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Figures and Figure Legends 
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Figure 1. A) Line drawings of AK301 and its derivatives. ChemDraw 15.0 (PerkinElmer) 

was used to draw and format images. B) Table comparing the EC50 and percent of cells 

arrested in G2-M by AK301 and each of its derivatives. EC50 concentrations were 

determined by cell cycle analysis of HCT116 colon cancer cells as previously described 

[8]. Maximal arrest is the percentages of cells arrested in G2-M when HCT116 cells 

were treated with compound overnight at a concentration at least five times the 

derivatives EC50. An ideal compound should have a low nano-molar EC50 and produce 

the largest maximal arrest. MJB6, the most potent derivative, has both the lowest EC50 

and produces the largest maximal arrest.  
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Figure 2. A) Dose response curve for MJB6. Plotted points were obtained by cell cycle 

analysis of HCT116 colon cancer cells. Non-linear regression curves were determined 

using the analyze function of GraphPad Prism 6. B) Dose response curves of AK301 

and the three most potent derivatives. Over the titration concentration range AK301 fails 

to reach its maximal arrest. In addition, no arrest effect is observed for AK301 between 

85 and 65nM, the EC50 range for the three derivatives. All three derivatives reach their 

maximal arrest around 100nM, greater than half the value of AK301’s reported EC50 in 

HCT116 cells. MJB6, MJB11, and MJB27 are clearly more effective at inducing mitotic 

arrest in HCT116 cells.  
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Figure 3. Dose response for MJB67 between the concentrations of 0 and 8uM. Data 

was determined by cell cycle analysis of HCT116 cells treated overnight with MJB67, 

the BODIPY derivative. Even at 8uM, MJB67 is unable to elicit an arrest response that 

is more significant than the control. These data indicate that MJB67 is not biologically 

active. Future competition experiments with MJB6 and/or other derivatives will be 

conducted to confirm binding to clathrin.  
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Figure 4. A) Methodology for affinity chromatography conducted with the biotinylated 

derivative, MJB28. RIPA buffer was used to prepare whole cell extracts from HCT116 

colon cancer cells. Biotin or MJB28 was incubated with avidin agarose for 1 hour at 

room temperature. Cell extract was then mixed with the biotin/MJB28-avidin column 

overnight at 4oC under slight agitation. Columns were then packed and washed with 10 

columns of Wash Buffer. The columns were then suspended in Elution Buffer and 

heated to 90oC for ~10 minutes to release bound protein. Eluted proteins were then 

analyzed by SDS-PAGE. B) SDS-PAGE gel produced from an affinity chromatography 

experiment. SYPRO Ruby Red Gel Stain was used to visualize proteins. Proteins bands 

present in the MJB28 column, but not the biotin column, were sent for MS analysis at 

the Keck Biotechnology Resource Laboratory at Yale University. The arrow indicates 

the band excised that produced clathrin-heavy chain (CHC) as the top hit after MS 

analysis. C) Western blot confirming presence of clathrin-heavy chain in elution fraction 

from MJB28 column. Clathrin was also detected in the flow through and was for the 

column. This indicates that either the column is being saturated or there is not enough 

time allowed for maximal protein binding. IR antibodies were used to probe proteins 

after transfer to nitrocellulose paper. Blots analyzing using the Odyssey® CLx.  

 



	  
76 

 

 

 

Figure 5. A) HCT116 colon cancer cells were treated with differing concentrations of 

MJB6 for 30 minutes at 37oC followed by incubation with Tfn conjugated to Alexa Flour 

488 for 30 minutes at 37oC. Tfn was visualized by confocal microscopy. In untreated 

cells Tfn accumulated at the perinuclear region, consistent with other studies (48). 

When cells were treated with MJB6 the Tfn signal became dispersed, failing to localize 

at the perinuclear region. Signal appeared to accumulate around cell membranes. The 

color key and 20 nm bars are shown. B) Quantification of Tfn fluorescence using 

ImageJ’s particle analysis plugin compared to the dose response curve for MJB6. Tfn 

internalization mirrors the dose response curve for MJB6.  
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Figure 6. MJB31-FITC staining compared to clathrin immunofluorescent staining in 

HCT116 colon cancer cells. The color key for the immunofluorescent image and 20 nm 

bars are shown. The MJB31-FITC probe appeared to accumulate at the perinuclear 

region of the cell. White arrows on left-most panel indicate concentrated areas of 

MJB31-FITC. The right-most panel shows immunofluorescent staining using a clathrin 

heavy chain antibody. Clathrin also accumulate at the cell’s perinuclear region (white 

arrow). The similarities in staining suggest that MJB31-FITC stains clathrin.  
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Figure 7. Immunofluorescent staining of clathrin (top) and TACC3 (bottom) in untreated 

and MJB6 treated HCT116 colon cancer cells. Color keys and 20 nm bars are shown. In 

untreated cells clathrin localizes to the mitotic spindle and K-fibers of dividing cells as 

well as the cell membrane of interphase cells. TACC3 also localizes to the mitotic 

spindle, however it is not visible in interphase cells. Upon treatment with MJB6, clathrin 

staining is delocalized from the mitotic spindle and appears to gather along the 

membrane (as seen with Tfn after MJB6 treatment). Clathrin’s overlap with β-tubulin 

also decreased when compound was present. TACC3 was less affected by MJB6. A 



	  
79 

focus of TACC3 was present in treated cells that localized heavily with β-tubulin. 

Clathrin and its interactions with β-tubulin appear to be more affected by MJB6 than 

TACC3 suggesting disruption of clathrin, and not TACC3, is the mechanism by which 

the AK301 family of compounds induces mitotic arrest.   
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