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I. SYNOPSIS

The radial part of the Schrodinger Equation for the
H-atom consists of functions related to Laguerre polyno-
mials, hence this introduction

II. INTRODUCTION

The radial equation for the H-atom is [1]:
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which we need to bring to dimensionless form before pro-
ceeding (text book form). Cross multiplying, and defin-
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ing € = —F we have
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and where we are going to only solve for states with € > 0,
i.e., negative energy states.

Defining a dimensionless distance, p = ar we have
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so that the equation becomes
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Now, we choose a as which is
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so To continue, we re-start our discussion with Laguerre’s
differential equation:
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To show that this equation is related to Equation II we
differentiate Equation 2.1
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Doing it again (differentiating), we obtain
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which finally becomes
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Generalizing, we have
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III. PART 2
Consider Equation IT
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if we re-write it as
d? d (+1 2uZe? p
L 49 _r —
[repg o | 91+ 25 R - Rp) =0
(3.2)
(for comparison with the following):
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Notice the similarity if p ~ x, i.e., powers of x, ™! etc.,
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which we now substitute into Equation 3.3 to obtain
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We force the asymptotic form of the solution y(x) to
be exponentially decreasing, i.e.,
y = e 2 2xk=1/2y (g (3.7)

and “ask” what equation v(z) solves. We do this in two
steps, first assuming
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and then assuming that w(x) is
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So, assuming the first part of Equation 3.7, we have
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IV.

Now we let

w = e % ?p(x)



(as noted before) to obtain Substituting into Equation 3.8 we have:
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so, v solves Equation 2.5 if @ = n. Expanding the r.h.s. and
of Equation 4.1 we have
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0, v solves Equation 2.5 if @ = n. Expanding the r.h.s. and
of Equation 4.2 we have
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dry* where y* and R(p) are solutions to Laguerre’s Equation
dzk of degree n. Wow.



V. PART 3

Now, all we need do is solve Laguerre’s differential
equation Equation 2.1 (we drop the superscript star
now):
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where 7 is a constant (to be discovered). We let
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or, in general,
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as j — oo. This is the behaviour of y = e*, which would

overpower the previous Ansatz, so we must have trunca-

tion through an appropriate choice of v (i.e., v = n*).
VI.

If v were an integer, then as j increased, and passed
into v we would have a zero numerator in the expression
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and all higher a’s would be zero! But
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so, from Equation 3.6 we have
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and therefore Equation 3.3 and its successors tells us that
using Equation 6.1 we have
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which is the famous Rydberg/Bohr formula.
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