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ABSTRACT

Motivation: Populations are often correlated due to shared history or gene exchange. However,
consideration of such correlation has not been adequate and satisfactory in probability models for
allele frequency and inference about population structure. Recent study shows that correlation
among populations could be very high, which in turn affect the estimate of measures of genetic
variation. In this study we propose a mixture beta model to characterize allele frequency and
incorporate the correlation among populations into account as well as extending the model to data
with different clusters.

Results: Using simulated data, we show that in general, the mixture model provides a good
approximation of the allele frequency and a good estimate of correlation among populations. Re-
sults from fitting the mixture model to a data set of phenotypes at 377 autosomal microsatellite
loci from human populations indicates high correlation among populations, which may not be ap-
propriate to neglect. Also traditional measures of population structure tend to overestimate the
amount of genetic differentiation when correlation is neglected. Inference is performed in a Bayesian
framework.

Contact: fur@ohsu.edu



INTRODUCTION

Organisms usually form different populations in various habitats. Inevitably some genetic differ-
entiation occurs and there are differences of allele frequencies among these populations. It has
been one of the main interests throughout the history of theoretical population genetics to describe
and understand the nature of genetic differentiation observed in natural populations. Furthermore,
advances in molecular technology in the last decade have resulted in large amounts of data for
accessing genetic variation. On the other hand, populations are often correlated due to shared
history or gene flow. Fu et al. (2003) derived equations to solve for correlation in allele frequencies
for a set of populations subject to drift, mutation and migration and developed exact expressions
of correlation for several special cases under finite island model. Indeed, the correlation in allele
frequencies among populations can be very large for realistic rates of mutation and migration unless
an enormous number of populations are exchanging genes.

However, consideration of such correlation has not been adequate and satisfactory in probability
models for allele frequency and often ignored when genetic differentiation is accessed by using
Wright’s Fgr (Wright, 1951) or similar measures. Balding and Nichols (1995) developed a beta
distribution to describe allele frequency at biallelic loci. This beta distribution and its multiallelic
version have been widely used to make inference of genetic differentiation and population structure
in both likelihood-based and Bayesian approaches (Balding and Nichols, 1995; Balding and Nichols,
1997; Roeder et al., 1998; Holsinger, 1999; Holsinger et al., 2002; Falush et al., 2003). Nicholson et
al. (2002) proposed a truncated normal model to describe the allele frequency for single nucleotide

polymorphisms. For both models, the populations have been interpretated as dependent in the sense



that the mean of allele frequencies from a set of populations is assumed to be the allele frequency of
a hypothetical “ancestral” population and the populations have each diverged from the “ancestral”
population. Hence, the populations are related to one another by having the common “ancestral”
population. However, these models does not incorporate the correlation across populations induced
by gene flow. Actually it does not build a correlation across populations statistically by assuming
a common “ancestral” population, as shown later. As a result, estimates of genetic differentation
based on these models do not incorporate the correlation among populations. Beerli and Felsenstein
(1999) estimated migration rates and effective population numbers by using a coalesent approach.
In their model, the correlation across populations was implicitly accounted for, but they did not
estimate the magnitude of the correlation.

Unfortunately, the correlation across populations affects the estimates of genetic differentation.
Fu et al. (2003) discussed some implications of this correlation for measures of genetic differentation
based on Wright’s Fgr (Wright, 1969), and showed that when populations are small, the estimates
of population structure measures are remarkably different depending on whether the correlation is
incorporated or not. Nicholson et al. (2002) also expressed their concern, more than once, that
the correlation across populations due to shared history or gene flow is not typically accounted for.
Therefore, in this study we propose a new mixture beta model to approximate the allele frequency
in which the correlation among populations induced by shared history or gene flow is incorporated
and explicitly estimated. The allele frequency at each locus in any population is described by the
sum of two beta variables in which one of them is common across populations. In general, such
a mixture of beta distributions forms a very rich class of distributions (Diaconis and Ylvisaker,

1985). We also extend our approach to genetic data with clusters. The performance of the model



is evaluated by using three sets of simulated data from finite island model and illustrated by a real
data set with phenotypes at 377 autosomal microsatellite loci from 52 human populations. All the

analysis are done in a Bayesian framework.

MIXTURE BETA MODEL FOR ALLELE FREQUENCY

Assume that we have allele frequencies in K populations at I loci, each locus having two alleles A;
and As. Let prxx denote the allele frequencies of Ay, i.e., the ikth element of p, p;z, is the allele
frequency of Ay at locus ¢ in population k, t =1,--- ,I; k =1,--- , K. It is sufficient to work only
with p since the allele frequencies of A; and As sum to 1. To incorporate the correlation among

populations into the analysis, we describe allele frequency p;; by using the following mixture model

Pir = Wik + (1 — w)y;, (1)

where x;; is a set of independent beta variates and y; is another set of independent beta variates.
Here w is the mixture coefficient of the two beta variates, and a number between 0 and 1. Fur-
ther z;; and y; are assumed to be independent from each other. That is, for any locus, the allele
frequency at each population could be expressed as the weighted sum of two independent compo-
nents, an individual component for that population (z;;) and a common (y;) component across all
populations. Thus we build correlation among populations through the common component ;.
Heuristically, the common component could be considered as the contribution of shared history or
gene flow to allele frequency, as both shared history or gene flow make populations more similar to

each other. Smaller w is expected to be associated with high correlation. Note that we assume a



common w across all loci. It is possible to specify a different w for each locus, namely w;, to have
a more flexible model, but we do not pursue this possibility. Precisely estimating w; for each locus
needs information from a large number of populations, which may not be available in most studies.

For each locus, we assume that they have the same probabilistic structure and focus on loci
that have been subjected to similar evolutionary process. In particular, we assume

1-60° 1-06°
s
am k’ am

1—6v 1—6Y
(1= ™), @

zi ~ Beta(

(1 - 7Tk)),

y; ~ DBeta(

where 6%, 0Y, m, k =1,--- , K, and 7 are all between 0 and 1. It follows that

E(pix) = wmp+ (1 —w)m,
Var(pr) = w?60%m(1 —m) + (1 — w)?6Yn(1 — =),
Cov(pik,pik) = 0, 3)
Cov(pik, pirr) = (1 —w)*¢¥n(1 - ),
Cov(pik, pikr) = 0.

In other words, (3) shows that the same loci from different populations are correlated but different
loci from the same or different populations are not. This agrees with the results from Fu et al. (2003)
for a set of populations subject to migration, mutation and random drift for independent loci. We
assume a common covariance among any pair of populations at each loci but correlation among any

two populations could be different due to possible differences of 7, for different populations. Again,



it is possible to have a different covariance among any pair of populations by assuming w;. Results
from (3) also shows that our formulation only allows positive correlation among populations, which,
again, agrees with results from Fu et al. (2003).

When w = 1, pjx = z; and (1) gives the usual beta model. The major difference between our
formulation and previous ones (Balding and Nichols, 1995; Roeder et al., 1998; Holsinger, 1999;
Holsinger et al., 2002; Falush et al., 2003) is that in our formulation, E(z;;) = 7, e.g., the mean
allele frequency is calculated across loci for each population and in previous ones, the beta model
is given by

e 1-6
Dik ~ Beta(Tm, T(l — ;) (4)

and E(p;) = m; is the mean allele frequency across populations for each loci. The model of
Nicholson et al. (2002) has similar specification and the two models agree to first and second
moments. In these models, m; is interpreted as the allele frequency in a “ancestral” populaiton
from which the sampled populations have each independently diverged. Thus these populations
are related by sharing the “ancestral” populaiton. Conditional on 7;, the allele frequencies are
independent. However, related to a common “ancestral” populaiton does not statistically build

correlation in allele frequencies since, marginally,

Cov(pik, pirr) = E(Cov(pik, piki|mi)) + Cov(E(pik|mi), E(piks| 7)) (5)

= Var(m)

as m; is considered as the allele frequency of the ancestor population and a parameter in the beta



model. The same argument applies to the truncated normal distribution by Nicholson et al. (2002),
and they recognized that their model does not account for correlation across populations induced
by shared history or by gene glow, which could be the most likely deviation from real data.

When E(p;;) = i, estimate of  in (4) is analogous to Weir and Cockerham’s (1984) 6 and is
interpreted as a measure of population structure (e.g., Roeder et al., 1998; Holsinger, 1999). In
our formulation, E(p;x) = 7. As a result, we are unable to construct a measure (as a function
of 0%, 0¥ and w), which has the same interpretation as € in (4). However, the traditional method
to estimate Fgr typically ignores correlation across populations. When correlation is present, the
goodness of the traditional estimation method is subject to more investigation.

Recall that Wright’s definition (1951) of Fgp for one locus with two alleles is given by

o2
F : (6)

Fop = —2
N‘p(l - Up)

The parameter 6 in (4) agrees with this definition, which is equivalent to an intraclass correlation

coefficient. For a finite set of K populations, a natural analog of (6) is

o SE e /K
T (- p)

; (7)

where p = (1/K) ). p;- Equation (7) has also been used to estimate Fgr using data from a
sample of populations. It explicitly shows that Fgp measures relative reduction in heterozygosity
resulting from population structure (Wright, 1943) since Zszl(pk —p)?/K calculates reduction in
heterozygosity.

On the other hand, we must also note that the equivalency of (6) and (7) for a finite set



of populations only holds with the implicit assumption that these populations are independent.
When correlation across populations (p) is present, E(Zle(pk -p)?/K ) = %az(l — p) for a
sample of populations and Z,i(:l(pk —p)?/K is not equivalent to 012, for a finite set of populations.
Actually, 012, overestimates reduction in heterozygosity across populations. Similarly, Weir and
Cockerham’s (1984) 6 estimates relative reduction in heterozygosity only when the correlation
among populations is zero. In Fu et al.(2003), three definitions of (7) were considered. Denote
the numerator on the right-hand side of (7) as Num and the denominator Denom, we showed
that E(Num/Denom) is the definition that fully reflects the correlation among populations. When
correlation among populations is not fully accounted for, estimates of Fg overestimates the amount
of genetic differentiation among populations and substantially so when populations are small. It
is hard to construct a measure of population structure corresponding to E(Num/Denom) through
parameters of the mixture beta distribution, however, we could easily calculate Bayesian estimate
of E(Num/Denom) by plugging posterior estimate of p;; into (7) for each locus. A comparison
with Bayesian estimate of # based on (4) will reveal more about how the correlation affects the Fgr

analysis in a Bayesian framework.

BAYESIAN MODEL

Now we develop our Bayesian model using the above mixture model. For different types of genetic
data, the likelihood functions are slightly different. For clarity, we specify the Bayesian model
for allele frequency data and codominant data separately. Data directly on allele frequency may
be available from haploid organisms or the haploid stage of diploid organisms, and from diploid

organisms by simulation under genetic models. More often, data are available as the number



of different phenotypes and calculation of allele frequencies varies with the dominance types and

presence or absence of inbreeding.

Modeling allele frequencies

For loci with two allele types, the number of each type at any locus is assumed to follow a binomial
distribution. Consider a diploid population with N individuals, the total number of alleles at
each locus is 2N. We use 2N 41 and 2N 49, both I x K matrices, to denote the number of allele
type A1 and A, in K populations at I locus, e.g., 2N 41, and 2N 49, be the number of allele
A; and A, at locus ¢ in population k respectively. Also let x and y denote the collection of
i and y;, ¢ = 1,---, I, k = 1,--- | K, respectively. If we assume that magnitude of gametic
disequilibrium within populations are negligible, which is equivalent to assuming independent loci,

then the likelihood is given by

2N 41 .
P(2NA17 2NA2|X,y, X H Di At k pik)2NA2’1k
i=1 k=1
x (wzg + (1 —w)y;) 2Ntk (1 —way, — (1 — w)y;)?Nazie,
=1 k=1

®)

To complete model specification, we use (2) as the prior distributions for z;; and y; and denote
them as P(z;|0%, ) and P(y;|60Y, w) respectively. Let P(-) denote the prior distribution for any of
other parameters and hyperparameters. We use uniform(0,1) for P(-) throughout this paper though
P(-) could also be specified by using information from previous comparable studies, if available,

like power prior (Ibrahim & Chen, 2000). Let 7w = (71,--- , 7g), then the full conditional posterior



distribution for x, y, &, w, 6%, 8Y and 7 is given by

P(xayawawagwagya"r|2NAla2NA2) X

I (K
P(2N 41, 2N 42|, y, w) {H {H P($ik|ﬁk,9m)} P(yi|9y>7r)}

i=1 (k=1

K
X {H P(wk)} P(w)P(6%)P(8Y)P(x). (9)
k=1

Modeling codominant markers

Again let us assume that the sample consists of data on genetic variation in K diploid populations
at I loci, each locus having two alleles A; and As. All three phenotypes A1 A1, A1 A5 and Ay Ag are
observable when A; and Ay are codominant. Let N 411, N 12 and N 499, all I x K matrices, denote
the number of phenotypes A1 41, A1 A2 and A3 A5 in the sample respectively and similarly, v 411,
Y a12 and 7y 499, the frequency of three phenotypes. The numbers of different phenotypes at locus %
of population k are usually described by a multinomial distribution. If we assume that phenotypes
are sampled at random across loci, which is equivalent to assuming that magnitudes of gametic and

identity disequilibrium within populations are negligible, the likelihood of the sample is given as:

I K
Nai1,ix_Na12,ix _ Naozix
P(N 411, N a12, Naz2|[Y 41157 A125 Y A22) X HH’YAn,ik Ya12,ik Y A22ik o (10)
i=1k=1



where

Yarie = Do+ ol —pa)
Yarzge = 20i(1—pi)(1—F)
Yaszar = (1 —pir)”+ foin(l — pir) (11)

= 1 —=7Ya11,i — Ya22,ik

and p;r, = wzi, + (1 — w)y; is the allele frequency at locus ¢ in population k£ and f is the inbreeding
coefficient. We assume a common f across all loci (compare Holsinger et al., 2002). For codominant
markers, f can be precisely estimated.

Again the prior distributions for z;; and y; are based on (2), and P(-) is used to denote the
prior distribution for the rest of the parameters and hyperparameters. The full conditional posterior

distribution for x, y, ® = (7w, -+ ,7k), w, f, 6%, 6Y and 7 could written as

P(X7y771';w;f;0$,9y7W|NA11;NA12;NA22) & P(NAH;NA127NA22|'7A1177A127'7A22)

I (K
X {H {kl:[l P(xik|7rk,0””)} P(y,-|0y,7r)}

x {H P(m)} P(w)P(f)P(6°)P(6")P(r).
k=1

(12)

If we assume that A; is dominant to As at each locus, we have dominant markers and the number
and frequency of dominant phenotype are the sum of the number and frequency of phenotypes of

A1 Ay and A; Ay respectively. It is then straightforward to build a Bayesian model for dominant

markers using the mixture beta model.

10



Analytical expression for the posterior distributions of the parameters and hyperparameters de-
rived from (9) and (12) are not available in closed form. The posterior inference is achieved through
Markov chain Monte Carlo(MCMC) simulation and we use the Metropolis-Hasting algorithm (Gilks

et al., 1996) in MCMC implementation.

Test for goodness of fit

Goodness of fit of the mixture model to genetic data are evaluated from two aspects. One is to
evaluate whether the mixture beta model provides a good approximation for the allele frequency
itself and the other is whether the mixture model appropriately incorporates the correlation among
allele frequencies. Note that for the beta model (4), while it neglects the correlation among popu-
lations, there is no need to check whether it provides a good approximation for the allele frequency
since the allele frequency p;; itself is modeled directly. In the mixture model, the allele frequency
is modeled as the weighted sum of two beta variables, thus the accuracy of the estimated allele fre-
quency, is compromised at the expense of incorporating correlation. Even so, we are going to show
that this compromise occurs to a very minor degree and the mixture model provides an adequate
approximation for the allele frequency.

To check whether the mixture beta model provides a good approximation for the allele fre-
quency in our Bayesian model, we apply the chi-squared statistic to test goodness of fit. For (9),

conditioning on z;;, y; and w, the statistic is defined in the following way:

K " 2 \ 2
Noavik — Noara Nk — Noazs
= ZZ (( Al ik Alik) N (N A2,ik A2,ik) ) _ (13)

=1 el N1,k N a2,k

11



Here Nyj 4, and Nyg , are the observed numbers of allele A; and As. NAl,ik = (Nay +
N aoit) (W2, + (1 — @)g;) and Nag e = (Nap ik + Nagix)(1 — o5 — (1 — d)gi), where o, a3
and y; are values sampled from the posterior distribution, and treated as the expected values of
A; and A, from the model. Strictly, the Bayesian estimates of allele frequencies are not unbiased.
However, with a large amount of data and using Uniform(0,1) as the prior specification, the likeli-
hood dominates the posterior inference and we expect the bias is negligible. So if the mixture model
is a good approximation of the allele frequency, the test statistics approximately has a chi-square
distribution with degrees of freedom I x K — 1 and x? in (13) divided by the degrees of freedom
should be close to 1.

Under the finite island model, for loci with two alleles, the stationary variance (¢2) and corre-

lation (p) for allele frequencies are given by (Fu et al., 2003):

o2 — u—u?
2N — (2N = 1)(1 = po1 — p21)* (1 = r(m, K) + r(m, K)p)
r(m 14
p = (Kill{) (p11 — p21)? (14)
1— (1= pgy — p2n)? (1 - %)

where u = p91/(p12 + po1) is the stationary mean of allelle frequency, uo; is the rate of mutation
from As to A; and pi9, from A; to As. In addition, 7(m,K) = 2m — m?K/(K — 1), m is the
migration rate and K is the number of populations; finally N is the number of diploid individuals
in each population. The performance of mixture model is further evaluated by comparing the
moments estimated from the mixture model with true values based on (14). We expect little bias
in posterior estimates of variance and correlation, too.

Fitting codominant markers to (12), the chi-squared statistic is defined similarly but slightly

12



different from (13):

K A A
Natrik — Natrie)?  (Naoik — Naioix)?
X2 _ 2 :} : (( Allik All,zk) + ( Al12,k A12,zk) +

(N 22,45 — Nago ix)? (15)
Na11,ik Na12,ik

i=1 k=1 NA22,ik

Write Nix, = Nai1 it + Naioix + Nago ik, we calculate Napjz = Nigyirg, Naog = Nigv s
and N 422,ik = Nipy 499 Where v 411, ¥ 412 and 7y 39 are obtained by plugging in the corresponding
posterior parameter estimates to (11) and p;x = wzi + (1 — w)y;. Again if the mixture model
is a good approximation of the allele frequency, the test statistics approximately has a chi-square
distribution with degrees of freedom 2(I x K —1) for this model and x? in (15) divided by 2(I x K —1)

should be close to 1.

MODELING DATA WITH CLUSTERS

In practice, it is very common to have genetic data from different geographical regions. The human
microsatellite data analyzed later in this paper is one such example. Populations within same
geographical region may be relatively homogeneous but populations from different geographical
regions could be considerably different. More generally, we may just have a set of populations in
which some populations are more similar to one another than to others. In such a case, the set
of populations could be clustered into different groups naturally by geographical regions or by an
appropriate clustering method (e.g., Pritchard et al., 2000). It is reasonable to assume populations
within the same cluster are more correlated than populations belonging to different clusters. The
within-cluster correlation might also be quite different from one another. To incorporate this

characteristic into the model, we assume a different set of parameters for each cluster. Suppose

13



there are J clusters in the sample, then for each cluster j, we specify
Pikj :w]-%'zk]'i_(l_w])yzja ]:15 aJa

where

1-67  1-67
Gy g (L= ),
J J

-6 1-¢"
Yi; ~ Beta(—g=mj, —g=(1 - m))).
J J

Tik; ~ Beta(

(16)

(17)

Again z;;;’s are assumed to be independent and so are y;,;’s. They are also assumed to be indepen-

dent from each other.

The above formulation completely neglects the possible correlation among clusters. In fact, by

assuming either a common w or a common §, or a common 6, (or equivalently y;) across clusters,

altogether we are interested in comparing the following six models:

(I) common w, common é* and common 6Y;

(IT) different w, common 6% and common 6Y;

(ITI) common w, different 6* and common 6Y;

(IV) different w, different 6* and common 6?;

(V) common w, different 6 and different 6Y;

(VI) different w, different 6* and different 6Y.

14



Note that there are two other possible models, one is common w and common #* and different 6Y
and the other is different w and common 6% and different Y. We will not include these two models
in the comparison. In our view, it is not sensible to assume a common parameter across clusters
for the individual component of the mixture model but a different parameter for the common
component .

Model (VI) is the same model specified by (16) and (17). Model (V) assumes that the distri-
butions of the two beta variates are different from cluster to cluster but the weight used to mix
the two distribution is the same across clusters. Model (I) treats the whole set of the populations
as equally correlated and there is no cluster effect. Models (II), (III) and (IV) attempt to build
correlation among populations both within clusters and between clusters by sharing a common y.

For example, given locus i, it follows from model (IV) that

Var(a:ikj) = wf-&fwkj(l — ﬂ'kj) + (1 — ’LUj)Qey?T(l — 71'),
Cov(ik;, zgr) = (1 —w;)*¥n(1— ), (18)
Cov(@ir;, migy,) = (1 —wj)(1 —w;)¢¥n (1 — 7),

which gives the covariance among populations from within clusters and among clusters. For human
populations, by treating populations from each geographical region as one cluster, populations
from different clusters are obviously correlated because of shared history and gene flow due to
migration. Our goal is to model both correlations simultaneously. However, one drawback of the
above approach is that both correlations are built through the same set of variables y;, thus the

magnitude of correlation among any two clusters is greatly affected by the correlation within each

15



cluster. This may be true in some special cases but may not be desirable in general. We recognize
the limitation of this approach to investigate correlations from both within and among clusters
and concentrate on the inference of correlation within clusters. Further, we will perform model
selection by using quadratic loss L measure(Ibrahim and Laud, 1994; Gelfand and Ghosh, 1998;
Ibrahim et al., 2004). Given any sample, if the above approach is not the appropriate way to specify
correlation among clusters, we expect the model performance is not as good as some alternative

models and would not be selected.

Model Comparison

Models (I) - (VI) all assume some correlation among populations. Besides comparing models (I)
- (VI), we are also interested in comparing models (I) - (VI) with four beta models that do not
incorporate correlation among populations. One of the models is (4) and the other three are
modified versions of (4) with cluster effects incorporated to different extents. Equation (4) assumes
no cluster effect, i.e., a common 6 and 7; for the whole set of populations. For notation, we refer
(4) as model (i). The other three models assume a common € and cluster-specific m; (model (ii)),
or a cluster-specific # and common m; (model (iii)), or both § and w; cluster-specific (model (iv)).

Model (iv) is given by

. 1—6.
5 "o g L) (19)

pik; ~ Beta(

where E(pix;) = mi;, Var(piy;) = m;;(1 — m;;)8; and m;; represents the mean of allele frequency
across all populations in cluster j at locus 4. A common 6§ implies that the genetic differentiation
among populations, if not correlated, is the same across clusters, though the mean and variance of

allele frequency might be different across clusters.

16



Fsr analysis will be compared between models with correlation incorporated or not. They
will also be compared based on quadratic loss L measure (Ibrahim and Laud, 1994; Gelfand and
Ghosh, 1998; Ibrahim et al., 2004). Quadratic loss L measure is a decision-theoretic approach to
model choice based on expected losses on replicate data sets. For codominant data, the number
of phenotype follows a multinomial distribution and we use the multivariate version developed by
Ibrahim et al. (2004) to estimate L. Measure. Let y denote observed data and z = (z1,--- , 2,)

denote future response, and each z; is a vector. Let

Z Cov(zily) + ”Z (zly) = yi) (B(zly) — v:)' (20)

then the quadratic L measure criterion is given as the trace of L(y, ). The expectation for variance-
covariance matrix and mean of z is taken with respect to the posterior predictive distribution, which

is defined as:

p(ely) = /B p(z1B)p(Bly)dB (21)

where p(Bly) is the posterior distribution of @ given observed data. The quantity v is a number
between 0 and 1, and usually decided by the investigator. Equation (20) indicates that L. measure
could be considered as a weighted sum of expected variance and estimated variance of future
response. When v = 0, L, measure depends only on the expected variance of the future observations.
For reasons discussed in the section of Test for goodness of fit (allele frquency is modelled as a sum
of two beta variates), the estimated allele frequency from the mixture model is not as accurate as
that from the beta model, thus the mixture model would produce a larger estimated variance of

future response than the beta model. With this in mind, we are more interested in small values of

17



v and testing whether the mixture model could provide better (or smaller) expected variance for

future observation. For L measure in general, a smaller value indicates a better model.

IMPLEMENTATION

Finite island model simulation

Finite island model is one of the most important theoretical models in population genetics. The
defining assumption of finite island model is equal migration rate among populations. Substantial
results have been derived from this widely studied model (e.g., Crow and Aoki, 1984; Cockerham
and Weir, 1987; Fu et al., 2003). Under this model, the correlation among populations is induced by
migration (gene exchange), but the number of populations involved in gene exchange and mutation
rate affects the magnitude of correlation.

To evaluate the performance of the mixture beta model, we consider loci with two alleles and
simulate data from the finite island model with different combinations of mutation rate (u) and
migration rate (m), population size (2N) and number of populations (K). In particular, there are
four different sets of simulations. The first set of simulation is equivalent to exhaustive sampling,
and each simulated data set comnsist of allele frequencies from N individuals in each of all K
populations. In this simulation, we use symmetric mutation rate between the two alleles and the
mutation rate y is set to be one of (1.0 x 1073, 1.0 x 107*, 1.0 x 107%, 1.0 x 10~%). The migration
rate m is one of (0.001, 0.01, 0.1) and population size 2N, one of (1000, 2000, 20000). We choose
the number of populations K to be one of (2, 10, 25, 100). The above combinations of population

process parameters would result in the mean allele frequency being 0.5 in each combination, variance
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varying from 1.0 x 10™* to 0.20 and correlation varying from 0.02 to 0.999. In the second set of
simulation, we only consider the cases with a relatively large population size of 2N = 20000. For
each of the K populations, allele frequencies of n = 100 individuals were sampled from the whole
population with a subset of mutation and migration rates chosen from the set above. In the third
set of simulation, the mutation rate is set to be asymmetric and the number of populations is one
of (100, 250, 500, 1000). Then the combinations of mutation rate, migration rate, population size
are chosen such that the mean allele frequency is 0.4, the correlation is about 0.28 and the variance
is within the range of (0.01,0.04). In each combination, 2n = 40 is sampled from each population
and K' = 52 populations are sampled. These values are chosen to approximate those from the full
human data set analyzed below. For the fourth set of simulation, the number of populations K is
one of (25, 50, 100, 250, 500, 1000) and population size, one of (500, 1000, 2000). Again, we use
symmetric mutation rates between two alleles and choose mutation and migration rates such that
the correlation is about 0.67 and variance varys in the range of (0.002,0.06). In each combination,
2n = 40 is sampled from each population and K’ = 2 or K’ = 10 populations are sampled. This
simulation evaluates the performance of mixture beta model when data are available only from
a small number of populations. The variance and correlation of this simulation are comparable
to those from the human data of different geographical regions. At last, in the first three sets
of simulations, for each combination of process parameters, we sample allele frequency from 50
independent generations from the stationary distribution, which is equivalent to 50 independent
loci evolving under the finite island model. In the fourth set of simulation, we sample allele frequency
from both 50 and 377 loci (there are 377 loci in the human dataset). All the simulated data are

fitted to model (9).
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For the first set of simulation, Table 1 (K = 25) and Table 2 (K = 100) show the variance
and correlation among allele frequencies estimated from mixture model, compared with true values
from finite island model and values calculated from the simulated data as summary statistics.
With data from exhaustive sampling, the mixture model provides accurate estimates of variance
and correlation for all simulated cases when the migration rate is 0.1 and for some cases when the
migration rate is smaller (m = 0.01 and g < 1.0 x 10™%; m = 0.001 and x < 1.0 x 1073 for the
given 2N and K). The variance and correlation are very close to the true values, whether the true
correlation is 0.04 or 0.99. In some other cases when m = 0.01 (K = 25, = 1.0 x 1073,2N = 1000
or 2N = 2000; K = 25, = 1.0 x 1075, 2N = 2000) or 0.001 (K = 25, = 1.0 x 107%,2N = 20000),
the mixture model provides good estimates of variance and correlation, which are close to the true
values. Only when both mutation and migration rates are small (e.g., m = 0.001 and x4 = 1.0x 105
or 1.0 x 107%) along with relatively small population size (2N = 1000 or 2000), does the mixture
model fail to estimate the correlation accurately but estimates of variance are still fairly good.

In population genetics, the distribution of allele frequency are commonly described in terms of
2N'm and 2N y. For the mixture model, as shown from the current simulations, the performance is
satisfactory other than when both 2Nm and 2Ny are very small (2Nm = 1 or 2 and 2Ny is less
than 1). However, obtaining the explicit conditions when the performance of the mixture model
is satisfactory/unsatisfactory through simulation has not proven feasible because it is determined
by the complex interaction among the four process parameters. On the other hand, the values of
process parameters are usually not known in reality and it is almost impossible to judge the fit of
the mixture model from the values of 2Nm and 2N . Instead, by looking at the data, whenever the

estimates of mixture model is unsatisfactory, the values of allele frequencies have a predominantly
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amount of 0’s and 1’s. Although the posterior estimate of allele frequencies will not be 0’s and 1’s
due to input form the uniform prior, the mixture beta model or (any beta model) is deemed not
be the best description of the data.

When K =2 or K = 10, the results are similar (not shown here). Both variance and correlation
could be accurately estimate unless the values of allele frequencies have a predominantly amount
of 0’s and 1’s. The parameter estimates are associated with a wider credible interval.

The last columns of Table 1 and Table 2 give the values of x2/df for the mixture model. In
some earlier simulations, the values of x? are not calculated and represented by “ / 7. The values
of x2/df are very close to 1 in all the calculated cases, indicating the mixture model could provide
a good approximation of allele frequency whether the correlation is incorporated or not.

Table 3 shows the comparison of moments from the second set of simulations where allele
frequencies from 2n = 200 are sampled from 2N = 20000. Values of x?/df are close 1 and the
estimated variance and correlation are very close to the true values from finite island model in
all simulated cases. Table 4 shows the results from the third set of simulations with K' = 52
and 2n = 40, similar to the results from the second set of simulations. Allele frquency is well
approximated and both variance and correlation well estimated. For the fourth set of simulations
with K’ =2 or K’ = 10 from K = (25, 50, 100, 250, 500, 1000), Table 5 selectively shows estimates
withK’ = 2. For both I = 50 and I = 377, correlation could be well estimated and with I = 377,
correlation is estimated with better precision. Estimates when K’ = 10 is omitted here. For the last
three sets of simulations, there are few 1’s and 0’s in the data. Also for sampled data, the mixture
data usually provides better estimates for variance and correlation than estimates as summary

statistics directly from simualated data.
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So in general, these results suggests that the mixture model works well for a broad range of
data, unless the data consist of a predominantly amount of allele frequencies being 0’s and 1’s. Both
allele frequency and the variance-covariance structure are accurately estimated. Model parameter
estimates of 8%, 8Y, w and 7 are not reported in Fu (2003). The mean allele frequency could always
be estimated whether the mutation rates between the two alleles are symmetric or not. Estimates
of 8” and 6#Y indicate that the mixture model could be two unimodal betas, a U-shaped beta and

unimodal beta as well as two U-shaped betas.

An example of human Data

Cann et al.. (2002) reported a HGDP-CEPH Human Genome Diversity Cell Line Panel. The data
set includes genotypes at 377 autosomal microsatellite loci in 1056 individuals from 52 worldwide
populations. Rosenberg et al. (2002) clustered the 52 populations into § groups, which correspond
to 5 geographical areas by using the Bayesian clustering method proposed by Pritchard et al.
(2000). In the data set, there are multiple allele types for each loci. To make this data set to be
able to fit to our mixture model, we designate the most frequent allele type as A; and group all the
other allele types into a pseudo-allele type A,. Since the numbers of each of the three genotypes
A1A1, A1 Ay and As Ay are known from the data set, this is an example of codominant data. We
also use the 5 clusters presented by Rosenberg et al. (2002) and fit the data to models (i) - (iv) and
models (I) - (VI). The five groups are EuroAsia (21 populations), African (6 populations), EastAsia
(18 populations), American (5 populations) and Oceania (2 populations).

Results of L Measure for each model are shown in Table 6. Among models (I) - (VI), model

(VI) produces the smallest L Measure consistently for the different values of v thus is considered
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Table 1: Comparison of Moment Estimates for data simulated from finite island model with different
combinations of m, y and 2N when K = 25.

Moment estimates

Mixture Model Finite Island Simulated
Model Data
Var Corr Var  Corr  Var _ Corr x2/df
(u) (m) 2N Mean Mean Mean Mean Mean
(2Np) (2Nm) (95% CI) (95% CT) (95% CT)
1.0 10 3 0.001 2000 0.0189 0.0268 0.0194 0.0203 0.0189 0.0303 _ 1.001
(2) (2) (0.0176,0.0203)  (0.00614,0.0542) (0.925,1.088)
20000 0.00215 0.0471 0.00208 0.0203 0.0212 0.0329 1.002
(20) (20) (0.00198,0.00233)  (0.0188,0.0883) (0.930,1.077)
1.0 x 1073 0.01 2000 0.00581 0.171 0.00598 0.171 0.00579 0.148 1.002
(2) (20) (0.00525,0.00644)  (0.112,0.248) (0.930,1.086)
20000 0.000591 0.203 0.000611 0.171 0.00590 0.186 1.002
(20)  (200) (0.00529,0.000672)  (0.133,0.293) (0.926,1.082)
LOx10° 0. 2000 0.00142 0.609 0.00184 0.663 0.00132 0.541  1.018
(2) (200) (0.00105,0.00192)  (0.440,0.759) (0.941,1.095)
20000 0.000204 0.732 0.000185 0.663 0.000206 0.700 1.019
(20)  (2000) (0.000152,0.000285)  (0.654,0.808) (0.945,1.109)
T.0x 10~ 0.00 2000 0.0463 0.0428 0.0490 0.172 0.0497 0.157 _ 1.003
(0.2) () (0.0436,0.0490)  (0.0296,0.0562) (0.929,1.078)
1.0 x 10~% 0.01 1000 0.0339 0.693 0.0318 0.675 0.0345 0.709 0.995
(0.1)  (10) (0.0291,0.0392) (0.640,0.738) (0.918,1.079)
20000 0.00194 0.664 0.00181 0.675 0.00184 0.650 1.003
(2) (200) (0.00149,0.00261)  (0.568,0.765) (0.921,1.087)
1.0x 10~% 0.1 1000 0.0206 0.955 0.0238 0.952 0.0202 0.945 1.003
(0.1)  (100) (0.0150,0.0275) (0.939,0.968) (0.933,1.068)
2000 0.0115 0.954 0.0125 0.952 0.0109 0.943 1.021
(0.2)  (200) (0.00809,0.0160) (0.936,0.969) (0.946,1.101)
20000 0.00152 0.966 0.00130 0.952 0.00142 0.957 1.021
(2)  (2000) (0.00104,0.00220)  (0.951,0.977) (0.938,1.099)
1.0 x 10~% 0.001 1000 0.149 0.00142 0.148 0.676 0.148 0.713 0.944
(0.01) (1) (0.139,0.155)  (0.000679,0.00236) (0.852,1.075)
2000 0.0891 0.0316 0.105 0.676 0.104 0.677 1.011
(0.02) (2 (0.0821,0.0939)  (0.0257,0.0383) (0.937,1.100)
T.0x 105 0.01 1000 0.0996 0.845 0.128 0.954 0.140 0.964 /
(0.01)  (10) (0.0902,0.108) (0.824,0.863) /
2000 0.0715 0.907 0.0859 0.954 0.0735 0.944 /
(0.02)  (20) (0.0607,0.0815) (0.889,0.922) /
20000 0.0149 0.962 0.0124 0.954 0.0141 0.961 1.044
(0.2)  (200) (0.0106,0.0206) (0.947,0.973) (0.965,1.119)
1.0 x 10~® 0.1 1000 0.124 0.997 0.125 0.995 0.143 0.996 /
(0.01)  (100) (0.106,0.141) (0.996,0.998) /
2000 0.0732 0.996 0.0836 0.995 0.0651 0.994 /
(0.02)  (200) (0.0578,0.0913) (0.995,0.997) /
1.0 x 10=% 0.001 2000 0.168 0.0132 0.210 0.954 0.193 0.946 /
(0.002)  (2) (0.151,0.177) (0.00937,0.0169) /
20000 0.0487 0.780 0.0859 0.954 0.0608 0.929 1.018
(0.02)  (20) (0.0427,0.0544) (0.741,0.817) (0.941,1.097)
1.0 x 10=% 0.01 2000 0.136 0.894 0.209 0.995 0.224 0.997 /
(0.002)  (20) (0.129,0.141) (0.884,0.903) /
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Table 2: Comparison of Moment Estimates for data simulated from finite island model with different

combinations of m, y and 2N when K = 100.

Moment estimates

Mixture Model Finite Island

Simulated Data

Model
Var Corr Var Corr Var Corr x2/df
(w) (m) 2N Mean Mean Mean  Mean Mean
(2Np) (2Nm) (95% CI) (95% CI) (95% CI)
1.0 x 10— 0.01 2000 0.00510 0.0375 0.00535 0.0477 0.0323 0.00518 1.000
(2) (20) (0.00491,0.00529) (0.0214,0.0596) (0.962,1.041)
1.0 x 10—% 0.001 1000 0.0754 0.000217 0.0758 0.0480 0.0768  0.0440 /
(4.359 x 10(=9),
(0.1) (1) (0.0719,0.0777)  5.010 x 10(—%) /
2000 0.0433 0.00603 0.0446 0.0480 0.0439 0.0330 1.001
(0.2) (2) (0.0417,0.0448)  (0.00392,0.00853) (0.962,1.044)
1.0 x 10-% 0.01 1000 0.0175 0.366 0.0171 0.334 0.00174 0.358 /
(0.1) (10) (0.0159,0.0196)  (0.302,0.434) /
2000 0.00824 0.305 0.00884 0.334 0.00822 0.297 1.001
(0.2) (20) (0.00742,0.00926)  (0.237,0.385) (0.961,1.043)
1.0 x 10-% 0.1 1000 0.00536 0.808 0.00733 0.827 0.00533 0.765 /
(0.1)  (100) (0.00399,0.00745)  (0.744,0.865) /
2000 0.00274 0.814 0.00372 0.827 0.00269 0.770 1.018
(0.2)  (200) (0.00191,0.00385)  (0.749,0.872) (0.977,1.058)
1.0 x 10~ 0.001 1000 0.184 0.00163 0.1874 0.835 0.185 0.878 /
(0.001) (1) (0.164,0.194)  (0.00122,0.00211)
1.0 x 10% 0.01 1000 0.103 0.818 0.180 0.981 0.147 0.970 /
(0.001)  (10) (0.0951,0.110)  (0.800,0.834) /
1.0x 108 0.1 1000 0.171 0.998 0.179 0.998 0.175 0.998 /
(0.001)  (100) (0.156,0.185)  (0.9982,0.9986) /
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Table 3: Comparison of Moment Estimates for data simulated from finite island model with different
combinations of m, y and K = 25 with 2n = 200 sampled from 2N = 20000.

Moment estimates

Mixture Model Finite Island Simulated
Model Data
Var Corr Var Corr Var Corr x2 /df
K (1) (m) Mean Mean Mean Mean Mean
(2Np) (2Nm) (95% CI) (95% CI) (95% CI)

25 1.0 x 10~ % 0.001 0.00553 0.158 0.00594 0.172 0.00670 0.119 1.015
(2) (20)  (0.00497,0.00627) (0.0895,0.239) (0.936,1.095)

25 1.0 x 10~% 0.01 0.00165 0.711 0.00181 0.675 0.00288 0.379 1.024
(2) (200) (0.00120,0.00123) (0.592,0.824) (0.945,1.105)

25 1.0 x 10~% 0.01 0.0134 0.968 0.0124 0.954 0.0140 0.875 1.084
(0.2)  (200)  (0.00886,0.0198) (0.947,0.984) (1.005,1.159)

25 1.0 x 10~° 0.1 0.0127 0.999 0.0120 0.995 0.0128 0.907 1.015
(0.2) (2000) (0.00857,0.0187) (0.9994,0.9999) (0.999,1.035)

25 1.0 x 10~% 0.01 0.0732 0.998 0.0836 0.995 0.0741 0.982 1.093
(0.02) (200) (0.0816,0.859) (0.997,0.999) (1.032,1.157)

25 1.0x 1079 0.1 0.0815 0.999 0.0834 0.999 0.0885 0.991 0.961
(0.02)  (2000) (0.0639,0.101) (0.9999,0.9999) (0.940,0.985)

100 1.0 x 10~ 0.001 0.00205 0.00233 0.00207 0.00501 0.00341 -0.00163 1.047
(20) (20)  (0.00188,0.00219) (0.000899,0.00814) (1.004,1.090)

100 1.0 x 10—3 0.01 0.000440 0.0249 0.000545 0.0477 0.00180 0.00378 1.052
(20) (200) (0.000313,0.000530) (0.00474,0.0560) (1.011,1.094)

100 1.0 x 10—% 0.001 0.00527 0.0590 0.00531 0.0480 0.00650 0.0420 1.017
(2) (20)  (0.00500,0.00557)  (0.0360,0.0909) (0.9772,1.056)

100 1.0 x 10~% 0.01 0.000798 0.395 0.000913 0.334 0.00213 0.136 1.051
(2) (200) (0.000623,0.000984)  (0.287,0.521) (1.013,1.091)
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Table 4: Comparison of moments for data simulated from finite island model with different combi-
nations of m, u ,K and 2N: K' = 52, 2n = 40.

Moment estimates

Mixture Model Finite island Simulated
model Data
Var Corr Var Corr Var Corr xZ/df
v12 V21 m 2N Mean Mean Mean Mean Mean
2NU12 2N[,L21 2Nm (95% CI) (95% CI) (95% CI)
K =100
0.00015 0.0001 0.01 500 0.0278 0.297 0.0288 0.287 0.0338 0.231 1.030
(0.075) (0.05) (5) (0.0245,0.0311) (0.229,0.371) (0.976,1.085)
0.00037 0.00025 0.025 200 0.0299 0.330 0.0292 0.287 0.0358 0.255 1.040
(0.075) (0.05) (5) (0.0264,0.0336) (0.254,0.407) (0.987,1.095)
500 0.0116 0.276 0.0126 0.278 0.0177 0.158 1.052
(0.185) (0.125) (12.5) (0.0102,0.0133) (0.197,0.367) (0.995,1.108)
0.00075 0.0005 0.05 100 0.0262 0.299 0.0294 0.282 0.0322 0.208 1.041
(0.075) (0.05) (5) (0.0230,0.0299) (0.224,0.381) (0.988,1.098)
200 0.0129 0.282 0.0156 0.282 0.0188 0.146 1.043
(0.15) (0.1) (10) (0.0114,0.0149) (0.206,0.372) (0.985,1.100)
0.00115 0.00075 0.075 50 0.0333 0.274 0.0380 0.277 0.0408 0.229 1.040
(0.0575) (0.0375) (3.75) (0.0300,0.0367) (0.210,0.341) (0.988,1.097)
100 0.0192 0.381 0.0205 0.277 0.0248 0.225 1.037
(0.115) (0.075) (7.5) (0.0165,0.0228) (0.290,0.486) (0.982,1.094)
0.0015 0.001 0.01 50 0.0243 0.284 0.0302 0.277 0.0303 0.201 1.028
(0.075) (0.05) (5) (0.0214,0.0276) (0.208,0.370) (0.934 1.083)
100 0.123 0.328 0.0160 0.277 0.0185 0.171 1.059
(0.15) (0.1) (10) (0.0106,0.0146) (0.241,0.427) (1.004,1.114)
K = 250
0.00015  0.0001 0.025 150 0.0352 0.306 0.0379 0.284 0.0418 0.214 1.043
(0.0225)  (0.015) (3.75) (0.0313,0.0393) (0.241,0.376) (0.987,1.097)
250 0.0227 0.324 0.0241 0.284 0.0284 0.213 1.032
(0.0375)  (0.025) (6.25) (0.0199,0.0258) (0.247,0.410) (0.973,1.088)
0.0003 0.0002 0.05 100 0.0253 0.278 0.0299 0.281 0.0317 0.187 1.041
(0.03) (0.02) (5) (0.0224,0.0287) (0.207,0.362) (0.989,1.095)
200 0.0136 0.308 0.0159 0.281 0.0198 0.187 1.050
(0.06) (0.04) (10) (0.0115,0.0159) (0.222,0.411) (0.995,1.105)
K = 500
0.000075 0.00005 0.025 150 0.0374 0.298 0.0381 0.284 0.0473 0.299 1.071
(0.01125) (0.0075) (3.75) (0.0334,0.0412) (0.234,0.366) (1.015,1.129)
250 0.0248 0.315 0.0243 0.284 0.0303 0.214 1.040
(0.01875) (0.0125) (6.25) (0.0218,0.0279) (0.240,0.393) (0.982,1.095)
0.00015 0.0001 0.05 100 0.0250 0.244 0.0301 0.281 0.0308 0.181 1.033
(0.015) (0.01) (5) (0.0222,0.0277) (0.183,0.310) (0.982,1.079)
200 0.0136 0.326 0.0160 0.281 0.0193 0.163 1.048
(0.03) (0.02) (10) (0.0117,0.0158) (0.242,0.428) (0.991,1.107)
0.00225 0.0015 0.075 50 0.0337 0.279 0.0391 0.278 0.0415 0.214 1.045
(0.1125)  (0.075) (3.75) (0.0297,0.0376) (0.214,0.351) (0.992,1.095)
100 0.0202 0.360 0.0211 0.278 0.0260 0.244 1.033
(0.225) (0.15)  (7.5) (0.0177,0.0230) (0.282, 0.443) (0.977,1.089)
K = 1000
0.000115 0.000075 0.075 50 0.0309 0,192 0.0389 0.275 0.0379 0.184 1.030
(0.0575) (0.00375) (3.75) (0.0280,0.0336) (0.?-‘156,0.250) (0.973,1.084)
100 0.0182 0.321 0.0210 0.276 0.0241 0.206 1.035
(0.0115) (0.0075) (7.5) (0.0159,0.0212) (0.242,0.415) (0.980,1.095)
0.00015  0.0001 0.1 50 0.0278 0.329 0.0309 0.276 0.0338 0.217 1.046
(0.0075)  (0.005) (5) (0.0245,0.0313) (0.253,0.404) (0.990,1.101)
100 0.0123 0.263 0.0164 0.276 0.0184 0.132 1.053

(0.015)  (0.01)  (10) (0.0128,0.0141) (0.183,0.355) (0.999,1.110)




Table 5: Comparison of Moment Estimates for data simulated from finite island model with different
combinations of m, u, K and 2N with K’ = 2 and 2n =40 : I = 50 and I = 377.

Moment estimates

Mixture Model Finite Island Simulated
Model Data
Var Corr Var Corr  Var Corr x2/df
K " m 2N Mean Mean Mean Mean Mean
(2Np)  (2Nm) (95% CI) (95% CI) (95% CI)
=50
25 1.0x10~% 0.01 500 0.0617 0.519 0.0564 0.675 0.0564 0.644 1.033
(0.05) (5) (0.0499,0.0739)  (0.313,0.689) (0.776,1.355)
1000 0.0302 0.413 0.0318 0.675 0.0363 0.378 1.031
(0.1) (10) (0.0219,0.0403)  (0.0975,0.676) (0.792,1.318)
2000 0.0162 0.617 0.0170 0.675 0.0218 0.457 1.034
(0.2) (20) (0.0109,0.0234)  (0.272,0.866) (0.752,1.339)
100 2.5x 1075 0.01 500 0.0453 0.579 0.0575 0.668 0.0491 0.556 1.040
(0.013) (5) (0.0338,0.0589)  (0.375,0.747) (0.770,1.377)
1000 0.0359 0.523 0.0325 0.668 0.0411 0.522 1.002
(0.025) (10) (0.0263,0.0470)  (0.270,0.733) (0.749,1.296)
2000 0.0165 0.516 0.0173 0.668 0.0218 0.407 1.036
(0.05) (20) (0.0109,0.0248)  (0.159,0.805) (0.789,1.349)
500 2.5x 10=5 0.05 500 0.0112 0.727 0.0143 0.661 0.0166 0.446 1.055
(0.013) (25) (0.00672,0.0173)  (0.317,0.996) (0.773,1.360)
1000 0.0103 0.432 0.00734 0.661 0.0155 0.287 1.020
(0.025) (50) (0.00616,0.0157) (0.0321,0.847) (0.752,1.324)
2000 0.00769 0.383 0.00372 0.661 0.0130 0.159 1.036
(0.05) (100) (0.00405,0.0128) (0.00994,0.813) (0.789,1.349)
1 =377
25 1.0x10~% 0.01 500 0.0552 0.665 0.0564 0.675 0.0637 0.654 1.042
(0.05) (5) (0.0507,0.0601)  (0.594,0.724) (0.940,1.152)
1000 0.0321 0.638 0.0318 0.675 0.0378 0.548 1.011
(0.1) (10) (0.0288,0.0358)  (0.562,0.706) (0.919,1.110)
2000 0.0159 0.669 0.0170 0.675 0.0578 0.652 1.002
(0.2) (20) (0.0139,0.0184)  (0.564,0.757) (0.908,1.100)
100 2.5x 10~° 0.01 500 0.0511 0.669 0.0575 0.668 0.0594 0.640 1.024
(0.013) (5) (0.0470,0.0554)  (0.607,0.723) (0.924,1.133)
1000 0.0326 0.655 0.0325 0.668 0.0366 0.569 1.013
(0.025) (10) (0.0291,0.0365)  (0.584,0.721) (0.916,1.110)
2000 0.0177 0.647 0.0173 0.668 0.0233 0.481 1.011
(0.05) (20) (0.0154,0.0202)  (0.550,0.733) (0.918,1.108)
500 2.5x10=5 0.05 500 0.0137 0.701 0.0143 0.661 0.0195 0.485 1.006
(0.013)  (25) (0.0115,0.0158)  (0.588,0.800) (0.914,1.108)
1000 0.00767 0.776 0.00734 0.661 0.0137 0.424 1.009
(0.025) (50) (0.00626,0.00917) (0.634,0.919) (0.905,1.125)
2000 0.00329 0.730 0.00372 0.661 0.00948 0.241 1.016
(0.05) (100) (0.00230,0.00438) (0.427,0.994) (0.915,1.122)
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as our best model to incorporate correlation among populations for the human data. Model (VI)
recognizes substantial differences among clusters but ignores the correlation among clusters. Since
none of models (II) - (IV) gives a performance as good as model (VI), we take this as evidence
that these models could not appropriately incorporate correlation among clusters. So, we focus our
inference on each cluster. Values of x2/df (Table 7) from each model are all very close to 1 and
models (I) - (VI) provide an adequate approximation to allele frequency pj.

Among models (i) - (iv), model (iv) (and model (VI)) outperforms the other three models based
on L, Measure. Model VI produces smaller L measure than model (iv) when v < 0.3, which indicates
that model (VI) provides a better estimate of expected variance for future response than the model
(iv). Also, the estimated x2/df and the corresponding 95% credible interval from model (VI) is
1.040(1.027, 1.054). This value is not significantly different from the corresponding estimates from
model (iv), which is 1.028(1.014, 1.046). In other words, not only does model (VI) produces a
smaller expected variance for future responses and incorporate correlation into account, it costs
little accuracy in estimating allele frequency for the mixture mdoel to do so. Actually, when
comparing model (i) and model (I) using data simulated from finite island model without clusters,
we get similar results on L Measure and x?/df.

Table (7) shows the parameter estimates from models (I) - (VI). For Model (VI), posterior
estimate of inbreeding coefficient f is 0.015. The small value is expected since in human populations,
inbreeding occurs very infrequently and the closest degree of inbreeding usually encountered in most
societies is first-cousin mating. Also with codominant data, f is precisely estimated as shown by the
narrow credible interval. Estimates of 6%, #Y and w are quite different, indicating it is appropriate

to fit data from each cluster to separate mixture models. Figure (1) shows the kernel density
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Table 6: Quadratic L Measure estimated from different models for model comparison.

Models of Models of
non-correlated populations correlated populations
® @ () (v [ @O 0 () (V) (M (D
v = 0.0 | 294449 282362 276809 267969 | 292720 280584 283624 282368 267417 266095
v =0.1 | 307996 296909 291988 283959 | 307494 295988 299170 297307 284232 282968
v =10.2 | 321543 311456 307167 299949 | 322269 311392 314715 312246 301046 299842
v = 0.3 | 335090 326004 322347 315938 | 337043 326796 330261 327185 317861 316715
v =04 | 348637 340551 337526 331928 | 351817 342200 345806 342124 334676 333589
v =05 | 362184 355099 352705 347918 | 366592 357604 361352 357064 351490 350462

estimation of parameters from each cluster based on model (VI).

Estimated variance of allele frequency and correlation among populations within each cluster
from model (VI) are given in Table 8. Since there are only very few 0’s and 1’s in the dataset, based
on results from simulated finite island data, we believe that these estimates of correlation among
populations are reliable and accurate. In general, the populations are highly correlated and it would
not be sensible to ignore such correlation in the analysis. Particularly, the cluster of EastAsia has
the highest correlation of 0.885 followed by African, 0.767; EuroAsia, 0.747 and Oceania, 0.614.
The populations in American has the least correlation of 0.420. These values reflect the common
belief that the history of humans is shorter in American than that in the other continents. The
most recent claim by Seielstad et al. (2003) is that humans first entered America within the last
15000 years . Hence the populations in American have not had the time long enough to get mixed
and related, contrary to the other continents.

Values of Fsr (Bayesian estimate of E(Num/Denom) shown in Table 8 are obtained by plugging
posterior estimates of allele frequency p;; from model (VI) for each loci then taking average over
populations within each cluster. For all but one cluster, estimates of Fgr are small (i.e., < 0.05)

and indicate little genetic differentiation among populations within each cluster; and the cluster of
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Table 7: Model parameter estimates of the mixture models.

EuroAsia African EastAsia American Oceania
K, =21 Ky =6 Kz =18 Kys=5 Ks =2
Mean Mean Mean Mean Mean
Parameters (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Model (1)
0° Common across clusters: 0.121(0.117,0.125)
0Y Common across clusters: 0.415(0.373,0.461)
w Common across clusters: 0.730(0.718,0.741)
™ Common across clusters: 0.387(0.354,0.426)
f Common across clusters: 0.0166(0.0135,0.0198)
2Jdf 1.050(1.039,1.063)
Model (II)
0° Common across clusters: 0.237(0.227,0.246)
0¥ Common across clusters: 0.0958(0.0840,0.110)
w 0.276 0.656 0.428 0.999 0.804
(0.264,0.288)  (0.629,0.682)  (0.408,0.447)  (0.995,0.999)  (0.763,0.851)
T Common across clusters: 0.264(0.242,0.284)
f Common across clusters: 0.0160(0.0127,0.0190)
x°/df 1.042(1.029,1.053)
Model (III)
0* 0.0499 0.155 0.0967 0.393 0.245
(0.0469,0.0531)  (0.144,0.168)  (0.0911,0.103)  (0.371,0.412)  (0.221,0.268)
6Y Common across clusters: 0.387(0.347,0.427)
w Common across clusters: 0.722(0.710,0.732)
T Common across clusters: 0.352(0.321,0.382)
f Common across clusters: 0.0163(0.0130,0.0196)
x°/df 1.042(1.031,1.056)
Model (IV)
0* 0.0757 0.129 0.177 0.272 0.253
(0.0695,0.0818)  (0.119,0.139)  (0.148,0.206)  (0.260,0.284)  (0.223,0.290)
6Y Common across clusters: 0.196(0.167,0.231)
w 0.629 0.866 0.385 0.994 0.726
(0.606,0.651)  (0.841,0.889)  (0.349,0.420)  (0.979,0.999)  (0.677,0.775)
T Common across clusters: 0.333(0.308,0.363)
f Common across clusters: 0.0155(0.0128,0.0186)
x> /df 1.029(1.019,1.042)
Model (V)
6° 0.0899 0.178 0.0815 0.553 0.390
(0.0764,0.0100)  (0.154,0.203)  (0.0704,0.0942)  (0.517,0.588)  (0.325,0.470)
6Y 0.121 0.208 0.245 0.433 0.298
(0.105,0.139)  (0.182,0.239)  (0.214,0.275)  (0.393,0.478)  ((0.250,0.353)
w Common across clusters: 0.426(0.411,0.441)
ks 0.386 0.302 0.406 0.376 0.374
(0.355,0.417)  (0.274,0.330)  (0.374,0.440)  (0.341,0.410)  (0.298,0.437)
f Common across clusters: 0.0158(0.0129,0.0192)
x> /df 1.038(1.025,1.052)
Model (VI)
0* 0.186 0.712 0.773 0.377 0.493
(0.132,0.248)  (0.549,0.784)  (0.746,0.795)  (0.347,0.411)  (0.322,0.765)
6 0.0816 0.124 0.106 0.622 0.271
(0.0668,0.0988)  (0.106,0.144)  (0.0932,0.120)  (0.554,0.697)  (0.204,0.364)
w 0.271 0.161 30 0.114 0.609 0.370
(0.228,0.325)  (0.145,0.186) °*(0.105,0.121)  (0.578,0.643)  (0.264,0.479)
by 0.322 0.217 0.351 0.435 0.353
(0.299,0.348)  (0.200,0.235)  (0.333,0.367)  (0.385,0.484)  (0.274,0.439)
f Common across clusters: 0.0159(0.0126,0.0193)
x2/df 1.040(1.027,1.054)
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Figure 1: Comparison of kernel density estimation of parameter estimates from model (VI) for each
cluster.

American shows evidence for moderate genetic differentiation among populations with an estimate
of Fsr larger than 0.1. It is interesting to observe that when the numbers of population are similar
between two clusters (e.g., African (K = 6) vs. American (K = 5); EuroAsia (K = 21) vs. EastAsia
(K = 18)), a larger estimate of Fgr is always associated with a smaller correlation. The cluster
of EastAsia yields the smallest estimate of Fsr and the largest estimate of correlation, and for the
cluster of American, it produces the larger estimate of Fs and smallest estimate of correlation.

This intuitively makes sense since larger estimate of Fsr (greater genetic differentiation) means
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more variation thus less similarity and correlation among allele frequencies.

To compare Fsr (Bayesian estimate of E(Num/Denom) with € from model (iv), estimates of ¢
from each cluster are uniformly greater than estimates of Fis7, and when the number of populations
are small (i.e., clusters of America and Oceania), significantly smaller (Table 8). For cluster of
America, estimate of 6 is about 30% greater than estimate of Fsr; and for cluster of Oceania,
estimate of 6 is almost twice of estimate of Fgpr. These results are consistent with Fu et al. (2003)
that when populations are small, genetic differentiation is signicantly overestimated if correlation
is not accounted for. There are less populations in America and Oceania to exchange genes. (Dr.
Kent, is this a fair statement? Or is there a reference?). The small number of populations sampled
from America and Oceania may also play a role in the difference. Rosenberg et al. (2002) used Weir
and Cockerham’s method (Weir and Cockerham, 1984) to estimate allele frequency differentiation
for each cluster. These results are denoted as 6¢ also shown in Table 8 for comparison purpose.
It is not surpurising that their estimates are similar to estimates of 6’s based on model (iv) but
greater than our estimates as both estimates neglect correlation among populations.

In this analysis, the multiallelic microsatellite data are reduced to biallelic data by designating
the most frequest allele type as A;. To test the sensitivity of our estimates to this assumption,
we assign the second most frequest allele type as A; and fit the converted data to Model (VI)
and also report the results in Table 8. The estimates of Fgr and correlation are very comparable
to the estimates when most frequest allele type is treated as A;. It remains the same that the
cluster of EastAsia has the highest correlation(0.851 vs. 0.885) followed by African and EuroAsia,
and American has the least correlation. Estimates of Fgp are also similar, so are estimtes of

f (0.0147(0.0117, 0.0181)) and x2/df (1.033(1.015,1.055)). So our estimates are quite robust.
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Table 8: Comparison of estimated variance, correlation and Fgr for each geographical region.

EuroAsia African EastAsia American Oceania
K =21 K> =6 Kz =18 Ks=35 Ks =2
Mean Mean Mean Mean Mean
Parameters (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Model (VI): the most frequent allele type as A;
Variance 0.0127 0.0191 0.0214 0.0555 0.0401
(0.0114,0.0143) (0.0168,0.0215) (0.0190,0.0240) (0.0525,0.0589) (0.0357,0.0463)
Correlation 0.747 0.767 0.885 0.420 0.614
(0.645,0.839) (0.726,0.828) (0.870,0.900)  (0.374,0.465)  (0.416,0.773)
Fsr 0.0144 0.0236 0.0116 0.101 0.0334

(0.0135,0.0155) (0.0208,0.0268) (0.0100,0.0131)

(0.0972,0.106)

(0.0288,0.0378)

Model (iv): the most frequent allele type as A;

0.0141
(0.0124,0.0158)

0 0.0158 0.0298
(0.0146,0.0170) (0.0261,0.0337)

0.129
(0.120,0.138)

0.0618
(0.0516,0.0730)

Rosenberg et al. (2002)

0.0130
(0.0110,0.0140)

6° 0.0150 0.0310
(0.0140,0.0160) (0.0290,0.0330)

0.116
(0.110,0.123)

0.0640
(0.0570,0.0720)

Model (VI): the second most frequent allele type as A;

Variance 0.00717 0.0112 0.0119 0.0337 0.0222
(0.00643,0.00803) (0.00933,0.0130) (0.0104,0.0137) (0.0282,0.0398) (0.0191,0.0258)
Correlation 0.655 0.668 0.851 0.259 0.590
(0.613,0.699) (0.591,0.772) (0.801,0.894) (0.191,0.332) (0.488,0.688)
Fsr 0.0137 0.0221 0.0109 0.0948 0.0273

(0.0128,0.0146) (0.0196,0.0248) (0.00926,0.0126)

(0.0907,0.0987)

(0.0236,0.0317)
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Furthermore, the fact that estimates of 6 from model (iv) are very similar to estimates from
Rosenberg et al. (2002) but the former are based on converted biallelic data and the latter based

on multiallelic data, also indicates this conversion has little effect.

DISCUSSION

In population genetics, probability models have been used to describe allele frequency and make
inference about population structure. The beta model developed by Balding and Nichols (1995)
and its multiallelic version may have been the most commonly used one. Nicholson et al. (2002)
proposed a truncated normal model for single nucleotide polymorphism allele frequencies. The
beta distribution is usually justified as the equilibrium distribution under several genetic models of
interest and the rational for the truncated normal distribution is in terms of modeling the transient
states of allele frequency. However, the assumption of equilibrium or transient states is effectively
impossible to check. In most cases, it is more practical to select the model which gives the best fit of
data. The marginal distribution of allele frequency may well be approximated by a beta distribution
empirically unless multimodal. Our mixture model is based on beta distribution. When there is a
lot of allele frequencies of 0 or 1, the truncated normal distribution could be a better choice since
it has mass at 0 or 1.

Correlation among populations has not been treated adequately in probability models for allele
frequency, even it affects the estimate of population structure. The mixture model we present here
explicitly incorporates the correlation among population. Based on evaluation using simulated
data from the finite island model, the mixture model provides a good approximation of allele

frequency and an accurate estimate of correlation in general unless there is a large proportion of
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allele frequencies being 0s and 1s. This model could be easily applied to allele frequency data and
dominant/codominant phenotype data.

Although (function of) our model parameters do not bear the interpretation as a measure
of population structure, Bayesian estimate of traditional measure based on relative reduction of
heterozygosity could be calculated by using the posterior estimate of allele frequency to quantify
genetic differentiation, in which effect of correlation among populations is also included. Our results
indicate that the amount of genetic differentiation is overestimated when effect of correlation among
populations is not accounted for. It would take more studies to investigate to what extent this
correlation affects the estimation of population structure. In the future, we will pursue how to
modeling correlated allele frequency with a large proportion of 0s and 1s. One possibility may use
a mixture of truncated normal distribution (Nicholson et al. (2002)) since it has mass at 0 and 1.
Our current model is appropriate for multilocus genotype data with two allele types and we will
seek to extend our model to multiallelic data. We also extend our approach to model data with
clusters and attempt to model correlation both within and among clusters. Effects of correlation
on estimates of effective size, migration rate and other quantities of interest will also be the topic

of future research.
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