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SYNOPSIS 

Laterally loaded piles are analyzed using the Fourier finite element method.  Pile 

response was observed to be a function of the relative stiffness of pile and soil and of the 

pile slenderness ratio.  The analysis is mostly performed for piles embedded in elastic soil 

with constant and linearly varying modulus although the pile response in two-layer soil 

profiles is also investigated.  Equations describing pile head deflection, rotation and 

maximum bending moment are proposed for flexible long piles and stubby rigid piles.  

The design equations were developed after plotting the pile responses as functions of 

pile-soil stiffness ratio and pile slenderness ratio.  These plots can also be used as design 

charts.  Design examples illustrating the use of the analysis are also provided. 

 

KEYWORDS: pile foundation, lateral load, finite element analysis, elastic solution, 

design 
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INTRODUCTION 

Structures resting on piles are frequently subjected to horizontal forces due to 

wind, traffic and seismic activities.  The horizontal forces acting on tall or heavy 

structures like high rise buildings, bridge abutments and earth-retaining structures are 

often of very large magnitude.  Offshore structures like quays and harbors are also 

subjected to large lateral forces arising out of wind, waves and ship berthing.  The 

horizontal forces eventually get transmitted to the piles, which are analyzed considering a 

concentrated force and/or moment acting at the pile head.  Even in structures where piles 

are used to resist vertical forces only, there may exist moments due to load eccentricities 

caused by faulty construction.  Consequently, proper analysis and design of piles 

subjected to lateral forces and moments is very important in order to ensure the stability 

and serviceability of various structures. 

Numerous research studies, both theoretical and experimental, have been 

performed on laterally loaded piles for more than six decades.  The early theoretical 

works stem from the concept of representing soil by discrete springs with the soil 

subgrade modulus as the spring constant.  However, the conventional subgrade modulus 

approach was modified to account for plastic deformation of soil by incorporating 

nonlinearity in the soil springs (Matlock and Reese 1960, McClelland and Focht 1958).  

Further development of this method led to the well known p-y method in which nonlinear 

p-y curves (p is the pressure at the pile-soil interface due to lateral pile deflection y) are 

prepared for different pile depths from available soil data and given as inputs to the 

discretized pile nodes for obtaining numerical solutions of the pile-displacement 

differential equation following an iterative algorithm (Reese and Cox 1968, Matlock 
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1970, Reese et al. 1974, 1975).  However, the p-y curves are not mechanistically related 

to the strength and stiffness of soil.  These curves are developed by giving them as inputs 

to the numerical simulations of some field pile-load tests and adjusting the curves until 

the results of the numerical simulations match the field results.  Thus, the p-y curves 

represent the soil resistance against lateral pile movement on an ad hoc basis.  

Consequently, these curves are actually site specific and there are evidences in the 

literature where the p-y method produced inaccurate results (Kim et al. 2004). 

The continuum approach, in which the pile is assumed to be embedded in a 

continuum, is conceptually superior to the spring approach of the p-y method.  Poulos 

(1971) applied Mindlin’s solution for horizontal force in an elastic continuum to calculate 

displacements at the nodes of discretized piles by the integral equation method of 

analysis.  Similar boundary element algorithm was also adopted by Banerjee and Davies 

(1978).  Sun (1994) and Basu et al. (2009) used variational principles to obtain analytical 

solutions for lateral pile displacements in elastic media.  Guo and Lee (2001) assumed a 

stress field using the Fourier series and obtained a load transfer method for laterally 

loaded piles.  Apart from these analytical and semi-analytical approaches, numerical 

analyses using the finite element method have also been carried out to analyze laterally 

loaded piles (Desai and Appel 1976, Bhowmik and Long 1991, Bransby 1999, Hsiung 

and Chen 1997).  The computationally efficient Fourier series-coupled finite element 

method has been employed as well (Randolph 1981, Carter and Kulhawy 1992).  These 

apart, the finite difference method (Klar and Frydman 2002, Ng and Zhang 2001), the 

boundary element method (Budhu and Davies 1988) and the upper-bound method of 

plasticity (Murff and Hamilton 1993) have been used to address the problem.   
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In this report, the finite element method coupled with Fourier techniques is used 

to analyze laterally loaded piles embedded in elastic continua.  Piles with different 

lengths, flexibilities and boundary conditions are considered.  Subsurface profiles with 

constant and linearly varying modulus are assumed.  Additionally, a two-layer profile is 

considered.  A parametric study is performed in which the important variables governing 

the pile behavior are identified.  Based on the study, design equations are proposed using 

which pile deflection, slope and bending moment can be calculated if the correct elastic 

soil modulus is available.  Design examples are provided to illustrate the use of the 

analysis. 

ANALYSIS 

Cylindrical piles with a lateral load Fa and moment Ma acting at the head are 

considered in this paper (Figure 1).  The pile is described by its radius rp, length Lp and 

Young’s modulus Ep.  The soil is described by its shear modulus Gs and Poisson’s ratio 

υs.  Three types of soil profiles are considered in this paper: (1) homogeneous soil in 

which Gs remains spatially constant, (2) heterogeneous soil in which Gs increases linearly 

with depth from zero value at the ground surface and (3) two-layer soil with different 

values of Gs that remain spatially constant within each layer (Figure 2). 
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Figure 1. Schematic of analysis domain showing pile, applied load and finite element 
mesh 

 

Figure 2.  Plots of soil shear modulus versus depth: (a) constant stiffness with depth, (b) 
stiffness linearly increasing with depth with zero value at the ground surface, and (c) two-

layer soil with constant stiffness in each layer 
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The Fourier finite element code developed by Smith and Griffiths (2004), which 

calculates the response of axisymmetric solids subject to non-axisymmetric loads, was 

used for the purpose of analysis.  The domain of analysis is represented by a two-

dimensional (2D) rectangular plane, which is an axisymmetric plane of the cylindrical 

problem geometry.  The analysis domain was chosen sufficiently large so as to remove 

any boundary effects.  The distance between the horizontal bottom boundary of the 

domain and the pile base was at least one pile length.  The outer vertical boundary of the 

domain was maintained at a radial distance of at least 1.5 times the pile length from the 

pile-soil interface. 

The analysis domain was discretized using rectangular, quadratic elements. Each 

element in the 2D plane represents an annulus centered on the axis of symmetry.  The 

mesh density was different for different pile geometries.  For the long piles, it was 

necessary to maintain a high mesh density near the pile head where the deformations are 

predominant.  On the other hand, for short piles, a uniformly dense mesh was required 

throughout the entire pile length.  The cases in which the stiffness varied with depth 

required more rows of elements so as to smoothly approximate the linear variation.  

About 10,000 elements were used in each mesh. 

In the analysis, the applied loads are defined using harmonic functions of the 

angle θ representing the angular distance out from the 2D plane in the tangential 

direction.  For example, a node on the 2D plane loaded using the zeroth harmonic 

represents a uniform load acting on the ring that the node represents.  A node loaded 

using the first harmonic has a magnitude that varies sinusoidally with θ.  The horizontal 

load and moment are created by applying horizontal and vertical loads, respectively, at 
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the nodes representing the pile head using the first harmonic.  Using the proper harmonic, 

the applied horizontal load was distributed along θ  in such a way that its direction 

always coincided with the direction of the applied horizontal load.   The vertical load was 

distributed along θ  in such a way that it was upward on one half of the pile-head section 

and downward on the other half, thereby creating a moment at the head. 

RESULTS 

Accuracy of Analysis 

In order to ensure the accuracy of the Fourier finite element analysis used in this 

paper, selected results were compared with the results of equivalent three-dimensional 

(3D) finite element (FE) analysis obtained using Abaqus.  The match of the pile 

deflection profiles between our analysis and the 3D FE analysis was perfect (with the 

curves falling on top of each other), which proved that the Fourier FE used in the study 

produces accurate results.   Convergence tests were performed on all the meshes before 

final results were accepted. 

Modification of Soil Shear Modulus 

Randoph (1981) found that the effect of soil Poisson’s ratio υs on the response of 

laterally loaded piles was minimal and can be adequately captured by using an equivalent 

shear modulus Gs
* of the elastic soil given by 

( )* 1 0.75s s sG G υ= +  (1) 

where Gs is the actual shear modulus of soil.  The observation of Randolph (1981) was 

confirmed to be true by our analysis, and hence, Gs
* is used in our analysis to represent 
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the elastic properties of soil.  Consequently, for soils with stiffness linearly increasing 

with depth z, the gradient m = dGs/dz requires modification as 

( ) ( )* 1 0.75 1 0.75s
s s

dGm m
dz

υ υ= + = +  (2) 

Effect of Relative Stiffness of Pile and Soil 

The stiffness ratio Ep/Gs
* has a strong influence on the lateral pile response.  For a 

pile of given geometry and modulus, the stiffness ratio governs whether it behaves as a 

flexible or a rigid pile.  Figures 3(a) and (b) show the normalized head deflection w of 

piles with free heads as a function of the relative stiffness Ep/Gs
* due to applied force Fa 

and moment Ma, respectively, for different values of pile slenderness ratio Lp/rp.  The 

plots are generated for piles embedded in homogeneous soil profiles.  For the range of 

Ep/Gs
* considered in this study, piles with a large slenderness ratio of 80 or greater 

behaves as long flexible piles with the normalized head deflection decreasing 

continuously with increasing Ep/Gs
*.  For piles with slenderness ratio less than 80, there is 

a divergence from the flexible behavior towards rigid behavior as Ep/Gs
*increases.  The 

rigid behavior is characterized by no change in the normalized pile head deflection with 

increasing Ep/Gs
* ⎯ at large values of Ep/Gs

*, the pile does not bend like a flexible beam 

but undergoes rigid translation and rotation thereby making the effect of Ep on pile 

behavior negligible.  Consequently, the behavior of rigid piles depends only on the pile 

slenderness ratio (i.e., on the pile geometry).  For a particular value of slenderness ratio, 

if the ratio Ep/Gs
* is greater than a threshold value, then the pile behaves as a rigid pile.  

This threshold value of Ep/Gs
*can be related to pile slenderness ratio as 
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(a) 

 

(b) 

Figure 3. Dimensionless pile head displacement versus stiffness ratio for free-head piles 
in homogeneous soil subjected to applied (a) lateral force and (b) moment at the head 
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3.23

*
RT

44p p

s p

E L
G r

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3) 

where the subscript RT represents the rigid threshold.  The plots in Figures 3(a) and (b) to 

the right of the threshold line (equation (3)) represent the behavior of rigid piles for 

which Ep/Gs
* is greater than (Ep/Gs

*)RT.   

The behavior of flexible piles, on the other hand, depends on both the relative 

stiffness and the slenderness ratio.  However, for long piles, the length is so large that the 

pile-base conditions do not affect the behavior of the pile head.  For such long and 

slender piles, the lateral behavior can be adequately expressed in terms of Ep/Gs
* alone.  

As shown in Figures 3(a) and (b), the pile with Lp/rp ≥ 80 behaves like a long pile.  The 

head deflection for such long piles can be expressed algebraically by fitting a curve 

through the long pile response plots shown in Figures 3(a) and (b) as 

0.18 0.43

* * * 2 *0.34 0.30p pa a

s p s s p s

E EF Mw
G r G G r G

− −
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4) 

Similarly, the head rotation (slope) of long flexible piles is independent of pile 

slenderness ratio and can be expressed as 

 
0.43 0.72

* 2 * * 3 *
0

0.28 0.90p pa a

z s p s s p s

E Edw F M
dz G r G G r G

− −

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ = +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

(5) 

The response of piles embedded in soil profiles in which the shear modulus 

increases linearly with depth from a zero value at the surface is similar to those observed 

for piles in homogeneous profiles described above.  For such linearly varying profiles, 

the relative stiffness of pile and soil is adequately represented by the ratio Ep/m*rp 

(Randolph 1981).  Figures 4(a) and (b) show the corresponding normalized head 
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deflection of free-head piles subjected to a lateral force Fa and moment Ma at the head.  

The threshold (Ep/m*rp)RT, exceeding which the piles behave as rigid piles, is given by 

3.45

*

RT

119p p

p p

E L
m r r

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  (6) 

The head deflection and slope of the long flexible piles, for which (Ep/m*rp) < 

(Ep/m*rp)RT, are given by the fitted equations 

0.33 0.54

* 2 * * 3 *0.55 0.53p pa a

p p p p

E EF Mw
m r m r m r m r

− −
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

(7) 

0.54 0.78

* 3 * * 4 *
0

0.50 1.23p pa a

z p p p p

E Edw F M
dz m r m r m r m r

− −

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (8) 
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(a) 

 

(b) 

Figure 4. Dimensionless pile head displacement versus relative stiffness due to applied 
(a) lateral force and (b) moment at the head of free-head piles in soil profiles in which 

modulus increases linearly with depth 
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Pile heads are rarely free to translate and rotate as piles are most of the time 

attached to a structural element above.  If a cap is present, the head rotation is 

significantly restrained and it is customary to assume that there is zero rotation at the 

head.  The response of such fixed-head piles are shown in Figure 5 for homogeneous soil 

profiles and in Figure 6 for heterogeneous soil profiles in which the modulus increases 

linearly with depth from zero at the surface.  The general trend of the normalized head 

deflection versus stiffness ratio plots in Figures 5 and 6 is similar to that observed for the 

corresponding cases of free-head piles described above. 

 

Figure 5. Dimensionless pile head displacement versus stiffness ratio for fixed-head piles 
in homogeneous soil profiles subjected to applied lateral force at the head 
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Figure 6. Dimensionless pile head displacement versus relative stiffness due to applied 
lateral force at the head of fixed-head piles in soil profiles in which the modulus increases 

linearly with depth 

The fixed-head piles with (Ep/Gs
*) > (Ep/Gs

*)RT undergo rigid translation due to 

application of the applied force Fa, and do not exhibit any rigid rotation.  Equations (3) 

and (6) describing (Ep/Gs
*)RT for free-head piles in homogeneous and linearly varying soil 

profiles, respectively, were found to be valid for the corresponding cases of fixed-head 

piles as well.  The head deflection of long, flexible, fixed-head piles in homogeneous soil 

is obtained by fitting a curve to the plots corresponding to long piles in Figure 5 as 

0.2

* *0.24 pa

s p s

EF
w

G r G

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9) 

The fitted equation for the head deflection of fixed-head long piles in soil with linearly 

varying modulus is obtained from Figure 6 as 
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0.35

* *0.31 pa

p p

EFw
m r m r

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (10) 

Note that the head deflection for fixed-head piles can be obtained from the 

equations of head deflection and slope for free-head piles (i.e., from equations (4) and (5) 

for homogeneous soils and from equations (7) and (8) for linearly varying soils) by 

equating the slope to zero to obtain an expression of Ma in terms of Fa and then 

substituting the resulting expression in the equation of deflection to obtain the final value.  

However, we observed that the resulting values of fixed-head deflection did not 

accurately match the simulated results because the algebraic manipulations of the curve-

fitted equations increased the errors in the calculations.  The fitted equations (9) and (10) 

were found to better predict the simulated results. 

In addition to pile deflection, the bending moments at pile cross sections are 

important for the design of piles.  When a moment is applied at a free pile head, the 

maximum bending moment Mmax is equal to the applied moment and occurs at the pile 

head (Randolph 1981).  The maximum bending moment due to an applied horizontal 

force on free-head piles occurs at a finite depth below the ground surface.  Figures 7 and 

8 show the normalized maximum bending moment in free-head piles, due to an applied 

horizontal force at the head, as a function of the relative stiffness in homogeneous and 

linearly varying soil profiles, respectively.  For long flexible piles, Mmax is independent of 

the pile slenderness ratio and can be expressed as (Randolph 1981) 

0.29

*0.2 p
max a p

s

E
M F r

G
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (11) 

for homogeneous soil profiles and as 
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0.22

*0.4 p
max a p

p

E
M F r

m r

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (12) 

for soil profiles in which the modulus increases linearly with depth from zero at the 

surface.  For shorter piles, Mmax depends on pile slenderness ratio and, as the relative 

stiffness increases, Mmax deviates from the trend followed by long piles.  At large values 

of the stiffness ratio, Mmax of shorter piles becomes independent of the stiffness ratio 

indicating a rigid behavior.   

 

Figure 7. Dimensionless maximum bending moment versus stiffness ratio for free-head 
piles in homogeneous soil and subjected to an applied horizontal force at the head 
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Figure 8. Dimensionless maximum bending moment versus relative stiffness for free-
head piles in linearly varying soil and subjected to an applied horizontal force at the head 

Effect of Pile Slenderness Ratio 

It is clear from the above discussion that the behavior of rigid piles and of flexible 

piles with moderately long lengths depends on pile slenderness ratio Lp/rp.  Thus, the 

effect of slenderness ratio on pile behavior is investigated further.  The normalized pile 

head deflection due to applied force and moment are plotted as a function of Lp/rp in 

Figures 9(a) and (b), respectively, for different values of Ep/Gs
*.  These plots are 

generated for free-head piles in homogeneous soil profiles.  For the range of slenderness 

ratio considered in the study, a value of Ep/Gs
* = 105 or greater produced rigid piles.  For 

piles with Ep/Gs
* less than 105, the pile response deviates from the rigid behavior and 

there is a threshold value of Lp/rp exceeding which the normalized head deflection 

becomes independent of the slenderness ratio implying that the behavior is that of 



20 
 

flexible long piles.  This threshold value of Lp/rp represents the critical slenderness ratio 

(Lp/rp)C and can be related to the stiffness ratio Ep/Gs
* as (Randolph 1981) 

0.29

*
C

2p p

p s

L E
r G

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (13) 

Piles with (Lp/rp) > (Lp/rp)C behave as long flexible piles and the length that produces the 

slenderness ratio equal to (Lp/rp)C is often referred to as the critical length Lc of pile.  Lc 

essentially represents a threshold length such that any additional pile length does not have 

any impact on the lateral pile response.  Equation (13) indicates that whether a pile 

behaves as a flexible long pile or not depends not only on its physical length but also on 

the relative stiffness Ep/Gs
*. 

Since the behavior of rigid piles depends only on pile slenderness ratio, Figures 

9(a) and (b) can be used to obtain a fitted algebraic equation for pile head deflection of 

free-head, rigid piles in homogeneous soil as 

 
0.42 1.19

* * 20.23 0.15p pa a

s p p s p p

L LF Mw
G r r G r r

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (14) 

The rotation of free-head, rigid piles in homogeneous soil can be similarly expressed as  

1.19 2.10

* 2 * 3
0

0.15 0.21p pa a

z p ps p s p

L LF Mdw
dz r rG r G r

− −

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (15) 
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(a) 

 

(b) 

Figure 9. Dimensionless pile head displacement versus slenderness ratio for free-head 
piles in homogeneous soil profiles subjected to applied (a) lateral force and (b) moment at 

the head 
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The normalized head deflection versus slenderness ratio relationships for free-

head piles in soil profiles with shear modulus increasing linearly with depth from zero at 

the surface are similar to those obtained for homogeneous profiles.  Figures 10(a) and (b) 

show the plots for applied horizontal force and moment, respectively.  Based on the 

figures, the critical slenderness ratio of free-head piles in linearly varying soil profile can 

be obtained as (Randolph 1981) 

0.22

*
C

2p p

p p

L E
r m r

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (16) 

Also, the head deflection of free-head rigid piles in linearly varying soil is obtained from 

Figures 10(a) and (b) as 

1.14 1.99

* 2 * 30.37 0.29p pa a

p p p p

L LF Mw
m r r m r r

− −
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (17) 

The rotation of free-head rigid piles is similarly obtained as  

1.99 2.93

* 3 * 4
0

0.29 0.33p pa a

z p p p p

L Ldw F M
dz m r r m r r

− −

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (18) 
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(a) 

 

(b) 

Figure 10. Dimensionless pile head displacement versus slenderness ratio due to applied 
(a) lateral force and (b) moment at the head of free-head piles in soil profiles with 

modulus increasing linearly with depth from zero at the surface 
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The normalized head deflection for fixed-head piles as a function of pile 

slenderness ratio is plotted in Figures 11 and 12 for homogeneous and linearly varying 

soil profiles, respectively.  The trends exhibited by the fixed-head piles are similar to 

those by the free-head piles.  Equations (13) and (16) describing (Lp/rp)C for free-head 

piles in homogeneous and linearly varying soil profiles, respectively, were found to be 

valid for the corresponding cases of fixed-head piles as well.  Also, the fitted equation for 

head deflection (translation) of fixed-head rigid piles in homogeneous soil is obtained 

from Figure 11 as  

0.65

*0.14 pa

s p p

LFw
G r r

−
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (19) 

 

Figure 11. Dimensionless pile head displacement versus slenderness ratio for fixed-head 
piles in homogeneous soil profiles subjected to applied lateral force at the head 
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The head deflection (translation) of fixed-head piles in linearly varying soil profile is 

obtained from Figure 12 as 

1.50

* 20.14 pa

p p

LFw
m r r

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (20) 

 

Figure 12. Dimensionless pile head displacement versus slenderness ratio due to applied 
lateral force at the head of fixed-head piles in soil profiles in which modulus increases 

linearly with depth from zero at the surface 

Figures 13 and 14 show the normalized maximum bending moment in free-head 

piles, due to an applied horizontal force at the head, as a function of the pile slenderness 

ratio in homogeneous and linearly varying soil profiles, respectively.  For rigid piles with 

large values of relative stiffness, the maximum bending moment is given by  
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Figure 13. Dimensionless maximum bending moment versus slenderness ratio for free-
head piles in homogeneous soil and subjected to an applied horizontal force at the head 

 

Figure 14. Dimensionless maximum bending moment versus slenderness ratio for free-
head piles in linearly varying soil and subjected to an applied horizontal force at the head 
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for homogeneous profiles and by  
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p
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r
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⎝ ⎠
 (22) 

for linearly varying profiles. 

The fitted equations of pile head deflection, rotation and maximum bending 

moment given above are valid for either rigid piles or for flexible long piles.  In order to 

use these equations, first a check as to whether a pile behaves as a rigid or a long flexible 

pile should be done by calculating the rigid threshold relative stiffness and the critical 

slenderness ratio.  If a pile does not fall in the category of rigid or flexible long piles, then 

it is a flexible pile of intermediate length.  For these piles with intermediate length, no 

simple equation can be proposed as their behavior depends on both the pile slenderness 

ratio and relative pile-soil stiffness, and appropriate normalizations with respect to both 

these parameters are difficult to obtain.  Thus, for these intermediate-sized piles, the head 

deflection, rotation and maximum bending moment may be estimated from the plots 

given in Figures 3-14. 

Piles in Two-Layer Profiles 

Often, soil profiles have discrete layers with distinct properties.  For such profiles, 

the results obtained above are not strictly valid.  Although an exhaustive study with 

different possible soil layering is beyond the scope of this paper, a simple case of two-

layer profile is investigated here.  The two-layer profile is characterized by the equivalent 

shear moduli Gs1
* and Gs2

* of the top (first) and the underlying (bottom) layers, 
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respectively, and by the thickness h of the top layer (Figure 2(c)).  The bottom layer is 

assumed to extend to great depth. 

Figure 15 shows the normalized head deflection of long, flexible free-head piles 

in two-layer soil profiles due to applied lateral force at the head as a function of the 

relative stiffness Ep/Gs1
*.  The deflections in these plots are normalized with respect to the 

shear modulus Gs1
* of the top layer the thickness h of which is fixed at half the critical 

pile length Lc.  The plots are generated for different values of soil stiffness ratio Gs2
*/Gs1

* 

with a fixed value of Gs1
*.  Thus, for the case with Gs2

*/Gs1
* = 0.5, the bottom layer is 

made weaker than the top layer while, for the case with Gs2
*/Gs1

* = 2.0, the bottom layer 

is made twice as strong as the top layer.  For a fixed value of stiffness of the top layer, a 

weaker bottom layer results in greater head deflection while a stronger bottom layer 

results in less head deflection than that of the corresponding homogeneous case.  This 

difference in head deflection, however, decreases with increasing Ep/Gs1
*. 
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Figure 15. Dimensionless pile head displacement versus relative stiffness for long, 
flexible and free-head piles in two-layer soil due to applied lateral force 

Figure 16 shows the effect of the thickness h of the top layer on the response of 

free-head long piles in two-layer soil.  If the bottom layer is weak as in the case with 

Gs2
*/Gs1

* = 0.5, then a greater h/Lc produces less head deflection while the reverse is true 

for Gs2
*/Gs1

* = 2.0. 
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Figure 16. Dimensionless pile head displacement versus relative stiffness for long, 
flexible and free-head piles in two-layer soil due to applied lateral force showing the 

effect of layer thickness 

Figures 17 and 18 show the response of rigid piles in two-layer soil.  In these 

figures, the pile head deflection, normalized with respect to Gs1
*, is plotted as a function 

of pile slenderness ratio Lp/rp.  Figure 17 shows that, for a fixed top layer with thickness h 

= 0.5Lp and stiffness Gs1
*, the head deflection decreases with increasing Gs2

*/Gs1
*.  Figure 

18 shows that, if the thickness of the top layer increases, then head deflection increases if 

the bottom layer is stronger than the top layer, while the head deflection decreases as the 

thickness of the top layer increases if the bottom layer is weaker than the top layer.   
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Figure 17. Dimensionless pile head displacement versus slenderness ratio for rigid, free-
head piles in two-layer soil due to applied lateral force showing the effect of soil stiffness 

ratio 

 

Figure 18. Dimensionless displacement versus slenderness ratio for rigid, free-head piles 
in two-layer soil due to applied lateral force showing the effect of layer thickness 
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Design Examples 

Two design examples are considered in this section ⎯ one with constant modulus 

and the other with linearly varying modulus.  In both the examples it is assumed that the 

piles are first designed against axial loads and then checked against tolerable lateral 

deflections. 

A single drilled shaft is to be designed in a homogeneous clay layer with 

undrained shear strength su = 150 kPa.  From the design considerations against axial 

loads it was found that a pile length of 15 m and a diameter of 600 mm is adequate.  A 

lateral load of 300 kN and moment of 100 kN-m act on the pile.  It is necessary to restrict 

the head deflection to within 25 mm.  Assuming undrained conditions it is reasonable to 

choose clay Poisson’s ratio υs = 0.45.  The Young’s modulus Es of clay can be estimated 

from the relationship Es = 500su (Selvadurai 1979) as 75,000 kPa.  Thus, for the soil 

profile in question, 0.5 (1 )  25862 kPas s sG E υ= + =  and ( )* 1 0.75s s sG G υ= +  

34590kPa.=  Since drilled shafts are made of lightly reinforced concrete, Ep = 24 × 106 

kPa is a reasonable assumption, which makes Ep/Gs
* = 694.  The pile slenderness ratio 

Lp/rp = 50.  Since the rigid threshold (Ep/Gs
*)RT = 44 × 503.23 = 13524642 is much greater 

than the Ep/Gs
* of the pile, it behaves as a flexible member.  The critical slenderness ratio 

(Lp/rp)C = 2 × 690.29 = 6.8 is less than the actual pile slenderness ratio.  Therefore, the 

drilled shaft behaves as a long pile.  Consequently, equation (4) can be used to estimate 

the pile head deflection ⎯ the estimated head deflection is 3.6 mm.  Thus, the estimated 

lateral head deflection is less than the tolerable deflection of 25 mm, which makes the 

design satisfactory.   
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As a second example, a driven concrete pile, attached to a cap, is to be designed 

in a sandy soil deposit.  Considering axial capacity, the pile has the following dimensions 

Lp = 20 m and rp = 0.2 m.  A lateral force of 500 kN acts at the pile head.  The tolerable 

lateral head deflection is 25 mm.  The soil profile consists of very loose deposit near the 

ground surface although the relative density increases gradually with depth.  The increase 

in the relative density with depth can be assumed to be approximately linear and a 

relative density of 80% was observed at a depth of 30 m.  For dense sands, the Young’s 

modulus Es can be conservatively assumed to be 75,000 kPa (Selvadurai 1979).  Since 

the sand near the ground surface is very loose, the Young’s modulus can be assumed to 

be zero at the surface.  The Poisson’s ratio υs of sand can be reasonably assumed to be 

0.2 (Selvadurai 1979).  This makes the shear modulus Gs = 31250 kPa at a depth of 30 m 

and zero at the ground surface.  Thus, the gradient m = dGs/dz of the linear variation of 

shear modulus is equal to 1042 kPa/m and m* = m(1 + 0.75υs) = 1198 kPa/m.  Since 

driven concrete piles are heavily reinforced, Ep = 25 × 106 kPa is a reasonable 

assumption.  Thus, for this pile, Lp/rp = 100, Ep/m*rp = 104340, (Ep/m*rp)RT = 945250599 

and (Lp/rp)C = 25.4.  Therefore, the pile falls under the category of long, flexible and 

fixed-head piles.  The lateral head deflection is calculated as 11.3 mm using equation 

(10).  Since the estimated head deflection is less than the tolerable deflection of 25 mm, 

the design is acceptable. 

CONCLUSIONS 

Laterally loaded piles embedded in elastic soil are analyzed using the Fourier 

finite element analysis.  Homogeneous soil profiles in which the soil modulus remains 

spatially constant, heterogeneous profiles in which the modulus increases linearly with 
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depth from zero value at the ground surface, and two-layer soil profiles with different soil 

moduli within each layer are considered in the analysis.  The effects of relative stiffness 

of pile and soil and of pile slenderness ratio on pile head deflection, rotation and 

maximum bending moment were investigated. 

Three distinct behavior regimes were identified from the results.  The piles with 

relative pile-soil stiffness greater than a threshold value behaved as rigid members.  For 

these piles, the response depends only on the pile slenderness ratio Lp/rp ⎯ the 

normalized head deflection decreases with increasing slenderness ratio.  The piles with 

relative stiffness less than the threshold value behaved as flexible piles.  When the 

slenderness ratio of flexible piles is greater than the critical slenderness ratio, the piles 

behave as long piles.  For the long flexible piles, the behavior depends only on the 

relative pile-soil stiffness ⎯ the head deflection decreases as the relative stiffness 

increases.  The behavior of flexible piles with moderate lengths, for which the 

slenderness ratio is less than the critical slenderness ratio, is dependent on both the 

relative stiffness and slenderness ratio.  For these moderate-length piles, the head 

deflection decreases with increasing relative stiffness and with increasing slenderness 

ratio. 

Piles subjected to applied moment at the head (which includes free- and fixed-

head piles) have the maximum bending moment acting at the head ⎯ the maximum 

bending moment is equal to the applied moment.  The maximum bending moment due to 

an applied horizontal force on free-head piles occurs at a finite depth below the ground 

surface.  The normalized maximum bending moment of free-head flexible piles increases 
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with increase in the relative pile-soil stiffness.  For rigid free-head piles, the normalized 

bending moment increases with increase in the pile slenderness ratio. 

For piles in two-layer soil, there is an effect on the pile response of the thickness 

of the top layer and of the stiffness ratio Gs2
*/Gs1

* of the two layers.  Lateral pile 

displacement increases not only if the stiffness of the top layer decreases but also if the 

stiffness of the bottom layer decreases.  For a weaker top layer, the pile displacement 

increases as the thickness of the top layer increases.  However, the effect of the bottom 

layer is marginal if the thickness of the top layer is very large.     

Based on the above study, algebraic equations describing the pile head deflection, 

rotation and bending moment were developed by fitting the results of the finite element 

analyses.  The equations were developed for rigid piles and for long flexible piles and can 

be readily used in design.  Such equations could not be proposed for flexible piles of 

moderate lengths; for these piles, the plotted figures may be used as design charts.  The 

use of the analysis in design is illustrated with the help of two numerical examples. 
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