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A Framework for Realistic and Systematic

Multicast Performance Evaluation ?

Li Lao a , Jun-Hong Cui b , Mario Gerla a

aComputer Science Department, University of California, Los Angeles
bComputer Science & Engineering Department, University of Connecticut, Storrs

Abstract

Previous multicast research often makes commonly accepted but unverified as-
sumptions on network topologies and group member distribution in simulation stud-
ies. In this paper, we propose a framework to systematically evaluate multicast
performance for different protocols. We identify a series of metrics, and carry out
extensive simulation studies on these metrics with different topological models and
group member distributions for three case studies. Our simulation results indicate
that realistic topology and group membership models are crucial to accurate mul-
ticast performance evaluation. These results can provide guidance for multicast re-
searchers to perform realistic simulations, and facilitate the design and development
of multicast protocols.

Key words: multicast, performance evaluation, topology models, group
membership models, power law

1 Introduction

Multicasting has been and continues to be a very active research, development,
and testing area ever since its inception. In the last two decades, from IP
multicast to overlay multicast, numerous multicast schemes and protocols have
been proposed [36,7,37,21,22,24,16,28,31,18,29,38,8]. The performance of these
approaches and protocols may be significantly influenced by factors such as
network topologies and group membership distributions. However, due to a
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lack of real data and an absence of a systematic simulation methodology,
multicast research usually relies on a variety of commonly accepted but not
verified assumptions and models regarding important issues such as group
size, membership distribution, and network topology. As a result, simulation
results are not comparable and their conclusions may be of limited use.

Similar to other networking areas, multicast research can greatly benefit from
realistic models and a systematic evaluation methodology. First of all, the
characteristics of network topologies, such as the number of nodes, average
node degree, flat or hierarchical structures, and edge distributions, are among
the factors that affect multicast performance. For example, since data pack-
ets are only replicated at branching nodes, the efficiency of multicast (over
unicast) would improve if there are fewer number of non-branching nodes
on the paths between multicast group members. Therefore, realistic network
topologies are crucial for developing and validating multicasting related pro-
tocols and algorithms. In contrast, current multicast researchers often select
synthetic topologies arbitrarily for performance evaluation. Second, a realis-
tic model of group membership distribution can have significant impact on
the design and development of multicast protocols. It can help to address the
scalability issues, and can provide information for reliable multicast protocols
to fine-tune their performance. However, a lot of multicast research assumes
random group membership or makes other assumptions without verification.
Thus, it is very necessary and important to develop realistic models and sys-
tematic framework to facilitate multicast protocol design and performance
evaluation.

Some prior research works show that unrealistic assumptions could seriously
influence the multicast simulation results. For instance, Chuang and Sirbu
proposed a power-law relationship to express multicast efficiency in terms
of the number of group members [19]. Chalmers et. al. developed a similar
metric to measure the gain of multicast over unicast and investigated how
receiver distribution and network topologies may affect this metric [14]. An
analysis on multicast forwarding state scalability show that forwarding state
distribution and state reduction are affected greatly by factors such as network
topological properties, group density and membership distribution [48]. It has
also been shown by Fei et. al. [27] and Thaler et. al. [44] that multicast state
aggregatability heavily depends on group membership models, i.e., how are
the members distributed in the network.

As a consequence, some interesting questions that a multicast researcher should
ask include: Which (topology and membership) models should I use in my sim-
ulations? Do the simulations realistically reflect the performance of a protocol?
How could I fairly compare various protocols? To answer these questions, it is
crucial to develop a multicast performance evaluation framework so that pro-
tocols can be evaluated and compared in a systematic and extensive manner,
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and thus facilitate the design of multicast protocols. In this paper, we pro-
pose a systematic multicast performance evaluation framework, addressing
the above issues by focusing on the “realism” of topology and group mem-
bership models. We examine the effect of these models on various multicast
performance metrics for three case studies and quantify the “error” due to
unrealistic assumptions. The goal of our work is two-fold: on the one hand, we
aim to provide guidance for multicast researchers to carry out realistic simula-
tions for the purpose of designing, evaluating and fine-tuning their protocols;
on the other hand, we attempt to “validate” the realism of graph (includ-
ing topology and membership) models from the point of view of multicast
performance. From the simulation results based on our proposed framework,
we found that unrealistic models do impact the performance evaluation. We
identified several topology models that are realistic in terms of multicast per-
formance, and quantified the effects of group member distribution on several
performance metrics.

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of existing topology generators and group member models. In Sec-
tion 3, we define our framework for evaluating multicast protocols. In Sec-
tion 4, we present simulation results with different topologies and group mem-
ber distributions for three case studies. Finally, we summarize our contribu-
tions in Section 5.

2 Related Work

In this section, we discuss related work in areas of topology generators, group
member models, and multicast performance evaluation. These results have
greatly influenced our work.

2.1 Topology Generators

How to correctly model and generate network topology is a fundamental re-
search problem. The design and development of new network protocols involve
extensive testing on the feasibility of these protocols. However, due to the diffi-
culty of performing experiments on large-scale Internet, researchers often turn
to analysis and simulations to predict or estimate the protocol performance.
As a result, a number of topology models and generators have been proposed
to produce synthetic graphs for the purpose of simulations. Network topologies
that resemble the structure and properties of the Internet would accurately
guide the design and testing of various network protocols, whereas unrealistic
topology models may lead researchers to draw incorrect conclusions.
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Early work such as Waxman Model [46] relies on random graphs to generate
network topologies. In this model, the nodes in the network are distributed
randomly on a two-dimensional grid. An edge between two nodes is added to
the graph according to a probability function of the Euclidean distance be-
tween them. While Waxman model produces a flat network, GT-ITM package
[13] and Tiers [3] attempt to capture the hierarchical structure of the Inter-
net. By using five random graph models (including Waxman model), GT-ITM
Transit-Stub Model produces two-level graphs representing transit domains
and stub domains. In Tiers, three levels of hierarchy, namely, WAN, MAN
and LAN, are created. All the nodes in a single domain are joined by a min-
imum spanning tree, and redundant intra- and inter-domain edges to closest
nodes are added to satisfy node degree.

The seminal work by Faloutsous et. al. [25] showed empirically that certain
properties at Autonomous System (AS) Level can be described with power-
laws. These properties include node degree, complementary cumulative dis-
tribution function of node degree, graph eigenvalues, and the total number
of pairs of nodes within a certain number of hops. Following this work, a
number of topology generators [9,34,32,12] have been proposed to incorporate
these power laws either explicitly or implicitly. Barabasi and Albert provide
a model to explain the origin of the degree power law. In their model, they
incrementally generate nodes and attach new nodes to existing ones with a
probability proportional to their degrees (also called linear preference model)
[9]. Boston university Representative Internet Topology gEnerator (BRITE)
extends Barabasi-Albert model by combining preferential attachment with a
heavy-tailed distribution of node placement [34]. Based on the observation
that new ASs have a stronger preference to connect to high degree ASs than
linear preference model [15], Generalized Linear Preference model (GLP) is
proposed with a modified probability function for new node attachment [12].
Internet Topology Generator (Inet) makes use of both explicit and implicit
approaches: it uses the power laws explicitly to generate outdegrees for all
nodes, builds a spanning tree among nodes with degree higher than 1, at-
taches remaining nodes to the spanning tree, and connects nodes with unfilled
degrees according to the linear preference model [32].

2.2 Group Member Models

Previous research work on group member models addresses the temporal and
spatial properties of group members. [6,30] model join and leave behaviors
in single-source applications over MBone and in multiple-source networked
games, respectively. In both works, the authors found that time-of-day ef-
fect varies the number of participating members. In addition, the inter-arrival
times fit well to an exponential distribution, and membership duration follows
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exponential distribution for shorter sessions and Zipf distribution for longer
sessions.

In terms of spatial properties (i.e., group membership), Phillips et. al. proposed
an Affinity/Disaffinity model to control the likelihood that group members
are clustered or spread out [39]. However, this model is not able to evaluate
the affinity/disaffinity of real groups or groups generated with other models.
Lucas et. al. proposed several distance- and expansion-based metrics to better
characterize group clustering, but they did not provide algorithms to generate
group membership according to these metrics. Recently, a comprehensive and
systematic group membership model GEneralized Membership Model (GEM)
is developed by Cui et. al. [20]. GEM models group spatial properties with
respect to member clustering, group participation probability, and pairwise
correlation in group participation. The authors show through measurement
that real group communication applications such as audio/video conferences
on MBone and network games exhibit distinct behaviors in terms of spatial
group properties. Their group generator is able to create groups preserving
those properties.

In this paper, we mainly focus on the impact of group membership on multicast
evaluation.

2.3 Multicast Performance Evaluation

There has been some research work on evaluating multicast performance with
respect to end-to-end delay, tree cost, traffic concentration, multicast effi-
ciency, and state aggregatability.

In [47,11], the performance trade-offs between source-based trees and core-
based trees are investigated regarding end-to-end delay, tree cost, control over-
head, traffic concentration, and routing table size, for uniform randomly dis-
tributed members. In [47], simulations are carried out over an early ARPAnet
with 47 nodes and Waxman graphs, whereas in [11], a hierarchical but unre-
alistic topology model is adopted.

After Chuang and Sirbu discovered multicast tree cost varies at the 0.8 power
of group size [19], Phillips et. al. provided one possible explanation for this
power law and found that affinity/disaffinity greatly affects multicast tree
cost [39]. Chalmers and Almeroth show that ignoring certain temporal and
spatial group properties does affect the efficiency gain of multicast (versus
unicast) [14]. A recent work [33] on small-world characteristics of the Internet
reveals that IP multicast tree size depends on the small-world behavior. In [23],
Fahmy and Kwon characterize application level multicast trees on topology
with power-law and small-world properties for uniform and non-uniform host
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distribution.

Perhaps the work most closely related to ours is [48,49,40]. Wong et. al. study
the multicast forwarding state scalability with a variety of real and synthetic
topologies and membership models [48]. In [49,40], the authors focus on char-
acterizing and selecting realistic graph models. They compare the generated
graphs using a set of graph metrics and identify the impact of these topolo-
gies on multicast protocol design. However, their work concentrates on early
graph models such as Waxman, Transit-Stub, and Tiers, with an assumption
of uniform random group member distribution.

Our work is distinct from previous work in that we attempt to propose a
systematic framework and aim to evaluate multicast performance in a more
comprehensive and realistic way: 1) we identify a wide variety of multicast
performance metrics; 2) we investigate the impact of network topologies, es-
pecially those produced by power-law topology generators, since they resemble
the Internet better than previous ones but their impact on multicast has been
rarely studied; 3) we evaluate multicast performance with a generic member-
ship model (which contains the commonly used uniform membership model)
and examine how different parameters affect various multicast metrics; 4) we
also conduct a case study of application layer multicast, on which the impact
of network topologies and group membership models has not been explored in
the literature. In a nutshell, we want to identify realistic models and param-
eters with which the multicast protocols exhibit similar behaviors as if they
were tested in the Internet for real group communication applications.

3 The Systematic and Realistic Performance Evaluation Frame-
work

In this section, we define our framework for systematic and realistic multi-
cast performance evaluation. The framework consists of three basic elements:
Models and Parameters MP , Metrics M , and Protocols PR. In other words,
we want to study what is the performance of a protocol PR regarding metrics
M for given MP? We present these three elements one by one in the following
subsections.

3.1 Models and Parameters

We first revisit existing topology and membership models and their assump-
tions. Based on the realism of these models, we choose appropriate ones to
incorporate into our performance evaluation.
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Topology Models and Parameters The Internet consists of many au-
tonomously administered domains or Autonomous Systems (AS). In network-
ing research, two types of network topologies are typically considered: AS-
level and router-level. Researchers could obtain real Internet topologies (AS-
level or/and router-level) from several Internet measurement and research cen-
ters/projects, such as CAIDA [1], NLANR [2], and Route Views [4]. Consid-
ering the extremely large size of the real Internet-wide router-level topology
(For example, a router-level graph measured by CAIDA includes 192244 nodes,
636643 directed links, and 609066 undirected links) and the fact that most of
multicast protocols are designed for single domains, people usually tend to
use router-level topologies in a single big domain. Some frequently used are
AT&T, MCI, and Internet 2 (Abilene), etc.

In the literature, there are a variety of graph models for generating topologies.
They can be categorized as follows: flat random models (Waxman), hierarchical
random models (Transit-Stub and Tiers), and power-law models (Barabasi-
Albert, BRITE, GLP and INET, to name a few). It has been shown in [43]
that power-law models better represent the large-scale structure of measured
topologies with respect to topological metrics. On the other hand, Transit-Stub
hierarchical random model could generate network topologies more resembling
the router-level topologies for single domains.

In our work, we will study real network topologies and generated network
topologies at both AS-level and router-level. For AS-level topologies, we use
real data from the University of Oregon Route Views Project [4]. These data
have been frequently used by researchers and they have instances spanning
over a period of 5 years. In these topologies, we treat the Internet as an undi-
rected graph whose nodes are AS routers and whose edges are inter-domain
connections with unit weight. The network size of these graphs varies approx-
imately from 3000 to 11000 nodes. We compare topologies generated by some
typical power-law models (such as Barabasi-Albert, BRITE, GLP and INET)
with real Internet instances. We vary the network size of the synthetic graphs
in the same range as real graphs. For router-level topology, we employ AT&T
(one of the biggest tier-1 ISPs in the world) backbone network. Using Transit-
Stub and Tiers models, we generate topologies resembling the real AT&T
topology by tuning the model parameters.

Membership Model and Parameters As mentioned earlier, a common
assumption regarding group membership in multicast simulation is that group
members are uniformly distributed in the network, i.e., all nodes have same
group participation probabilities. In our work, we challenge this assumption,
and propose a generic group participation probability model based on the
membership measurement results in [20]. Before presenting the model, we
first give a formal definition of group participation probability.
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Group Participation Probability Given a network G(V,E), for any node i,
where i ∈ V , group participation probability pi is defined as the probability
that node i joins a group.

It has been shown in [20] that the distribution of group participation prob-
ability for applications such as MBone video conference and net games can
be approximated by normal distribution with a probability density function
(PDF):

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (1)

where µ is the mean and σ is the standard deviation. Note that, when σ
approaches 0, f(x) becomes a δ(x− µ) (Dirac delta function), thus the group
participation probability for all the nodes are the same as µ; in other words, the
group is uniformly distributed. Therefore, we can say that the above normal
distribution model includes the uniform distribution model.

The suggested normal distribution model is powerful, however, due to the
valid range of group participation probability (i.e., 0 ≤ pi ≤ 1, ∀i ∈ V ), it is
hard to directly harness the range of generated probabilities for given µ and
σ. To conquer this problem, we propose to use truncated normal distribution
[10]. A truncated normal distribution at an interval of [0, 1] has the following
probability density function (PDF):

ftr(x) =
1
σ
φ(x−µ

σ
)

Φ(1−µ
σ

)− Φ(−µ
σ

)
, (2)

where 0 ≤ x ≤ 1; µ and σ are the mean and standard deviation of the non-

truncated normal distribution respectively; φ(x) = 1√
2π

e−
x2

2 , −∞ ≤ x ≤ ∞;

and Φ(x) =
∫ x
−∞ φ(t)dt.

It is easy to derive the mean of the proposed truncated normal distribution:

Etr[X] = µ− σ
φ(1−µ

σ
)− φ(−µ

σ
)

Φ(1−µ
σ

)− Φ(−µ
σ

)
. (3)

Clearly, in most cases, Etr[X] is not equal to µ. Thus, we have to control group
size based on Etr[X] instead of µ.

Control the Group Size Once we know the group participation pi for node i
(where i ∈ V ), the average group size can be estimated to be

∑
i∈V pi. However,

sometimes, we want to control group size in our simulations. A suggested
method in [20] is to recompute the probabilities under the given condition,
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Fig. 1. A comparison of (a) core based tree and (b) source-based tree.

i.e., bounded group size g: pi is recomputed as pi [(
∑

i∈V pi)/g]. In this paper,
we adopt this approach to control group size.

Based on the above group membership model, we generate a variety of groups
by changing the values of µ and σ, and quantify to what extent these param-
eters affect the performance of different group communication applications.

3.2 Case Studies

It has been shown in previous work that unrealistic assumptions or models
may affect multicast protocol performance in certain aspects. In our work,
we consider three case studies, namely, the properties of Source Based Trees
(SBT) vs. Core-Based Trees (CBT), multicast state scalability, and application
layer multicast protocol comparison (Narada vs. NICE). In our opinions, they
are very fundamental problems or protocols in multicast research, and are
likely to be sensitive to topologies and/or member distribution. Moreover, the
results of these case studies could potentially affect the design of multicast
protocols in the future.

SBT vs. CBT There are mainly two flavors of multicast routing algorithms:
Source Based Tree and Core Based Tree. The SBT approach creates a short-
est path tree rooted at each source, while CBT approach produces a single
bi-directional tree which carries the data packets of all sources. Generally
speaking, SBT has the advantage of shorter path length, but CBT introduces
less multicast forwarding state since it is shared among all the sources of a
group. The difference of these two kinds of multicast trees are shown in Fig. 1.
Intuitively, the routing performance of SBT and CBT are easily affected by
the variation of topologies and group distribution, so we want study their
sensitivity to different models.

Multicast State Scalability Due to the lack of hierarchical address alloca-
tion and routing mechanisms, multicast faces serious forwarding state scala-
bility problem because each relaying node needs to maintain state information
per group or per source/group pair. Currently, the solutions to this problem
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can be classified into intra- and inter-group state aggregation. The intra-group
aggregation approaches rely on aggregating states for individual groups, such
as removing state information at non-branching nodes [45,42]. The inter-group
aggregation schemes exploit the correlation of forwarding state among groups.
For instance, aggregated multicast forces multiple groups to share an aggre-
gated multicast tree [26], whereas [41,44] suggest to aggregate multiple multi-
cast addresses with the same prefix in a router into a single address with mask.
Considering that the number of branching nodes and multicast tree aggrega-
tion are both closely related to network topologies and group distribution, we
decide to analyze the intra- and inter-group state aggregatability.

Application Layer Multicast: Narada vs. NICE Recently application
layer multicast has emerged as a new multicast architecture in the Internet.
It implements multicast-related features exclusively at end systems, and does
not require infrastructure support from intermediate nodes (such as routers
or proxies). Data packets are transmitted between end hosts via unicast, and
are only replicated at end hosts. Narada [18,17] and NICE [8] are two repre-
sentative application layer multicast protocols. In Narada [18,17], end hosts
periodically exchange group membership information and routing informa-
tion, build a mesh based on end-to-end measurements, and run a distributed
distance vector protocol to construct a multicast delivery tree. This protocol
mainly targets at applications with small and sparse groups, such as audio and
video conferences. NICE [8], on the other hand, is designed to support applica-
tions with very large receiver sets and relatively low bandwidth requirements.
It recursively arranges group members into a hierarchical overlay topology,
which implicitly defines a source-specific tree for data delivery. Some impor-
tant questions to ask are: to what extent NICE is more scalable than Narada?
Is NICE always a winner for all network topologies and group membership
models? In this paper, we will apply our evaluation framework and compare
the performance of these two protocols.

3.3 Metrics of Interest

We select a set of performance metrics that are frequently used in multicast
performance evaluation and that explore diverse aspects of multicast protocols:
routing performance, multicast efficiency and state scalability. We also choose
some important metrics for application layer multicast. We want to investigate
the sensitivity of these metrics to different topology and membership models.

Routing Performance We choose tree cost and end-to-end delay to mea-
sure the routing performance of a protocol. Tree cost is defined as the total
number of links in a multicast distribution tree, and it represents the amount
of network resource usage. End-to-end delay is measured as the average delay
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from any source to any receiver, which is important for real-time interactive
applications. Since the topologies we study do not consider link weight, the
delay of a path is assumed to be proportional to the path length.

Multicast Efficiency Multicast efficiency is normally defined as:

eff =
Lm

Lu

, (4)

where Lm is the total number of multicast links in distribution trees, and Lu

is the total number of unicast hops. This metric has been widely studied since
Chuang-Sirbu power law was proposed, which states that multicast efficiency
(in a slightly different representation) varies at the 0.8 power of group size
[19]. Previous work show that efficiency and its power law exponent do vary
with different group distribution [39,14]. Therefore, we want to examine the
values of efficiency as well as its power law exponent.

State Scalability To evaluate the multicast state aggregatability, we define
state reduction ratio SRR as follows:

SRR = 1− Sagg

Sorig

, (5)

where Sagg and Sorig are the number of state entries with and without ag-
gregation, respectively. In addition, to evaluate the extent of tree aggregation
for aggregated multicast, we define aggregation degree AD as the ratio of the
number of multicast groups Ng to the number of aggregated trees Nt:

AD =
Ng

Nt

. (6)

Link Stress In application layer multicast, end hosts use overlay links to de-
liver data, so the same data packets may traverse an underlying physical link
multiple times. Link stress is defined as the number of identical packets deliv-
ered on a physical link, and it is a measure of the efficiency of an application
layer multicast protocol.

Control overhead Unlike IP multicast, which stores the group membership
and multicast tree information in routers, application layer multicast requires
end hosts to cooperatively maintain group membership and construct mul-
ticast trees. Therefore, the communication overhead among group members
may grow explosively as group size increases. We use the sum of the number
of links each control packet traverses to estimate the control overhead.
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4 Simulation Results

In this section, we show through simulation studies the effect of different net-
work topologies and group characteristics on multicast performance (namely,
multicast routing algorithms, state scalability and application layer multicast).

4.1 Simulation Setup

In our simulations, we use both AS-level and router-level network topologies
to examine the sensitivity of multicast performance. For AS-level topologies,
we select a series of AS level Internet graphs with a wide range of graph sizes.
Each instance is named using its date, eg, the instance collected on May 07,
2001 is named I010507, where “I” stands for “instance”. We use real Internet
instances from November 1997 to March 2003 in our experiments. Since AS-
level topologies have been shown to follow power laws, we also generate graphs
with size comparable to Internet instances using power law graph models
Inet, Barabasi-Albert and GLP. Note that Barabasi-Albert (BA) model has
two options (random and heavy-tailed distributions) for node placement, we
test the performance of both options. On the other hand, for router-level
topologies, we use a real network, AT&T IP backbone [5], which consists of
123 nodes in totoal: 9 gateway routers, 9 backbone routers, 9 remote GSR
(Gigabit Switch Routers) access routers, and 96 remote access routers. Based
on this graph, we generate a series of random graphs with similar graph size
and average node degree using structure-based topology generators, such as
Transit-Stub and Tiers. As a further comparison, we include Waxman model, a
flat random model that captures neither structural properties nor power laws,
for both AS-level and router-level graphs. To focus on the effect of network
topologies, we generate groups using uniform distribution.

To evaluate the impact of group membership distribution, we use the pro-
posed truncated normal distribution model to generate group members on a
small network with 54 routers, which is abstracted from AT&T backbone net-
work aforementioned. In this simplified network, the gateway and backbone
routers remain intact, whereas the remote access routers attached to the same
gateway or backbone router are contracted into one node. In addition, we
create a neighbor node for each gateway router in the backbone, since gate-
way routers represents connectivity to other peering networks and/or Internet
public exchange points. For group membership generation, we vary µ and σ of
the non-truncated normal distribution to produce sets of group participation
probability pi for all the nodes in the network, explained as follows. We first
fix σ to 0.1, and increase µ from 0.4 to 0.8, which is equivalent to increasing
group size. Then we fix µ to 0.5 and vary σ from 0 to 2. In this way, the
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average group size is fixed, but the distribution of participation probability
changes from uniform to skewed distribution, that is, some nodes tend to join
groups with a higher probability than others. Note that we need to control
group size to meet the expected value since Etr[X] is not equivalent to µ. For
each combination of µ and σ, we generate 10 instances of group participation
probabilities {pi} for every node i. Then for each instance, we generate 10000
multicast groups and measure the performance.

4.2 Multicast Routing Algorithms

We first compare SBT and CBT on real and generated graphs with respect
to cost ratio and delay ratio, and evaluate their multicast efficiency. Cost (or
delay) ratio is defined as the ratio of tree cost (or end-to-end delay) of SBT
to that of CBT. For multicast efficiency, CBT and SBT have similar results;
therefore, we only show the efficiency of CBT unless otherwise specified. Note
that we also compared the control overhead ratio of SBT vs. CBT, which has
similar trend as cost ratio and is thus not shown here.

In the CBT approach, we choose as the core one of the member nodes uni-
formly. In the remainder of this section, we will evaluate these three metrics
with regard to AS-level topologies, router-level topologies, and group member-
ship distribution. The reason we use AS-level topologies is two-fold: first, we
want to study the topology sensitivity of multicast algorithms, so we intend
to use as diversified topologies as possible; second, using AS-level topologies,
we can investigate the performance issue of inter-domain multicast routing
algorithms.

4.2.1 AS-level Topologies

For AS-level topologies, we conduct two series of experiments for each metric.
Series A: since the group size of a multicast group is an important parameter,
in this series, we fix graph size and vary the group size. We use real Internet
instance I980124 (of approximately 3200 nodes) and generate topologies with
comparable size, and vary group size from 0.125% to 32% of the graph size, or
from about 4 to 1000 nodes. For each group size, we repeat the experiment 100
times. Series B: in this series, we fix the group size to 16 members, and vary
the graph size. We select a series of Internet instances at regular time intervals
of increasing size from I980124 to I010507, and produce a set of graphs with
the same size from each of the topology generators mentioned above. Then we
compare the trends of the metric variation on real and generated graphs. We
also test other group size, and the results are consistent.

Delay ratio In Fig. 2, we plot the average end-to-end delay ratio versus the
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Fig. 2. Series A: Delay ratio of SBT/CBT versus group size for AS-level graphs.
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Fig. 3. Series B: Delay ratio of SBT/CBT versus graph size for AS-level graphs.

size of the multicast group. We observe that topology does affect delay ratio
significantly: the delay ratio of the graphs generated by GLP have average
percent deviations within 5% of the delay ratio of Internet instance I980124,
whereas the remaining graphs deviate from this real graph for more than
10%. Waxman shows the highest deviation from the Internet graph. The 95%
confidence intervals for all points are less than 0.01.

Furthermore, we plot the average end-to-end delay ratio with increased graph
size in Fig. 3. For simplicity, we use the ratio of graph size to the size of the
largest Internet instance we collected (I010507 with about 11000 nodes) as
X-axis in the figure. This graph leads to the same conclusions as Fig. 2: the
delay ratio in different topologies of the same size may vary greatly (e.g., from
0.60 to 0.87). It is also surprising to observe that, for each topology generator,
the difference in delay ratio between generated graphs and the Internet graphs
remains rather consistent, irrespective of the graph size.

Cost ratio In contrast, cost ratio exhibits very different behaviors from de-
lay ratio in terms of topology sensitivity (Fig. 4). For all graphs, cost ratio
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Fig. 4. Series A: Cost ratio of SBT/CBT versus group size for AS-level graphs.
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Fig. 5. Series A: Multicast efficiency of CBT versus group size for AS-level graphs.
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Fig. 6. Series B: Multicast efficiency of CBT versus graph size for AS-level graphs.

fluctuates between 0.99 and 1.02, and most data points of generated graphs
fall within the 95% confidence limits of the real graph. We observe the same
trend for cost ratio as graph size varies, which is not shown here due to space
limitation. Hence, we conclude that cost ratio is not so sensitive to topologies
as delay ratio.
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Table 1
Series A: Multicast efficiency comparison for AS-level graphs.

Method Exponent Corr. Coeff.

Internet I980124 −0.150 0.995

GLP −0.145 0.999

BA Random −0.176 0.999

BA Heavy-Tailed −0.169 0.998

Inet −0.118 0.991

Waxman −0.204 0.993

Efficiency As shown in Fig. 5, the efficiency metric decreases with group size,
indicating that multicast becomes more efficient than unicast. This is reason-
able: as group size increases, more duplicate data packets are transmitted on
each link for unicast, thus multicast becomes more efficient compared with
unicast. Note that a smaller value of the efficiency metric is equivalent to im-
proved multicast efficiency. For all topologies, multicast efficiency conforms to
Chuang-Sirbu power law, even though Waxman model shows a trend different
from the remaining graphs. However, the absolute values of the efficiency met-
ric for the synthetic topologies vary within ±20% of the Internet topologies.
As a further comparison, we present the efficiency exponents and correlation
coefficients of this power law for different graphs in Table 1. The table sug-
gests that both multicast efficiency and its power-law exponent are sensitive
to the topology characteristics. For instance, GLP matches the real instance
I980124 very well, and Inet and BA topologies also follow I980124 closely with
an average percent deviations of approximately 6 − 8%. On the other hand,
the efficiency exponent of Waxman is not close to that of Internet at all.

Mieghem et. al. find out that the efficiency exponent is not a constant, but
slowly increases with the graph size [35]. We calculate the efficiency exponents
for graphs with different sizes and plot the results in Fig. 6. All these topologies
have a steady increase in efficiency exponent as the graphs are further enlarged.
In addition, this figure is consistent with earlier observations that GLP has
the closest multicast performance as the real Internet instances, and Waxman
random graphs show dramatically different behaviors from Internet topologies.

4.2.2 Router-level Topologies

In router-level topologies, the graph size is fixed at approximately 120, and
we compare the performance of CBT and SBT as group size increases. Similar
to AS-level topologies, cost ratio is not sensitive to different topologies, so we
omit it from further discussion.
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Fig. 7. Delay ratio of SBT/CBT versus group size for router-level graphs.

 0.2

 1

 10  100

A
ve

ra
ge

 m
ul

tic
as

t e
ffi

ci
en

cy

Group size

AT&T Backbone
Transit-Stub

Tiers
Waxman

Fig. 8. Multicast efficiency of CBT versus group size for router-level graphs.

Delay Ratio As shown in Fig. 7, delay ratio decreases with increased group
size, and its value varies among different topologies. The average percent de-
viations of Transit-Stub, Tiers and Waxman graphs from AT&T topology are
approximately 0.8%, 6.1%, and 17.5%, respectively.

Efficiency We also plot multicast efficiency vs. group size in Fig. 8, and
observe similar trend in the router-level topologies as in AS-level topologies:
regardless of the topologies, the efficiency metric decreases as group size grows;
however, there is some variation in the metric when topologies are changed.
Again, among the synthetic graphs, Transit-Stub produces the best match to
the real graph.

4.2.3 Group Membership Distributions

We measure the same metrics for groups generated from truncated normal
distribution as explained in Section 4.1. The simulation results indicate that
these metrics are not significantly affected by group membership distributions
for the parameters under investigation, except for multicast efficiency, which is
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Fig. 9. Average multicast efficiency for multicast groups with σ = 0.1.

sensitive to µ when σ is fixed. The reason behind this is simple: µ determines
expected group size. When we raise the value of µ, group size grows on average;
consequently, multicast efficiency improves, which translates into lower values
for the efficiency metric (as illustrated in Fig. 9).

4.3 Multicast State Scalability

Recall that there are two general approaches to improve multicast state scal-
ability: intra-group aggregation by removing multicast forwarding state at
non-branch nodes, and inter-group aggregation by forcing multiple multicast
groups with similar group members to share one aggregated tree. Since multi-
cast state scalability problem is exacerbated in backbone domain, where hun-
dreds or even thousands groups may potentially go through, we focus on small
topologies (e.g., the abstracted AT&T network as explained in Section 4.1) to
represent such backbone networks. Thus, in this section, we mainly investigate
to what extent group membership may impact multicast state aggregation. We
assume SBT is used for inter-group aggregation. We evaluate SRR for both
approaches and AD for inter-group aggregation, under two cases illustrated in
Section 4.1: 1) when µ is fixed and σ is varied; or 2) when σ is fixed and µ is
varied.

4.3.1 Intra-group State Aggregation

The SRR of intra-group state aggregation is proportional to the percentage of
branching nodes on the tree. In the first case, when µ is fixed, SRR remains
relatively stable, since the average group size is also fixed. In the second case,
as µ is increased, there are more members in each group on average. When a
node joins a group, it needs to be grafted onto an on-tree node through the
shortest path to the source or to the core node, which may increase the number
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Fig. 10. SRR of intra-group state aggregation for multicast groups with σ = 0.1.
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Fig. 11. SRR of aggregated multicast for multicast groups with µ = 0.5.

of branching nodes. As a result, the fraction of branching nodes increase in
the network, yielding less state reduction. As demonstrated in Fig. 10, when
µ increases from 0.4 to 0.8, SRR reduces from 0.51 to 0.39.

4.3.2 Inter-group State Aggregation

Inter-group aggregation (e.g., aggregated multicast) aggregates multicast groups
with similar sets of members into one tree. Generally, there are two types of
matching between a group and a multicast tree. If every tree leaf is a group
member, then the tree is a “perfect match” for the group; otherwise, the tree
is a “leaky match” for the group, since some multicast data will be delivered
to non-member leaves. Obviously, there is a trade-off of aggregation vs. band-
width consumption: leaky match allows more groups to share an aggregated
tree, but more bandwidth is consumed. For this reason, a bandwidth waste
threshold bth is adopted in the group-tree matching algorithm: the higher bth

is, the more bandwidth waste is allowed and the fewer trees are needed to cover
all groups. Thus, we use bth as an additional parameter in our simulations.

19



 0

 1

 2

 3

 4

 5

-0.5  0  0.5  1  1.5  2  2.5

A
D

 o
f a

gg
re

ga
te

d 
m

ul
tic

as
t

σ

bth=0   
bth=0.1
bth=0.2
bth=0.3

Fig. 12. AD of aggregated multicast for multicast groups with µ = 0.5.
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Fig. 13. SRR of aggregated multicast for multicast groups with σ = 0.1.

For inter-group aggregation, if some combinations of group members occur
very often, the number of aggregated trees can be significantly reduced. Thus,
we expect its performance to be strongly affected by group member distribu-
tion across multiple groups.

In the simulations, we first set µ = 0.5 and start with uniform group member
distribution (i.e., σ = 0). As σ increases, the group participation probabilities
become more skewed: some nodes have higher probability to join groups, and
others have lower probability. Therefore, some group member combinations
have higher probability to occur, which means more multicast groups can be
aggregated onto each tree. Fig. 11 and 12 confirm this intuition by showing
that SRR and AD both increase in these two topologies, especially for higher
bandwidth waste threshold bth, since bandwidth is traded to allow more groups
to be aggregated onto the same tree.

As shown in Fig. 13 and 14, when σ = 0.1, SRR and AD improve with µ.
Intuitively, when µ is very large, almost all nodes will join every group, so
large groups will occur very often and a small number of large trees suffice for
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Fig. 14. AD of aggregated multicast for multicast groups with σ = 0.1.

most of these groups. In contrast, for relatively small µ, the nodes have smaller
participation probabilities, so it is less likely that some particular combinations
of group members will appear much more often than the rest. As a result, SRR
and AD are much higher in the former case.

4.4 Application Layer Multicast

In this section, we use a packet level simulator to evaluate two representative
application layer multicast protocols, NICE and Narada, with respect to mul-
ticast tree cost, end-to-end delay, link stress and control overhead. For each
metric, we use the ratio of NICE vs. Narada to compare their performance. It is
worth noting that our goal is not to compare which protocol is better; instead,
we want to investigate whether the performance of application layer multicast
protocols is affected by topology models and group membership models. We
test these two protocols on both AS-level and Router-level topologies with
uniform group distribution. At first glance, it may seem unreasonable to use
AS topologies for application layer multicast performance evaluation. Never-
theless, we make a similar argument as in Section 4.2: we want to study their
performance in diverse environments and explore their potential of being used
in a hierarchical fashion to connect cluster heads residing in each AS. We also
vary the distribution of the group participation probability to compare these
two protocols. However, in spite of various group member distributions, sim-
ulation results indicate that the above performance metrics are rather stable
for both protocols. Accordingly, we only show results for uniformly distributed
group members in this subsection.

21



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10  100

A
ve

ra
ge

 d
el

ay
 r

at
io

 (
N

IC
E

/N
ar

ad
a)

Group size

Internet 980124
GLP

BA Random
BA Heavy-Tailed

INET
Waxman

Fig. 15. Delay ratio of NICE/Narada for AS-level graphs.
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Fig. 16. Link stress ratio of NICE/Narada for AS-level graphs.

4.4.1 AS-level topologies

For consistency, we select the Internet instance I980124 and synthetic graphs
with similar size in the simulations. We intend to focus on the inter-domain
connections, so the group members are randomly selected from each AS router.
The group size is varied from 4 to 128, which can be accommodated by both
protocols. A member is uniformly randomly assigned as source. Since Narada
is designed for small groups with tens of members like video-conferences and
NICE is designed for large groups, we expect NICE to outperform Narada
when group size is relatively high. This is indeed the case for most of the
metrics we evaluated.

Delay Ratio As depicted in Fig. 15, the delay ratio of NICE vs. Narada
differs in various topologies, with the highest deviation from real Internet
around 12%. Among the topology models, GLP and BA perform the closest
to the real graph, and Waxman deviates the most from the Internet topology.

Link Stress Ratio Fig. 16 demonstrates that topology models have some
impact on link stress ratio, especially when group size is small. For group size
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Fig. 17. Cost ratio of NICE/Narada for AS-level graphs.
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Fig. 18. Control overhead ratio of NICE/Narada for AS-level graphs.

of 4, the average link stress ratio on synthetic graphs ranges from 1.30 to 1.58,
while that of the Internet is approximately 1.40.

Cost Ratio and Control Overhead Ratio Finally, from Fig. 17 and 18,
we found that the cost ratio and control overhead ratio are not very sensitive
to AS-level topology models. These two metrics converge for slightly large
groups.

4.4.2 Router-level topologies

We use similar router-level topologies as in Section 4.2, AT&T backbone,
Transit-Stub, Tiers and Waxman, with the difference that every end host ran-
domly select a router to attach to. Consistent with AS-level topologies, delay
ratio (Fig. 19) and link stress ratio (Fig. 20) are closely related to the under-
lying network topology models, while cost ratio and control overhead ratio are
not. Overall, among the three topology generators, Transit-Stub matches the
AT&T backbone best, followed by Tiers and Waxman.
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Fig. 19. Delay ratio of NICE/Narada for router-level graphs.
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Fig. 20. Link stress ratio of NICE/Narada for router-level graphs.

4.5 Lessons Learned

We demonstrate through simulations that different graph models could pro-
duce strong deviation in multicast performance evaluation. For example, de-
lay ratio and efficiency of multicast routing algorithms, and link stress ratio
of application layer multicast are affected significantly by different topologies,
whereas cost ratio does not seem to be so sensitive to topologies. In addition,
we observe that even with the same topology generator, different parameter
settings drastically change the multicast performance (which is not shown due
to space limitation). Therefore, it is critical for researchers to select topology
models and parameters that best resemble the real network in terms of mul-
ticast performance.

Simulation results of multicast efficiency and multicast state aggregation show
that these metrics are sensitive to group properties such as group size and
group participation probabilities. Since applications may have different group
size and member distributions, it is very important and necessary that the
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evaluation of multicast protocols consider these factors and adjust the simu-
lation environment towards target applications.

5 Conclusion

In this paper, we propose a realistic and systematic performance evaluation
framework. Our work can be summarized as follows:

• We identify a wide variety of multicast performance metrics.
• We investigate a variety of real and generated network topologies at both

AS-level and router-level (especially those produced by power-law topol-
ogy generators), and examine their impact on the performance of various
multicast protocols.

• We propose a generic group participation probability model (truncated nor-
mal distribution), which contains the commonly accepted uniform member-
ship model, evaluate multicast performance with this membership model
and explore how different parameters affect various multicast metrics.

• We conduct three case studies, namely, multicast routing protocols CBT vs.
SBT, multicast state scalability, and application layer multicast, for which
we focus on the topology sensitivity and group distribution sensitivity of
multicast performance metrics.

Through thorough analysis and extensive simulation studies, we draw the
following conclusions:

• Unrealistic topology models can significantly affect multicast performance
of various protocols (including application layer multicast).

• We identify the GLP topology generator (for AS-level topology) and the
Transit-Stub topology generator (for router-level topology) to be realistic
in terms of multicast performance metrics that we investigated.

• Many multicast performance metrics, such as delay ratio, multicast effi-
ciency, and state scalability are sensitive to group size.

• For protocols/approaches exploiting multiple group properties (such as inter-
group aggregation), their performance can be significantly affected by the
group membership distribution.

• Therefore, simulation studies on multicast should appropriately gear simu-
lation environments with realistic topology models and group models that
best match their target applications.

Future Work While we have presented a realistic and systematic multicast
evaluation framework and investigated many typical metrics and representa-
tive case studies, there are still many issues to be addressed in future work.
First, we would incorporate other spatial group properties (such as clustering
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and group participation correlation) and temporal group properties into our
framework. Second, we would like to investigate the impact of small-world
property of topology graphs on multicast performance. We also want to use a
more detailed network topology model to take link asymmetry, link capacity
and delay, and background traffic into consideration. Third, more case stud-
ies, such as QoS multicast and reliable multicast, obviously deserve further
exploration.
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