that at each generation

the fraction of immigration is m and that the allele frequency in migrants is a constant say,

p0. Assuming mutation before migration,

p�(t) = (1�m)(�11p
(t) + �21(1� p(t))) +mp0 : (17)

Then, as in (2)

2Np(t+1) � Bi(2N; p�(t)) : (18)

To draw some simple parallels, with migration before mutation, we obtain

p�(t) = (1�m)(�11p
(t) + �21(1� p(t))) +m(�11p0 + �21(1� p0)) : (19)

Under equation (1) we obtain for population i

p
�(t)
i = (1�m)(�11p

(t)
i + �21(1� p

(t)
i )) +m

0
@�11

P
j 6=i p

(t)
j

k � 1
+ �21

P
j 6=i(1� p

(t)
j )

k � 1

1
A : (20)

So, if limk!1

P
j 6=i

p
(t)
j

k�1
= p0 almost surely, then (20) tends to (19) almost surely. But also,

for any given k, the variance of p�(t) under (20) is greater than variance of p�(t) under (19)

due to the randomness of the p
(t)
j 's.

Under equation (17), the di�usion approximation produces a stationary distribution for

11



p(t) which is Be(4N(�21 +mp0); 4N(�12 +m(1� p0))) and hence, stationary variance

�2 =
(�21 +mp0)(�12 +m(1� p0))

(�21 + �12 +m)2(4N(�21 + �12 +m) + 1)
: (21)

It is a matter of algebra to show that when p0 = �21=(�12 + �21), �
2(k) in (11) agrees with

(21), ignoring non-�rst order terms in �12, �21 and m.

In applying these results to likelihood or Bayesian inference from population samples, it

is customary to assume that the p
(t)
i are independent and that joint density for (p

(t)
1 ; � � � ; p

(t)
k )

is a product of k Beta densities (see, for example, Barton et al. 1983; Wehrhahn and Powell

1987; Slatkin and Barton 1989; Wehrhahn 1989; Rannala and Hartigan 1995; Holsinger

1999). The di�usion result implicitly assumes that terms containing a product of migration

and mutation rates are ignored (as well as higher order mutation and migration rate terms).

It also assumes that the conditional variance of p(t+1) given p(t) is p(t)(1 � p(t))=2N rather

than p�(t)(1� p�(t))=2N .

For the remander of this section we investigate the accuracy of the Beta approximation

for the model under (1) and (2) when A = 2. We do this in three ways. First, to study the

e�ect of the independence assumption, we use (11) to calculate the decay in correlation as k

increases. Second, we look at the variance in (11) and compare it with (21). Finally, we look

at density estimates for p
(t)
i under (1) and (2) and compare them with the corresponding

density estimates under the Beta approximation. We note immediately that the stationary

mean of p
(t)
i is �21=(�12+�21) while the Beta approximation yields (�21+mp0)=(�12+�21+m) �

p0 if m is much larger than �21 and �12 as is usually assumed in practice. Hence, the Beta

approximation is suitably centered only if p0 = �21=(�12 + �21).

Figure 3 plots �(k) vs. log10 k for �12 = �21 = 5� 10�6 and 5� 10�3 with m = 0:05. Note

that for the smaller mutation rate we require 106 populations before �(k) is essentially 0.

Assuming no mutation in (17) and using the same logic that leads to (10), Crow and

Kimura (1970) obtain the stationary variance approximation

�2 =

�
1� (1�m)2(1�

1

2N
)

��1 p0(1� p0)

2N
: (22)

Straighforward algebra shows that (22) is greater than (21) at �12 = 0 and �21 = 0, suggesting

that the variance of the Beta approximation will underestimate the true population variance.

Since the variance of p
(t)
i under (20) exceeds that of p

(t)
i under (19), assuming no mutation,

we can show explicitly that the stationary variance for p
(t)
i under (20) is larger than (22)

and, in fact, decreases to (22) as k !1. We omit details. With mutation we expect �2(k)

in (11) to exceed (19). Figure 4 plots �2(k) vs. log10 k for di�erent �12 = �21, m, and N

combinations. Indeed, �2(k) in (11) exceeds that in (21) at p0 = 1=2 and, for small mutation

rate, the relative error of the former to the latter could be considerable unless k is large.
In the circular stepping-stone model described above we have a common equilibrium
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Figure 3: For the two-allele model, a plot of correlation vs. log10(k) using (11) for two choices

of mutation rate with a given migration rate.

distribution for all p
(t)
i . In fact,

p
�(t)
i = (1�m)(�11p

(t)
i + �21(1� p

(t)
i )) +m

0
@�11 p

(t)
i�1 + p

(t)
i+1

2
+ �21

(1� p
(t)
i�1) + (1� p

(t)
i+1)

2

1
A (23)

Thus we have the same fraction of immigrants into each population as in the constant

migration rate model (20). The di�erence is that in averaging over contributions from k� 1

other populations rather than just two, the variance of p
�(t)
i in (20) will be smaller than that

in (23). Hence we expect the variance of p
(t)
i under the stepping stone model to exceed �2(k)

in (11) and thus to exceed (21). The parenthetic entries in Table I, which apply to p0 = 1=2,

support this assertion.

Finally, returning to the �nite island model, for choices of N , k, �12 = �21, and m we

ran the Markov transitions for 104 iterations (�12 = �21 = 5 � 10�3) and for 106 iterations

(�12 = �21 = 5 � 10�6) to reach rough equilibrium. We then retained p
(t)
i for every 100th

(�12 = �21 = 5�10�3) or every 105 th (�12 = �21 = 5�10�6) iteration. Finally, for illustration,
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Figure 4: Plot of variance of allele frequency vs. log10(k) for choices of mutation rate, mi-

gration rate and population size for the two allele model.

we created a kernel density estimate of the sample of p
(t)
1

0s. While the distribution of p
(t)
1 is,

in fact, discrete, for large N it is approximately continuous making such density estimates

sensible. Figure 5a compares these density estimates with the Beta approximation when

N = 500 or 2N = 1000, Figure 5b makes this comparison with N = 5000 or 2N = 10000.

Again, the Beta approximation is too concentrated and, for small mutation rate, even the

shape can be very far o�.

6 Interpretation for Fst analysis

F -statistics as introduced by Wright (1951) and Mal�ecot (1948) are widely used to describe

hierarchical structure in genetic data. Wright (1969) de�ned Fst as \the correlation between

random gametes within [populations], relative to gametes of the total [set of populations] (p.

14



allele frequency

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

k = 25

k = 100

Beta Approximation

Variance

0.1608237

0.0845201

0.0024748

mutation rate = 5.0E-6
migration rate = 0.05

allele frequency

0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

12

k = 25

k = 100

Beta Approximation

Variance

0.0024288

0.0022216

0.0020661

mutation rate = 5.0E-3
migration rate = 0.05

Figure 5a: Comparison of stationary density of allele frequency distribution based on the

simulation with the beta distribution. 2N = 1000.

294). For one locus with two alleles this is equivalent to an intraclass correlation coeÆcient

Fst =
�2p

�p(1� �p)
; (24)

where �p is the mean allele frequency across populations and �2p is the variance in allele

frequency among populations. Thus, for a �nite set of populations evolving according to (1)

and (2) a natural analog of (24) is

�(p
(t)
i ; � � � ; p

(t)
k ) =

P
(p

(t)
i � �p(t))

2=k

�p(t)(1� �p(t))
; (25)

where �p(t) = (1=k)
P
p
(t)
i . �(p

(t)
i ; � � � ; p

(t)
k ) is, of course, both random and unobservable. We

use � (suppressing p
(t)
1 ; � � � ; p

(t)
k ) to represent the parameter of interest to emphasize that it is a

stochastic process analog of Cockerham's random-e�ects model for �-statistics (Cockerham

1969; Weir and Cockerham 1984; Weir 1996; Weir and Hill 2002). Empirical population
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Figure 5b: Comparison of stationary density of allele frequency distribution based on the

simulation with the beta distribution. 2N = 10000.

geneticists are interested in using estimates of p
(t)
i , i.e., p̂i, to estimate �.

If the p
(t)
i were i.i.d, then we would replace (25) by �(I) = �2

p
(t)
i

=�p(t)(1� �p(t)) and view

�(I) as the parameter to be estimated. If we let Num denote the numerator on the right

side of (25), Denom the denominator then we might also consider the parameter �(II) =

E(Num)=E(Denom) or perhaps �(III) = E(Num=Denom). �(III) corresponds directly with

the de�nition in (25), i.e., were it observable (25) would be an unbiased estimator of �(III).

�(II) is clearly not equal to �(III), but as k ! 1, standard convergence results show that

�(II) ! �(III). Note, however, that while �(II) and �(III) depend on k, �(I) does not (compare

Cockerham and Weir 1987).

In the simple cases considered above, the �nite-island model and the one-dimensional

stepping stone model, the p
(t)
i are identically distributed but not independent. From Figure

3, for plausible migration rates in the �nite-island model we may require k very large to

feel comfortable with the assumption that the p
(t)
i 's are roughly uncorrelated. Expressed in

di�erent words, (25) considers variability in allele frequency across populations while �(I)

looks at variability across generations. Only if the p
(t)
i are i.i.d will the former approximate

the latter, and the discussion following equation (9) makes it clear that the p
(t)
i will not

be i.i.d. in general. Because Wright's F -statistics and Cockerham's �-statistics are used

primarily to describe genetic structure within a single collection of samples rather than to

describe variation in allele frequencies across time within a single population, interest will

usually center on �(III). Indeed, estimates of Fst based on Cockerham's (1969) analysis of

variance approach to partitioning genetic diversity (e.g., Weir and Cockerham 1984; Cock-

erham and Weir 1987; Weir 1996; ExcoÆer 2001; Weir and Hill 2002) explicitly justify using
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the method-of-moments analog of �(II) by noting that it provides an unbiased estimator of

�(III), in the sense that method-of-moments estimators for the numerator and denominator

are unbiased. Importantly, under (1) and (2), for small to moderate k we show that �(I), �(II)

and �(III) can be quite di�erent and that they can also be quite di�erent from corresponding

values obtained using a product Beta distribution for the p
(t)
i .

Suppose that (p
(t)
1 ; � � � ; p

(t)
k ) arise under (1) and (2). At stationarity, standard calculation

reveals that

E

0
@
P
(p

(t)
i � �p(t))

2

k

1
A =

k � 1

k
�2(k)(1� �(k)) (26)

with E(�p(t)) = �21=(�12 + �21) and �2(k) and �(k) as in (11). Also

E(�p(t)(1� �p(t))) = E(�p(t))(1� E(�p(t)))�
1

k
�2(k)(1 + (k � 1)�(k)): (27)

If the p
(t)
i are i.i.d., (26) simpli�es to (k�1)

k
�2p(t) and under the approximate Beta distribution

�2
p(t)

= �2 in (21). Similarly, (27) simpli�es to E(�p(t))(1� E(�p(t)))� �2
p(t)

=k.

Table II provides comparisons among �(I), �(II) and �(III) and between the model in

(1) and (2) and the product Beta approximation for 2N = 100, �12 = �21 = 5:0 � 10�6,

m = 0:01, k = f25; 100g and for four combinations of N = f1000; 10000g, k = f25; 100g

with �12 = �21 = 5:0�10�6, andm = 5�10�2. The results are striking. While �(I), �(II), and

�(III) di�er little from one another in a product Beta model, they are strikingly di�erent from

one another in the exact model. Notice especially that �(I) can be two orders of magnitude

greater than �(II) and �(III) under the exact model. Not surprisingly �(II) and �(III) di�er less

from one another, except when the population size is small. With 2N = 100, however, �(III)

in the exact model is less than 80% of �(II), even for k = 100. These results suggest that

when populations are small, estimates of Fst based on �
(II) will substantially overestimate the

amount of genetic di�erentiation among populations, regardless of whether they are derived

using the method-of-moments, maximum-likelihood, or a Bayesian approach.

Finally, we simulated the distribution of (25) under the model in (1) and (2) and under

the Beta approximation for 2N = 100, m = 0:01 and selected values of mutation rate and

number of populations. Figure 6 displays the resulting kernel density estimates for �(III)

in both cases. For the larger mutation rate the distributions are quite similar while for the

small rate and somewhat smaller k's, the di�erences are substantial. Also noteworthy is

that, in this latter case when k = 25, only 24% of Fst's were di�erent from 0/0, and when

k = 100, only 70% were di�erent from 0/0.

The reason why �(III) in the exact model departs so substantially from �(II) in the exact

model and from �(II) and �(III) in the product beta model becomes apparent upon re
ection.

The expectation of a ratio depends on the covariance between numerator and denominator.

�(II) in the exact model ignores the covariance between numerator and denominator, while

the numerator and denominator are free to vary independently in the product beta model.
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Exact Model Beta approximation

�(I) �(II) �(III) �(I) �(II) �(III)

V ar(pi)
E(pi)(1�E(pi))

E(Num)
E(Denom)

E( Num
Denom

)
V ar(pi)

E(pi)(1�E(pi))
E(Num)
E(Denom)

E( Num
Denom

)

m 2N k Mean Mean Mean Mean Mean Mean

S.D. S.D.

0.01 100 25 0.9539 0.3456 0.2149 0.3331 0.3517 0.3237

2:360 � 10�2 3:606 � 10�3

100 0.8473 0.3388 0.2655 0.3331 0.3376 0.3310

1:799 � 10�2 8:593 � 10�4

0.05 1000 25 0.6679 1:018� 10�2 8:754 � 10�3 9:899� 10�3 1:032� 10�2 9:566 � 10�3

3:924 � 10�3 2:761 � 10�3

100 0.3380 1:017� 10�2 9:987 � 10�3 9:899� 10�3 1:000� 10�2 9:759 � 10�3

1:441 � 10�3 1:389 � 10�3

0.05 10000 25 0.1673 1:026� 10�3 9:441 � 10�4 9:988� 10�4 1:040� 10�3 9:676 � 10�4

2:726 � 10�4 2:933 � 10�4

100 0.0485 1:025� 10�3 1:010 � 10�3 9:988� 10�4 1:009� 10�3 9:850 � 10�4

1:426 � 10�4 1:337 � 10�4

Table II: Comparison of three de�nitions for �(p1; � � � ; pk) under model (1) and (2) and under

the Beta approximation for the two allele cases with migration rate = 5�10�2 and mutation

rate = 5 � 10�6. Entries for E( Num
Denom

)are based on simulation results. The remainder are

exact calculations.

In short, only �(III) in the exact model re
ects the temporal covariance in allele frequencies

expected with gene exchange among a �nite number of populations. As illustrated in Figure

7a, the distribution of allele frequencies among 100 populations that are exchanging genes

changes substantially over time, even after the drift, migration, mutation process has reached

stationarity. When 1000 populations are exchanging genes, temporal changes in distribution

of allele frequencies among populations are less dramatic, but they are still readily visible

(see Figure 7b).

8 Discussion

Nearly all existing methods for inference of F -statistics depend either explicitly, in the case

of the product beta assumption for likelihood and Bayesian methods, or implicitly, in the

case of method-of-moments methods, on the assumption that allele frequencies vary inde-

pendently across populations (see Weir and Hill 2002 for a description of how to relax the

independence assumption for method-of-moments estimators). Our results show that, in

contrast, allele frequencies covary whenever a �nite number of populations is exchanging

genes. The covariance arises because drift occurs at the level of the entire set of populations,

resulting in changes in the mean allele frequency over time. Moreover, the correlation in al-

lele frequencies among populations causes the single-population di�usion approximation to

provide a poor description both of the allele frequency distribution among populations and
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Figure 6: Comparison of the distribution �(III) based on simulation from model (1) and (2)

and the beta approximation. 2N = 100.

of the distribution of Fst unless mutation is relatively frequent or the number of populations

exchanging genes is extremely large.

As suggested above, we regard �(III) as the appropriate parameter for inference from

data. Given a sample including representatives from all k populations, Bayesian inference

regarding �(p
(t)
i ; � � � ; p

(t)
k ) could be derived from the posterior distribution of the set of p̂i

(see, for example, Holsinger 1999), but empirical population geneticists rarely collect from all

populations. Nonetheless, as Weir (1996) and others have emphasized, investigators are most

often interested in inferences about population structure associated with all populations, not

merely those that were actually sampled. Because the total number of available populations

is rarely known with any degree of precision, an important task for future research is to

determine what sampling strategies can help to ensure that a sample from k0 < k populations

provides reliable information about �(p
(t)
i ; � � � ; p

(t)
k ).
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Figure 7a: Distribution of the allele frequency among populations at four di�erent genera-

tions. 2N = 1000, �12 = �21 = 5:0E � 6, and m = 0:01.
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