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ANALYSIS OF QUASI-PERIODIC WEATHER DATA

Daily temperatures follow a pattern of variation
that is familiar to us all. Although our very lives
depend upon its not varying too much, our plans
are often thwarted by its unexpected turns. The
experience of thousands of years, if not tens of
thousands, has shown that it is remarkably constant
in some respects. We long to be able to predict its
vagaries, yet about all we can say with certainty
is that the temperature will be higher in summer
than in winter. Or, if you don't like the temperature
today, just wait, and it will change.

The purpose of the present study is to see what
can be learned from long-time records taken at
single stations, using a three-stage type of statistical
analysis the second and third stages of which have
not previously been applied to this kind of data.
The particular series chosen is that of the daily
maximum temperature, for which some of the
longest reliable records are available. When the
study was first started, the necessary computations
had to be made by hand, but later high-speed
computers became available, making possible the
study of much longer records from data already
available on punched cards. Before describing the
method used, the limitations of two other methods
which are often applied should be considered.

Fourier analysis is frequently used for records
which vary over a certain range, but which have
no tendency to continuously increase or decrease.
There is plenty of geologic evidence of a long-time
trend in the mean temperature, but if we limit "long-
time" to a period of 100 or even 1000 years there
is little reason to question the validity of Fourier
analysis on this basis. (A careful watch on the
long-time mean should be maintained, however,
since it can be influenced by the addition of carbon
dioxide from fossil fuels into the atmosphere, as
well as whatever natural change may be in store
for us). If the pattern of variation from the mean
is strictly periodic, Fourier analysis is ideal, but if
the duration and magnitude of the swings away
from the mean differ from each other in a random
manner, interpretation of the results becomes
difficult. The coefficients of the corresponding series

terms determined for two such records of equal
length will be different, even though the records are
very long. If in every record analyzed, for a given
station, the coefficient of the term corresponding
to a certain frequency was large and nearly constant,
we would suspect that there was some physical reason
for the frequency. We would surely find a significant
3651/4 day period in maximum daily temperatures,
for example, but we could not assume that the
coefficient for it would be the same in one record
period as in another because of the effect of the non-
periodic variations on its evaluation.

In his study of weather of the Northeast, Bingham
(1963) carries the Fourier analysis out to no more
than three terms, treating the remainder of the
variation as randomly distributed according to
normal error theory. Subject only to a presumably
very slight inaccuracy due to the effect of the
random variations on the Fourier coefficients
determined, his report provides a valuable method
of predicting the possible range of the important
temperature statistics for any week of the year at
any location in the Northeast. Something is lacking
if prediction into the near future is desired. If we
wish to predict the possible range of next week's
weather, not that of a year from next week, we will
surely want to take into account what the weather
has been for the past few weeks, and how rapidly
it may be expected to change. (It is assumed that
our source of information is restricted to the location
of our weather station).

A method that provides a way of taking this
up-to-the minute information into account is known
as the serial correlation method. The correlation
coefficient between records separated by a time
interval is determined as a function of the length
of that interval. Then if we know today's maximum
temperature, we can tell what the chances of
tomorrow's maximum falling within various ranges
will be. We can't be as definite about day after
tomorrow's, and even less definite about the day after
that. The method has nothing to say about the
distant future. The assumption is made that as soon
as the correlation coefficient goes to zero the values
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separated by that time interval are completely inde-
pendent. Often, however, it is found that the cor-
relation coefficient dips below zero. This evidence of
a cyclic tendency in the data, which means that
measurement of the decay of dependency should
be based upon the correlation ratio rather than
the correlation coefficient, the use of which pre-
supposes that the underlying relationship, upon
which random fluctuations are imposed, is strictly
linear. Actual use of the correlation ratio is pre-
vented by lack of knowledge of the form of the
underlying non-linear cyclic relationship.

The method applied in this study has little in
common with the above methods. Its immediate
goal is the establishment of a means of identification
of quasi-periodic records. (Posey 1936, 1946, 1952)
That is, we'd like to be able to say that one record
is or is not "equivalent" to another. Not equivalent
in the sense of geometrical congruence, but in that
they must have been taken at the same location
in the same manner, subject to the same kinds of
periodic and non-periodic cyclic and non-cyclic
variations about a common mean value. Thus the
statistical measures to be determined might be
likened to "fingerprints" of the time series, something
from which it would surely be identified. Neither
of the previously described methods of analysis has
proved to be very useful for this purpose. Now
there is no way to prove that the method of this
study can accomplish this goal, short of application
to a very large number of records from different
situations.

DEFINITION OF THE THREE STATISTICAL
MEASURES

The fluctuating quantity y is measured at regular
constant intervals of time. (If y varies continuously
with time, the interval between measurements should
be short enough so that values linearly interpolated
between the measured values will agree closely with
the actual values.) If y is a discrete variable, the
appropriate interval is of course that between
adjacent values.

The first statistical measure of importance is the
distribution of the values of y. This may be obtained
either in frequency form, or preferably (for conven-
ience of computation) in cumulative distribution
form, giving the percent of time that y exceeds each
value throughout its range. Let this distribution
be designated as Cd(y). If the values of y should
prove to be normally distributed, the mean value
and standard deviation would suffice to characterize

it. Experience with natural phenomena, however,
indicates that distribution according to Gaussian
law cannot be depended upon. At present we shall
have to content ourselves with visual comparison
of graphical plots of the cumulative distributions.

The second important statistical measure is the
frequency distribution of values of the instantaneous
rate of change of y. As a matter of practical com-
putational procedure, it is approximated by the
distribution of the differences between the con-
secutive values of y used in deriving the first measure.
In cumulative distribution form it is designated
Cd(Ay). If the time series had no long-time trend
and the values of Ay proved to be normally dis-
tributed, the standard deviation would suffice to
characterize the distribution, since the mean would
be zero.

The third important statistic is the distribution
of the rate of change of the rate of change of y,
which may be approximated by the distribution
of the successive differences of the successive dif-
ferences of y. In cumulative distribution form it
may be designated C d(AAy).

The number of distributions could be carried
further, to consider higher derivatives of the basic
variable. The main reason for not doing so is
that by the time that the rate of change (slope)
and rate of change of rate of change (curvature)
have been considered, it seems likely that the
features of the variability of the series which might
have important physical significance will have been
inventoried with sufficient completeness. Another
reason is that because of the approximation neces-
sarily involved in measurement and computation,
the relative accuracy of the higher derivatives
becomes successively poorer.

A program which instructs an IBM' 7040 digital
computer to find the three distributions from data
on punched cards is given in the Appendix.

TESTS OF THE VALIDITY OF THE PROPOSED
MEASURES FOR DEFINITIVE

IDENTIFICATION

If the fluctuating measurements at a fixed location
in a basically unchanging physical situation are taken
by an unvarying technique, if a sufficiently large
number of cycles is included, and if there is no
long-time trend, it is our assumption that the dis-
tributions of y, Ay, and AAy for different portions
of the record will be identical. This assumption
cannot, of course, be proven, and it may be that
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exceptions will be found. It is obviously correct
for strictly periodic variations, one complete cycle
being all that is necessary to characterize such a
series. This property can be used to test equipment
designed to evaluate the measures automatically.
(Lonsdale, 1952). If a series is known to contain
an appreciable component of variation having a
fixed period the length of record chosen for analysis
should contain an integral number of said periods,
or else be so long that the effect of the values
through one fractional period is inconsequential.
Thus in all of the records subsequently analyzed,
the periods correspond to numbers of calendar years,
close enough to integral multiples of the true length
of the year. The effect of lunar cycles is ignored
as inconsequential, and that of sunspot cycles as
small and not strictly periodic.

AWhat about series lacking any definite periodic
frequencies? How "equivalent" can the distributions
from records of practical length be expected to be?
How much, in comparison, will the distributions
from different situations differ? Some evidence of
favorable answers to these questions comes from
applications of the Cd(Ay) distribution to other
problems. Ruhe (1950) found that it provided a
reliable means of quickly identifying different areas
of glaciation in Iowa from highway profile date
alone. A comparable statistic, the mean square
successive difference, was described by Von Neumann
et al (1941). Liederman and Shapiro (1962) found
this measure useful in the quantification of time-
ordered data in physiological and psychological
research. Incidently, these investigations seem to
indicate the effect of slow long-time trends of y on
the Cd(Ay) distribution is so small as to not
interfere much with its usefulness for identification
purposes.

It seems likely that for every different application
it will be necessary to find out by trial how long
a record must be taken for each Cd distribution to
converge to a fixed curve characteristic of the series.
At the present stage of investigation it seems sufficient
to make a visual comparison in judging this. A more
sophisticated criterion might be justified after more
data have been analyzed.

CONVERGENCE OF THE THREE
DISTRIBUTIONS

Figure 1 shows curves representing the percentage

of days during which the indicated maximum daily
temperatures at Storrs, Connecticut, and Taipei,
Taiwan, were not exceeded. Each curve represents
the distribution Cd(Tmax) for a single year. The
corresponding ATmax and AATmax distributions
for the same single years are shown in Figures 2
and 3 respectively. (The curves for Taipei are not
included on Figures 2 and 3 because they would
overlap those from Storrs too much.) Notice that
the dispersion of the Cd(ATnmax) curves of Fig. 2
is less than that of the C d(Tmax) and C d(AA Tmax)
curves of Figures 1 and 3. One-year record periods
are the minimum practicable because of the annual
periodicity, but they are evidently far too short to
yield equivalent or identical distributions.

Figures 4, 5, and 6 show Cd distributions with
each line representing the accumulated values for
a five-year period. It is evident that lengthening
the period has brought the lines closer together.
The distributions of the different five-year periods
are not yet identical, but the fact that they are
grouped more closely shows that there is a definite
tendency for convergence as the length of period
is increased. The lines representing the five-year
Ay and ALy distributions for Taipei can be shown
on the same chart as those for Storrs, without too
much overlap. Figures 7, 8, and 9 show curves for
the distributions for longer periods at Storrs. Further
convergence is evident in each case.

Since it was thought that the tendency toward
convergence might have been due to the location
of both of these stations near the ocean, a similar
study was made of maximum daily temperature
records from Burlington, Colorado, Elev. 4250,
located on the plains some 150 miles east of the foot-
hills of the Rocky Mountains, and Hayden, Colorado,
Elev. 6300, in the Colorado mountains across the
Continental Divide some 100 miles from the plains.
The curves, covering periods of 4 and 14 years, are
shown in Figs. 10-15. For both locations the dis-
tributions of Tmax A Tmax, and A A Tmax con-
verge as the length of period is increased. To
provide most convincing evidence of the tendency
toward convergence, it would be necessary to compare
36 single-year records, 36 five-year rcords, 36 ten-
year records, etc. Data continuous over periods
long enough to carry this comparison very far may
not exist, since the temperature measuring stations
are affected by man's alterations of the environ-
ment.
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COMPARISON OF LONG-PERIOD RECORDS

Figs. 16, 17, and 18 permit comparison of the dis-
tributions of Tmax , Tmax and A A Tmax for
three stations; Storrs, Connecticut, and Burlington
and Hayden, Colorado. The curves for Storrs
represent a total period of 36 years, while those
for the two Colorado stations summarize the daily
temperature maximums for 28 years. The curve
for the 5-year period at Taipei has been included
on Fig. 10, but the corresponding curves for Taipei
are not shown on Figs. 17 and 18 since the 5-year
record is too short to warrant its being placed in
comparison with the other curves when the differ-
ences between curves are so small.

It seems evident from comparison of Figs. 16, 17,
and 18 that the Tmax distribution alone is sufficient
to distinguish between these different maximum daily
temperature records. This is to be expected because
the periodic annual variation is strongly affected
by location, and has the greatest influence on the
Tmax: distribution. The differences between the
different locations on Fig. 16 are greater than the

differences on Figs. 17 and 18. For this particular
quasi-periodic time series, then, the Cd(y) dis-
tribution alone may be sufficient to establish
identification. The Tmax distribution is of in-
cidental interest wth regard to whether one would
enjoy living in the particular locality. Most of us,
however, would also like to see the Tmin dis-
tribution, and for a really complete investigation,
the distribution of hourly temperatures.

Fig. 16 reflects the seasonal variation well, but
says little about how equable the day-by-day climate
is. What are the chances that tomorrow's maximum
will differ from today's by 5, 10 or more degrees?
Fig. 17 gives us this information. It shows that as
far as daily maximums go, Hayden has a more
equable climate than Storrs, which in turn is more
equable than Burlington. This is surprising, since
it was originally thought that nearness to the ocean
would be the biggest factor. Apparently the high
elevation of Hayden, the surrounding high moun-
tains, and frequent clear skies produce more
uniformity than does proximity to the sea.
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The A Tmax distributions shown in Fig. 17 do
not differ nearly as much, in comparison, as the
Tmax distributions. This is probably due to the
fact that they are mostly the product of the great
macro-turbulence of the atmosphere's cyclonic storms,
which may be remarkably regular in their pattern
of non-uniformity over much of the earth's surface.
The comparison should be extended to include
stations near the poles and nearer the equator.

The distributions of A ATmax, shown in Fig. 18,
pertain to the changeability of the climate in a
different way. How quickly do temperature trends
reverse themselves? The three stations shown rank
in the same relative order as before. One can
sympathize with the residents of Burlington, in the
middle of the bare plains, subject to easy attack
by winds from every direction. Again, the dis-
tributions are surprisingly similar for the different
locations, probably for the same reason.

FUTURE APPLICATIONS

Now that the computations necessary for the
analysis of long time series by this method can be
quickly made by the digital computer, the way is
open to investigate many types of phenomena, such
as the hourly temperatures previously mentioned,
stream flows, etc. Perhaps the biggest difficulty
is in obtaining reliable continuous records of suf-
ficient length. The data must be on punched cards
or tape, ready for the machine, and must not have
any gaps.

GENERAL CONCLUSIONS

(1) Evidence is presented that the cumulative
frequency distributions of daily maximum temper-
atures and of their first and second successive
differences each tend to converge toward a fixed
curve as the length of period is increased.
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(2) The three cumulative frequency distributions
obtained from daily maximum temperatures con-
verged rapidly enough that curves from the different
locations studied could be definitely distinguished,
even though the length of period was as short as
five years.

(3) The distributions of the first and second
successive differences provide insight into the pattern
of variability of the daily maximum temperature.

(4) The fact that the distributions of the first
and second successive differences of daily maximum
temperatures for the widely separated locations
studied show more uniformity than the temperature
distributions themselves suggests the possibility of
a world-wide similarity in the atmospheric macro-
turbulence that causes the quasi-random quasi-
periodic fluctuations. This should be tested by
including a comparison of records from oceanic
equatorial and near-polar stations.

ACKNOWLEDGEMENTS

Initially, this study was supported by the Depart-
ment of Civil Engineering of the University of
Connecticut, with computer time provided by the
University's Computer Center. The Water Resources
Commission of the Republic of China assisted by
analyzing the records from Taipei. A brief report
was presented at the spring 1964 meeting of the
American Geophysical Union. One of the anony-
mous reviewers of that report suggested that much
more data were necessary to support the conclusions
reached, and raised questions which showed the need
of a more thorough explanation. Study was recom-
menced in 1965 as a project of the Connecticut
Institute of Water Resources. The writer is indebted
to many individuals, particularly to WV. C. Kennard,
J. J. Brumbach, Byron Janes, Joseph Breen, Bijoy
Bhatacharya, W. B. Moeller, and Gerald Gromko,
for assistance in various stages of the work.

BIBLIOGRAPHY

Bingham, Christopher, Probabilities of Weekly Aver-
ages of the Daily Temperature Maximum, Minimum,
and Range, Bulletin 659, Connecticut Agricultural
Experiment Station, New Haven, September, 1963.

Leiderman, P. Herbert, and David Shapiro, Ap-
plication of a Time Series Statistic to Physiology
and Psychology, Science, 138, 141, 1962.

Lonsdale, Edward N., Development of a Statistical
Analyzer for Random Waveforms, Dissertation,

University of Iowa, Department of Electrical
Engineering, 1952.

Posey, Chesley J., Discussion of Modern Conceptions
of the Mechanics of Fluid Turbulence, Proceedings
American Society of Civil Engineers, 62, 626, 1936.

Posey, C. J., Measurement of Surface Roughness,
Mechanical Engineering, 305, 1946.

Posey, C. J., Fluctuation Analysis of Turbulence
Measurements, Proceedings of the second Midwestern
Conference on Fluid Mechanics, 49, The Ohio State
University, 1952.

Ruhe, Robert V., Graphic Analysis of Drift Topo-
graphies, American Journal of Science, 248, 435,
443, 1950.

Ruhe, Robert V., Reclassification and Correlation
of the Glacial Drifts of Northwestern Iowa and
Adjacent Areas, Dissertation, University of Iowa,
Department of Geology, 1950.

von Neumann, J., R. H. Kent, H. R. Bellinson,
and B. I. Hart, The Mean Square Successive Dif-
ference, Ann. Math. Stat. 12, 153 (1941).

APPENDIX

Computer Program

by

Bijoy K. Bhattacharya

The program described here is for the purpose
of obtaining cumulative frequency distributions of
a large number of successive values of a quasi-periodic
variable, and their first and second differences. As
given, it is for the use in the IBM 7040 (FORTRAN
IV). It could be modified for IBM 1620 (FORTRAN
II). The latter, however, will take much more
computing time.

In the present example the successive values are
daily maximum temperatures, covering a period of
14 calendar years.

Let

N = Daily maximum temperature

L = Total number of days

N(I) = Maximum temperature of the "I"th day
(I varies from 1 to L according to the
sequence of the dates.)

The first difference of the daily maximum temper-
ature is
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NDEL (I) = N(I+1) - N(I).

In the above equation I varies from 1 to (L-l).
In the program (L-l) has been replaced by another
variable "LP".

The second difference of the daily maximum
temperature is

NNDEL (I) = N(I+2) - 2N (I+1) + N(I).
In this equation I varies from 1 to (LP-1).

INPUT DATA FOR THE PROGRAM

First the machine will read the values of L, M1
and M2 where, L = total number of data (or days).
(M1 and M2 will be discussed later.)

Then the machine will read the data N as N(1),
N(2), N(3) ... N(L), according to
the "FORMAT" specified. In this program the
FORMAT used for the daily maximum temperature
is (2013).

A schematic view
shown in Figure 19.

of the deck of input cards is

particular value of the first and second difference
occurs in the set of "NDEL" and "NNDEL", re-
spectively.

3. Here the machine will compute the percentage
of occurrence of:

(a) each and every value in the set of "N"

(b) each and every value of first difference in
the set of "NDEL" already computed

(c) each and every value of second difference in
the set of "NNDEL" already computed.

VALUES OF "Ml" AND "M2"

The values of M1 and M2 will depend upon the
type of problem. The values of M1 and M2 indicate
the range of numbers in which all the values of N,
NDEL and NNDEL will lie.

For example if all the numbers lie between (-80)
and (150) then

M1 = 150 + 81 = 231

M2 = 81

From the following two statements

DO 60 K=l, M1

J (K) = K -M2

With the above values of Ml and M2 we find that:

J(K) = 1-81 = -80

J(K) = 231-81 = 150

FIGURE 19 SCHEMATIC VIEW OF THE DECK
OF INPUT CARDS

EXPLANATION OF THE STEPS OF
COMPUTATIONS

1. The machine will first compute the first difference
(A) as "NDEL" and the second difference (AA) as
"NNDEL".

2. The machine will count the number of times each
particular value occurs in the given set of data
and it will also count the number of times each

when K=l

when K=231

That is the machine will compute the percentage
of occurrence of N, NDEL and NNDEL in which
all the values of N, NDEL and NNDEL lie between
-80 and 150.

Hence, the values of M and M2 are to be
considered according to the type of problem.

The daily maximum temperatures of the following
two stations will serve as an example:

1. Burlington - Daily maximum temperatures from
1932 to 1959

2. Hayden - Daily maximum temperatures from
1934 to 1961

In the case of Burlington the minimum temper-
ature throughout the period as mentioned was
-8°F and maximum temperature was 106°F. The
values of M1 and M2 were taken as 251 and 81,
respectively, to have a range of -80° to 170°F.
The increased range is necessary to avoid the danger
of getting a total of less than 100%. It has to go
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far beyond the Tmax range to take care of the

A Tmax range.

In the case of Hayden the minimum temperature
throughout the period was -3°F and the maximum
was 100°F. The values of M1 and M2 were taken
as 231 and 81, respectively, to have a range of
-80 to 150.

So far, it has been found that the following
relation avoids the danger of getting a total of less
than 100% in any of the three distributions:

M1-M2 = maximum value of the set of data

Note that the "DIMENSION" statement in the
program depends upon the type of the problem.

The dimensions of all subscripted variables are
set according to the values of L, MI and M2. There
are four subscripted variables and the dimensions
of them will be as follows:

N (value of L)

j (value of M1)

NDEL (value of L)

NNDEL (value of L)

For example, if L = 1500 and Ml = 201 then the
dimension statement will be DIMENSION N(1500),

J(201), NDEL(1500), NNDEL(1500).

Hence, we have the following input data cards
after the "END" card of the main program.

1st DATA CARD - containing the values of L, M1
and M2 according to the
FORMAT (316).

After the 1st card the rest of the cards will contain
the data (e.g. Maximum temperatures, etc.) according
to the FORMAT (2013) (or as required).

Note that this program is applicable only for
data which are all integral values.

The main program with a sample output for the
years 1948 - 1961 at Hayden is given in the following
pages.
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DIMENSION N(5500),J(250),NDEL(5500),NNDEL(5500)
READ (5,7) LMlM2

7 FORMAT (316)
READ (5,2) (N(I),I=l,L)

2 FORMAT (2013)
C CALCULATION OF FIRST AND SECOND DIFFERENCES

LP=L-1
DO 8 I=1,LP
NDEL (I)=N(I+1)-N(I)
IF (I-LP) 9,8,8

9 NNDEL(I)= N(I+2)-2*N(I+1)+N(I)
8 CONTINUE

C CALCULATIONS OF NUMBER OF OCCURRENCES
KOUNT=O
KNT=O
KT=O
WRITE (6,100)

100 FORMAT (lX,51HTEMPERATURE PERCENTAGE P
WRITE (6,101)

101 FORMAT (4X,51HT(MAX) OF DAYS DURING OF
WRITE (6,102)

102 FORMAT (12X,49HWHICH T(MAX) DELTA T(MA
WRITE (6,103)

103 FORMAT (12X,40HWAS NOT XEDED NOT XEDING
WRITE (6,104.)

104 FORMAT (29X,25HGIVEN VALUE GIVEN VALUE)
DO 60 K=1M1
J(K)=K-M2
DO 55 I=1,L
IF (J(K)-N(I)) 55,54,55

54 KOUNT=KOUNT+1
55 CONTINUE

DO 5 I=1,LP
IF (J(K)-NDEL(I)) 5,6,5

6 KT=KT+1
5 CONTINUE

LPP=LP-1
DO 12 I=1,LPP
IF (J(K)-NNDEL(I)) 12,13,12

13 KNT=KNT+1
12 CONTINUE

C CALCULATION OF PERCENTAGE OF OCCURRENCES
A=KOUNT
B=KT
C=KNT
D=L
E=LP
F=LPP
X=(A/D)*100.
Y=(B/E)*100*
Z=(C/F)*100.
WRITE (6,120) J(K) ,XYZ

120 FORMAT (1X,I OXF10 ,IO.55X,F10 XF1.55XF105)
60 CONTINUE

STOP
END

ERCENTAGE PERCENTAGE)

DAYS WITH OF DAYS WITH)

X) DELTA DELTA T(MAX))

NOT XCDING)

FIGURE 20 MAIN PROGRAM

19



TEMPENATURE PERCEi: L- c6
T(MAX) OF DAYS .3URING

WHICH T(MAX)
WAS NOT XEDED

C .CCCO
0 .OcCCc
0.CCCCO
O.CCCCC
0.CCCCO

O.cCCCO
o .CCCCO
o.CCCO
C.OCCCC
C . c CO
O.occoo
o.occcO
0.COQO

O.OCCO0
C.OCCCO
O. CCCO
0.CCCCO
C.CCCCO
C.OC00
OCO CCC
0. cCCO

C. CC C
O. CCCc
0.01955
C.01955
0.01955
0.05866
0.05866
0.09777
C.13688
0.15643

5.1C364
5.80759
6.80485
7.93899
9.07313

10.26594

99.94 134
99.94134
99.98044
99.98044
99.98044

1CO.OCCCO
lCO.OCCCO
1CO.OCCCO

PERCENTAGE PERCENTAGE
OF DAYS WITH OF DAYS WITH
DELTA T(MAX)

NOT XEDING
GIVEN VALUE

O.OCCOO

.0OCCco

o.00ccco
O.OCCCO
, .OCCCO

0.0ccco

. OcCOC
O.OCOCO
O . 0 C C 0
C. OCCCO

0.0195CO6

0.0CC00

.OCCCO

O.OCCO0

0.01956

0.019560.01956

0.03912
0.03912
0.03912

21.31821
25.93389
30.80383
36.88637
43.61432
51.33972
59. 12380
66.282C3
73.02953
78.17328
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Fig. 21 Print-out. Record from Hayden, Colorado
(1948-1961, condensed to single page by omitting 166 lines)
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