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Abstract

We describe four extensions to existing Bayesian methods for analysis of genetic 

structure in populations: (1) use of beta distributions to approximate the posterior distribution of 

f and θB, (2) use of an entropy statistic to describe the amount of information about a parameter 

derived from the data, (3) use of the Deviance Information Criterion (DIC) as a model choice 

criterion for determining whether there is evidence for inbreeding within populations or genetic 

differentiation among populations, and (4) use of samples from the posterior distributions for f 

and θB derived from different data sets to determine whether the estimates are consistent with 

one another. We illustrate each of these extensions by applying them to data derived from 

previous alloyzme and RAPD surveys of an endangered orchid, Platanthera leucophaea, and we 

conclude that differences in θB from the two data sets may represent differences in the underlying 

mutational processes.



Introduction

For more than seventy years population and evolutionary geneticists have been interested in 

describing how genetic diversity is distributed within and among populations, and since Sewall 

Wright (1951) and Gustave Malécot (1948) introduced them, F-statistics have been the 

descriptor of choice. Unfortunately, neither Wright nor Malécot paid careful attention to the 

problem of estimating these statistics from sample data, but with the advent of modern 

computers and modern molecular methods interest in the estimation of F- statistics has shown a 

dramatic increase (see Excoffier 2001; Weir & Hill 2002 for recent, comprehensive reviews).

Coincident with the increasing interest in analysis of population genetic structure has been an 

explosion of interest in the use of Bayesian statistical techniques for analysis of many complex, 

hierarchical statistical problems. More recently, these and closely-related likelihood techniques 

have been applied to analysis of genetic data (e.g., Balding & Nichols 1995; Roeder et al. 1998; 

Holsinger 1999; Balding 2003).

In this paper we describe further extensions of the Bayesian approach for analysis of 

structure in population genetic data. We illustrate that a beta distribution (with appropriately 

chosen parameters) provides a good fit to the posterior distributions of estimators for Wright's Fis 

and Fst and that an entropy statistic provides a useful measure of the amount of information 

provided by the data about the parameters. We focus our attention, however, on two problems of 

more immediate importance: (1) Developing a model choice criterion that can be used to 

determine when the data provide strong evidence for inbreeding within populations or for genetic 

differentiation among them. (2) Developing a method for comparing non-zero estimates of Fis 

and Fst  derived from different data sets. 

We illustrate these extensions by showing that there is substantial inbreeding within 

populations of Platanthera leucophaea, an endangered orchid in the United States and Canada. 



The data also show that there is substantially more genetic differentiation among the sampled 

populations at allozyme loci than at loci coding for RAPD markers. Because both data sets 

include exactly the same set of populations and virtually the same set of individuals, the 

differences in genetic structure are unlikely to reflect differences in migration rates or 

demographic history of the populations. One likely explanation is a higher rate of mutation at 

loci encoding variation in RAPD markers.

Materials and Methods

Data

Platanthera leucophaea (Nuttall) Lindley is a showy orchid species that was once abundant 

in prairies and sedge meadows of the midwestern United States and Canada, primarily east of the 

Mississippi River.  Presently, it is listed as a threatened species under the U.S. Endangered 

Species Act as only 59 extant populations are known from Illinois, Iowa, Maine, Michigan, 

Ohio, and Wisconsin (USFWS 1999).  In addition to having an extremely fragmented 

distribution, many populations are also very small (i.e., fewer than 50 aboveground individuals). 

Population size is necessarily tied to the lifestyle of a species, which is quite complex in 

Platanthera leucophaea.  This species is adapted to graminoid habitats that are routinely 

disturbed, especially as a result of fire and drought, and populations exhibit periods of dormancy 

or mass flowering.  Populations are maintained only through sexual reproduction by seed, which 

requires pollination by hawkmoths and the formation of mycorrhizae for seedling establishment. 

The populations included in this survey represent seven of the ten known populations of P. 

leucophaea in Ohio (USFWS 1999).  These populations occur in prairie situated in the plains of 

Lake Erie (Metzger, Pickerel, and Yandota) or in wet sedge meadow in the central part of the 

state (Meadow, Medway, Conservation, Cemetery).    Of the three unsampled populations, no 



individuals were found at two sites in 1998 when tissue was collected, and the other unsampled 

population occurs on private land and could not be visited in 1998.  In the three smallest 

populations (Meadow, Conservation, and Cemetery), all individuals were sampled, while in the 

four larger populations (Medway, Metzger, Pickerel, and Yandota), a representative sample of 

individuals was chosen randomly (Table 1).  With only a few exceptions, all individuals scored 

for RAPD markers were also genotyped at polymorphic allozyme loci. The populations included 

in these analyses are a subset of those considered in Holsinger et al. (2002).

Wallace (2002) provides details on buffer systems and genetic interpretations of allozymes 

and on scoring of RAPD markers. Briefly, the allozyme data set includes 7 polymorphic loci 

(TPI-1, TPI-2, EC 5.3.1.1; MDH-2, EC 1.1.1.37; PGM-1, EC 2.7.5.1; GOT-1, GOT-2, EC 

2.6.1.1; CAT-1, EC 1.11.1.6 ), each with two alleles per locus except for CAT-1, which had 

three alleles. The RAPD data set includes 63 polymorphic loci.

Statistical analysis

We analyzed the data using Hickory v0.8 (Holsinger & Lewis 2003). Following the 

notation in Holsinger (1999) and Holsinger et al. (2002), which was inspired by the close 

analogy to Weir and Cockherham's (1983) formulation of F-statistics,we use f to refer to Fis, and 

θΒ to refer to Fst. For dominant marker data, the full conditional distribution of the parameters is 

given by:
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where P(f) and P(θ) are the prior distributions on f and θ and where NA1,ik and NA2,ik refer to the 

number of dominant and recessive phenotypes at locus i in population k. P(πi) is the prior 

distribution on the mean allele frequency at each locus, and P(γik|πi,θ,f) is the induced prior on 



phenotype frequencies in each population. To calculate P(γik|πi,θ,f) we assume that the prior 

distribution of allele frequcncies at locus i in the kth population, pik, is given by a beta distribution 

with parameters ((1-θ)/θ)πi and ((1-θ)/θ)(1-πi) (compare Roeder et al. 1998; Holsinger et al. 

2002; Balding 2003). The corresponding phenotype frequencies are calculated as:
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Notice that the first-stage likelihood consists of a binomial sample of phenotypes.

For co-dominant marker data, the full conditional distribution follows the same form with 

two differences: (1) Loci may have more than two alleles and (2) All genotypes are 

distinguishable. To accomodate loci with more than two alleles we use a Dirichlet distribution, 

the multivariate generalization of a beta distribution, to describe the among-population 

distribution of allele frequencies (compare Roeder et al. 1998; Holsinger 1999; Balding 2003). 

Similarly, the first-stage likelihood with co-dominant marker data is constructed as a 

multinomial sample of genotypes rather than a binomial sample of phenotypes (see Holsinger 

1999 for details).

Notice that these formulations assume independent sampling across both loci and 

populations. Independent sampling across loci ignores any statistical dependence associated with 

gametic or identity disequilibrium, but we expect the effect to be small. Independent sampling 

across populations is more problematic because high correlations among populations can occur 

in realistic genetic models, especially when the number of populations and the mutation rates are 

small (Fu et al. 2003). Models that account for among-population correlation are considerably 

more complex and are currently under development. As often happens in relatively complex 

hierarchical Bayesian models, closed form expressions for the posterior distributions of f and θΒ 



are not available. Hickory uses standard Monte Carlo Markov Chain (MCMC) methods to 

approximate the posterior distributions of f and θΒ from either type of genetic data. 

We used non-informative, uniform priors on all parameters in the analyses. As described in 

Holsinger et al. (2002), using informative beta priors has relatively little effect on posterior 

estimates of f and θΒ for either data set and relatively little effect on posterior estimates of f  

(details provided below). After a burn-in of 50,000 iterations, each sample chain consisted of 

250,000 iterations, and we retained values at every 50th iteration for an MCMC sample size of 

5000. 

The output of a MCMC run is a large number of individual values for each of the parameters. 

While these points could be summarized with histograms, the true posteriors are continuous. 

Thus, a non-parametric continuous kernel density estimate is more appropriate. We use a 

Gaussian kernel density with parameters chosen to match the default parameters in the widely 

used statistical package R (Venables and Ripley 2002, p. 127). Plots of our kernel density 

estimates for f and θΒ suggested that a beta distribution with appropriate parameters might fit the 

posterior distributions well. To assess that possibility for f and θΒ in the full model, we calculated 

the Hellinger distance between a Gaussian kernel density estimate of each parameter and the 

corresponding beta density, where parameters of the beta density were estimated by matching its 

mean and variance with the mean and variance of the posterior distribution. Specifically, if x is 

the posterior mean for a parameter and s2 its posterior variance, we chose the parameters of the 

Beta distribution, Be(ν,ω) as
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The Hellinger distance between two densities f(x) and g(x) is defined as (LeCam 1986, pp. 46-

47):

( ) .)()(),( 22/12/1 dxxgxfgfH ∫ −=

It ranges between 0 and 1, and can be interpreted as the fractional difference between the two 

densities. We approximate H(f,g) by a discrete sum evaluated at the 1024 points included in our 

kernel density estimate. 

Lindley (1956) suggested that the entropy of a distribution is a natural measure of the 

“information” it provides about a random variable. If f(φ) is the probability density for  random 

variable, then the entropy of f, H(φ), is given by 

∫−= φφφφ dffH )(log)()(   .

In Bayesian inference, the difference between the entropy of the posterior and prior distributions 

of a parameter, H(φ|x) – H(φ), is a widely used measure of the information provided about that 

parameter by the data, IE(φ) (compare O’Hagan 1994, p. 87). In particular, if the posterior 

distribution for φ  is Beta(α,β) and its prior distribution is Beta(ν,ω), then
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(compare Lindley 1957), where Be(ν,ω) is the Beta function and ψ(x) is the digamma function 

(Abramowitz & Stegun 1965). A uniform distribution corresponds to a beta distribution with 

both parameters equal to one. Thus, our reported values for IE(φ) correspond to the difference in 

entropy between a Beta distribution with α = β = 1 and a Beta distribution with parameters ν and 

ω chosen according to (1). 

(2)



Results

We present point and interval estimates of f and θΒ for all of the models we consider in Table

2, and we present posterior plots and sample traces in Figure 1. We report results assuming a 

uniform prior, but both the point and interval estimates are relatively unaffected by the choice of 

prior (compare Holsinger et al 2002). The point estimates of f and θΒ from the RAPD data set, 

for example, are changed little (0.8774 versus 0.8362 for f, 0.2198 versus 0.2490 for θΒ) when 

we use beta priors with parameters as extreme as (48,11) for f and (33,55) for θB – values which 

were chosen to mimic the posterior distribution of the parameters in the allozyme data (see 

below). Because of the small number of loci in the allozyme data set, the estimates of θB are 

somewhat more sensitive to the choice of priors. Choosing beta priors to mimic the posterior 

RAPD data sets gives a point estimate of θB of 0.2505 (versus 0.3773 with a uniform prior), but 

the parameters of the prior for θB in this case (82,290) make the prior highly informative. A less 

informative prior with the same mean (8.2, 29) gives a point estimate for θB of 0.3336.

The estimate of θΒ presented here for RAPD data under the full model differs from the value 

originally reported in Holsinger et al. (2002). The data sets used are slightly different, but 

numerical error in our analytical routines also affected our original estimate. Further simulations 

(not shown) demonstrated that this error did not have a noticeable effect on our original reports 

of bias or root mean squared error. Standard convergence diagnostics (Brooks & Gelman 1998; 

Gelman & Rubin 1992; Raftery & Lewis 1992a; 1992b) indicate that sample chains for all 

models we consider had reached stationarity before we began constructing our posterior sample. 

Similarly, autocorrelation analyses showed that each parameter vector in our posterior sample 

can be regarded as an independent sample from the posterior distribution. Although point 

estimates of parameters are not greatly affected by high levels of autocorrelation, ensuring 



independence of elements in the posterior sample is important for accurate estimates of credible 

intervals (Raftery and Lewis 1992b) and for our comparisons of f and θB between models. 

Although estimates of f from dominant marker data may be unreliable in certain data sets 

(Holsinger and Lewis 2003), analyses of alternative models in which f is fixed only by the prior 

specification either to a uniform (0,1) or a Beta with parameters matching the posterior 

distribution of f in the allozyme data produces estimates of θB that are barely distinguishable 

from those presented here.

Beta distributions with parameters matched to the mean and variance of the posterior 

distributions for f and θΒ provide good approximations to the exact posterior distribution for 

these data sets. Specifically, the Hellinger distance between a Gaussian kernel density estimate 

and the corresponding beta distribution was less than 0.007 (i.e., the overlap between the fitted 

beta distribution and the Gaussian kernel density estimate was greater than 99.3%) for all 

combinations of models, parameters, and data sets. Thus, we can use the analytical expression in 

(1) to calculate IE(x) for f and θΒ, which is provided for the full models in Table 3. Not 

surprisingly, the results show allozyme data provide substantially more information on f than the 

RAPD data, even with a much smaller number of loci. But precisely because the RAPD data set 

includes a much larger number of polymorphic loci than the allozyme data set, the RAPD data 

provide substantially more information on θΒ.

Model choice. 

Spiegelhalter et al. (2002) introduced the Deviance Information Criterion (DIC) as a model 

choice criterion in Bayesian contexts. It is analogous to the more familiar Akaike Information 

Criterion (AIC; Akaike 1973) in that it combines a measure of model fit, D  (-2 times the mean 

posterior log likelihood), with a measure of model complexity, pD. The preferred model is the 



one that minimizes D +pD, i.e., the one that represents the best compromise between model fit 

and number of parameters. pD is the “effective number of parameters”, and it is calculated as D -

D̂ , where D̂  is –2 times the log likelihood at the posterior mean. (The distribution of log 

likelihoods around the posterior mean is approximately χ2, with degrees of freedom equal to the 

number of parameters and mean equal to the number of parameters; see Spiegelhalter et al. 2002 

for details.) We present DIC calculations for the models we consider in Table 4. Because DIC is 

derived from the fit of a model to the data, it is only appropriate for comparisons of models as 

applied to the same data set. In our context, therefore, DIC comparisons are appropriate within 

the RAPD data set and within the allozyme data set, but they are not appropriate for comparisons 

between the data sets.

In classical applications, twice the difference between log likelihood of a nested model and 

that of a more complex model is distributed approximately as a χ2 random variable with degrees 

of freedom equal to the difference in number of parameters (Mood et al. 1974). For models that 

differ in only one parameter, a significant difference corresponds, approximately, to a difference 

of 2 log likelihood units. Because DIC involves an average log likelihood, it is not surprising that 

Spiegelhalter et al. (2002) suggest that difference models that differ by only 1-2 DIC units 

deserve consideration, while those that differ by 3-7 DIC units have considerably less support.

In both data sets we analyze, the full model is preferred to alternatives with f = 0 or θΒ = 0 – 

conclusively so in the case of the allozyme data. Both data sets therefore provide evidence of 

inbreeding within populations (f  > 0) and of genetic differentiation among populations (θΒ > 0). 

Nonetheless, a closer look at the DIC calculations reveals an important difference. With the 

allozyme data, D  is substantially smaller for the full model than for the f = 0 model, i.e., the 

model with f  > 0 fits the data substantially better than the model with f = 0. The difference in fit 



to the data is almost entirely responsible for the difference in DIC, giving us considerable 

confidence that the full model should be preferred. With the RAPD data, however, D  is about 

the same in the two models. The difference in DIC arises almost entirely as a result of 

differences in model dimension, indicating that the full model should be only weakly preferred.

A weak preference for the full model in the RAPD data seems paradoxical in light of a 95% 

credible interval for f whose lower limit is greater than 0.5. Nonetheless, it is consistent with 

prior intuition suggesting that it should be difficult to recover reliable information about 

inbreeding from a dominant marker. It is also consistent with our calculations of IE(x), which 

show that the RAPD data provide substantially less information about f than the allozyme data 

(Table 3). It appears that the weak identifiability of f with dominant marker data (Holsinger et al. 

2002) is responsible for the apparent inconsistencies between conclusions about f based on DIC 

comparisons and those based on credible intervals. In light of these consistencies, we 

recommend that estimates of f derived from dominant marker data be regarded with considerable 

caution (see also Holsinger and Lewis 2003).

Comparing estimates

While exact permutation and approximate bootstrapping methods for testing for the presence 

of inbreeding within populations or for the presence of genetic differentiation among populations 

are well known (e.g., Rousset & Raymond 1995; Goudet et al 1996; Rousset 1997) methods for 

comparing different, non-zero estimates have not been developed. Fortunately, making such 

comparisons within a Bayesian framework is straightforward. Let P(fA|xA) be the posterior 

distribution of f as determined from data set A, and let P(fB|xB) be the posterior distributiion of f 

as determined from data set B. Different sets of data are used to estimate fA and fB, but if fA and fB 

reflect the same evolutionary processes the differences in fA - fB should not be distinguishable 



from zero. Let fAi be the ith MCMC sample from P(fA|xA), and let fBi be the ith MCMC sample from 

P(fB|xB). We can approximate the posterior distribution of fA - fB to an arbitrary degree of accuracy 

from a large sample of fAi - fBi. If the 100(1-α)% credible interval is strictly positive, we have 

evidence (at the α% level) that fA is larger than fB. If it is strictly negative, we have evidence that 

fA is smaller than fB. If the 100(1-α)% credible interval on the difference includes zero, then we 

have no evidence that one inbreeding coefficient is larger than the other. Clearly, we can use the 

same approach to compare estimates of θΒ derived from different data sets. Ayres and Balding 

(1998) and Shoemaker et al. (1998) employ similar strategies in developing Bayesian methods 

for assessing departures from Hardy-Weinberg. 

Notice that the simpler approach of requiring non-overlapping credible intervals would be 

overly conservative. Suppose, for example, that  our estimate of fA is less than our estimate of fB. 

For the 100(1-α)% credible intervals not to overlap then P(fA > p|xa) < α/2 and P(fb < p |xb) < α/2 

must hold for some p. The probability that both hold, assuming the data sets are independent, is 

α2/4. Thus, the credibility level associated with  fA <  fB, would be 1-α2/4 if non-overlap of 

credibility intervals were required.

While the point estimate of f derived from both data sets in Platanthera leucophaea is quite 

similar and the 95% credible intervals are broadly overlapping, the point estimate of θΒ derived 

from the RAPD data set is substantially smaller than the estimate derived from the allozyme data 

set, and the 95% credible intervals are non-overlapping (Table 2, Figure 2). Thus, both sets of 

loci appear to indicate similar levels of within-population inbreeding, but also to indicate 

different levels of among-population differentiation. Posterior comparisons of the difference in 

parameters between the data sets bear these impressions out. The posterior mean of fRAPD – fAllozyme 

is 0.0640, but its 95% credible interval broadly overlaps zero: (-0.2745, 0.2494). The posterior 



mean of θΒ
RAPD – θΒ

Allozyme, on the other hand, is –0.1569, and its 95% credible interval does not 

include zero: (-0.2662, -0.0535). 

Discussion

The analyses presented in this paper extend previous work on the application of Bayesian 

methods to analysis of population genetic structure in four ways. First, they show that for these 

data the posterior distribution of f and θB are well approximated by a beta distribution in which 

the parameters of the beta distribution are chosen to match the mean and variance of the posterior 

distribution (see Equation 1), and our limited experience with other data sets suggests that this is 

likely to be a general result. We encourage investigators to report the mean and variance of the 

posterior distributions so that later investigators can take advantage of existing data to use 

informative priors when appropriate (Holsinger et al. 2002).  Second, the difference between the 

entropy of the prior distribution of a parameter and the entropy of its posterior distribution, IE(x), 

is a useful summary of the amount of information about a paramter provided by the data. 

Although we do not explore use of this measure in sampling design here, it is apparent that 

preliminary studies using simulated data sets could help investigators to choose an allocation of 

samples within and among populations that provide the most information possible about the 

parameters. Third, we illustrate the use of DIC as a model choice criterion in the context of 

population structure analysis, and we point out that investigators should pay attention not only to 

DIC but also to its components. While DIC itself suggested strong support for a model including 

both inbreeding and among population differentiation with the RAPD data (a difference of 

approximately 15 units), a closer examination showed that it was preferred primarily because of 

its reduced complexity (pD), not because a noticeable improvement in average fit. Under such 



circumstances, the model with lower DIC should be preferred only weakly, if they are preferred 

at all. Finally, we illustrate how to determine whether two, non-zero estimates of θ (or f) can be 

compared to determine whether differences in point estimates derived from different data sets 

reflect the operation of different evolutioanry processes or of sampling error. 

Our analysis of allozyme and RAPD data sets from Platanthera leucophaea confirm earlier 

results suggesting that there is substantial inbreeding within populations and substantial genetic 

differentiation among populations. We find, however, that the degree of population 

differentiation depends on the data set used for analysis. Because exactly the same populations 

(and nearly all of the same individuals) are included in both the RAPD and the allozyme data 

sets, the observed differences in θΒ are not likely to reflect differences in migration rates or 

demographic history. Instead, they are likely to reflect differences either in the mutational 

processes by which variation arises at these loci or in the patterns of natural selection to which 

they are subject. In models incorporating drift, migration, and mutation (see Fu et al. 2003 for a 

recent review), higher rates of mutation are associated with lower amounts of among-population 

differentiation. Thus, the smaller value of θΒ associated with RAPD loci may reflect a higher rate 

of mutation at RAPD loci than at allozyme loci (see Flint et al. 1999 for a similar example 

involving human minisatellite data). Additional analyses of the RAPD data set (Fu, Dey, and 

Holsinger unpublished) have also shown that there are detectable differences in θB among loci 

within the RAPD data set. Both sets of results illustrate, yet again, that migration-rate estimates 

derived from F-statistics are highly problematic (compare Whitlock & McCauley 1999). 

Migration-rate estimates from genetic data must take into account mutational processes if they 

are to be reliable (Beerli & Felsenstein 1999).
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Figure Legends

Figure 1.  Posterior distributions and sample traces for f and θB estimated from the RAPD data 

(a) and from the allozyme data (b).  The dashed line on the density plots is a Gaussian kernel 

density based on 1024 points. The solid line is a beta density with parameters chosen to match 

the posterior mean and variance of each parameter. The dashed line is most easily visible in the 

posterior density for f estimated from the RAPD data. The scale on the y-axis (labeled 

“Probability density”) is chosen so that the area underneath it integrates to one. a. For f, (ν,ω) = 

(5.606, 0.7833). For θB, (ν,ω) = (81.84, 290.4). b. For f, (ν,ω) = (48.67, 11.05). For θB, (ν,ω) = 

(33.35, 55.06).

Figure 2.  Box plots of the posterior densities for f and θB. The line in the box is at the position 

of the median, the lower boundary is at the lower quartile, the upper boundary of the box is at the 

upper quartile, and the whiskers extend to the most extreme data points no more than 1.5× the 

interquartile range beyond the box. Individual points outside the interquartile range are plotted.



Table 1.  Sample sizes for the allozyme and RAPD data sets from Platanthera leucophaea (see 

Wallace 2002).

Sample Size
Population Census Size Allozyme RAPD

Meadow 13 13 13
Medway 33 12-15 13
Conservation 24 24 24
Cemetery 17 10-13 17
Metzger 104 25 25
Pickerel 1065 36-39 40
Yandota 118 17-23 23



Table 2. Posterior means, standard deviation, and 95% credible intervals of f and θΒ for RAPD 

and allozyme data in Platanthera leucophaea under three alternative models.

 

f θΒ

Model Mean s.d. 95% c.i. Mean s.d. 95% c.i.
RAPD Full 0.8774 0.1207 (0.5540, 0.9971) 0.2198 0.0214 (0.1797, 0.2646)

f = 0 0.1644 0.0176 (0.1327, 0.2008)
θ = 0 0.9078 0.0924 (0.6661, 0.9977)

Allozyme Full 0.8149 0.0498 (0.7061, 0.8986) 0.3772 0.0513 (0.2830, 0.4789)
f = 0 0.4135 0.0504 (0.3187, 0.5169)
θ = 0 0.9268 0.0192 (0.8855, 0.9605)



Table 3.  Information provided by the data (IE(x)) for each parameter in the full model when 

applied to RAPD and allozyme data from Platanthera leucophaea. The greater the value of IE(φ), 

the more information about the parameter provided by the data.

Dataset Parameter IE(φ)
RAPD f 1.1135

θΒ 2.4254
Allozyme f 1.5954

θΒ 1.5530



Table 4. DIC calculations for RAPD and allozyme data in Platanthera leucophaea under three 
alternative models. The smallest DIC for each data set is highlighted in bold. 

Model D D̂ pD DIC
RAPD Full 1033.8745 826.1775 207.6970 1241.5715

f = 0 1032.7101 809.0914 223.6187 1256.3288
θ = 0 2174.1822 2114.1996 59.9826 2234.1647

Allozyme Full 155.2735 140.9082 14.3653 169.6387
f = 0 240.3963 226.4958 13.9005 254.2968
θ = 0 560.8112 553.7171 7.0941 567.9053
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