
University of Connecticut
DigitalCommons@UConn
Department of Natural Resources and the
Environment Articles

Department of Natural Resources and the
Environment

1-1-2005

Position Errors Caused by GPS HI Blunders
Thomas H. Meyer
University of Connecticut - Storrs, thomas.meyer@uconn.edu

April Hiscox
University of Connecticut - Storrs, APRIL.HISCOX@uconn.edu

Follow this and additional works at: http://digitalcommons.uconn.edu/nrme_articles

This Article is brought to you for free and open access by the Department of Natural Resources and the Environment at DigitalCommons@UConn. It
has been accepted for inclusion in Department of Natural Resources and the Environment Articles by an authorized administrator of
DigitalCommons@UConn. For more information, please contact digitalcommons@uconn.edu.

Recommended Citation
Meyer, Thomas H. and Hiscox, April, "Position Errors Caused by GPS HI Blunders" (2005). Department of Natural Resources and the
Environment Articles. Paper 7.
http://digitalcommons.uconn.edu/nrme_articles/7

http://digitalcommons.uconn.edu?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/nrme_articles?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/nrme_articles?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/nrme?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/nrme?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/nrme_articles?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/nrme_articles/7?utm_source=digitalcommons.uconn.edu%2Fnrme_articles%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@uconn.edu


Survey Review, 38, 298 (October 2005) 

Survey Review, 38, 298 (October 2005 261

 

SURVEY REVIEW 
 
No.298                                          October 2005                                        Vol.38 

 
 

CONTENTS (part) 
 
Position errors caused by GPS height of instrument blunders                                262 
T H Meyer and A L Hiscox 
 
 
 
 
 
This paper was published in the October 2005 issue of the UK journal, 
SURVEY REVIEW. This document is the copyright of CASLE. Requests to 
make copies should be made to the Editor, see www.surveyreview.org for 
contact details. 
 
 
 
 
 
 
 
  The  Commonwealth  Association  of  Surveying  and  Land  Economy  does not necessarily   
endorse  any  opinions  or  recommendations  made  in  an  article, review, or extract  
contained  in  this  Review  nor  do they necessarily represent CASLE  policy      
                                                    

CASLE 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



POSITION ERRORS CAUSED BY GPS HEIGHT OF INSTRUMENT BLUNDERS 

Survey Review, 38, 298 (October 2005) 262
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University of Connecticut 
 

 
ABSTRACT 

 
   Height of instrument (HI) blunders in GPS measurements cause position errors. These errors can be 
pure vertical, pure horizontal, or a mixture of both. There are different error regimes depending on 
whether both the base and the rover both have HI blunders, if just the base has an HI blunder, or just 
the rover has an HI blunder. The resulting errors are on the order of 30 cm for receiver separations of 
1000 km for an HI blunder of 2 m. Given the complicated nature of the errors, we believe it would be 
difficult, if not impossible, to detect such errors by visual inspection. This serves to underline the 
necessity to enter GPS HIs correctly. 
 
 

INTRODUCTION 
 

   In surveying situations where a ``flat Earth'' assumption is appropriate, it is well-
known that the height of instrument (HI) is essentially irrelevant for computing 
horizontal coordinates when using opto-mechanical instruments such as total stations 
[8]. Although completely rigorous treatments of trigonometric levelling are well-
known (e.g., see [4], pp.173-176), such treatments require knowledge not typically 
available in the field to a practicing surveyor, such as the geodesic distance between 
stations, geodetic latitude at both stations, deflection of the vertical at the observing 
station, the ellipsoid height of the observing station, and the radius of curvature in the 
azimuth at both stations. In practice, a total station makes a flat-Earth assumption so 
that the vertical components of measurements can be removed with simple 
trigonometry. This practice essentially projects the measurements into the horizontal 
plane defined by the local gravitational normal vector. Therefore, the height of the 
instrument is irrelevant for computing horizontal coordinates under a flat-Earth 
assumption. However, as far as is known to the authors, it has not been documented 
that the height of a GPS antenna (i.e. the vertical distance from the marker to the phase 
centre of a GPS antenna) effects the horizontal coordinates derived through GPS 
surveying and that ignoring GPS HI introduces horizontal position errors. 
 

BACKGROUND 
 

   It may seem paradoxical at first that ignoring the GPS phase centre height would 
cause a horizontal position miscalculation. After all, if we assume that the GPS 
antenna range pole was levelled properly, the blunder is purely in the vertical and 
ought not to effect horizontal positions. The fallacy in this line of thinking stems from 
ignoring the fact that GPS positions are always inherently three-dimensional [8]. GPS 
positions are derived using satellites as moving monuments, whose instantaneous 
position is calculated either from the broadcast ephemerides or with post-processed 
precise ephemerides (e.g., see [9]). These positions are realized in a geocentric 
Cartesian coordinate system (XYZ) based on the WGS 84 datum [5], [7]. Although 
XYZ coordinates can easily be converted to a local north-east-up framework by simply 
rotating the coordinate system (e.g., see [13]), the coordinates remain inherently three-
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dimensional and changes in the local geodetic normal coordinate (i.e., up) can effect 
the other two. The problem is essentially the same as the skew of the normals [12], p. 
141). The error caused by the skew of the normals depends on baseline length and, for 
short baselines, can often safely be ignored. However, unlike the situation with opto-
mechanical surveying instruments whose baseline length is limited by inter-station 
visibility, GPS can be used to measure baselines thousands of kilometres in length. 
With such long baselines, the skew of the normals cannot be ignored and its effect 
amplifies GPS HI blunders, as will be shown.  
   The position being measured by a GPS receiver is located at the phase centre of the 
GPS antenna, being that point in space at which the antenna detects the radio signal 
broadcast from the satellites. The location of the phase centre differs from antenna to 
antenna, but it is located close to the antenna's conducting surface. The distance and 
direction of the phase centre to the mechanical centre of the antenna is established by 
calibration. The distance from the mechanical centre of the antenna to the antenna's 
reference point (ARP) is determined by the antenna's mechanical design. The distance 
from the ARP to the survey marker is related to the size of the device holding the 
antenna (e.g., a slant distance to the edge of the tripod face or to the antenna's ground 
plane or the length of a range pole). Thus, the GPS HI is the sum of these distances and 
will hereafter simply be referred to as GPS HI. 
   The effect of GPS antenna heights for computing coordinates is considered in 
standard works, such as [10]. The equations presented in Strang and Kai are given in 
the XYZ coordinate system and are compact and elegant. However, because we are 
interested in drawing a distinction between horizontal and vertical errors, we will work 
with geodetic coordinates. As will be shown in the next section, we adopt a more 
elaborate notation to highlight the exact places where the problems occur. 
Interestingly, in [10], the authors have implicitly made a “flat-Earth” assumption by 
using the same surface normal vector for both receivers. Therefore, using their 
equations creates exactly the sort of problem detailed in this paper (the authors 
indicated that they will update their equations in the next edition of their book [11]). 
 

HOW COORDINATES ARE COMPUTED 
 
   The task of computing position coordinates from GPS measurements can be 
conceptualized as converting positions between geodetic, local horizontal geodetic, 
and geocentric Cartesian coordinate systems. To enumerate these conversions we 
adopt the following notation. Points and vectors are denoted by lower case bold face, 
e.g., p. Superscripts denote coordinate systems, e.g., pxyz. We denote a coordinate 
transformation operator by χ, e.g., pto = χ from → to(pfrom) denotes a mapping of point p 
from coordinate system from to coordinate system to. We begin by reviewing the 
relevant formulae. 
   Let φ, λ, h denote geodetic latitude, longitude, and ellipsoidal height, respectively. 
Then, geodetic coordinates are converted to geocentric Cartesian coordinates using 
Helmert’s projection [3]. For pφλh = (φ, λ, h), 

φη

λφη
λφη
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coscos)(
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where x, y, z are geodetic Cartesian coordinates, e2 is the (first) eccentricity of the 
ellipsoid squared, and η is the radius of curvature in the prime vertical at φ. Denote 
these formulae as pxyz = χφλh → xyz(pφλh). 
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   The inverse problem of converting geocentric Cartesian coordinates to geodetic 
coordinates has no direct solution [4]. Although a great amount of research has been 
directed at this problem, [1] developed an iterative approach that is accurate to 1 µm 
without iteration. Bowring’s method is so widespread that it might be considered an 
industry standard [6] so we will use it in this work. Let .22 yx +=ρ Then, for pxyz = 
(x,y,z), Bowring’s method is 
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where a and b denote the lengths of the semi-major and semi-minor axes of the 
reference ellipsoid, respectively, f = (a - b) /a is the flattening, and ε = e2/(1- e2) is the 
second eccentricity of the ellipsoid. Denote these formulae as pφλh = χxyz→φλh(pxyz).  
   It will be necessary to convert XYZ geocentric coordinates to a local horizontal 
geodetic system (n-axis positive towards north, e-axis positive towards east, and u-axis 
positive up along the ellipsoid normal). This is accomplished by applying the 
following formulae, which show that the NEU local horizontal coordinate system is 
merely the XYZ coordinate system translated and rotated to a new position and 
orientation. Importantly, its shape is not distorted. Following [13], if o = (x0, y0, z0) = 
(φ0, λ0) are the geocentric and geodetic coordinates of the origin of the local NEU 
coordinate system and pxyz = (x, y, z) are the geocentric coordinates of the point of 
interest, then 
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where (e, n, u) are the local geodetic coordinates of (x, y, z). Denote this equation as 
( )xyzneuxyzneu pp o

→= χ . 
   Conversion from NEU to XYZ is accomplished with the inverse of equation (2), 
being 
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Denote this equation as ( )neuxyzneuxyz pp o
→= χ . 

   We now consider the problem of computing coordinates using GPS observables. Our 
formulae assume that the deflection of the vertical is zero in order to focus on the 
principle issue, which is the effect of HI blunders. Strictly speaking, one ought to use 
the vectors defined by the deflection of the vertical at the base and the rover instead of 
the ellipsoidal surface normal vectors. However, the difference between the two 
amounts to a horizontal difference of 0.3 mm for a 2-metre range pole under a 
deflection of 30 ″ . Therefore, we ignore this difference to focus on HI blunders. 
Suppose there are two GPS receivers whose antennas are affixed atop two range poles 
that have been levelled properly over two survey markers, a and b.  Let xyz

φa and xyz
φb  
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denote the XYZ coordinates of the phase centres of the antennas set up over a and b, 
respectively. The single / double / triple differencing solution of the observations 
collected by these receivers results in an XYZ vector, xyzxyz

φφ abv −= , being the 
separation of the two phase centres, not their location in space. Without loss of 
generality, assume the geodetic position of survey marker a is known. Then b's 
geodetic coordinates can be found by the following procedure. Let HIa and HIb denote 
the height of the instruments over a and b, respectively. 
1. Consider a NEU coordinate system whose origin is at a. Obviously, a's coordinates 

in such a system are (0,0,0). The coordinates of neu
φa are exactly (0,0,HIa). The XYZ 

coordinates of neu
φa are found by applying equation (3) to (0,0,HIa) using a as the 

local origin. 
2. Add v to xyz

φa to produce xyz
φb , the XYZ coordinates of the phase centre of the 

antenna setup over b. 
3. Transform xyz

φb to a NEU coordinate system whose origin is at b by applying 

equation (2). Denote these coordinates by .neu
φb  

4. Subtract HIb from the up coordinate of .neu
φb  This results in the NEU coordinates of 

b, .neub  

5. Transform neub to geocentric XYZ (3) and thence to geodetic (1). 
This algorithm can be expressed as 
 ( ){ }[ ]( )),0,0(),0,0( baabb vb HIHIxyzneuneuxyzxyzneuhxyzh −+= →→→→ χχχχ φλφλ  (4) 
HI blunders are created by using incorrect values for HIa, HIb, or both.  
   The effect of an HI blunder is to place v at the wrong location. For example, if the HI 
of both antennas is mistakenly taken to be zero, then v conceptually will be placed on 
the markers instead of at the phase centres. At first blush this might not seem to be a 
problem. After all, what has happened is that v has been translated down from the 
phase centres to the markers, which would seem to be the desired effect anyway. 
Indeed, if the earth had no curvature, then there would be no problem. However, the 
curvature of the Earth ensures that the up direction at a and b are different so this 
simple translation does not capture the correct geometry.  
 

 
 

Fig. 1: The vector between the phase centres of two GPS antennas (vp) and the corresponding reduced vector 
between the markers (vm). 

 
The phase centres of the antennas are farther apart in the XYZ coordinate system than 
are their respective markers. It is necessary to reduce the distance between the phase 
centres down to the markers, not merely translate the difference vector down. The 
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situation is illustrated in Figure 1. In this Figure, vp is the vector between the phase 
centres and vm is the reduced vector between the markers. Merely adding v to a shifts 
the horizontal coordinates of b to c as shown in Figure 2. 
 

 
Fig. 2: Adding vp to a is not a reduction and does not result in the correct location of b. Instead, it results in an offset 

position c. Note that c’s position is incorrect both horizontally and vertically. 
 
 

HI BLUNDER ANALYSES 
 

   The HI of a receiver can be reported too high, too low, or correctly. Therefore, for a 
pair of receivers, there are seven possible blunder combinations (a total of 23 = 8 
combinations minus the correct/correct combination). It happens that there are three 
distinct error regimes for these combinations depending on the kind of error that 
occurred at the receiver that is used as the origin of v. Each regime will be considered 
in turn. 
   Although there is not necessarily any clear notion of a “base” and “rover” receiver 
distinction with GPS surveying, we will adopt that nomenclature to mean the 
following. When the GPS post-processing software computes v, it must do so with one 
phase centre at v’s origin and the other at v’s head. We will call the receiver at v’s 
origin the “base” receiver and the receiver at v’s head the “rover.” This language is 
useful because the three error regimes depend upon the nature of the error at the base 
receiver. 
 
No error at the base 
   If there is an HI blunder only at the rover, then we can modify equation (4) by adding 
a blunder constant to the true HI at station b resulting in
 ( ){ }[ ]( )),0,0(),0,0( bbaabb vb cHIHIxyzneuneuxyzxyzneuhxyzh

c +−+= →→→→ χχχχ φλφλ  (4a) 
where cb is a real constant, and h

c
φλb denotes the incorrectly computed position of b; the 

subscript c indicates that the base HI is correct. When cb > 0, then the reported HI is 
too high and when cb < 0, then the reported HI is too low. See Figure 3.  
   Examination of equation (4a) immediately reveals that h

c
φλb  differs from hφλb only in 

the normal direction. This is true because the head of v has been placed correctly 
at .hφλ

φb The subsequent subtraction of (0,0,HIb) + cb only translates that position in the 
normal direction; the coordinate transformations do not move the point. Consequently, 
when cb > 0, the height of h

c
φλb is too low and vice versa. 

 
 
 
 
 



T H MEYER AND A L HISCOX 

Survey Review, 38, 298 (October 2005) 267

Base HI is reported too high 
   If there is a constant positive HI blunder at the base, then we can modify equation (4) 
by adding a blunder constant to the true HI at a and b resulting in

 ( ){ }[ ]( )),0,0(),0,0( bbaaabb v

b

cHIcHIxyzneuneuxyzxyzneuhxyz

h
h

+−++

=
+→→→→ χχχχ φλ

φλ

 (4b) 

where +
ac and cb are real constants, and h

h
φλb denotes the incorrectly computed position 

of b; the subscript h indicates that the base HI is too high. Therefore, .0>+
ac As before, 

when cb > 0, then the HI reported at the rover is too high and vice versa. See Figure 4. 
 

 
Fig. 3: A blunder only at the rover results in shifting b’s position in a purely vertical fashion. 

 
 
 

 
 Fig. 4: A blunder at the base results in shifting b’s position horizontally and, potentially, vertically as well. 

 
   Examination of equation (4b) reveals that h

h
φλb  differs from hφλb in both the 

horizontal and normal directions; the head of v has been misplaced and is no longer 
at .hφλ

φb  This is true because the two range poles are not parallel due to the curvature of 
the Earth. By exaggerating the HI of the base, v’s tail has been positioned too far apart 
from its correct location resulting in a computed hφλ

φb that is too close to a. Thereafter, 
the effect of cb is much as in the previous scenario. However, as a and b are placed 
further apart, the error becomes more horizontal until it is worst at a separation of 90°. 
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Figure 5 shows the resulting position error as determined in b’s local NEU coordinate 
system.  
 

 
 
Fig. 5: Horizontal and vertical position displacements caused by a 2 m HI blunder at both receivers. Solid lines are 
horizontal displacements. Dashed lines are vertical displacements. Dotted lines are 3D displacement magnitudes. 

 
   The two upper panels show the errors across the entire 180° separation range. The 
upper left panel shows the magnitude of the three-dimensional error and the upper 
right panel separates the error into horizontal (solid line) and vertical (dashed line) 
components. Notice that the vertical error reaches a maximum with a 180° separation. 
At 180° of separation, the receivers are at antipodal nodes and all of the error is 
vertical, the magnitude of which is the sum of the two HI values, which were taken to 
be 2 metres each. The horizontal error achieves a maximum at 90° from the base 
receiver, although this situation does not have the greatest overall error. The two lower 
panels show the errors across a 10° separation range, which is perhaps more realistic 
for most surveyors. The three-dimensional error, shown on the left, is essentially 
linear. The lower right panel shows that, for these distances, almost all the error is 
horizontal (solid line). We note that separations larger than 90° are typically not 
physically realizable for ground surveyors due to the lack of mutual satellite 
intervisibility. Nevertheless, we include the unrealizable separations for didactic 
purposes. 
 
Base HI is reported too low 
   If there is a constant negative HI blunder at the base, then we can modify equation 
(4) by adding a blunder constant to the true HI at a and b resulting in

 ( ){ }[ ]( )),0,0(),0,0( bbaaabb v

b

cHIcHIxyzneuneuxyzxyzneuhxyz

h
l

+−++

=
−→→→→ χχχχ φλ

φλ

 (4c) 
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where −
ac and cb are real constants, and h

l
φλb denotes the incorrectly computed position 

of b; the subscript l indicates that the base HI is too low. Therefore, .0<−
ac As before, 

when cb > 0, then the HI reported at the rover is too high and vice versa. Examination 
of equation (4c) reveals that h

l
φλb  differs from hφλb by being too far apart. The situation 

is exactly the opposite as for equation (4b) due to the sign change in the blunder 
constant for a, namely, b will always be computed to be farther from a than the truth.  
 
An example 
   The three scenarios fully describe the nature of the problem but it is instructive to 
present an example of the problem’s potential impact on practicing surveyors. 
Therefore, we consider the positioning mistakes that could result from a fairly gross HI 
blunder in the context of airborne GPS for topographic mapping with a scanning laser 
altimeter (LIDAR). For LIDAR, GPS positions are the basis by which LIDAR 
measurements are positioned on the Earth, so an understanding of how HI blunders 
effects such positions is essential.  
   Suppose we have an aircraft outfit with a survey-grade GPS receiver and a similar 
base station located at a known location. Let the region to be mapped be a square 2° on 
a side with the base station exactly in the centre at (42° N, 72° W). Now suppose that 
the HI of the base station is input as an orthometric height instead of an ellipsoid 
height, effectively causing an HI blunder of, say, 30 metres at the base. The resulting 
offsets are shown in Figure 6 as vectors whose tails are on the true locations and whose 
heads are at the offset locations. The longest vector in the Figure has a magnitude of 
0.743 metres and all the other vectors are scaled linearly accordingly. Careful 
examination of Figure 6 will show that the displacement vectors do not emanate 
radially from the centre. Instead, they show a slight curving pattern. This curvature is 
caused by surface normal vectors along a normal section being skewed to one another. 
Also, the displacement vectors are symmetric east-to-west but not north-to-south. This 
is due to the convergence of the meridians. 
   Although the figure shows only horizontal displacements, LIDAR positions 
computed under such circumstances will be shifted by the three-dimensional error 
vector. Therefore, HI blunder errors are introduced both the horizontal and vertical 
coordinates of the LIDAR positions.  
 

 
 

Fig. 6: Horizontal position displacements caused by a 30 m HI blunder at the centre of the region. The longest 
vector corresponds to a horizontal displacement of 0.743 m. Shorter vectors are scaled linearly. 
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EXPERIMENTAL VALIDATION 
 
   We conducted a set of experiments to validate our theory. The data used in these 
experiments were taken from ten NGS CORS (National Geodetic Survey Continuously 
Operating Reference Stations) sites across the United States.  For this study, the CORS 
station at Pennsylvania State University (PSU1: 40° 48 ′ 24.81098″N,  
77° 50 ′ 59.26862″W, 312.54 m) was chosen to be the base station. The rover stations 
were chosen so as to create a variety of baselines from hundreds to over 3000 km in 
length. The stations and their published NAD 83 (2002) coordinates are listed in the 
appendix. To remove any possible seasonal effects, data were taken from three 
different times of the year. We chose to use 12-hour duration occupations to ensure 
that there was enough data to obtain reliable results for the long baselines [2]. 
Therefore, each station contributed data from three, 12-hour occupations, therefore, 
each station’s final coordinates were computed from three independent vectors. 
   The data were processed using Pinnacle, a proprietary GPS measurement processing 
program distributed by Topcon Positioning Systems. For this study, only the 9 vectors 
between PSU1 and the remaining stations where used, and PSU1 was held fixed to its 
published NGS coordinates.  Because the theory of this study depends on the direction 
of the vector, we took pains to ensure that Pinnacle processed all the vectors starting at 
PSU1. All vectors were processed using precise ephemerides obtained from the U.S. 
National Geodetic Survey but with no other treatments. We did not process with 
tropospheric modeling due to a lack of meteorology data and Pinnacle does not support 
other treatments, such as ocean tide load [9] .  
   To validate our data and processing, we began by including all stations in a single 
network holding PSU1, HOPB and KWY1 as fixed control. Position errors, meaning 
the distance from our computed coordinates and those published by the NGS, are 
shown in Table 1. This network reproduced the NGS published horizontal coordinates 
at a 95% confidence level but failed to do so for some vertical coordinates, in one case 
by 37 cm. After a careful investigation, we concluded that the discrepancy was due 
primarily to the different networks used to derive these heights. In specific, the NGS 
uses a relatively dense network of CORS stations whereas we used only three stations 
that are quite far apart. By adding additional control stations we were able to reduce 
the vertical errors. However, in the test cases that follow, we process vectors 
individually, not in a network, holding only PSU1 as fixed. Processing the vectors 
individually is necessary to eliminate the effect of the network least-squares 
adjustment Pinnacle applies, which distributes the errors throughout the network and 
confounds our purpose. Therefore, rather than give coordinates for a heavily 
constrained network, we felt these coordinates were more representative of how they 
would be used below. 
 
Table 1 Horizontal and vertical discrepancies between published NGS coordinates and 

computed coordinates 
Point Name Horz Dist (m) Vert Dist (m) 

AZCN 0.116 -0.142 
CCV3 0.057 -0.087 
COSO 0.045 0.369 
FBYN 0.060 -0.233 
FERN 0.169 -0.097 
PIT1 0.042 -0.033 

UVFM 0.026 -0.092 
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   Three distinct test cases where chosen to verify our theory. The first test case was to 
test the error at the base: the base station being located too high and the rover at the 
correct height.  As discussed above it was expected that this would result in error both 
horizontally and vertically.  A horizontal error is a displacement from the NGS 
published coordinates in a latitudinal direction, a longitudinal direction, or both.  A 
vertical error is the difference in e ellipsoidal height from that published by the NGS.  
The second test case was to test the error at the rover by setting the base station correct 
and the rover too low, where a purely vertical mistake was expected.  The final test 
case was simulating an error at both the base and rover instruments.  In this case we 
chose to set the base too low and the rover too high, expecting that the error would be 
both horizontal and vertical and the overall vertical error would exceed the error 
introduced on either end.  For all test cases an error with a magnitude of 30 m was 
used.   
  The results from these three test cases are presented in Figures 7 and 8 below.  
Figure 7 shows the horizontal distance between the NGS published coordinates and the 
coordinates produced in Pinnacle for the three test cases.  As expected, the error 
increases linearly with baseline length. The observed horizontal errors for the second 
and third case match their theoretical predictions so closely that the graph of the 
prediction is indistinguishable from the experimental results. However, the horizontal 
error in the fourth test case should be essentially the same as the second; Pinnacle’s 
computed coordinates were further away than we expected. We cannot explain the 
difference and we received no feedback from TOPCON technical support.  An error at 
the base and not the rover produces a mix of horizontal and vertical mistakes, as 
expected. A mistake only at the rover reproduces the horizontal coordinates at the 
same 20 cm level found in the no error case, and an average 30 m error in the vertical 
direction.  The case of error at both the base and the rover produced the greatest 
vertical error by placing the point around 60 m below where it should be.   

 
DISCUSSION AND CONCLUSIONS 

 
   Perhaps the most surprising result of this study is that there are three different error 
regimes depending on whether the HI blunder is at both receivers, just at the base 
station, or just at the rover. Having such a complicated situation only stresses the 
importance of inputting correct HI values with GPS surveying because it becomes 
practically impossible to visually detect such errors after the network has been 
adjusted. If the HI blunders are random, such as might be the case if operators input a 
constant HI value and the true values were distributed around that value, then the 
resulting errors would be a mixture of displacements towards and away from the base. 
  We have shown that HI blunders can manifest as pure vertical errors, pure horizontal 
errors, and mixtures of everything in-between. The flight example shows how distorted 
a network can become due to these effects. Granted, a 30 metre blunder is a major 
mistake but confusing orthometric and ellipsoid heights is a realistic possibility. The 
resulting “contraction” of the adjusted network would be a significant problem and it 
might be very difficult to determine the cause. 
   In summary, HI blunders in GPS measurements cause position errors. These errors 
can be pure vertical, pure horizontal, or a mixture of both. There are different error 
regimes depending on whether both the base and the rover have HI blunders, if just the 
base has an HI blunder, or just the rover has an HI blunder. The resulting errors are on 
the order of 30 cm for receiver separations of 1000 km for an HI blunder of 2 m. Given 
the complicated nature of the errors we believe it would be difficult, if not impossible, 
to detect such errors by visual inspection. This serves to underline the necessity to 
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enter GPS HI's correctly and perhaps warrants double-checking them to ensure such 
errors are not introduced into the results. 
 

 
Fig. 7: Horizontal error for HI blunder test cases:  the vertical axis represents the inverse horizontal difference 

between the coordinates found with a blunder introduced and the NGS published coordinates. 
 
 
 

 
 

Fig. 8: Vertical error for HI blunder test cases: the vertical axis represents the ellipsoid height difference between 
the coordinates found with a blunder introduced and the NGS published coordinates 
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APPENDIX 
 

 Site  
Name Location BLH Coords XYZ Coords 

Baseline 
Length (km) 
(Geodesic 
distance 

from PSU1 
to station) 

PID 
(L1 

Phase 
Centre) 

1 AZCN Aztec, New 
Mexico 

36 50 23.23532 N     
107 54 39.42216 W   

1863.93   m 

X =  -1572187.511  
Y =  -4864407.313  
Z =   3804296.249 

2634.130 AI0266 

2 CCV3 
Cape 

Canaveral, 
Florida 

28 27 36.79951 N     
080 32 42.81940 W   

-22.75   m 

X =    921807.819  
Y =  -5535344.708  
Z =   3021430.002 

1391.601 AJ7943 

3 COSO China Lake, 
California 

35 58 56.41823 N     
117 48 31.95366 W   

1456.22   m 

X =  -2411147.717  
Y =  -4571431.854  
Z =   3727461.640 

3500.930 AJ7939 

4 FBYN Fairbury, 
Nebraska 

40 04 36.71351 N     
097 18 46.12084 W   

406.42   m 

X =   -622115.835  
Y =  -4847773.066    
Z =   4084781.523 

1649.854 AH9961 

5 FERN Ferno Mesa, 
Arizona 

35 20 30.72270 N     
112 27 17.00717 W   

1768.96   m 

X =  -1989985.085  
Y =  -4815007.272  
Z =   3669893.915 

3075.552 AI8821 

6 HOPB Hopland Bard, 
California 

38 59 42.64677 N     
123 04 28.96261W    

353.87   m 

X =  -2708981.271  
Y =  -4159580.753  
Z =   3992123.807 

3829.477 AJ7940 

7 KYW1 Key West, 
Florida 

24 34 56.16453 N     
081 39 10.90473W    

-12.06   m 

X =    842465.076  
Y =  -5741930.718  
Z =   2637061.772 

1833.844 AJ7905 

8 PIT1 Pittsburgh, 
Pennsylvania 

40 33 03.73277 N     
079 41 50.02303 W 

354.28   m 

X =    868033.524  
Y =  -4775167.006 
Z =   4124898.083 

158.746 AC7121 

9 PSU1 State College, 
Pennsylvania 

40 48 24.81098N 
077 50 59.26862 W 

312.54 m 

X=  1017620.251 
Y= -4726564.511 
Z=  4146418.990 

------------- AE4425 

11 UVFM 

University of 
Virginia, Fan 

Mountain, 
Virginia 

37 52 43.46540 N     
078 41 37.24953 W   

514.38   m 

X =    988331.390  
Y =  -4943277.813  
Z =   3895144.999 

333.125 AJ4871 
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