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Invitation to Magnetism and Magnetic Resonance, More on Magnetic Resonance

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: June 15, 2006)

I. SYNOPSIS

Spins in magnetic fields may absorb and/or emit pho-
tons containing energy, which makes them objects for
spectroscopic study. This tutorial discusses one and two
spin systems, their Hamiltonians, and the resultant ab-
sorptions/emissions expected from them.

II. SPLITTING SPIN STATES
A. Single Spin 1/2 Particle Splitting

In the presence of a magnetic field, the energies of the
two spin states split, one being a higher energy and the
other being a lower energy. Technically,

Hop = Uz Hz

where H, is the z-component (usually the sole compo-
nent, since this defines the z-axis) of the magnetic field.
We are assuming the magnetic dipole, i is proportional
to the spin (S or I) i.e.,

ﬁznhf:mg

where k is a constant. Then one would have

Hop =28 H. = —1S.H, = —JS.H,

B. Two Spin 1/2 Particle Splitting

When there are more than one spin, each may be in a
different magnetic environment, so, for a two spin system,
one might have

Hop =~ - (1= o0)B) = i3 - (1 = 02) )

where ¢ is the nuclear magnetic shielding which, coupled
with E, defines a local magnetic field which might be
different from the gross, macro one. This assumes that
the two spins do not interact with each other.

When they do, this equation must be modified:

Hop = —(L—o)iii - B— (1= 0o)is- B— Jiii -y (2.1)

since each magnetic moment (spin) creates a field which
the other sees (and interacts with). Appropriately, this
term is associated with spin-spin coupling!
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III. OPERATOR REPRESENTATION OF SPIN

The basis for dealing with spin is a spin up or a spin
down representation, and there are various flavors for
doing this. In first year chemistry we learn +1/2 and
-1/2 as the quantum numbers associated with spin, and
perhaps later was mentioned that the spin states are often
written as « and 5. We could just as easily write “up”
and “down” for a and (3.

In a matrix representation, the basis set become vec-
tors, which are represented by things such as

()
()

The Pauli Spin Matrices are (written for nuclei, using
I, rather than for electrons, where tradition says, o)
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Note that 12 and I, are simultaneously diagonal, some-

Il
7N
= O
Ow=
N~~~

+

~
7N

|
vz
ov|~
~

~
I
Il
7N
= O
[es) NI
N~~~
|
~
7N
|
wls <
oWl=
~~_

It is a simple matter to show that these matrices correctly
emulate the expected ladder behavior, ie., I.|8 >=
1l > and I_|a >= 1|8 >.

A. Matrix Representation of Two Spin
Hamiltonian

We seek the four dimensional representation for two-
spin systems.

What is the matrix representation of H,,? We start
with the basis set, which consists of 4 functions, |a, a >,
la, B >, |8, >, and |8, >, where the first position
refers to spin 1 and the second refers to spin 2. We have

1

o O

a(l)a(2) = o, a >=

o

a(1)8(2) = |a, 8 >=

SO =O

B(Da(2) = |B,a >=

BBR) = 16,8 >=

/ / /
o= OO

= O OO

thing which is meaningful in quantum mechanics (they
are simultaneously measurable).

Next, we form the Ladder Operators I, and I_ These
are defined in analogy with angular momentum as
Iy =1+,

and

I =1, -,

and we need representations of the overall spin’s compo-
nents to allow us to create the matrix representation of
the Hamiltonian. Such representations would correspond
to a matrix formulation based on the labeling shown:

a, o, ﬁ 57 o /8; 5
a,af 7 ? ? ?
Iwhatever = «, ? ? ? ? (39)
Bal 7] 2] 7|7
ﬂﬁ ? ? ? ?

1. The I, Matrix Elements
We start with I,. We know that the matrix form of I,

has got to look something like

I, —

(3.10)

S O O =
o O O O
o O O O

o O O

-1

indicating that when the two spins are opposed, the total
z-component of spin of the composite, is zero, while when
the two spins are parallel, either "up” or "down”, then
the z-components "add” or ”subtract”. Analytically, one
has

(I, + 1I,) oy >= 1, |la,a > + 1, o, 0 >
which is

1 1
Lo, > +1,,|a,a >= §|a,a > +§|a,a > 1o, a >



where, remember, |one,two > represents the spin state since the “dot” products all vanish unless both “indices”
of spin 1 (left) and spin 2 (right), which here are both  are identical.

9

up”. This is where the 1,1 element in Equation 3.10
comes from. To see this (and how all the matrix elements
{i,1} are obtained), we left “multiply” by

2. The I, Matrixz Elements

< a,aql 1
1 1
<o f| (I |o, a0 > +1, o, a0 >) — ( + ) 0 Next we look at the x-component of spin. We have
< B,a 2 2)10
4.4l 0

AN 7

1 1
(Upy + Ly, o >= 1, o, > + 1, |a, a0 >= §|ﬁ7a > —|—§|a,6 >

(

Left multiplying (as before, we have

< a,qf 0
<o, f 111
’ I, + 1) |, a0 >) — —
Pl AR ST
< 8,8 0

Therefore, we know

0?7?77 1 0
1 999 0 111
Lija,a>= (2 =_ (3.11)
51717 0 211
0?7?77 0 0
1 1
(Ip, + Iy, B >= Iy, |, B> + 1, |, f >= 5\6,ﬂ > +§|a,a >
{
< a,qf 1
< a,f 1[0
’ I, + 1) |, 8>) — =
<6’a|( 1 2)| /6 ) 2 0
<, 8] 1
SO
0177 0 1
1
1077 1l_1]o0 (3.12)
1077 0 210
03577 0 1

1 1
(Ip, + I,)|8,a >= 1,18, > +1,|8,a >= i\a,a > +§|ﬂ,ﬂ >



< a,al 1
< a,p 110
T Iy F 1) B >) 2
S et LB >) = 5 |
< 8,0 1
SO
03 37 0 1
1 ? 1
%00. o1_110 (3.13)
5 007 1 210
03 37 0 1
1 1
(Izl +II2)‘/6’ﬂ>: II1|67ﬁ>+IIQ|Bvﬂ>: §|Oé,ﬁ>+§‘,6,04>
[
< a,qf 0 and
<o, [ 111
’ I, +1, ,a > =
<ﬁ,a|(l+ Dleva>)= o 0110\ /o0 0110\ /0 0
1 1
< 8,0 0 5 00 3 o|l_1f1001 0]_1f1
300 3 0 1001 0 1
and finally, 0ito 1 0110 1 0
0110 ] ) (3'1?)
1l1001 Parenthetically, we calculate the square of this matrix
Iy + 1, = = (3.14) quickly, i.e.,
211001
01140 |
AN 7
0130 0110 1001
1 1 1 1 1
Bl +L,)=] 22 g2 0020110 (3.16)
500 3 500 3 210110
0130 0110 1001
3. The I, Matriz Elements
For I, we have
1 1
(I’yl +I’y2)|0‘7a >= Iy1|a’a > +Iy2|0¢,01 >= _Z|ﬁva > _Z|O‘aﬂ >
Therefore, we know
0o 777
—% 777
1y, = _%‘ 299 (3.17)
0o 777

1 1
(L, + L)l 8 >= I, o, B> 41| B >= =5|8,8 > +5a,a >



SO

1
0 5 77
_QL o ? 7
0 o (3.18)
21 .
0 =L 2?7

1 1
(Iy, + Iy)|B,a >= I, |3, > +1,,, |8, >= 5\04,04 > —§|B,ﬁ >

(

S0
0 & 5 7
_ 1 ?
%z 0 07 (3.19)
-5 0 0 7
0 -k 47
1 1
(Iyl +Iy2)‘ﬂa/8 >= Iy1|67ﬂ > +Iy2|ﬂvﬂ >= +§|avﬂ > +§|6705 >
[
SO Again, we calculate (as we did in Equation 3.15 the
. ) square of this matrix (as we did before, see Equation
0 5 5 0 01 10 3.15) quickly, i.e.,
_1 _
I, = % 0 O +2f _ 1 1 0 01
5 0 0 435 20 -1 0 0 1
0 —3 —3 0 0 -1 -10
(3.20)
J
0 1 10 0 1 10
1\ -1 0 o0 1 -1 0 0 1
I, +1,)° = ®
Ty +11.) <2z> -1 0 01 10 01
0 -1 -10 0 -1 -10
-1 0 0 1 1 00 -1
1 0 -1 -1 0 1 0 11 0
- _ == 3.21
2 0 -1 -1 0 2 0110 (8:21)
1 0 0 -1 -100 1

And we'’re done!
Well, not quite. Let’s verify that the overall spin is
correctly accounted for (using I, in Equation 3.10), using

Equation 3.10 as well as Equations 3.15 and 3.21 i.e.,
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This is not quite what we hoped for. We wanted a
diagonal matrix, which, when coupled with the I, matrix
which we know is diagonal, would allow us to state that it
was possible to simultaneously measure I, and I? in this
two spin system. The complication is the central square
in the I? matrix. We know, from tons of earlier work,
that there exists a set of eigenvectors of the I2 operator
(matrix) which form a representation in which the I? and
I, matrices are diagonal. They are

@1

o
O = = O
O = = O
= o O

(3.22)

cC o o N O o o=
o= = o © o0 oo
o R R O <0 oo
MV O oo H o oo

(

which gives diagonal (eigenvalues) for I? of 2, 2, 2, and
zero. We have re derived the well known fact that the
two spin system devolves down to a triplet and a singlet
state.

1 0 0 0
0 75 - 0
and \{5 and \/? and
0 7 —7 0
0 0 0 1 To see this, we form the abutted matrix of concate-
(3.23)  nated eigenvectors (in normalized form)
J
1 0 0 0 1 0 0 0
1 1 0o+ L 1
0 V2 V2 Ol _p _ V2 V2 (3.24)
0 s 1 0 eig 0L —Lo '
V2 V2 V2 V2
0 0 0 1 01 0 1
so, in normalized form:
1 0 0 0 1 0 0 0
0oL L o 0o +1L L o
T. — V2 V2 . Tt?“anspose — V2 V2 (3 25)
ety 0L —L g » Teig 0oL —L g ’
V2 V2 V2 V2
0 0 0 1 0 0 0 1
and
1 0 0 O 2000 1 0 0 0
1 1 1 1
transpose ® 12 QT... =1 0 V2 V2 0 0110 0 V2 V2 0 (3 26)
9 I 0L —Lo 0110 0L —Lo '
V2 V2 V2 V2
00 0 1 0002 00 0 1
[
10 0 0 2 0 00 and finally
1 1 2
. 0 5 7 0 0 7 00 3.7
0oL 1y, 02 00 (3:27) 2000
V22 V2 0200
00 0 1 00 02 =1 (3.28)
0000
0002



which gives diagonal (eigenvalues) for I? of 2, 2, 2, and 4. 1. in this Representation
zero. Notice that the eigenvectors which are symmet-
ric are associated with the eigenvalue 2, while the anti-
symmetric eigenfunction is associated with the eigenvalue

0. Remember that s(s+1) becomes something like i(i+1) We wish to check the form for I, in this representation,
which yields the value of 2 (above). ie.,
1 0 0 0 1000 1 0 0 0
1 1 1 1
Ttransp088®IZ®Tei — O E ﬁ 0 0 O O O 0 E ﬁ 0 (329)
eig g 0L -1 0 0000 05 —755 0
00 0 1 0001 00 0 1
[
B. Interpretation using Ladder Operators and
We now employ the ladder operators I =1, -1,
1. =1, +1il, We obtain their matrix representations:
0110 0 1 10 0110
1 11 -
It =1+, = Loot + 11— Lo ol =1 0001 (3.30)
211001 200 -1 0 0 1 0001
0110 0 -1 -10 0000
0110 0 1 1 0 0000
_ 111001 11 -1 0 01 1000
Tl 1001 2 -1 0 01 1000 (3.31)
0110 0 -1 -10 0110
[
1. Verifying the Operation of Ladder Operators
We can verify Equations 3.30 and 3.31 thus:
0110 1 0
I'a,a >=1 0001 01_10 =I"a,a>=0
0001 0 0
0000 0 0
0110 0 1
Ifa,8>=1 0001 L =1 0 =llo, a0 >
0001 0 0
0000 0 0



0110 0 1
I|B,a>=1 0001 0 =1 0 = 1o, a >
0001 1 0
0000 0 0
0110 0 0
0001 0 1
IT8,86>=1 =1 =1(lo, B> +|B,a >
e P B || =1tas > 450>
0000 1 0
For I~ we have
0000O0 1 0
_ 1000 0 1
I a,a>=1 =1 =1(la, 8> +|0,a >
| Aol B | =100 > +18,0>)
0110 0 0

0000 0 0 C. Returning to the Main Hamiltonian Problem
Flapgs=1| LOOOHEIT_ 41 O _q5 5
1000 0 0 Since the chemical shifts are assumed different, i.e.,
0110 0 1 (o1 # 02), we need to be very careful in separating the
effects on spin 1 and spin 2.
0000 0 0
Fas=1| L0000 0 _q5 5> |
1000 1 0 1. The I, Matrixz Elements
0110 0 1
In order to interpret the Hamiltonian’s dot product
0000 0 0 I - I, we need to represent the individual spin operators
properly.
I715,6>=1 1000 0 =1 0 =0 Since we already used
1000 0 0
01140 1 0 J
AY 7 AY 7 AY 7
1 1
(Ipy + L), a >= 1 o, > + 1, |a, a0 >= §|ﬁ7a > +§|a,ﬂ >
[
we can now form < «, | (I, )|, & > to obtain the matrix <a,a|(l,)|3, 0 >=< a, a|1|a, a>S— 1
representation of I,,. We would have ' 2 2
1 1
<@, 0|(I2,)[B,8 >=< o, fl5la, 6 >= 5 (3.32)

1
< ﬂva‘(Iﬂﬁlﬂa’a >=< ﬁ,a|§|ﬁ,a >=

< BBl B >=< B, Bl516, 5 >=

and

DN = N =

1 1
< Oé,ﬁ|(.[22)|a,a >=< avﬂ‘ib‘vﬁ >= 5



< aal(ly,)|o, B >=< a0l a0 >=
< B, B|(Ls) |8, >=< , mlw o
< B,a|(l:,)|B3,8 >= <6,al Iﬁ,a>

L\D\)—*w\r—\w\H

Therefore, we have

0010
lezl 0001
211000
0100
and
0100
IM:l 1000
210001
0010

in the two-spin basis set.

(3.33)

(3.34)

(3.35)

One sees that if one adds these two together, one ob-

tains Equation 3.14.

2. The I, Matriz Elements

We can now form < «,al(Iy,)|o, @ > etc., to obtain

the matrix representation of I, . We would have:

< B,al(ly,)|a,a >= </6’,04| \ﬂ,a>——2%
< B,BI(Iy,)|a, B >=< B, 8| \ﬂﬁ>——2%
< a,a|(y,)|B,a>= <aa| |a oz>—2lZ

< a,al(l,)|a,a>=< a,a|%|a,a >=
< Bl(L o, B >=< o, 6] — S >= -
< By al(L:)|B, a >=< ﬂ,a\%lﬂ,a >=
< B,8\(L)|B.8>=< .8 ~ 31,8 >=
< aal(L,) |00 >=< 0,0 o, @ >=
< a,B|(I,)|a, 8 >=< a,ﬂ|%|a,ﬂ >=
< B,a|(I:,)|8,a >=< B,a| — %W,a >= —

< 575|(Izg)|ﬂ7/6 >=< 57ﬁ‘ - %‘ﬂaﬂ >= —

< 0, 811,18, 8 >=< @, Bl |0, f >= 5 (3.36)

Therefore, we have

0 0 160
1 0 0 01

L, =— 3.37
0 =100

in the two-spin basis set. For the other spin, one would
have

< a, Bl(Iy,)|o, a0 >= <aﬂ| Iaﬂ> ~5,
< a,a|(y,)lo, f>= <aa| |aa> %

< B8P0 >=< 5,6l 51100 >= —

< B,0l(1,,)|8,8 >=< ,0l]8, 0 >= . (3.38)

. 2
1.e.,
01 0 O
11 -10 00
I, =— 3.39
0 0-10

These last two matrices, when added together, should
give Equation 3.20.

D. The I, Matrix Elements

Last, and least, we need the diagonal elements of I,.
We have

NN PRI RPNNRND RN RN RN

(3.40)



SO

and

100 0
L o—L]o-to00
2100 1 0
00 0-1
100 0
LoL]or o o
2100 -1 0
00 0 -1

E. The Hamiltonian

10

(3.41)

(3.42)

Having “looked” at I, and the various other spin operators in this new four-dimensional world, we now turn to H,,
and attempt to generate (see Equation 2.1) the 4x4 matrix representation of this operator. We have, for the |a, o >

state:
Hopla,a >= (*%

which is

The last term expands to

1
—S (1= o) Hla,a > -

2

7
2

(1— o)L, H, — 21— o). H, — JI, .fg) o, @ >

1 ..
(1- O'g)in|Oé,Oé > —JI - Lla,a >

F. The Spin-Spin Coupling Term

We will need

0
0
and
0 O
1”1'17“:_% —01 8
0 -1

—J Iy Iy, > +1y, Iy lo, a0 > +1, L |, o0 >) (3.43)
[
010 0100 0001
1
001 1000 _1 0010 (3.44)
000 0001 410100
100 0010 1000
10 0-1 00 0 0 0 1
01 1o 0oo0__1]100-10
00 00 01 41 01 00
00 00 —-10 -10 0 O
0 0 0 -1
1100 1 0
== 3.45
410-10 0 ( )
1 000
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1 0 00 10 0 O 1 0 0 O
110 -10 0 01 0 O 110-1 0 0
I -1, =- = - 3.46
Y2410 0100 00 -1 0 410 0 —-10 ( )
0 0 0 -1 00 0 -1 0 0 01
0001 0 0 0 -1 1 0 0 O
110010 0 0 1 0 0-1 0 0
I, I, +1, I, +1, -1, =~ &) &) 3.47
e e mmem= g o100 0-10 0 00 —10 (3.47)
1000 1 0 0 O 0 0 01
which is
10 00 10 0 0
1fo-1 20 1{o0o-+ L o
I:m IfEQ JrIyl'Iyz +Iz1 Izzzz 0 2 —10 -7 0 %4 _2% 0 (3'48)
0 0 01 0 0 O %1
[
This last form will be just right for combining with the and for I, one has
chemical shift term to form the entire Hamiltonian.
I -1
I, =——
Y 2

G. Returning to the Main Hamiltonian Problem

using Ladder Operators One verifies that the latter two equations are prop-

erly represented by the two matrix forms of I, and I_
So, solving for I, one has (above).
Returning now to evaluating the last term in equation

Io+1
_ =+t 3.43

I
2

_J(Iﬂﬂl 'IEQ + Iyl : Iyz + Izl 'IZQ) |a,a >=

B~

((I+1 +I*1)(I+2 + I*z) - (I+1 - I*l)(IJrz - I*z)) |CY,O£ > +JIZ1122|a’a >

J
= Z (I+l (I+2 + I+1I—2 + 1—1]-‘1-2 + 1—1[—2) ‘Oé,()é >

J
_Z (I+1I+2 - I+1I*2) - 1*1]4“2]*1[*2) ‘Oé?a >
+JI, 1, |a, a0 >

Remember that I o >= 0 and wvice versa for the down operator, leading to

—J(I1 - Is) |o, 0 >= —Ji (18,6 > —116,8 > +1|la,a >)

1
—J(I1 - ) |a,a >= —J11|a,a >

[
1. The Elements Related to |a, o >

The matrix elements are then
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1H, 1
<mMH@Mﬂ>=<—%O—JQ—%Q—Uﬁ)2 - J5 (3.49)
< a, BlHppla, a0 >= 10 (3.50)
< B,B|Hopla,a >=0 (3.51)
< B, a|Hppla, a0 >=0 (3.52)
2. The Elements Related to |a, 8 >
Now we repeat the job based on |a, 5 >. We have
J
Hoplo, B>= (=1(1 — o), H, — 2(1 — o)L, H, — JL - I ) |, B >
op |t - 2 1)Lz 412 2 2)Lzo 1z 1 2 )
¥ 1 ¥ -1 o o
Hop\mﬁ >= —7(1—0'1)HZ —= —7(1—0'2)HZ —JI - Iy |a7ﬁ>
2 2 2 2
so all we need to do is look at the spin-spin coupling term (J).
_‘](I$1 : 1362 + Iyl 'Iyz + Izl : Izz) ‘Oé,ﬁ >=
1
_JZ ((I+1 +I*1)(I+2 + ‘[72) + (I+1 - I*l)(IJrz - I*z)|a7ﬁ > +‘[21122|a7ﬁ >) =
J 1 1
71 I+1I+2+I+1I_2+I_1I+Q+I_1I_2+ 5 75 |Oé,ﬂ>
and resolving the ladder up and down operators one has
(L, + 1y, >=0
(I+1 + I*z)lavﬁ >=0
(I*I + I+2)|O‘7ﬁ >= 1|,6',04 >
(I, +1,)la, 8 >=0
ie.,
J 1 1 J
—y Ul tlnlot I+ Il + (5 ) (—5 ) ) le.f>= -, (1fa>~1]a,5>) (3.53)
Ah.
From these, we obtain the appropriate matrix elements
¥ 1 ¥ -1 J
H,pla, B >= —5(1—01)HZ 3 —5(1—02)HZ 5 |, B > —Z(1|B,a> —1la, 8 >) (3.54)

1H 1
z J*
2 + 4

< @ BlHyla, 8 >= (—3(1=01) = 2(1 =)

(

< a,alHypla, f>=0 < B, B|Hopla, 3>=0
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< B,alHypla, B >= 7J1 Next, we repeat the job based on |3, a >. We have
b O; b 4

Hop|ﬁ,01 >= (_%(1 - 01)121Hz - %(1 - 02)122Hz - J-fl : -fZ) |ﬁ704 >

SO
H, J
< BralHopla, 8 >= (~3(1 =)+ 21— 02)) £ = 5 (3.55)
J
< a, B|Hppla, B >= —|—4 (3.56)
< a,alHypla,8>=0 (3.57)
< B, B|Hoplar, f >=0 (3.58)

IV. REVISITING SPIN-SPIN COUPLING by definition so knowing that
USING AN ALTERNATIVE METHOD

Consider a molecule with two different protons which

interact. The Hamiltonian for the system will be
I+1 = Iﬂﬁl + ZIyl

H=—2(1=o)By- i+ (1= 02)By- L) = (I - ) Ly = Loy =y,
I, =1, +1,,
Here, 01 and o when different, indicate that the two I, =1I,,—,
-2 T2 2

protons have different chemically shifted environments,

a so-called AB system, where if 07 = 05 then we have

an Ay system. The last term, J(I_i . I;) is the spin-spin

coupling term. - is the gyromagnetic ratio, and the term

éo Tis usually set up so that the z-component of B is it follows that
multiplied onto the z-component of the spin, k-T— 1.,

so that we have

=3 =

H = —%(2 — 01— 02)B.y - (I, + L,) — J(I1 - I5)

Iﬂﬂl - 1 (I+1 +I—1)
Now we need to work out the matrix representative of i
this Hamiltonian, diagonalize it, and see what happens Iy, = % (L) = 1)
in the case J = 0 and J > 0, as well as 01 = 02 and 1
0'17502. Iﬂﬁz = 2(I+2+I*2)
1
Iy2 = Z (IJrz 1*2)

V. THE DOT PRODUCT

L-Io=1; I, +1, - I, + 1. -1, (5.1)  so, substituting into Equation 5.1 we have

Now for a two spin system, we are going to use the basis

vectors
13,0 >=

o O = O

|, 0 >=

o O O =
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0 and
0
|Oé,6>— 1 Iz1 'Iz2|ﬂvﬂ>: i|5vﬂ>
0
In order to obtain matrix elements, these results are
and “dotted” (from the left) by basis vectors such as < a, 3],
which then uses the < | and | > contents as indices in the
0 matrix formulation. So, the matrix representative of this
18,8 > 0 part of the Hamiltonian, absent the coupling constant, is
’ 0
1 10 0 0
;L =|0-3 00
all we need do is to investigate how the dot product oper- Ty g =1
ator (and the rest of the Hamiltonian) is going to operate 0 0 04 i

on these, to obtain a matrix representation of the Hamil-
tonian operator in this basis set. The last term of the

dot product part of the Hamiltonian is trivial, i.e.,

1
L, L,|o,a >= Z|a,a >

(where 1 = (%)2) Then we have

VI. LADDER OPERATORS FOR ;- I

It is the use of the ladder operators which requires
some finesse. The residual part of I; - Is which requires

4 use of these ladder operators is:
I J|ﬁa>=—ﬁﬁa> 1 1
= z2l 4" Z(I“Fl +I*1)'<I+2 +I*2)_Z(I+1 —[,1)-(I+2—I,2>
1 and we will attempt operating with this operator on
I, L,|a, (B >= 71|a,ﬂ > la, a0 > iee.,

1 1 1
Z (I+l +I—1) ’ (I+2 +I—2) |0¢,a >— Z (I+1 +I—1) : (‘Oé3/8 >) - Z (|ﬂaﬂ >)
1 1 1
U =) (o f>) = =5 (~ (18,6 >)) = 51,6 > (61)
[
Therefore which is certainly an exciting result.
0?77?7?
0?77?7?
Il‘l 'Iwz + Iyl 'Iy2 = 0?2
[N
AY 7
1 1 1
Z (Lrl +I*1) : (I+2 +I*2) ‘O‘7ﬁ >— 1 (I+1 J’_I*l) |a7a >— Z|ﬁ>a >
1 1 1
_Z (I+1 - 1*1) ’ (IJrz - I*z) |a’ﬁ >— _Z (I+1 - I*l) IO‘?O‘ > _Z (—|ﬁ,0& >) (62)
[
Therefore Continuing, we have

Iy I, + 1, -1, =

o O O O
o O O



1 1 1
Z (I+1 +I—1) : (I-‘rz +I—2) |/6)105 >— Z (I+1 +I—1) |ﬂ7ﬂ >— Z|O‘7ﬂ >
1
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1 1
71 (I+1 - I_l) ' (I-‘rz - I—Q) |570‘ >— 71 (I-h - I_l) |/B76 >— 71 (7|O‘7ﬁ >) (63)
[
Therefore
0007
0017
I$1'I$2+Iy1'11125 0 % (2) ?
0007
1 1 1
Z (I+1 +I—1) ! (I+2 +I—Q) |576 >— Z (I-H + I—1) |ﬂaa >— Z|O‘aa >
1 1 1
71 (I+1 - I*l) : (I+2 - I72) ‘5;6 >— *Z (I+1 - I*l) |ﬂva >— 71 (7|O‘70‘ >) (64)
[
1
Therefore Hy o = —7y <(1 - 01)305 —(1—=09)By= (6.6)
0000 1
1 Hzs=—~v|—-(1—-01)Byg=+ (1 —02)By= 6.7
Ly Lyl dy=| 2020 se = (T ooy 2)0) 07
0500 1
0000 Hyy=—v (—(1 - 01)305 —(1- 02)Bo> (6.8)
Therefore, the total dot product matrix representation
becomes
1 the Hamiltonian becomes,
7 0 00
- o _1 1
L-I,= 0 A 0
0 5 —-70 5
00 0 % Hii—4 0 0
. H= 0 Ha+g =3
and defining 0 _% Hss +
1 1 0 0 0
Hl,l = — ((1 — 0‘1)305 + (1 — 0’2)B02) (65) (69)



	University of Connecticut
	DigitalCommons@UConn
	6-15-2006

	Invitation to Magnetism and Magentic Resonance, More on Magnetic Resonance
	Carl W. David
	Recommended Citation



