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Abstract
The theory of adverse selection in insurance markets has been enormously in-

fluential among scholars, regulators, and the judiciary. But empirical support for
adverse selection has been much less persuasive, and several recent studies have
found little or no evidence of such selection in insurance markets. ”Propitious”
(advantageous) selection offers an alternative mechanismthat is consistent with
these empirical findings. Like adverse selection, the theory assumes that insureds
have an informational advantage over insurers. However, propitious selection re-
lies on the plausible assumption that risk aversion is negatively correlated with
the riskiness or probability of loss across insureds - the more risk-averse are also
the more careful, and hence are least likely to experience a loss. Theorists have
recognized the possibility of equilibria in which highly risk averse insureds with
a low probability of loss are willing to remain in the market,despite an actuarially
unfair premium. But these conclusions derive from models with only two types of
insureds. We use a simulation model that allows for flexible correlation between
risk aversion and riskiness across a continuum of types, with plausible distribu-
tions of risk aversion and riskiness. We find that propitiousselection alone can
not preserve equilibrium in insurance markets. When insureds have moderate un-
certainty about their own riskiness, however, equilibriumdoes become possible,
albeit with considerable selection.

We thank seminar participants at the University of Connecticut,Wesleyan Uni-
versity and UC Berkeley Law School for useful comments. We would also like
to thank Tom Baker, Set Chandler, Dhammika Dharmapala, Kathleen Segerson,
Dan Silverman, Christian Zimmermann and especially Jill Horwitz for comments
and encouragement. Any remaining conceptual or other errors are our fault. Part
of this work was completed while Siegelman was visiting at the University of
Michigan Law School (Spring 2006).



I Introduction

Rothschild and Stiglitz’s (1976) model of adverse selection in insurance markets helped usher

in the economics of asymmetric information and constitutes one of the triumphs of modern

economic theory. More recently, however, a growing literature (for example, Chiappori and

Salanié, 2000; Cawley and Philipson, 1999; Cardon and Hendel, 2001; Siegelman, 2004, pro-

vides a survey) suggests that empirical support for the importance of adverse selection is

quite weak: while nobody denies that adverse selection can (and does) sometimes occur, it

turns out that actual instances of any significance are surprisingly difficult to demonstrate.

The absence of more widespread evidence for adverse selection constitutes a significant anom-

aly for a theory that seems so compelling when taken on its own terms.

The significance of adverse selection is of more than merely theoretical interest, however.

As Siegelman (2004) demonstrates, the threat of adverse selection has colored judicial and

regulatory decisions in several areas of insurance law and adjacent fields. A concern for

adverse selection has led courts to permit practices that would ordinarily present serious

anti-trust concerns (Ocean State Physicians Health Plan, 1988), has motivated Congress to

permit restrictions on insureds’ ability to switch insurers (Rovner, 1988, p. 191), and has

explicitly prompted several state legislatures to require insurers to provide mental health

coverage (for example, 1973 Mass. Acts 1427 (West Supp. 1998)). Details of these and

numerous other examples of adverse selection’s influence on various public policy debates

can be found in Siegelman (2004).

Motivated by the lack of fit between theory and data, and building on recent theoretical

insights, this paper simulates an alternative model of insurance markets, based on “propi-

tious” or favorable selection and calibrated with plausible parameters from the literature.

Hemenway (1990) coined the phrase “Propitious Selection” to describe this phenomenon,

and since he has priority in time, we adopt his terminology. Under this theory, it is the

best - rather than the worst - risks who find insurance to be most attractive, and this may
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permit insurers to offer a pooled rate to both good and bad risks without fear that the good

risks will drop out of the market. We conclude that propitious selection - taken by itself - is

unlikely to explain the ability of insurance markets to continue functioning in the presence of

asymmetric information favoring insureds. Based on a range of reasonable parameter values,

our findings reveal that propitious selection can not prevent the unraveling of insurance mar-

kets. Our model does suggest, however, that giving insureds relatively modest uncertainty

about their own probability of loss can stabilize insurance markets, even though insureds

still know more about themselves than their insurers do.

A. What is Propitious Selection?

Recent scholarship (Hemenway, 1990; De Meza and Webb, 2001) has broached a theo-

retical explanation for the absence of significant adverse selection pressures, suggesting that

insurance markets are characterized by a different selection mechanism than is contemplated

in the Rothschild/Stiglitz model. The theory of “Propitious” or “Advantageous” selection

posits that insureds differ not only in their probability of loss (as in Rothschild and Stiglitz),

but also in their aversion to risk. Moreover, the theory assumes that riskiness and risk

aversion are negatively correlated - risk averse individuals take more care, pose a lower risk

of loss to their insurers, and value insurance coverage more than those who are less cau-

tious and more prone to experience losses. If “belt-and-suspenders” types place such a high

value on the reduction in risk provided by insurance that they are willing to pay more-than-

actuarially-fair premiums to achieve the certainty that insurance provides, they may not

drop out of insurance pools even when they are cross-subsidizing their riskier compatriots.

This kind of selection, based on both risk aversion and riskiness, is favorable (“propitious”)

for the insurer, since it means that the best risks prefer to buy insurance, rather than the

worst.

There is abundant anecdotal evidence for the existence of propitious selection, and several

empirical studies yield results that are consistent with this story. For instance, De Meza and
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Webb (2001) observe that while 4.8 percent of all U.K. credit cards are reported lost each

year, the loss rate for those cards that are insured against loss is only 2.7 percent. This

suggests that it is the lowest, rather than the highest risks who buy insurance. Hemenway

(1990) provides several other suggestive examples:

• Motorcyclists without helmets tend disproportionately to be uninsured, despite their

obviously higher risk of needing expensive coverage (and even though insurers didn’t

ask about motorcycle use);

• Drivers of rental cars who decline to purchase insurance are less likely to wear seatbelts;

• AAA members drive newer cars than average (and are thus presumably less likely to

need free towing).

Davidoff and Welke (2005) find that reverse mortgage holders are less, rather than more,

likely to move out of their homes as compared to conventional mortgagees. Their preferred

explanation is that the more risk averse are both more likely to purchase insurance and

to take independent precautions to prevent the occurrence of the insured-against event. A

similar story is offered by Finkelstein and McGarry (2003) to explain why it is the relatively

healthy - rather than the relatively sick - who preferentially purchase long term care insur-

ance.

More recently, Fang, Keane and Silverman (2006) offer a more-nuanced empirical account

of selection in the market for Medigap insurance. They conclude that although insurance

purchasers are in fact more risk-averse and healthier than non-purchasers - as propitious

selection models predict - the explanation for this correlation is not that risk-aversion leads

to both precautionary behavior (and thus lower riskiness) and greater demand for insurance.

Rather, they emphasize selection on factors other than risk aversion. Specifically, they focus

on“cognitive ability,” which is empirically associated with both increased demand for insur-

ance (because the more sophisticated are better able to understand the need for insurance)

and better health status (because the more sophisticated take more precautions). Because
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of a positive correlation between cognitive ability and risk-aversion, however, risk aversion

and riskiness will be negatively correlated, even though this correlation does not in fact drive

insurance demand.

Some empirical studies do find a positive correlation between riskiness and risk aversion.

Cohen and Einav (2005), for example, use data on deductible choice and subsequent claim-

ing behavior to draw inferences about underlying riskiness and risk aversion parameters.

They infer a positive correlation between riskiness and risk aversion among those purchasing

automobile insurance. However, they point out that this seems counter-intuitive, and sug-

gest it may be explicable by confounding with income or because ostensibly more “careful”

driving behavior may make one more accident-prone (e.g., by driving too slowly). Although

some of their conclusions contradict the propitious selection model, they do find that “unob-

served heterogeneity in risk preference is more important than heterogeneity in risk” (p. 37).

Of course, even in the presence of adverse selection, death spirals are far from inevitable;

insurance markets with modest amounts of asymmetric information have apparently oper-

ated for a considerable time without degenerating. Siegelman (2004) provides evidence on

this point. Cutler and Zeckhauser (1998) offer a compelling example of a death spiral in

action.

Regardless of their specific conclusions, all these studies give the strong impression that,

at least in some circumstances, a very different selection mechanism is operating in insurance

markets from the one classically postulated in economics.

B. Risk Aversion Across Physical and Financial Risks

Technically, “risk aversion” is a term of art that should properly be used (at least by

economists) only to describe utility functions characterized by a decreasing marginal utility

of wealth. While the term is often used loosely to describe attitudes towards both physical
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and financial risks, there is no a prior logical reason why the same utility functions that ex-

hibit diminishing marginal utility of wealth should also show a preference for physical safety,

job security, and so forth. In other words, there is essentially nothing in economic theory

that explains the unlikeliness of a risk averse snow boarder or a risk-loving accountant. As

long as someone holds a diversified portfolio of assets and buys actuarially fair insurance,

economists properly deem him or her risk averse, even if he is a thrill-seeker in every non-

financial context.

Several recent studies offer direct empirical support for the existence of a negative corre-

lation between (physical) risk-taking and (financial) risk aversion. Measures of financial risk

aversion from experimental and survey data generally correlate well with aversion to phys-

ical risks such as driving behavior, choice of occupation, and so on (Dohmen, et al, 2006;

Guiso and Paiella, 2001; Barsky, et al, 1997; Cohen and Einav, 2005, are exceptional in that

they infer a positive correlation between riskiness and risk-aversion). This psychologically

plausible relationship between aversion to physical and financial risks underlies the propi-

tious selection model. A different take on the problem is offered by De Donder and Hindriks

(2006), who demonstrate that propitious selection, standing alone, may be insufficient to

generate a negative relationship between riskiness and insurance purchases. When moral

hazard is combined with propitious selection, they show that the resulting equilibrium will

only be characterized by a negative correlation between risk and insurance demand under

special circumstances.

Despite the wealth of empirical and anecdotal evidence, however, direct tests of propitious

selection are extremely difficult to carry out, for several reasons. Insurance data are gener-

ally proprietary and are difficult to obtain in many settings. Combining insurance purchase

data with direct information on risk preferences and risky behavior is more difficult still.

Moreover, given the intractability of theoretical models of insurance markets with multiple

sources of heterogeneity (Landsberger and Meilijson, 1999) simulation is an obvious research

strategy. Chandler (2001) is the only other simulation study of insurance markets; his work
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is an inspiration for this study, but does not consider the possibility of propitious selection.

II The Model

A. Demand for Insurance

Our strategy is to examine the possibility of a propitious selection equilibrium using

a simulation model. We begin with potential insurance purchasers (consumers) who are

heterogeneous in both their probability of loss and their risk aversion. Each agent i (i

=1, ...,n) knows his type (his riskiness and his risk aversion) and chooses the amount of

insurance purchased for a given premium per dollar of coverage so as to maximize a von

Neumann-Morgenstern expected utility function:

max
Xi

EUi = piUi(W − L − πXi + Xi) + (1 − pi)Ui(W − πXi) (1)

s.t. 0 ≤ Xi ≤ L

where π is the insurance premium per dollar of coverage (henceforth we’ll refer to it as

premium), pi is the probability of loss for the ith individual and Xi is the insured amount for

the ith individual. Agents are identical with respect to their wealth, W , and the amount of

loss, L, suffered in the case the insured event occurs. Further, the loss amount is independent

of Xi, i.e. we do not allow for moral hazard.

We assume throughout that 0 ≤ Xi ≤ L. The first inequality is uncontroversial. The

second arises from the fundamental indemnification principle in insurance law, under which

no insurer is obligated to pay more than the size of the actual loss. See, e.g., Keeton (1971,

p. 88):

“Insurance is aimed at reimbursement, but not more. The principle that insurance contracts

shall be interpreted and enforced consistently with this objective of conferring a benefit no greater
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in value than the loss suffered [is known as] . . . the principle of indemnification. . . . Any opportu-

nity for net gain to an insured through the receipt of insurance proceeds is inconsistent with the

principle of indemnity.”

B. Parameterization

We assume that individuals are identical in terms of their wealth and possible loss if

the unfavorable state of the world realizes. We do not allow for heterogeneity in wealth

and loss for a variety of reasons. First, we would like to control for the wealth effect on

our results. Second, we would like to bypass one of the caveats of expected utility theory.

Theoretical work has pointed out to the limitations of expected utility theory in providing a

realistic account of risk tolerance over moderate stakes (Arrow, 1971). Rabin (2000) shows

that plausible risk aversion over moderate stakes implies implausibly high risk aversion over

high stakes as the concavity of the utility function implies a very fast decline in the marginal

utility of wealth. While these results pertain to an individual’s risk attitudes over different

levels of lifetime wealth or different stakes, the implication for our model is that it is hard to

justify using the same functional form for the utility of wealth for all individuals. However,

we test the sensitivity of our results to the magnitude of the loss.

We use the lifetime wealth as a measure of wealth. Data from the Panel Study of Income

Dynamics (PSID) for the latest available year, 2003, is used to compute the lifetime wealth

per capita. PSID is a longitudinal survey of a representative sample of US families conducted

annually since 1968 (biannually since 1997) by the University of Michigan. The sample con-

sists of three independent samples in 2003: a cross-sectional national sample drawn by the

Survey Research Center (SRC); a national sample of low-income families from the Survey

of Economic Opportunity conducted by the US Census Bureau; and a sample of immigrant

families added in 1997. As we are interested in a representative sample, we only use obser-

vations for the families that were sampled by the SRC in 1968. Our sample comprises of

5,158 families.
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The measure of family wealth provided by the PSID is the sum of the net value of all

asset holdings (assets minus liabilities). Assets include farm or business owned, cash assets,

real estate other than home, stocks, motor vehicles owned, private annuities or IRAs, home

equity, and other assets owned. The wealth per capita is obtained by dividing family wealth

by the number of family members where adults are assigned a weight of 1 and children a

weight of 0.5.

As the distribution of wealth is very skewed, we use the median as a proxy for the per

capita wealth. The median wealth per capita in our sample is $31,333, implying a lifetime

wealth of approximately $1 million for an interest rate of 3 percent.

We make several assumptions about the distribution of two key parameters: the coeffi-

cient of risk aversion, r, and the probability of loss, p. Although we determine these two

parameters simultaneously, as described below, it is convenient to discuss them separately.

1. Coefficient of Risk Aversion

We employ the widely used Constant Relative Risk Aversion (CRRA) utility function of the

form (2),

Ui(W ) =











W 1−ri

1−ri
for ri 6= 1

ln(W ) for ri = 1

(2)

where ri is the Arrow-Pratt’s coefficient of constant relative risk aversion for individual i.

On theoretical ground, Arrow argues that it should be around 1. Empirical results are not

unanimous as to the mean, variance, and even range of the coefficient of (constant relative)

risk aversion. For example, based on consumption and stock return data, Hansen and Sin-

gleton (1982) find that the CRRA is between .35 and 1 while based on life insurance data
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in the Health and Retirement Study, Halek and Eisenhauer (2001) find that the CRRA is

between 0.029 and 680.83.

We assume that r is randomly distributed and follows a (generalized) beta distribution

with parameters α = 2 and β = 7. This yields an average coefficient of relative risk aversion

in our sample of 2.2, and a standard deviation of 1.3. Beta distribution is chosen because

first, it has a range bounded between 0 and 1 that can be rescaled and second, it can ap-

proximate any unimodel distribution which is bounded inside a range. Figure 1 plots the

distribution of r’s in our simulation. Roughly 25 percent of our agents have coefficients

greater than 3, while 3 percent have coefficients greater than 5.

These figures are in line with plausible estimates based on experimental studies. We rely

on recent experimental work, especially Holt and Laury (2002) and Dohmen et al (2005),

to suggest a plausible distribution for the coefficient of risk aversion in the population. Al-

though Dohmen et al do not give precise summary statistics for the implied coefficients of

risk aversion in their sample, their Figure 7 shows that the distribution is skewed, appears

to have a mean of about 2, and has relatively few individuals with r’s as high as 5 or 6. Holt

and Laury’s results for the treatment with the highest real payoffs reported in their paper

suggest that 64 percent of population have a coefficient of relative risk aversion between 0.15

and 0.97 and less than 10 percent are risk seekers. However, they do not provide lower and

upper bounds of the CRRA. We exclude risk seekers but our results are not sensitive to this

restriction. We set the upper bound of the CRRA at 10 as Gollier (2001, p. 31) among

many others points out that a CRRA coefficient in excess of 10 “seems totally foolish,” since

it implies excessive conservatism relative to the behavior of most individuals.

2. Probability of Loss

It is even more difficult to obtain the distribution of the probability of loss from empirical

studies. Actuarial studies are concerned not only with the likelihood that the insured event
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will occur but also, with the magnitude of the loss. In addition, the likelihood that the

insured event will occur varies across different insurance markets.

We assume that the probability of loss, p, follows a beta distribution with α = 2 and β

= 18. The mean of p is 0.1 and the standard deviation is 0.065. The average probability

of loss is consistent with the accident rate for homeowners insurance, which according to

data of the Insurance Information Institute, 2003, quoted in Cutler & Zeckhauser (2004), is

9.3 percent. We use a slightly higher mean to account for the fact that accidents tend to

be underreported particularly in cases where the damage does not exceed the deductable.

However, we extensively test our results for sensitivity to the chosen distribution of p.

The probability density function of p that we chose is shown on Figure 2. The distribu-

tion is skewed: roughly 40 percent of individuals have a p that is larger than 0.1. As with

r, each consumer receives a once-and-for-all realization of p, drawn from this distribution,

so that before the simulation begins, all consumers know all relevant parameters in their

insurance purchase decision (the premium, π, is described below).

3. Correlation Structure

The essence of the propitious selection model that is at heart of this exercise is a neg-

ative correlation between r and p. However, there is no empirical evidence on their joint

distribution and the marginal distributions of these variables and their correlation do not

provide enough information to derive their joint probability density function (p.d.f.). Using

copulas - functions that account for the dependencies among random variables - we can

model the (exogenous) correlation between the CRRA parameter and the probability of loss

ithout knowing their joint p.d.f. The procedure entails sampling from a joint standard nor-

mal distribution with the desired correlation structure to obtain marginal distributions for

r and p. We then transform these marginal distributions from standard normal to the forms

described above. For example, to transform Y ∼ N(0, 1) into Ŷ ∼ beta distribution with
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parameters (α,β), we find y and ŷ such that Prob(Y ≤ y) = Prob(Ŷ ≤ ŷ): that is,

∫ y

−∞

1

σ
√

2π
e

−(t−µ)2

2σ2 dt =
∫ ŷ

0

Γ(α + β)

Γ(α)Γ(β)
tα−1(1 − t)β−1dt (3)

Since Pearson’s coefficient of correlation (ρ) will not be invariant to the transformation

of the joint normal distribution into the respective beta distributions for r and p, we choose

to use the non-parametric Kendall’s τ as a measure of correlation, where τr,p = f(ρ), and ρ

= τr,p for 0 and 1.

C. Supply of Insurance and Market Equilibrium

The supply side of the market consists of a single representative firm that has a zero

cost of providing insurance and behaves competitively, setting premiums so as to earn a zero

profit (if that is possible) in equilibrium. The market ceases to exist whenever there is no

premium that yields zero profits for the insurer.

We recognize that this modeling strategy represents a departure from the traditional

theoretical focus on the definition of strategic equilibria, some of which permit pooling in

insurance markets with asymmetric information, as in Wilson (1977), Riley (1979), or Gross-

man (1979). Insurers do, in fact, use historical data to set premiums, however; and they

probably make only very crude guesses as to how rivals will react to the introduction of new

policies or changes in rates. Since our model permits only a single contract, a separating

equilibrium a la Rothschild and Stiglitz is not possible. Our test is thus a crude one - can

propitious selection prevent the market from unraveling in a death spiral, or can a single

premium be sustained despite the heterogeneity of insureds?

The insurance company is risk-neutral and maximizes its expected profit, Π:
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Π = πE[X] − E[pX] (4)

= π

∫ rmax

rmin

∫ 1

G(r,π,W,L,X)
X(p, r)f(p, r) dpdr −

∫ rmax

rmin

∫ 1

G(r,π,W,L,X)
pX(p, r)f(p, r) dpdr

The first term in the above equation is an expression for the (stochastic) gross revenue of

the insurer while the second term accounts for the (stochastic) gross payout when the insur-

ance event occurs. The range of the coefficient of risk aversion is given by (rmin,rmax) and

f(p,r) denotes the joint density function of the probability of loss and the coefficient of risk

aversion. The lower bound of the probability of loss of those who purchase insurance is found

where individuals are indifferent between purchasing insurance and staying uninsured. It is

a function of the coefficient of risk aversion, wealth, possible loss, and the insured amount,

G(r,π,W ,L,X).

Given consumer preferences, the joint distribution of the probability of loss and the co-

efficient of risk aversion, the insurance premium per dollar of coverage that the insurer will

charge in equilibrium, π∗, is given by:

π∗ =

∫ rmax

rmin

∫ 1

G(r,π∗,W,L,X)
pX(p, r)f(p, r) dpdr

∫ rmax

rmin

∫ 1

G(r,π∗,W,L,X)
X(p, r)f(p, r) dpdr

(5)

The problem does not have a close-form solution. Even for the simplest case of full in-

surance contract and zero correlation between the probability of loss and the coefficient of

risk aversion it is not possible to obtain an analytical solution:

π∗ =

∫ rmax

rmin

∫ 1

G(r,π∗,W,L)
pf(p, r) dpdr

∫ rmax

rmin

∫ 1

G(r,π∗,W,L)
f(r, p) dpdr

(6)
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Analytical solution of the problem (if possible at all) would require unrealistic simplifica-

tions of the joint probability density function of p and r as well as the utility function that

would render any analytical results worthless.

However, Figure 3 provides an intuition into the solution of the problem when the insurer

offers only a full insurance contract. The figure is a scatter plot of the probability of loss and

the coefficient of risk aversion drawn from their joint probability density function described

in the previous section. The green (dash-dotted) line is the insurance premium per dollar

of coverage charged by the insurance company. “Bad” risks or individuals with probability

of loss equal or greater than the per dollar premium charged by the insurer would purchase

full insurance at the fair (or better) premium regardless of their coefficient of risk aversion.

“Good” risks or individuals with a probability of loss lower that the per dollar premium

would purchase full insurance as long as the premium does not exceed their certainty equiv-

alent. On average, the insurer realizes a loss from bad risks, the region to the right of the

premium.

The red (solid) line is the lower bound of the probability of loss of good risks who buy

insurance at unfair premium. It is found where individuals are indifferent between purchas-

ing insurance and staying uninsured for given premium, wealth, loss, and risk aversion. For

the preferences that we assume, the lower bound of the probability of loss is given by:

p =
(W − πL)1−r − W 1−r

(W − L)1−r − W 1−r
(7)

On average, the insurer realizes a profit from good risks, the region bound between the

lower bound of the probability of loss and the premium. For the insurer to break even, there

must be sufficiently many good risks in the region bound between the red and green lines to

offset the loss realized from bad risks in the region to the right of the green line.
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We assume that the insurer offers only a full insurance contract. Thus, individuals choose

between buying full insurance and bearing the risk. However, our results are robust to this

assumption.

D. Methodology

The basic algorithm for computing insurer profitability starts by assuming a very low

premium, say π1 = 0.01. Given that premium, the model calculates which insureds are

willing to purchase insurance. This generates both revenues and payouts for the insurance

company, and allows a computation of profits. The premium is then incremented by a small

amount. At the new premium, π2, a second profit computation is undertaken, based on the

participation decisions of insureds at the new premium level. This traces out a function

giving a unique profit level for every choice of premium. The insurance company then picks

the premium that yields zero profit (consistent with the participation decisions of all individ-

uals), if such a premium exists. If no such premium exists, then the market is unsustainable

due to adverse selection. All computations were done in MATLAB.

III Results

A. No Correlation Between r and p

Propitious selection operates - if at all - by way of a negative correlation between riski-

ness and risk-aversion. However, we begin by testing the most favorable case for the adverse

selection/“Death Spiral” story, by assuming that p and r are uncorrelated. A graphical de-

piction of initial conditions on the demand side of the market is provided by Figure 4, which

plots a 3-D histogram of the distribution of r and p, assuming zero correlation between these

two variables.
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Market equilibrium - or rather, the lack thereof - is depicted in Figures 5 and 6. As can

be seen in Figure 5, profits are negative for any premium the insurer chooses below 0.41.

At that premium, however, essentially no insureds are in the market - Figure 6. Recall that

the average probability of loss is only 10 percent, so only the most spectacularly risk-averse

(and/or those with a very high probability of loss) would purchase insurance at a premium

so high.

Figure 7 illustrates the selection process at work by graphing the average coefficient of

risk aversion, r, among insurance purchasers as a function of the premium charged, π. Hold-

ing p constant, an increase in the premium should cause the least risk averse to drop out of

the market, so the average level of r among remaining market participants should increase

with the premium, as Figure 7 shows: the coefficient of risk aversion among those remain-

ing in the market rises from just over 2, at the lowest premium, to just under 3 when π = 0.4.

Somewhat counter-intuitively, the cross-sectional standard deviation of r does not change

much as the premium increases, even though one would expect the selected group to be more

homogenous. To see why this occurs, it is helpful to think about two groups of insureds for

any given premium, as depicted in Figure 8. Group 1 consists of those for whom the premium

is actuarially fair (or better). Group 2 contains those for whom the premium is actuarially

unfavorable (but still preferable to going without any insurance at all). When the premium

is very low, most insureds fall in group 1. As the premium rises, the proportion of all in-

sureds who are in group 1 falls, while the proportion (and, for a time, the absolute number)

in group 2 rises. The overall average risk aversion coefficient of those in the market is a

weighted average of those in group 1 and group 2, with weights equal to the relative size of

the two groups. Since group 2’s weight increases as the premium gets higher, and since this

group has the higher average r, the average risk aversion of those in the market increases as

well. However, since the standard deviation of r within Groups 1 and 2 is roughly the same

(both are roughly equal to the population standard deviation of r), higher premiums do not

have much of an effect on the standard deviation of r.
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If we look instead at the relationship between the probability of loss and the premium,

we see the expected pattern, as Figure 9 illustrates. Raising the premium tends to drive out

those with the lowest probability of loss (holding r constant), increasingly leaving the mar-

ket to those with the highest loss probability. Thus, average p among market participants

increases with the premium level.

In sum, our initial results confirm the old news that adverse selection can be a problem:

there is no pooling equilibrium when insureds know their own riskiness and risk aversion but

the insurer doesn’t. This is true even when there is heterogeneity in both riskiness and risk

aversion, as long as the two are uncorrelated.

B. Negative Correlation Between r and p

We are now in a position to consider the effects of allowing for correlation between r and

p, as the Propitious Selection story suggests. Does such correlation permit the existence of a

zero profit equilibrium when none was possible without it? Figures 10-12 demonstrate that

the answer is clearly “No.” Figure 10 plots the joint histogram of r and p for the extreme case

of τr,p = -1 - perfect negative correlation. A comparison with Figure 4 reveals that the dis-

tribution now looks significantly different. Nevertheless, Figures 11 and 12 show that there

is still no zero-profit equilibrium - or indeed, any premium that generates positive profits -

even when we require that the most risk-averse agents also have the lowest probability of

loss. At a premium of 0.35, the market has essentially dried up, but profits are still negative.

Somewhat anomalously, the relationship between the premium and the average coeffi-

cient of risk aversion for those purchasing insurance now becomes negative, as demonstrated

by Figure 13. That is, as the premium increases, the average risk aversion of those buying

insurance actually falls. The explanation is that the probability of loss seems to dominate the

risk aversion effect in generating insurance demand. When r and p are strongly negatively
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correlated, it is predominantly the most risky (rather than the most risk-averse) who remain

in the market as the premium increases. With τr,p = -1, the stayers are of largely those with

very high p’s and correspondingly low levels of risk-aversion. Since the departures are low-p,

high-r, the average r of those who remain actually falls.

Because of the dominance of the probability of loss, the relationship between premiums

and loss probabilities remains as it was when τr,p was zero. An increase in the premium

causes those with the lowest probability of loss to drop out of the market, as Figure 14

demonstrates. In sum, propitious selection does not appear to be strong enough to dominate

the force of adverse selection when insureds know their own probability of loss.

D. Robustness

We tried a variety of specifications for the p.d.f. of the probability of loss. We picked up

17 data points at equal intervals for the mean and standard deviation of p in the interval

[0.4;36] and we examined the results for all possible combinations of these two variables (note

that some combinations cannot be generated with a beta distribution, e.g. low mean and

high standard deviation).

Figure 17 shows the percentage of population purchasing insurance for different combi-

nations of p and r and zero correlation. Zero values of the percentage of population buying

insurance correspond to those combinations of p and r that could not be generated with beta

distribution. The percentage of population purchasing insurance or the size of the market is

negatively related to the variance of p and positively related to its mean (this result holds

true for negative correlation between p and r as well). In fact, the highest percent of market

participation (35.5 percent) is achieved for the combination of the highest mean and the

lowest standard deviation that we allow for: µp = 0.36 and σp = 0.04 (alpha = 51.48 and

beta = 91.52). When there is high market participation, the insurer is able to break even at

premiums close to the average probability of loss.
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At first glance it may appear that our results imply the existence of equilibria with con-

siderable market participation even when p and r are uncorrelated. However, these equilibria

are associated with distributions of p which are nearly symmetric with high mean and low

variability. The corresponding break-even premia are high as well. Such distributions do

not seem to adequately describe individual riskiness as well as premia observed on insurance

markets.

Once we allow for a negative correlation between p and r, our results are very robust.

Even for distributions of p with high mean and low variability we obtain very low market

participation (3.1 percent market participation is the highest that we obtain for the admis-

sible regions of p and r).

Interestingly, positive correlation between p and r induces more market participation

than negative correlation (see Figure 18). When the correlation is negative the most risk

averse individuals are clustered at low p while when the correlation is positive bad risks are

also very risk averse. For premiums below the average p the insurer realizes a sizable loss

from bad risks and there are too few good risks (even with negative correlation) to outweigh

the loss. For premiums equal or greater than the average p good risks when the correlation

is positive are more risk averse than good risks when the correlation is negative and thus,

more agents buy insurance at unfair premiums, which enables the insurer to break even

at lower premiums (and induces higher market participation). However, these results are

susceptible to the same criticism as the results obtained for zero correlation between p and r.

Allowing for different means and variances of r as well as a weaker correlation between r

and p does not alter the results. Neither does allowing agents to purchase partial insurance

(which is optimal for risk averse agents, whenever premiums are unfair) or allowing for risk-

seeking agents.
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Table 1: Sensitivity results for different losses
Loss as 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of W
Break-
even 34 24 18 15 13 12 12 11 11 10

premium
% of

population 1% 9% 28% 46% 61% 71% 79% 85% 90% 97%
buying

insurance

However, the size of the loss relative to wealth does have an effect on the equilibrium

(see Table 1). For very large losses, there is sufficient demand for insurance that the market

can exhibit a zero profit equilibrium with significant market participation. But this is true

regardless of the strength of the correlation between r and p, so the result - while perhaps

interesting - has nothing to say about propitious selection.

In conclusion, we tried numerous alternative specifications to check the robustness of our

findings that propitious selection does not facilitate the existence of equilibrium. In none

of them were the results qualitatively different. It does not appear that propitious selection

- at least as we have modeled it - is capable of explaining the apparent absence of adverse

selection uncovered in many recent studies of insurance markets.

In the next section, we use our model to suggest an alternative story that may offer more

promise as an explanation of the empirical findings.

C. Errors in Estimating p

Models of adverse selection typically assume that insureds know their own probability of

loss (while insurers know only the average loss rate for the pool of insureds). But in most
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cases, this is unlikely to be an accurate description of reality. For example, an individual

insured may know her driving style, while her insurance company may not. But there is a

long cognitive distance between knowing one’s driving style and a precise estimate of one’s

probability of having an accident. Svenson (1981), for instance, finds that 46.3 percent of

drivers surveyed believed themselves to be among the top 20 percent safest drivers.

Indeed, it is plausible that an insurance company’s actuarial prediction of the likelihood

of an accident (based on observable factors such as age, sex, and miles driven) is more ac-

curate than an individual’s estimate, even when the insured has more detailed information

about himself than his insurer has. Grove and Meehl (1996) survey 136 studies in which the

judgments of trained “experts” were pitted against a simple statistical or actuarial model

that was used to make predictions in a variety of contexts ranging from criminal recidivism

to college performance. In all cases, the experts had access to at least as much information as

the actuarial prediction model (often, more). The “model” was typically much cruder than

a regression. Yet the experts essentially never outperformed the model, while the model

predicted better than the experts in almost half of the cases. Of course, this will not always

be true: an individual who knows that he has a fatal disease is an obvious position to select

against his insurer, but this is an unusual scenario.

We therefore investigate a variation of the model above in which insureds use an estimate

of the probability of loss, rather than the actual probability, in formulating their insurance

purchase decisions. To do this, we simply give each insured i a noisy but unbiased estimate

of his own probability of loss, pi,
1

p̂i = pi + ε (8)

1We draw random numbers from a standard normal distribution. Then, for each agent we account for
estimation errors by transforming the N(0,l) into a normal distribution with mean equal to pi and standard
deviation equal to the desired estimation error. As the probability of loss cannot be negative, we then
truncate the transformed distribution to belong to the interval [0,1].
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We then re-run the simulation, assuming zero correlation between r and p and replacing

pi by p̂i in (1). Results are described in Figures 15 and 16.

Taken together, these two figures suggest that introducing a relatively modest amount of

noise or cognitive friction into insureds’ estimates of their own probability of loss can indeed

stabilize the market. As the spread in the ε distribution increases, the insurer’s break-even

premium falls, and the number of people in the market increases. (The technical explanation

for this effect turns out to be surprisingly complicated, and is described more fully below.)

With a standard deviation of 0.05 - one half the average probability of loss, and a variance

of only 0.0025 - the insurer could break even at a premium of 20.5 percent (Figure 15), while

still attracting nearly 15 percent of insureds. That is true even though this premium charged

is twice the population average probability of loss. This is not an entirely happy scenario,

however, since those buying insurance represent only a small percent of the population as a

whole. The market is considerably diminished.

To get the break-even premium down to 12.5 percent, insureds’ estimates must be con-

siderably more noisy. We require a standard deviation in ε of 0.12 (a variance of 0.014),

which is nearly the same size as the average probability of loss in the population as a whole.

This does, however, raise the number of insureds to about 9,000, or 45 percent of the total

eligible population.

The explanation of why introducing errors in estimating p leads to a viable market is

complicated because there is no clear-cut relationship between the premium charged by the

insurance company and the probability of loss of those who purchase full insurance. For a

given premium, π, the introduction of errors in estimating p can lead to any one of seven

alternative effects. We can classify these effects into three groups:

1. Errors may cause some agents for whom the premium is fair or better (pi ≥ π) to
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underestimate their actual probability of loss.

a. They may not purchase full insurance, depending on their ri. In this case, risky

agents who would have bought full insurance if they knew their actual probability

of loss leave the pool of insureds. The pool of insured improves (from the insurer’s

perspective). The larger the variance in the estimation error, the more favorable

this effect for the insurer.

b. They may still purchase full insurance if they are sufficiently risk averse. This

results in no change in the pool of insureds.

c. Some agents for whom the premium is fair, may overestimate their actual proba-

bility of loss. This leaves no change in the pool of insureds.

2. Some agents for whom the premium is unfair may underestimate their probability of

loss.

d. If they were purchasing full insurance at unfair premium, they may stay in the

pool of insureds if they are sufficiently risk averse and/or the estimation error is

low. Again, this causes no change in the pool.

e. If they were purchasing full insurance at an unfair premium, they may exit the

market. This worsens the pool of insureds.

3. Finally, some agents for whom the premium is unfair may overestimate their probability

of loss.

f. If they were not purchasing full insurance, they may do so, improving the pool of

insureds.

g. If they were purchasing full insurance, there will be no change in the insurance

pool.

In sum, two trends work in favor of the insurance company: agents with pi < π tend to

purchase full insurance because they overestimate their actual probability of loss and thus
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are willing to purchase full insurance at an actuarially unfair premium. And agents with

pi > π do not purchase full insurance because they underestimate their riskiness and thus,

do not purchase insurance at a fair or better premium. Both trends stabilize the market

as they improve the pool of insureds: more prudent agents join the pool, while some risky

agents exit the pool.

Our behavioral story relies on random errors in estimating p, errors that, in the end, have

the net effect of diluting the informational asymmetry in favor of insureds, albeit through a

more complicated mechanism than one might have expected. The behavioral story proposed

by Fang, et al is somewhat related. Their stabilizing mechanism revolves around a three-way

correlation among risk-aversion, riskiness and cognitive ability. While the cognitively-able

also turn out to be risk-averse, the health/risk-aversion relationship is essentially epiphenom-

enal for insurance demand: it is not that the healthy are more risk averse that explains their

greater insurance demand, but rather, that the healthy are more “wise,” and this wisdom

leads to both better health and more willingness to pay for insurance.2 Our model does not,

of course, incorporate any such mechanism.

IV Conclusion

What have we learned from all this? The obvious conclusion is that propitious selection does

not on its own seem capable of preventing the evaporation of insurance markets, given what

we take to be plausible parameters for risk aversion, and the probability and size of loss.

While this mechanism seemed to offer an compelling explanation for the apparent absence of

adverse selection, the propitious selection story can not be verified by our simulation model.

Of course, it is always possible that we’ve chosen inappropriate parameters, but our robust-

ness checks lead us to be reasonably certain that our results are not merely a function of

our initial assumptions. We are left with a puzzle: studies of insurance demand increasingly

2With apologies to Benjamin Franklin, one might say that “to be wise makes one healthy (by being early
to bed and early to rise), and wealthy. Or at least well-insured.”
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suggest that something like propitious selection is at work, and survey/experimental data

seem to confirm a crucial requirement of propitious selection - that more financially risk

averse people are also more careful and have lower probabilities of loss. In spite of that,

however, the theory seems not work.

The theoretical insights of De Donder and Hindriks (2006) - who show that propitious

selection can only yield a viable insurance market when additional restrictions are imposed -

offer one way to resolve this conflict. The empirical work of Fang, et al (2006) offers another

possible resolution. A third possibility is that if we dilute the informational advantage that

insureds have over their insurers, we can diminish the severity of adverse selection. Individ-

ual’s errors in estimating their own p allow for the existence of a larger market, with lower

premiums. But the degree of cognitive friction required to make an appreciable difference to

market equilibrium is not trivial, and it is hard to say whether the errors needed to stabilize

the market are of a plausible magnitude. There is some irony in the fact that cognitive errors

lead to better outcomes by forestalling some of the adverse selection that would otherwise

occur when insureds know “too much” about themselves. In a somewhat loose sense, this

is an illustration of the theory of the second best. Adding an additional “distortion” (here,

cognitive error) can actually be welfare-enhancing if it corrects a pre-existing market failure

of some sort (here, adverse selection).

In light of our findings, it seems that further research in this area is needed. We continue

to believe that the central problem that motivated this study - the lack of empirical support

for widespread adverse selection - remains as an important empirical anomaly in search of

an explanation.
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Figure 3: Scatter diagram of p and r. The green (dash-dotted) line shows the per dollar premium
charged by the insurer and the red (solid) line shows the lower bound of p for those who buy insurance
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Figure 4: Joint histogram of p and r
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Figure 5: Insurer profitability as a function of premium level, π
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Figure 6: Percentage of population buying insurance, as a function of premium level, π
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Figure 7: Average coefficient of risk aversion among insureds, as a function of premium charged,
π
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Figure 8: Percentage of population buying insurance as a function of premium charged, by whether
insured’s probability of loss exceeds the premium
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Figure 9: Average probability of loss among insureds, as a function of premium charged, π
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Figure 10: Joint histogram of r and p for τ = -1
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Figure 11: Insurer’s profit as a function of premium charged, π (Perfect negative correlation
between r and p
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Figure 12: Percentage of population buying insurance, as a function of premium charged, π, for
perfect negative correlation between r and p
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Figure 13: Average coefficient of risk aversion among those buying insurance as a function of
premium charged (perfect negative correlation between r and p)
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Figure 14: Average probability of loss among those purchasing insurance, as a function of premium
charged, π (perfect negative correlation between p and r)
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Figure 15: Insurer’s break-even premium, as a function of the standard deviation in insureds’ error
in estimating p, (τr,p = 0)
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Figure 16: Percent of population buying insurance as a function of the standard deviation in
insureds’ error in estimating p, (τr,p = 0)
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Figure 17: Percent of population buying insurance, as a function of the mean and standard devia-
tion of p, (τr,p = 0)
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Figure 18: Percent of population buying insurance, as a function of the mean and standard devia-
tion of p, (τr,p = 1)
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