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The autoregulatory role of EsaR, a quorum-sensing
regulator in Pantoea stewartii ssp. stewartii: 
evidence for a repressor function

expression of the linked esaI gene, thus EsaR has no
role in controlling coinducer synthesis.

Introduction

Bacteria express selected gene systems in a population-
dependent manner by sensing self-produced, membrane-
diffusible signals in a strategy called quorum sensing (QS)
(Fuqua et al., 1996). The key elements of QS regulation
in many Gram-negative bacteria are homologue proteins
of LuxI, a N-acyl-homoserinelactone (AHL) signal syn-
thase, and LuxR, an AHL-dependent response regulator.
These two proteins control the expression of biolumines-
cence in the marine bacterium, Vibrio fischeri (Fuqua 
et al., 1994; Williams et al., 2000; Fuqua et al., 2001;
Miller and Bassler, 2001; Withers et al., 2001). Alternative
QS mechanisms, mediated by unrelated control factors,
exist in other Gram-negative bacteria, most notably Vibrio
harveyi (Bassler et al., 1994), and in several Gram-
positive organisms (Dunny and Leonard, 1997; 
Kleerebezem and Quadri, 2001). In general, QS governs
the control of diverse phenotypes, each benefiting a 
bacterium in a specialized habitat (Whiteley et al., 1999;
Pierson, 2000; Whitehead et al., 2001).

Pantoea stewartii ssp. stewartii (P. stewartii) is the
causative agent of Stewart’s wilt disease in sweetcorn 
and leaf blight in maize. Disease symptoms develop when
the bacterium produces large amounts of a capsular poly-
saccharide (CPS), which blocks the corn xylem vessels
and induces necrotic lesions (Coplin et al., 1992). CPS
synthesis is a QS-controlled phenotype governed by the
LuxI and LuxR homologue proteins, EsaI and EsaR (von
Bodman and Farrand, 1995). Disruption of the signal syn-
thase gene, esaI, leads to parallel loss of AHL, CPS pro-
duction, and virulence. In contrast, mutations in the esaR
gene give a hypermucoid phenotype irrespective of AHL
(von Bodman et al., 1998). The simplest explanation for
these observations is that EsaR functions as a repressor
of CPS synthesis and that derepression requires induc-
ing levels of AHL. The functions required for CPS syn-
thesis are encoded by an extensive cps gene system
(Dolph et al., 1988). This gene system is closely related
to the wza gene cluster encoding the synthesis of the
group I capsules, colanic acid in Escherichia coli
(Reeves et al., 1996), and amylovoran in Erwinia
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Summary

Capsular polysaccharide synthesis and virulence in
the plant pathogenic bacterium Pantoea stewartii
ssp. stewartii requires the quorum-sensing regulatory 
proteins, EsaR and EsaI, and the diffusible inducer 
N-(3-oxo-hexanoyl)-L-homoserine lactone. Prior mu-
tational studies suggested that EsaR might function
as a repressor of quorum sensing in the control of
capsular polysaccharide synthesis. Further, a lux
box-like palindromic sequence coinciding with the
putative –10 element of the esaR promoter suggested
a possible negative autoregulatory role for EsaR. This
report presents genetic evidence that EsaR represses
the esaR gene under inducer-limiting conditions, and
that addition of inducer promotes rapid, dose-
dependent derepression. DNA mobility-shift assays
and analyses by surface plasmon resonance refrac-
tometry show that EsaR binds target DNAs in a
ligand-free state, and that inducer alters the binding
characteristics of EsaR. Physical measurements indi-
cate that the EsaR protein binds N-(3-oxo-hexanoyl)-
L-homoserine lactone, in a 1:1 protein:ligand ratio,
and that inducer binding enhances the thermal sta-
bility of the EsaR protein. These combined genetic
and biochemical data establish that EsaR regulates
its own expression by signal-independent repression
and signal-dependent derepression. Additionally, we
provide evidence that EsaR does not govern the
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amylovora (Bernhard et al., 1993). It is well established
that these gene systems require transcriptional activation
by the environmental response regulatory complex,
RcsA/B (Gottesman and Stout, 1991; Kelm et al., 1997;
Wehland et al., 1999). The difference in P. stewartii is that
the level of RcsA/B-mediated control of stewartan syn-
thesis is secondary to the dominant control by EsaR.

The controlled expression of the QS regulatory ele-
ments themselves is generally an integral feature of QS
regulation (Shadel and Baldwin, 1992; Fuqua et al., 1994;
Pesci et al., 1997; Whitehead et al., 2001). Thus, the strat-
egy by which EsaR governs its own expression, and the
expression of the linked esaI gene, may be indicative 
of its role as a repressor of CPS synthesis. Preliminary
observations suggested that EsaR regulates its own
expression by repression (von Bodman and Farrand,
1995), although the role of the AHL signal in this mode of
regulation was unclear. The current study focuses on 
a well conserved lux box-like sequence, the esaR box
associated with the esaR gene, to explore whether EsaR
protein is genetically and biochemically programmed for
a role as a repressor of QS.

Results

Autorepression of the esaR promoter by EsaR

LuxR, TraR and related QS transcription factors regulate
their own expression by activation (Shadel and Baldwin,
1992; Hwang et al., 1994; Seed et al., 1995; Fuqua et al.,
1996; Fuqua and Winans, 1996; Fuqua et al., 2001). The

linked esaI/esaR gene system of P. stewartii is conver-
gently organized and features 3¢ terminal ends that
overlap by 21 basepairs (bp) (von Bodman and Farrand,
1995). The promoter of the esaR gene, not the esaI gene,
bears a defined esaR box. This palindrome coincides with
the putative –10 promoter sequence, which suggests that
binding of EsaR at this site may block transcription and
provide a mechanism for EsaR-mediated autorepression.
To test this prediction, we developed an in vivo assay
based on the coexpression of plasmids pTDM6 and
pTDM7 in the E. coli Top10 host strain, TM67 (Table 1). In
this assay, plasmid pTDM6 (Fig. 1A) contributes the esaR
coding sequence expressed from the E. coli PBAD pro-
moter, which is controlled by the AraC regulator, also
encoded on the plasmid, as a function of L-arabinose
induction (Guzman et al., 1995). Plasmid pTDM7 carries
an esaR::lacZY reporter gene fusion designed to mea-
sure the in vivo activity of the esaR promoter (Fig. 1A).
Growth of strain TM67 in glucose-supplemented medium
lacking L-arabinose yielded fully induced levels of b-
galactosidase, whereas growth in the presence of 0.02%
L-arabinose gave nearly 10-fold lower levels of b-galac-
tosidase (Fig. 1B). Intermediary levels of reporter activity
were inversely proportional to the amount of L-arabinose
provided. These data confirm that EsaR acts as a repres-
sor, and that this repression is AHL-independent.

Derepression is AHL ligand-dependent

Proof for EsaR mediating QS through a repression 
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Table 1. Strains and plasmids.

Relevant genotype Reference or source

Strain
TB1 E. coli, JM83 hsdR (rk-mk+), Dara New England Biolabs
Top10 E. coli, lacZDM15 DlacX74 araD139 D (ara-leu) 7697 Invitrogen
DH5a E. coli, lacZDM15 D (lacZYA-argF)U169 gyrA96 Invitrogen
TM6 E. coli Top10 (pTDM6) This study
TM67 E. coli Top10 (pTDM6, pTDM7) This study
TDM619 E. coli Top10 (pTDM6, pTDM19) This study
DC283 P. stewartii, SS104, NalR Dolph et al. (1988)
ESN51 P. stewartii, esaI::Tn5 von Bodman and Farrand (1995)
ESDIR P. stewartii, DesaI-esaR von Bodman and Farrand (1995)

Plasmids
pBluescript-II KS+ Cloning vector, ColE1 ori, ApR Stratagene
pBAD22 Arabinose inducible expression vector, ApR Guzman et al. (1995)
pBBR1MCS-3 Broad range expression vector, TcR Kovach et al. (1995)
pSVB5-18 esaI and esaR cloned pBluescript-II KS+, ApR von Bodman and Farrand (1995)
pLKC480 Source of lacZY-KmR cassette Tiedeman and Smith, 1988)
pLKC481 Source of lacZY-KmR cassette Tiedeman and Smith (1988)
pSVB60 esaR re-cloned from pSVB5-18 into pBBR1MCS-3 as a This study

PstI–SalI fragment
pTDM6 PCR-amplified esaR coding sequence cloned into pBAD22as This study

a NcoI–HindIII fragment
pTDM7 esaR::lacZY-KmR gene fusion in pSVB60 This study
pTDM18 PCR-amplified esaI promoter and partial coding sequence This study

cloned into pBBR1MCS-3 as a XbaI–XmaI fragment
pTDM19 esaI::lacZY-KmR gene fusion cloned into the XmaI site of pTDM18 This study
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repressive conditions in presence of 0.02% L-arabinose.
Parallel cultures were supplemented with levels of syn-
thetic OHHL ranging from 0 mM to 100 mM. Derepression
of the reporter function correlated directly to the quantity
of OHHL supplied (Fig. 1C). More importantly, derepres-
sion occurred almost immediately upon addition of the
OHHL (Fig. 1D). We conclude from these data that EsaR
repression of its own gene is abolished by AHL.

EsaR does not control the expression of the esaI gene

We reported previously that P. stewartii strains mutated 
in the esaR locus synthesise wild-type levels of AHL
(von Bodman and Farrand, 1995) suggesting that EsaR
does not control the expression of the linked esaI gene.
We confirmed this observation by measuring levels of 
b-galactosidase expressed from an esaI::lacZY transla-
tional gene fusion carried on plasmid pTDM19. When
coexpressed with plasmid pTDM6 in E. coli strain TM619,
this gene fusion produced identical levels of b-galactosi-
dase regardless of whether or not the strain was induced
with L-arabinose and exogenous AHL (data not shown).
This therefore establishes that EsaR does not govern the
esaI-encoded signal synthesis; in fact, esaI appears to be
expressed constitutively.

Purification of native EsaR protein

DNA binding studies to establish the role of EsaR as a
repressor in vitro require purified EsaR protein. Initial
attempts to express EsaR as a His6-tagged fusion protein
were hampered by protein solubility problems. We there-
fore opted to express EsaR in its native form in E. coli
strain TM6, which harbours the recombinant plasmid
pTDM6. This plasmid carries the esaR gene under the
control of the L-arabinose inducible promoter, PBAD (Table
1 and Fig. 1A). EsaR protein was extracted from cultures
grown in the presence of 0.02% L-arabinose and in the
absence of the AHL ligand. This is an important point,
because some LuxR-type proteins, most notably TraR,
require AHL ligand to remain soluble in cellular lysates
(Zhu and Winans, 1999; Qin et al., 2001). Growth of strain
TM6 at 28∞C allowed the purification of native EsaR
protein that, when purified by column chromatography,
was soluble to 0.4 mM. Active fractions were identified by
DNA mobility-shift assays against a synthetic DNA target.
These fractions were pooled, aliquoted, and stored at
–80∞C until needed for further biochemical analysis.

Analysis of EsaR binding in DNA mobility-shift assays

The in vivo data of Fig. 1 indicated that Apo-EsaR
represses an esaR promoter gene fusion, presumably by

© 2002 Blackwell Science Ltd, Molecular Microbiology, 44, 1625–1635

Fig. 1. Dose-dependent repression and derepression of an esaR
translational fusion. The E. coli strain TM67 harbouring (A)
plasmids pTDM6 and pTDM7 was grown (B) to different optical
densities (600 nm) in the presence of 0% (�), 0.0002% (�), or
0.02% (�) L-arabinose; or (C) to an optical density (600 nm) of 0.6
in presence of 0.02% L-arabinose with 0 (�), 100 pM (�) 100 nM

( ), 100 mM ( ) N-(3-oxo-hexanoyl)-L-homoserine lactone (OHHL),
or 0% L-arabinose and 100 mM OHHL ( ).
D. Strain TM67 was grown with 0% (�) or 0.02% L-arabinose (�)
and harvested at different times after L-arabinose induction. Parallel
cultures were treated with 100 mM OHHL at 1.5 h (�) or 2 h (�).
The cells were harvested and assayed for b-galactosidase
expressed as units (Sambrook et al., 1989) (B) or activity (Miller,
1972) (C and D).

mechanism would require evidence for inducing levels of
the biologically relevant AHL signal, N-(3-oxo-hexanoyl)-
L-homoserine lactone (OHHL), to promote derepression.
Accordingly, we grew strain TM67 under stringent 



binding to the esaR box located in this region. We there-
fore assayed purified protein against synthetic target
DNAs in DNA mobility-shift assays to define the in vitro
DNA binding characteristics of EsaR. Apo-EsaR formed a
specific complex with a 28 bp DNA fragment bearing the
native esaR box (Table 2). Moreover, the density of the
shifted band, measured in digital pixels, was proportional
to the amount of EsaR protein assayed (Fig. 2A, lanes
2–4). Addition of increasing levels of unlabelled probe
DNA (20 mer esaR box) effectively inhibited complex for-
mation (Fig. 2A, lanes 5–7) and produced a high intensity
hybrid DNA species composed of labelled 28 mer and
unlabelled 20 mer oligonucleotides that migrate between
the 28 mer double-stranded and single-stranded DNA
forms. Higher order complexes of EsaR protein were 
only faintly detected at protein concentrations at or above
200 nM.

DNA mobility-shift assays using a wide range of protein
concentrations against a constant amount of labelled
probe DNA yielded a binding affinity of 3 ¥ 10–8 M (ª KD)
for EsaR and the esaR box DNA palindrome (Fig. 2B). A
calculated Hill coefficient of 0.99 indicates that EsaR
binds the esaR box with little or no cooperativity. Inter-
estingly, the addition of the OHHL signal ligand did not
induce DNA–protein complex dissociation even when
used at a concentration of 500 mM, and regardless of
whether the protein was exposed to the signal ligand pre
or post presentation of the DNA probe (Fig. 2A). This 
in vitro observation is puzzling considering that EsaR is
highly responsive to OHHL in vivo.

EsaR binds to the DNA as a dimer

To further evaluate the oligomeric state of EsaR, we
developed an assay based on the differential mobility of
the native EsaR protein and a larger mass hybrid MBP-

EsaR protein. Specifically, we fused the malE gene to 
the 5¢-end of the esaR coding sequence separated by a
Xa factor protease recognition linker sequence (Riggs,
2000). Standard DNA binding assays, containing affinity-
purified MBP-EsaR, a radiolabelled 28 bp esaR promoter
DNA fragment, and a constant amount of Xa factor, were
incubated for different times before gel electrophoresis.
Figure 2C shows that at zero time incubation the larger
mass MBP-EsaR homodimer was present exclusively.
Prolonged periods of incubation gradually yielded the
MBP-EsaR::EsaR heterodimer of intermediate mobility,
followed by complete transformation to the lower migrat-
ing EsaR::EsaR homodimer. The formation of only one
intermediate complex suggests that EsaR binds the 
DNA target as a dimer under the conditions assayed.
These observations are consistent with our previous 
size-exclusion chromatographic results, which show that
Apo-EsaR fractionates with a relative molecular mass of
dimeric EsaR (data not shown).

Analysis of EsaR binding by surface 
plasmon resonance

Surface plasmon resonance (SPR) is a refractometry-
based technique that allows measurement of biomole-
cular interactions in real time as changes of mass
concentrations on a sensor surface (Rich and Myszka,
2001). We used this method to gain additional insight into
the in vitro molecular recognition dynamics of EsaR for its
DNA target. A 70 bp biotinylated PCR product of the native
esaR promoter was conjugated to a dextran streptavidin-
coated (SA) sensor chip at a surface density of 120 res-
onance units (RUs). Injection of EsaR protein analyte over
a range of nM concentrations showed a steady increase
in RUs with 344 nM EsaR protein yielding a sensogram
that reflects saturation binding (Fig. 3A). The RU values

© 2002 Blackwell Science Ltd, Molecular Microbiology, 44, 1625–1635
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Table 2. Oligonucleotides and primers used in this study.

Fragment/primer Sequence Used for

Fragments
PesaR28 5¢-TCTTGCCTGTACTATAGTGCAGGTTAAG Mobility-shift assay (Fig. 2)

3¢-AGAACGGACATGATATCACGTCCAATTC

PesaR20 5¢-GCCTGTACTATAGTGCAGGT Mobility-shift assay (Fig. 2)
3¢-CGGACATGATATCACGTCCA

Primers
F_esaRNcoI 5¢-GAGCCATGGTTTCTTTTTTCC Cloning esaR into pBAD22

R_esaRHindIII 5¢-CCGCAAGCTTCAGTCACTAC

F_esaR70 5¢-Biotin-AGAAAACATTCAGGCTCCATGCTGCTTC SPR (Fig. 3)

R_esaR70 5¢-TCTTGCCTGTACTATAGTGCAGGTTAAG-Biotin

F_esaIXbaI 5¢-CAAGTTCTAGAAAACTGCGCCAGGTCAAC Cloning esaI into pBBR1MCS-3

R_esaIIXmaI 5¢-AACAGCCCGGGCATTCCATTTCC

The underlined sequences indicate the esaR box.
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Fig. 2. Interaction of purified EsaR protein with target DNA.
A. A synthetic, end-labelled 28 bp DNA fragment (1.6 mM)
containing the EsaR recognition sequence (lane 1) was incubated
with 10-fold increasing amounts (2 to 200 nM) of purified EsaR
protein and resolved by native gel electrophoresis (lanes 2–4).
Binding specificity of EsaR for the probe DNA was demonstrated
with 10-fold increasing amounts of excess (5 to 500 mM) unlabelled
competitor DNA bearing the 20 mer esaR box (lanes 5–7). Addition
of OHHL at 10, 100 and 500 mM did not result in complex
dissociation (lanes 8–10).
B. A binding constant (KD) of 3 ¥ 10–8 M was calculated based on
the pixel intensity of free and complexed probe DNA recorded with
a Bio-Rad phosphorimager and evaluated with IMAGER ONE

software.
C. DNA mobility analysis of purified MBP-EsaR (M) hybrid protein
treated with Xa factor protease at increasing incubation times
resolves probe DNA complexed with the higher mass MBP-EsaR
(M::M) homodimer, the MalE-EsaR::EsaR (M::E) heterodimer of
intermediary mobility, and eventual complete conversion to the
lower mass EsaR::EsaR (E::E) homodimer. Lane 1 resolves the
M:M homodimer at 0 time incubation; lane 2 shows the E:E
homodimer after 2 h of Xa factor treatment.

of the sensograms displayed were corrected for non-
specific interactions between EsaR protein and a similar
length non-target DNA measured in a parallel reference
cell. The data were analysed with the BIAEVALUATION

3.0 software, assuming a simple 1:1 Langmuir binding
model to determine a KD value of 9 ¥ 10–9 M (c2 = 6.01). 
This binding constant is in good agreement with the 3 ¥
10–8 M value derived from DNA mobility-shift assays 
(Fig. 2B).

Surface plasmon resonance analysis using the same
sensor chip and a constant EsaR concentration of 
344 nM, but varying amounts of AHL in the buffer system
during the association phase of the experiment yielded
proportionally lower RU values (Fig. 3B). The sensograms
were similar to those obtained when measuring lower
EsaR protein concentrations (Fig. 3A). These results
suggest that signal ligand may prevent AHL-bound EsaR
from interacting with the immobilized DNA target thereby
reducing the effective concentration of binding competent
EsaR protein.

Fig. 3. Interaction of purified EsaR protein with a PCR-generated
DNA fragment containing the esaR box evaluated by SPR
refractometry.
A.The target DNA was immobilized on a SA strepdavidin-coated
gold sensory chip at 120 RU (1:1 Rmax of 120). EsaR protein
analyte was injected over a range of concentrations (22 nM to 1.4
mM, displayed are 86, 172 and 344 nM) at a flow rate of 25 ml min–1

with an association time of 180 s, and a dissociation time of 600 s
(shown only 350 s).
B. SPR assay with 344 nM EsaR protein and 0, 172 nM and 1 mM
concentrations of OHHL added to the buffering system during the
association phase only. The RU values shown in both sensograms
are difference RU values of the sample cell and parallel reference
cell measuring the non-specific protein–DNA interactions.



Analysis of the EsaR/AHL interaction by 
fluorescence spectroscopy

EsaR contains three tryptophan residues; two located in
the N-terminal region (W54 and W82) and one (W191) in
the C-terminal helix–turn–helix domain. LuxR homologue
proteins utilise regions in the N-terminus to dimerize 
and to bind signal ligand (Choi and Greenberg, 1992;
Hanzelka and Greenberg, 1995; Qin et al., 2001; Zhu and
Winans, 2001). Such intermolecular interactions generally
invoke structural changes, which, in turn, alter the intrin-
sic fluorescence intensity of the protein. We took advan-
tage of the intrinsic fluorescence of EsaR to assess the
effect of ligand binding on the structural integrity of the
protein (Fig. 4A). Measurements taken at wavelengths
between 300 nm and 400 nm produced a fluorescence
maximum around 340 nm. This fluorescence decreased 
in intensity with increasing concentrations of the OHHL
ligand. Maximal quenching of approximately 50% re-
quired 370 nM ligand, and higher concentrations did not
further quench fluorescence. These assays employed 
370 nM EsaR, therefore suggesting a 1:1 molar ratio of
protein–ligand interaction. These results agree with

similar fluorescence studies reported previously for CarR
(Welch et al., 2000).

The specificity of EsaR for its signal ligand may vary
depending on the length and substitution of the acyl 
side chain. Comparative fluorescence data obtained 
from separate experiments containing equal amounts 
of either L-homoserine lactone (HL), N-(3-oxo-
dodecanoyl)-L-homoserine Lactone (ODHL) and OHHL,
gave different intrinsic fluorescence spectra (Fig. 4B). The
signal ligands were added in 10-fold molar excess and the
recorded reductions in EsaR fluorescence were 50%,
35% and 15% respectively. These data suggest that EsaR
binds the physiologically relevant OHHL species most effi-
ciently, shows reduced affinity for ODHL, and has minimal
affinity for the HL moiety alone.

EsaR is more heat-stable in the presence 
of the signal ligand

We wished to evaluate whether the addition of the 
preferred ligand, OHHL, affects the stability of the EsaR
protein and/or prevents the purified EsaR protein from
precipitation at extremely high concentrations. We 
therefore monitored the effect of OHHL on the thermal
stability of purified EsaR by circular dichroism (CD) 
spectroscopy. As shown in Fig. 5A, the thermal stability of
Apo-EsaR was relatively low with denaturation beginning
at 48∞C and completed at 58°C. The addition of 10-fold
excess OHHL increased the thermal stability of EsaR by
about 10°C, with no denaturation seen below 53∞C and
complete denaturation requiring 68∞C (Fig. 5B).

Discussion

This study establishes several critical facts related to the
role of EsaR as a repressor of QS in P. stewartii. First, it
demonstrates that EsaR regulates its own expression by
repression and AHL-mediated derepression; second, that
purified EsaR dimerizes and binds DNA without AHL
ligand; third, that AHL interacts specifically with EsaR
protein, and induces structural changes that may neu-
tralise its DNA binding affinity; and fourth, that EsaR has
no role in the control of the linked signal synthase gene,
esaI. These data correlate well with our earlier prediction
that EsaR functions as a repressor of CPS synthesis in
P. stewartii (von Bodman and Farrand, 1995; von Bodman
et al., 1998).

A mechanism for QS by repression is unexpected
because the majority of LuxR-type regulators are signal-
responsive transcription activators (Fuqua et al., 1996,
2001; Whitehead et al., 2001). The LuxR class of proteins
exhibits an overall sequence identity of 18–25%, with
three critical regions of higher conservation (Whitehead
et al., 2001). These include an N-terminal region for 
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Fig. 4. Biophysical analysis of EsaR–N-acyl-homoserinelactone
(AHL) interactions. The EsaR fluorescence was determined at a
concentration of 370 nM.
A. EsaR titration with increasing amounts of OHHL at 0, 3.7, 7.4,
37, 74, 185, 470, 740 nM and 3.7 mM.
B. Interaction of EsaR with 3.7 mM OHHL, N-(3-oxo-dodecanoyl)-L-
homoserine (ODHL), and L-homoserine lactone (HL).
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AHL signal binding, a more centrally located domain for
protein oligomerization, and a helix–turn–helix C-terminal
domain for DNA binding (Stevens and Greenberg, 1999;
Fuqua et al., 2001; Whitehead et al., 2001). However, the
QS regulatory proteins found in Erwinia-type bacterial
species, including EsaR of P. stewartii (formerly E. 
stewartii) (von Bodman and Farrand, 1995), CarR (Welch
et al., 2000) and ExpR of Erwinia carotovora ssp. caro-
tovora (Ecc) (Andersson et al., 2000), have a higher
degree of relatedness among them. This subfamily of QS
regulators is also distinctive in its ability to dimerize and
bind DNA in the absence of signal ligand. Based on these
characteristics, it was proposed that the LuxR-type pro-
teins fall into two basic groups (Andersson et al., 2000;
Qin et al., 2001; Whitehead et al., 2001).

We propose here that the CarR, ExpR and EsaR, sub-
family of QS regulators can be divided further based on
their discrete functional differences. Specifically, CarR,
the QS regulator of carbapenem synthesis in E. caro-
tovora (Ecc) dimerizes and binds DNA in the absence of
AHL, but forms higher order complexes in the presence
of inducing amounts of AHL to promote activation of the
car target gene system (Welch et al., 2000). In fact, muta-

tional disruption of CarR results in a null-carbapenem
phenotype (McGowan et al., 1995). CarR also controls its
own expression by AHL-dependent activation (Whitehead
et al., 2001). The ExpR regulatory proteins described 
for two different E. carotovora strains (Andersson et al.,
2000) (Whitehead et al., 2001) and Erwinia chrysanthemi
(Nasser et al., 1998) also bind target promoters in an
AHL-free state, and were thought to control exoenzyme
synthesis negatively. However, mutational inactivation of
the expR gene has no, or only a minor, effect on exoen-
zyme expression. The implication is that in these strains
QS regulation is redundant and that the repressive role of
ExpR may be one of AHL sequestration rather than direct
regulation (Andersson et al., 2000). The ExpR protein of
E. chrysanthemi was also shown to bind to the expR pro-
moter at a well conserved lux box palindrome (Reverchon
et al., 1998; Andersson et al., 2000). However, mutational
inactivation of ExpR had no effect on expR expression
(Reverchon et al., 1998).

EsaR, in contrast to ExpR and CarR, has a well defined
activity as a repressor of its own expression, and the
hypermucoid phenotype of esaR null mutants suggests
that it represses CPS synthesis as well. Specifically, 
EsaR negatively regulates an esaR::lacZ reporter gene
expressed in vivo in E. coli in a dose-dependent manner
(Fig. 1B), and EsaR responds rapidly to exogenously pro-
vided AHL for derepression (Fig. 1C). The in vitro binding
properties of EsaR support the genetic data showing that
Apo-EsaR exists primarily as a homodimer complex and
exhibits specificity for the esaR box DNA target with an
affinity characteristic of these proteins (Fig. 2A and C). In
addition, higher order oligomeric complexes of EsaR,
characteristic of CarR and ExpR, are detected only when
assaying EsaR protein at or above 200 nM concentra-
tions, with or without OHHL present (Fig. 2B). A signifi-
cant inconsistency between the in vivo and in vitro data
is the observation that addition of OHHL does not promote
EsaR–DNA complex dissociation in the DNA mobility-
shift assays (Fig. 2A). This is surprising for three reasons.
First, the fluorescence-quenching experiments (Fig. 4)
show that OHHL interacts specifically and stoichiometri-
cally with purified EsaR protein. Second, the SPR data
(Fig. 3B) show that when EsaR is exposed to increasing
levels of OHHL, the concentration of binding competent
EsaR decreases proportionally. Third, ExpR of E.
chrysanthemi releases DNA in response to AHL, although
the ligand concentrations used in the ExpR DNA mobility-
shift assays (Reverchon et al., 1998) were substantially
higher than the amounts used in the current study. The
SPR data indicate that AHL reduces the binding affinity 
of Apo-EsaR. However, additional SPR experiments are
needed to establish whether AHL promotes DNA–protein
complex dissociation, or whether DNA bound EsaR
protein has a structural conformation that is unfit to per-
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Fig. 5. Thermal stability of EsaR with and without AHL. Circular
dichroism (CD) spectra of 370 nM EsaR were determined at
increasing temperatures in the absence and presence of OHHL.
The bottom curve in both diagrams represent the spectrum at
28∞C, the top curves represent the spectrum at the highest
temperature.
A. CD spectra without OHHL measured at temperatures ranging
from 28∞C to 63∞C.
B. CD spectra with OHHL measured at temperatures ranging from
28∞C to 73∞C.



ceive the AHL signal. AHL-mediated derepression of the
esaR reporter gene fusion in vivo is rapid regardless of
the time lag between arabinose induction to express
EsaR and the addition of OHHL (Fig. 1C). These data
suggest that holoenzyme formation does not require
nascent protein synthesis as is predicted for TraR protein
of Agrobacterium tumefaciens (Zhu and Winans, 1999).
In A. tumefaciens, AHL is thought to serve as a scaffold
for proper TraR folding and protection from cellular pro-
teolysis. Presumably, EsaR folds properly in the absence
of AHL to assume a stable, DNA binding-proficient con-
formation. It is conceivable, that preformed Apo-EsaR
undergoes an AHL-induced structural transformation that
perturbs the binding domain, or causes the protein dimer
to dissociate into AHL-bound monomers. In either case,
AHL may render EsaR protein susceptible to proteolysis.
Proteolytic inactivation of EsaR could account for the
rapid derepression observed in vivo, while also explain-
ing the inability of AHL to induce complex dissociation in
the in vitro DNA mobility-shift assays. Experiments are in
progress to test whether proteolysis is a factor in the
mechanism of AHL-dependent derepression of EsaR.

A model by Qin and colleagues (Qin et al., 2001) pro-
poses that Apo-TraR of A. tumefaciens partitions to the
cytoplasmic membrane to isolate monomeric TraR from
the pool of intracellular AHL under non-inducing condi-
tions. It is proposed that TraR dissociates from the mem-
brane and dimerizes when the membrane-permeable
AHL concentration reaches inducing levels. In contrast,
EsaR does not appear to be membrane-associated; in
fact, EsaR is soluble in its native form without AHL ligand,
unlike TraR. If, as predicted, membrane association is to
prevent premature TraR dimerization, then EsaR protein
may not share this requirement because it is naturally
dimeric and seeks DNA targets under AHL-limiting 
conditions.

EsaR is highly responsive to AHL-induced derepression
in the control of its own gene expression. More signifi-
cantly, it responds gradually and proportionally to the
amount of AHL provided, not suddenly at a given induc-
ing concentration. If this reflects the normal dynamics of
EsaR and AHL co–inducer interaction, then it is unclear
how EsaR governs the expression of CPS synthesis in a
strictly cell density-dependent manner when AHL produc-
tion is constitutive. We suggest that AHL-induced dere-
pression of the esaR gene may be important in this
respect. Specifically, we propose that increased cellular
levels of EsaR sequester the constitutively generated cel-
lular pools of AHL to prevent premature derepression of
CPS synthesis at lower cell densities. Accordingly, a cell
population would become ‘quorate’ when the cellular
levels of AHL exceed the maximum levels of EsaR
expressed. This rationale would explain also the appar-
ent paradox of AHL-dependent derepression of the esaR

gene to generate more of the QS repressor when ap-
proaching AHL-inducing conditions. EsaR-mediated
autorepression may also serve as an intrinsic mechanism
of QS modulation.

N-Acyl-homoserinelactone (AHL) signal synthesis in 
P. stewartii is independent of EsaR and appears to be
constitutive. This is in contrast to the paradigm of QS reg-
ulation that requires LuxR-AHL activation of the cognate
luxI signal synthase gene. It is difficult to predict when and
why esaI regulation became EsaR-independent; but it
may have been in response to EsaR assuming a role as
a repressor, because repression of the esaI gene may 
be counterproductive in the overall scheme of QS. Con-
versely, EsaR may have assumed a repressor role in
response to deregulated synthesis of AHL to preserve 
the QS control of CPS synthesis and virulence. We know
from previous studies that the deregulated synthesis of
CPS is disadvantageous for P. stewartii to successfully
colonize the plant host (von Bodman and Farrand, 1995).

Finally, we wish to emphasize that we cannot rule out
the possibility that EsaR may function under certain con-
ditions also as a gene activator, nor can we predict at this
stage whether the expression of the cps gene system 
is under the direct control of EsaR. We have to consider
the formal possibility that the main role of EsaR is to
sequester cellular AHL and that a second QS regulatory
system may actually govern CPS synthesis. However,
such a mechanism is difficult to reconcile with the fact that
the esaI-esaR double mutant P. stewartii strain ESDIR
exhibits a hypermucoid phenotype in absence of cellular
EsaR or AHL. Experiments to define the role of EsaR 
in the control of CPS and to search for additional QS
systems in P. stewartii are in progress.

Experimental procedures

Bacterial strains, plasmids, oligonucleotides and 
DNA techniques

The Escherichia coli strains DH5a (Life Technologies) and
Top10 (Invitrogen) were used as cloning hosts and were
grown at 37∞C on nutrient agar plates, Luria–Bertani (LB)
broth, M9 minimal, or RM medium (1 ¥ M9 salts, 1 mM MgCl2,
2% casamino acids, 0.4% glucose) in presence of 100 mg ml–1

of ampicillin, 10 mg ml–1 of tetracycline, and 10 mg ml–1 of
kanamycin, where applicable. All relevant plasmids and
strains are listed in Table 1. The stewartii strains were grown
at 28∞C in LB in presence of 30 mg ml–1 of nalidixic acid. DNA
techniques were performed by standard methods as
described (von Bodman and Farrand, 1995; von Bodman 
et al., 1998). DNA fragments were amplified using Ex Taq
Polymerase (Takera/Panvera) and synthetic oligonucleotides
(Table 2) ordered to specification from Sigma Genosys.

Plasmid constructions

We amplified the esaR gene using PCR primers, F_esaRN-
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coI and R_esaRHindIII (Table 2) to create a 5¢-NcoI cloning
site to overlap and include the ATG translation initiation
codon, and a 3¢ HindIII site downstream of the stop codon.
This fragment was inserted into the similarly digested ex-
pression vector, pBAD22 (Guzman et al., 1995) resulting 
in plasmid pTDM6 (Fig. 1A). The esaR gene was re-cloned
as a PstI–SalI fragment from plasmid pSVB5-18 (von
Bodman and Farrand, 1995) into the broad-host-range
vector, pBBR1MCS-3 (Kovach et al., 1995) to generate
plasmid pSVB60 (Table 1). This plasmid was used to create
a translational reporter gene fusion by inserting the lacZY-
KmR cassette from plasmid pLKC481 (Tiedeman and Smith,
1988) cloned as an XmaI fragment into the internal MroI site
to generate pTDM7 (Fig. 1A and Table 1). Polymerase chain
reaction (PCR) amplification of the esaI promoter and partial
coding sequence used primers F_esaIXbaI and R_esaIX-
maI that provided 5¢-XbaI and 3¢-XmaI restriction sites (Table
2) for cloning into plasmid pBBR1MCS-3 to create pTDM18
(Table 1). Plasmid pTDM18 was used to create an in-frame
reporter gene fusion by linking the lacZYKmR cassette
released as a XmaI fragment from plasmid pLKC480 
(Tiedeman and Smith, 1988) to the esaI coding sequence at
the XmaI site to create pTDM19 (Table 1).

b-Galactosidase activity assay

Production of b-galactosidase was quantified as described
(von Bodman and Farrand 1995). Cells were grown in RM
minimal medium, diluted to an optical density (OD)600 of 
0.05 and allowed to grow to an OD600 of 0.1 before inducing
with L-arabinose. N-(3-oxo-hexanoyl)-L-homoserine lactone
(OHHL) was supplied at the indicated concentrations 
either at the point of L-arabinose induction, or at defined times
post L-arabinose induction. b-Galactosidase levels were
expressed as b-galactosidase units (Sambrook et al., 1989)
or b-galactosidase activity (Miller, 1972). Each experiment
was performed in triplicate and was repeated at least two
times.

Expression and purification of EsaR protein

Native EsaR protein was purified from E. coli strain TOP10

(pTM6). This strain was grown at 28∞C in 1 l of LB contain-
ing 100 mg ml–1 of ampicillin. The cells were harvested when
the culture reached an optical density OD600 of 0.6, resus-
pended in 10% glycerol, and stored as stock inocula at
–80∞C. Cells from 18 l volume fermentations, induced with
0.02% L-arabinose at an OD600 of 0.6 were harvested 4 h post
induction. The cells were resuspended in 180 ml of buffer 
(50 mM Tris, pH 7.5, 10% glycerol) and broken by three pas-
sages through a French press (20 000 psi). Cell debris was
removed by centrifugation (30 000 g for 30 min) and the
soluble fraction was passed through a 0.2 mm cellulose filter
(Millipore) before fractionation by heparin affinity perfusion
chromatography (BioCAD, Poros 20HE). The column was
equilibrated with 450 ml of TBP buffer (20 mM Tris bis-
propane buffer, pH 7.5). The soluble lysate was applied to the
column in four 5 ml-volume injections and the column was
washed with 20 ml of TBP buffer after each injection. Bound
protein was eluted with a two-step gradient of TBP buffer con-

taining 400 mM and 800 mM NaCl respectively. Fractions
containing EsaR were identified by standard 15% SDS-poly-
acrylamide gel electrophoresis (SDS–PAGE) using protein
molecular weight markers (prestained, broad range, New
England Biolabs) for size reference, and differential expres-
sion of EsaR protein in un-induced and arabinose-induced
lysates. Fractions containing EsaR were pooled and con-
centrated 16-fold with a Centriprep YM-10 filter (Millipore).
The filtrate was applied to a size exclusion column (S-100
Sephracyl, 100KD exclusion) and eluted with a 1 bed-volume
of TNG buffer (20 mM Tris, pH 7.5, 500 mM NaCl,10% 
glycerol). Fractions containing EsaR were identified by
SDS–PAGE. EsaR was stored in TNG at –80∞C.

Gel retardation assays

Synthetic DNA fragments used in these assays are listed 
in Table 2. Double-stranded DNA was obtained by mixing
complementary oligodeoxyribonucleotides heated to 95∞C
and slowly cooled to room temperature. These DNAs were
labelled at their 3¢-ends with [a-32P]-dATP, specific activity
3000 Ci mmol–1 (Perkin Elmer) in presence of Klenow DNA
polymerase (Amersham). DNA binding reactions used
varying concentrations of purified EsaR incubated at 28∞C for
30 min with 1.6 mM concentration of 32P-labelled DNA frag-
ments in 20 ml reactions using a buffer consisting of 20 mM
Hepes, pH 7.6, 1 mM EDTA, 10 mM (NH4)2SO4, 1 mM DTT,
0.2% Tween-20, 30 mM KCl, 50 mg ml–1 of uncut l-DNA and
150 mg ml–1 of BSA. After adding 5 ml of loading buffer, each
reaction mixture was fractionated by electrophoresis at 4∞C
on a native 6% polyacrylamide gel in 1¥ TBE buffer (Tris-
Borate-EDTA, electrophoresis grade, Fisher Biotech). Gels
were dried using a vacuum gel drier. An imaging screen-K
(Bio-Rad) was exposed overnight and phosphorescence
signal was detected with the Molecular Imager FX system
(Bio-Rad). The bands were analysed with QUANTITY ONE

quantification software (Bio-Rad).

Surface plasmon resonance technique

A BIAcore X instrument (BIAcore) was used to perform SPR
measurements (Rich and Myszka, 2001). Activation of the 
SA streptavidin-coated sensor chip was performed following
the manufacturer’s recommended procedure. Non-specific
and specific biotinylated DNA were coupled to a streptavidin
matrix of two separate chips to yield approximately 120 res-
onance units (RU). The resulting sensor chips were analysed
in parallel flowcells. All experiments were carried out at a flow
rate of 25 ml min–1. EsaR analyte was presented in a running
buffer (50 mM Tris, pH 7.5, 100 mM NaCl, 10 mM DTT, 
0.1 mM EDTA). Bovine serum albumin (BSA) (200 ng ml–1)
and l-DNA (8 ng ml–1) were added to each protein sample
before injection. Protein mixtures containing various concen-
trations (ranging from 22 nM to 1.4 mM) of purified EsaR
protein were injected allowing an association time of 180 s
and a dissociation time of 350 s. The reference flow cell fea-
turing a random DNA target of the same size as the probe
DNA was used to subtract unspecific DNA–protein interac-
tions. Regeneration of the chip surface was achieved by
removing all bound proteins with a pulse of 5 ml of 0.05%
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SDS in running buffer. Data analysis was performed using
the BIAEVALUATION 3.0 program to determine the binding prop-
erties of the protein assuming 1:1 Langmuir kinetics.

MBP-EsaR hybrid protein

The EsaR protein was expressed from plasmid pMBP-EsaR
that features the esaR coding sequence cloned into the
pMAL-c2x plasmid (New England Biolabs) to generate a C-
terminal fusion to the maltose-binding protein for expression
in E. coli host strain TB1. The hybrid protein was purified by
amylose resin (New England Biolabs) affinity chromatogra-
phy. Bound proteins were eluted using four volumes of buffer
(20 mM Tris, 1 mM EDTA, 200 mM NaCl) with a linear gradi-
ent of maltose from 0 mM to 0.6 mM. Proteolytic cleavage of
the hybrid protein was achieved with Xa factor (New England
Biolabs), using supplier-recommended conditions and
varying times of incubation. DNA mobility-shift assays were
performed as described above.

Fluorescence spectroscopy

Fluorescence measurements were performed with a 
Shimadzu RF-5001 PC spectrofluorimeter equipped with a
Hellma Cuv-O-Stir magnetic cuvette stirrer and a Lauda RM6
thermostat. All experiments were carried out in 50 mM Tris
pH 7.5, 100 mM NaCl, 0.1 mM EDTA. Purified EsaR protein
was used for all experiments. Before measuring, the cuvettes
containing 1.5 ml of the samples were equilibrated to 28∞C
and carefully stirred to ensure homogeneity. Spectra between
290 nm and 480 nm were recorded with an excitation wave-
length of 284 nm and a scan speed of 0.8 nm per second. 
To avoid errors caused by sample dilution, the autoinducer
titrations were performed by adding 1 ml of suitable stock
solutions.

Circular dichroism measurements

Measurements were obtained with a Jasco J-600 spectropo-
larimeter equipped with a Lauda RC6 thermostat. All experi-
ments were carried out in 20 mM Hepes pH 7.0, 500 mM
NaCl, 5% glycerol. Spectra from 200 nm to 260 nm were
recorded using a cuvette of 2 mm path length at a scanning
speed of 20 nm per minute. For each temperature, the
cuvette was allowed to equilibrate for 10 min before record-
ing the spectrum.
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