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Rotations, Precursor to Rotational Spectroscopy, and Group Theory

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: August 4, 2006)

I. SYNOPSIS

Rotations, in two and three dimensions, forms the basis
for parts of group theory as applied to chemistry, as well
as the basis upon which angular momentum and rigid
body rotations are treated. This elementary discussion
introduces the concepts (hopefully) gently.

II. PLANAR ROTATIONS

The consequences of studying rotations are so enor-
mous that one can not begin to outline all of the sub-
jects which will touch this one. Not only will we deal
with rotational spectroscopy and rotational fine structure
of other spectroscopies, but we will deal with magnetic
resonance, group theory, spin, etc., all tied to concepts
discussed here.

We start with a two dimensional rotation study in
Cartesian coordinates, i.e., one in which the set {x,y}
is transformed into the set {x’,y’}, where both sets are
Cartesian, but one set is rotated relative to the other.
x’ is perpendicular to y’, just as x is perpendicular to y.
The two coordinate systems share a common origin, so
one is twisted relative to the other, that’s all.

We will see from the Figure 1 that

x′ = x cos α + y sinα (2.1)

and

y′ = −x sinα + y cos α (2.2)

by virtue of elementary trigonometry. This rotation is
known as a radius preserving transformation, since the
distance from the origin to P(x,y) is the same as the
distance from the origin to P(x’,y’). It is common to
write this transformation set of equations as(

x′

y′

)
=

(
cos α sinα
− sinα cos α

)
⊗

(
x
y

)
which compresses the notation into a column vector be-
ing equal to the product of a transformation (rotation)
matrix and another column vector.

To see where this comes from, consider the simultane-
ous equations

x′ = r cos β = r cos(γ − α) (2.3)
y′ = r sinβ = r sin(γ − α) (2.4)

which becomes

x′ = r cos(γ − α) = r cos γ cos α− r sin(−α) sin γ (2.5)
y′ = r sin(γ − α) = r sin γ cos α + r sin(−α) cos γ (2.6)

where we emphasize that the sine is odd, while the cosine
is even. Remembering what r cos γ and r sin γ are, we
have

x′ = x cos α + y sinα (2.7)
y′ = −x sinα + y cos α (2.8)

These last two equations are identical to Equations 2.1
and 2.2.

We will see that this compression of notation extends
to 3 and beyond dimensions, allowing a compact nota-
tion to standard for an enormous number of individual
(similar) equations.

When we have two rotations (see Figure 2), one after
the other, we would have x go to x’ (using an angle α1)
and then go to x”(using another angle, relative to x’, of
α2), we can write this as(

x′

y′

)
=

(
cos α1 sinα1

− sinα1 cos α1

)
⊗

(
x
y

)
(2.9)

(
x′′

y′′

)
=

(
cos α2 sinα2

− sinα2 cos α2

)
⊗

(
x′

y′

)
(2.10)

which means that there is an overall rotation from x’ to
x” directly,(

x′′

y′′

)
=

(
cos α3 sinα3

− sinα3 cos α3

)
⊗

(
x
y

)
(2.11)

where α3 is the overall angle of rotation. What is the
relation between α1, α2, and α3?

Substituting Equation 2.9 into Equation 2.10, and
equating the results to Equation 2.12 we obtain(

cos α1 sinα1

− sinα1 cos α1

)
⊗

(
cos α2 sinα2

− sinα2 cos α2

)
=

(
cos α3 sinα3

− sinα3 cos α3

)
(2.12)

which defines matrix multiplication.

(
x′

y′

)
=

(
cos α1 sinα1

− sinα1 cos α1

)
⊗

(
x
y

)
=

(
x cos α1 + y sinα1

−x sinα1 + y cos α1

)
(2.13)
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which means that we can substitute the primed values
into the second rotation(

x′′

y′′

)
=

(
cos α2 sinα2

− sinα2 cos α2

)
⊗

(
x′

y′

)
(2.14)

giving

(
x′′

y′′

)
=

(
cos α2 sinα2

− sinα2 cos α2

)
⊗

(
x cos α1 + y sinα1

−x sinα1 + y cos α1

)
=

(
(x cos α1 + y sinα1) cos α2 + (−x sinα1 + y cos α1) sinα2

(x cos α1 + y sinα1)(− sinα2) + (−x sinα1 + y cos α1) cos α2

)
(2.15)

which means that there is an overall rotation from x’ to x” directly,(
x cos α1 cos α2 + y sinα1 cos α2 − x sinα1 sinα2 + y cos α1 sinα2

− sinα2x cos α1 − y sinα1 sinα2 − x sinα1 cos α2 + y cos α1 cos α2

)
which we rewrite as (

x(cos α1 cos α2 − sinα1 sinα2) + y(sinα1 cos α2 + cos α1 sinα2)
x(− sinα2 cos α1 − sinα1 cos α2)− y(sinα1 sinα2 − y cos α1 cos α2)

)
(2.16)

which is, using the sum and differences of sines and cosines of angles (DeMoivre, again),(
x cos(α1 + α2) + y sin(α1 + α2)
−x sin(α1 + α2) + y cos(α1 + α2)

)
=

(
x cos α3 + y sinα3

−x sinα3 + y cos α3

)
which works, since α1 + α2 = α3 in actuality. We have therefore shown that Equation 2.10 and Equation 2.11 are
equivalent to (

x′′

y′′

)
=

(
cos α2 sinα2

− sinα2 cos α2

)
⊗

(
x′

y′

)
=

(
x(cos α1 cos α2 − sinα1 sinα2) + y(sinα1 cos α2 + cos α1 sinα2)

x(− sinα2 cos α1 − sinα1 cos α2)− y(sinα1 sinα2 − y cos α1 cos α2)

)
(2.17)

III. THREE DIMENSIONAL ROTATIONS

When we turn to three dimensions (and beyond) things
get harder to visualize. Consider an arbitrary rotation
in 3-dimensional space, as shown in the accompanying
figure: This corresponds to rotating first about the z-
axis, and then rotating about the x-axis (for example).
Notice the “and then” part of the last sentence. It is
a dead giveaway that the order in which we do these
rotations is important

“We are entering the region of non-
commutative algebra, where the order of op-
erations becomes important. 7 times 6 is the
same as 6 times 7, but rotate about x and
then rotate about z is not, repeat not, the
same as rotate about z and then rotate about
x.”

In our example, we are doing two compounded planar
rotations to achieve an overall three dimensional rota-

tion, i.e., first, we rotate about the z-axis, so the rotation
matrix for this rotation is cos ϑ1 sinϑ1 0

− sinϑ1 cos ϑ1 0
0 0 1


which operates on a column vector of coordinates:

 x
y
z


resulting in a new column vector of transformed coordi-
nates:  xi

yi

zi


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which is usually written as a single equation: xi

yi

zi

 =

 cos ϑ1 sinϑ1 0
− sinϑ1 cos ϑ1 0

0 0 1

⊗

 x
y
z

 (3.1)

One sees explicitly that zi = z, i.e., the “1” in the 3,3 po-
sition of the rotation matrix guarantees that the rotation
about the z-axis preserves values of z!

Let us now rotate from the new coordinate system, this
time about the xi-axis: x′

y′

z′

 =

 1 0 0
0 cos ϑ2 sinϑ2

0 − sinϑ2 cos ϑ2

⊗

 xi

yi

zi

 (3.2)

Obviously (substituting Equation 3.2 into Equation 3.1),
this is

 x′

y′

z′

 =

 1 0 0
0 cos ϑ2 sinϑ2

0 − sinϑ2 cos ϑ2

⊗

 cos ϑ1 sinϑ1 0
− sinϑ1 cos ϑ1 0

0 0 1

⊗

 x
y
z


Notice the ordering, i.e., the first rotation is “to the right” of the second rotation in terms of the ordering of the
rotation matrices. The overall rotation, taking the matrix product explicitly, is x′

y′

z′

 =

 cos ϑ1 sinϑ1 0
− cos ϑ2 sinϑ1 cos ϑ2 cos ϑ1 sinϑ2

sinϑ2 sinϑ1 − sinϑ2 cos ϑ1 cos ϑ2

⊗

 x
y
z



Notice the lack of main diagonal symetry here.

IV. EQUIVALENT SINGLE ROTATION AXIS

Is there an axis about which this composite rotation
could have taken place in one fell swoop? Physically, we
know this is true, there does exist such an axis, but the
question is, where is it?

The answer is, that points on this axis do not change
their coordinate values during the rotation, i.e., xa

ya

za


when substituted into the overall rotation equation, is
the same before and after rotation.

 xa

ya

za

 =

 cos ϑ1 sinϑ1 0
− cos ϑ2 sinϑ1 cos ϑ2 cos ϑ1 sinϑ2

sinϑ2 sinϑ1 − sinϑ2 cos ϑ1 cos ϑ2

⊗

 xa

ya

za



Take as an example the vector (1,2,3), i.e.

 1
2
3


and let us rotate by 30 degrees about the z axis. We
obtain

 xi

yi

zi

 =

 cos 30 sin 30 0
− sin 30 cos 30 0

0 0 1

⊗

 x
y
z



which is

 xi

yi

zi

 =


√

3
2

1
2 0

− 1
2

√
3

2 0
0 0 1

⊗

 1
2
3

 →


√

3
2 + 1

− 1
2 +

√
3

3



rotating 30o about the new x-axis, so

 x′

y′

z′

 =

 1 0 0
0

√
3

2
1
2

0 − 1
2

√
3

2

⊗


√

3
2 + 1

− 1
2 +

√
3

3


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which is
√

3
2 + 1√

3
2

(
− 1

2 +
√

3
)

1
2

(
− 1

2 +
√

3
)

+ 3
(√

3
2

)
 =

 1.866
1.067
3.214


The overall rotation matrix is

 1 0 0
0

√
3

2
1
2

0 − 1
2

√
3

2

⊗


√

3
2

1
2 0

− 1
2

√
3

2 0
0 0 1

 =


√

3
2

1
2 0

−
√

3
4

3
4

1
2

1
4 −

√
3

4

√
3

2

 =

 0.866 0.5 0
−0.433 0.75 0.5
0.25 −0.433 0.866



If one diagonalizes this last matrix, one obtains three
eigenvalues, two of which are imaginary pairs, one one of
which is “1”, within numerical accuracy vide supra. The
eigenfunction associated with that latter eigenvalue is 0.6987

0.1872
0.6987



and when one operates on this eigenfunction wtih the
original matrix one obtains

 0.866 0.5 0
−0.433 0.75 0.5
0.25 −0.433 0.866

⊗

 0.6987
0.1872
0.6987

 =

 0.6987× 0.866 + 0.5× 0.1872
−0.433× 0.6987 + 0.75 ∗ 0.1872 + 0.5× 0.6987
0.25× 0.6987− 0.433× 0.1872 + 0.866× 0.6987



which is, lo and behold, 0.6987
0.1872
0.6987


Here is some Maple code which accomplishes the diag-

onalization discussed above.

restart;

with(linalg):
t1 := evalf(sqrt(3)/2);
t2 := evalf(sqrt(3)/4);
A := array([[t1,1/2,0],[-t2,3/4,1/2],[1/4,-t2,t1]]);
evalf(Eigenvals(A));
vecs := evalf(eigenvectors(A));
vlist := vecs[3];
s := vlist[3];



5

FIG. 1: A planar rotation, and the relationship between the
projections of the radius onto the coordinate systems before
and after rotation.
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FIG. 2: Two compounded planar rotations
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FIG. 3: Two compounded planar rotations about different
axes giving rise to a three-dimensional rotation.
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FIG. 4: After the first rotation (30o).
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