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Abstract 

Neural control of newborn crying has typically been considered to originate primarily in 

the lower brain centers, although support for this assumption is limited.  To address this, 

the present study manipulated newborn infants’ perceptual experience during a cry bout 

through use of delayed auditory feedback (DAF).  Atypical cry productions during DAF 

would suggest that newborn crying is under higher levels of cortical control than 

previously assumed.  Infants’ spontaneous crying was recorded for 2 minutes at 4 weeks 

of age (n=16) and again at 8 weeks of age (n=17) using an ABA design, alternating 

synchronous feedback with DAF.  Standard repeated-measures 2 (age) x 3 (condition) 

ANOVAs found DAF effects for mean proportion of energy in the lower frequency bands 

and its variability and an interaction effect for variability in cry duration.  Multilevel 

modeling, however, revealed several more DAF effects, again for mean proportion of 

energy in the lower frequency bands, but also for other acoustic variables such as 

maximum frequency, duration, and variability in the mean F0.  Future research using 

DAF or other manipulations is needed to further clarify the neurophysiological processes 

that control newborn cry production and to examine the links between early cry 

production and later developmental outcomes.   
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Effects of Delayed Auditory Feedback on Young Infants’ Crying 

 Crying among newborn infants should be regarded as a “complex, dynamic 

feedback system” (Lester, 1985, p. 12); as infants produce cries through the coordination 

of laryngeal and respiratory muscles, they simultaneously receive auditory and 

kinesthetic feedback.  In other words, crying is a “movement made audible” (Hopkins, 

2000, p.182).  Much research has focused on newborn cry production or adult perception 

of newborn cry sounds, but little research addresses how the newborn, as the producer 

and perceiver of its own cry sounds, might experience the cry bout.   

Newborn cries have typically been considered reflexive, driven by the respiratory 

system and cranial nerves, although direct tests of this assumption are limited.  One way 

to consider the influence of higher brain areas would be to manipulate infants’ perceptual 

experience during a cry bout, for example, with delayed auditory feedback (DAF).  

Atypical cry production under conditions of DAF would suggest that crying is more than 

a simple reflex.  Indeed, it is possible that the perception-action coupling that infants 

receive during cry bouts may facilitate later language development, a link made in a few 

previous studies that used early cry acoustics to predict later developmental outcomes 

(i.e., Karelitz, Fisichelli, Costa, Karelitz, & Rosenfeld, 1964; Lester, 1987; Wermke, 

Leising & Stellzig-Eisenhauer, 2007).  The purpose of the present study is to examine 

whether and how newborn crying is disrupted under conditions of DAF.  If newborn 

crying is under greater cortical control, acoustic features influenced by glottal muscles, 

such as mean fundamental frequency (F0) and its variability, along with acoustic features 

influenced by supraglottal muscles, such as energy in selected frequency bands, should be 

most affected during conditions of DAF. 
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Delayed Auditory Feedback Effects on Speech and Crying 

 Speech is a complex act involving coordination and execution of specific muscles 

in the vocal tract, during which the auditory feedback must be processed.  There are 

disagreements in the literature as to whether or not vocalizations operate under a closed-

loop auditory feedback system before language develops.   

Vocal productions should be measurably affected by an unexpected change in 

auditory feedback if a closed-loop auditory feedback system is in place.  DAF has been 

used in several studies to examine the role of auditory feedback during speech and non-

speech vocalizations.  DAF has also been incorporated in speech therapy for individuals 

with severe stuttering, as it trains them to become less reliant on auditory feedback and 

more focused on the motor movements involved in producing speech (Ryan & Van Kirk, 

1974; Van Borsel, Reunes, & Van den Bergh, 2003).   

 In the adult literature, DAF during speech typically results in more speech errors, 

increases in sound pressure, and slower rates of speech (Fairbanks, 1955; Yates, 1963).  

However, results are not as straightforward among studies with children or infants, 

making it difficult to speculate about the neurological processes involved in early and 

later speech production.  Chase, Sutton, First, and Zubin (1961) showed DAF to be more 

disruptive to speech among 7- to 9-year old children when compared to 4- to 6-year-old 

children.  In a study conducted by Yeni-Komshian, Chase, and Mobley (1968), DAF 

affected vocalizations made by the older children (28-35 months) significantly more than 

the younger children (21-26 months).  Belmore, Kewley-Port, Mobley, and Goodman 

(1973) demonstrated that DAF effects were most consistent among the older infants (12-

19 months), in that duration and peak sound pressure level increased under DAF, while 
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DAF effects were less consistent, but generally measurable, among younger infants (6-10 

months).   Furthermore, Belmore et al. (1973) found that the children affected most by 

DAF were more linguistically advanced in the sample, suggesting that reliance on 

auditory feedback enhances speech production, which is line with the results from Chase 

et al. (1961) and Yeni-Komshian et al. (1968).   

In contrast to these previous results, MacKay (1968) found higher rates of speech 

interference during DAF among younger children (4-6 years) compared to older children 

(7-9 years) and adults (20-26 years).  They also found that longer delay periods increased 

speech errors among the youngest children.  Further, DAF effects were most pronounced 

among those with slower speech rates, which were more prevalent among younger ages 

(4 to 9 years).  Ratner, Gawronski and Rice (1964) found more speech errors during DAF 

among younger children (6-10 years) compared to older children (12-13 years), but only 

when exposed to several trials of DAF, as there were no age differences in speech errors 

after the participants’ initial exposure to DAF.  Such discrepancies in the literature may 

be at least partially reconciled if children were grouped by language level rather than age 

and if methodologies between studies were more consistent (Belmore et al., 1973).  

The idea that linguistically advanced speakers would be less reliant on auditory 

feedback with experience is supported by much of the stuttering research.  This research 

shows that DAF facilitates speech fluency for stutterers (Chase, Sutton, & Rapin, 1961; 

Soderberg, 1969).  In fact, DAF is used frequently in speech therapy to reduce stuttering 

in patients (Ryan and Van Kirk, 1974; Van Borsel et al., 2003).  Thus, it seems that the 

role of auditory feedback in speech production is not entirely understood at this point.  

Are individuals more or less reliant on auditory feedback as they gain experience using 
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their own language?  Although much of this research acknowledges the large variability 

in responses to DAF, these studies rely on group-level responses to DAF, ignoring 

individual-level data, which may explain the discrepancies observed in the field, at least 

to some degree, as it is possible that auditory feedback reliance is highly variable within 

individuals and does not necessarily follow a linear increase over development.     

Do prelinguistic infants rely on auditory feedback when producing non-speech 

vocalizations, such as crying, fussing, and babbling?  In order to address this question, 

Cullen, Fargo, Chase, and Baker (1968) measured changes in newborn infants’ cry 

duration, maximum sound pressure level, and cry pause time during periods of 

synchronous and delayed auditory feedback (200 msec).  Ten infants (aged 1-7 days) 

were tested twice in the order of synchronous feedback followed by delayed feedback, 

and 6 infants were tested twice in the reverse order.  Results showed some DAF effects, 

including a decrease in cry duration during DAF, regardless of test-order, and a decrease 

in amplitude during DAF, but this effect was only for infants tested in the DAF-

synchronous order.  The lack of acoustic parameters gathered during this study, along 

with the order effects observed, makes it uncertain as to whether or not DAF effects are 

very robust in newborns.   

 Animal models can be used to illustrate the role of auditory feedback in the 

absence of language, and such results could yield a better understanding of the role of 

auditory feedback in non-linguistic vocalizations, such as infant cry production.  Cynx 

and Von Rad (2001) found DAF effects during songs produced by zebra finches, with 

effects such as increased amplitude of the bird songs and more variation in songs 

(consisting of changed syllable order, perseverated or more introductory notes, 
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incomplete songs, and starting songs in novel places) when compared to songs produced 

during simultaneous auditory feedback.  Auditory feedback has also been shown to affect 

kittens, whose calls grow louder as white noise levels increased through a pair of 

headphones fitted to their ears (Buchwald & Shipley, 1985; Shipley, Buchwald, 

Carterette, & Strecker, 1981).  Moreover, kittens deafened at 2-4 weeks produce distress 

calls that are shorter in duration, louder, and have less stable fundamental frequencies 

compared to age-matched controls (Buchwald & Shipley, 1985; Shipley et al., 1981).  

Buchwald and Brown (1977) found that the formant frequencies of distress calls were 

affected when 4-week-old kittens were deafened, but fundamental frequency (F0) was not 

affected.   

Eliades and Wang (2008) showed that activity in the auditory cortex of marmoset 

monkeys was suppressed when receiving real-time feedback while vocalizing, but neural 

activity increased when the pitch of their vocalizations was altered.  Similarly, neural 

activity is suppressed during self-produced speech in humans, when compared to hearing 

altered real-time feedback or listening to a recording of one’s own speech (Curio, 

Neuloh, Numminen, Jousmaki, & Hari, 2000; Houde, Nagarajan, Sekihara, & Merzenich, 

2002).  Thus, vocalizations made from non-human species described above seem to rely 

on real-time unaltered feedback, suggesting that auditory feedback is necessary for any 

type of vocalization, speech or non-speech. 

 We can learn more about the role of auditory feedback on non-speech 

vocalizations by analyzing the cry sounds produced from congenitally deaf infants, who 

receive little to no auditory feedback during cry bouts but still experience the 

physiological feedback that typically accompanies cry bouts.  Although the amount of 
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research in this particular area is limited, results stemming from these studies seem 

promising regarding the influence of auditory feedback on cry sounds.  First of all, 

experienced listeners rated cry sounds from profoundly hearing-impaired infants (3-12 

months) as weak, flat, and more guttural in comparison to hearing infants (1-10 months; 

Möller & Schönweiler, 1999).  Furthermore, acoustic analyses have characterized the cry 

sounds from hearing-impaired infants as having less energy in upper frequency bands and 

being more melodically complex and longer in duration than cry sounds from hearing 

infants (Möller & Schönweiler, 1999).  Scheiner, Hammerschmidt, Jürgens, & Zwirner 

(2004) audio-recorded various sound types (crying, fussing, laughing, cooing, and 

babbling) from hearing-impaired and hearing infants 6-8 times throughout their first year; 

cry sounds were structurally different between groups, but no other sound types were 

different, including babbling, perhaps because babbling emerges later in development 

with respect to crying.  Supporting Möller and Schönweiler (1999), Scheiner et al. (2004) 

showed that hearing-impaired infants had cry sounds with longer durations, less energy in 

upper frequency bands, and more melodically complex cries, as well as cry sounds 

reaching a higher maximum F0 and an earlier onset of maximum frequency within the F0.  

Neurophysiological Models of Cry Production 

 A handful of studies have used differences in cry sounds to predict later cognitive 

or language development (Karelitz et al., 1964; Lester, 1987; Mampe, Friederici, 

Christophe, & Wermke, 2009; Wermke et al., 2007), but these studies presume newborn 

cry sounds to be controlled by higher brain processes, rather than respiratory and lower 

brain systems.  Thus, it is worthwhile to consider theoretical models of cry production, as 

offered by Golub (1980), Lester and Zeskind (1982), and Porges, Doussard-Roosevelt, 
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and Maiti (1994), all of which suggest that cry acoustics, as well as the latency and 

duration of cry bouts, are initiated and shaped by various components of the nervous 

system.  These neurophysiological models of cry production have been developed, in 

part, to explain the high degree of variability observed in newborn infant cry sounds, 

especially among atypical or at-risk populations (for review, see Green, Irwin, and 

Gustafson, 2000).   

Golub (1980) developed a cry production model to facilitate the diagnoses of 

specific pathological conditions based on acoustic parameters of newborn cry sounds.  

According to Golub (1980; Golub & Corwin, 1985), newborn cry sounds are initiated by 

upper and middle level processors of the central nervous system (CNS), but acoustic 

characteristics of such cries are shaped by lower level CNS processing, which 

independently control subglottal (respiratory), glottal (larynx), and supraglottal (vocal 

and nasal tract) muscles.  Through extensive testing, Golub proposed that specific 

abnormal cry characteristics could be linked to each of these three muscle groups.  Thus, 

specific acoustic characteristics of cry sounds, such as glottal instability or abnormal 

respiratory effort, can be used to diagnose infants with specific CNS deficits.  For 

example, the vagus (the 10th cranial nerve) controls the movement of the glottal muscles, 

which affects the fundamental frequency (F0) of the cry, while other parts of the CNS 

control subglottal or respiratory muscles, which affect the energy and duration of the cry 

(Golub, 1980; Green et al., 2000).  However, the assumption that these muscle groups are 

independently controlled is not supported in cry research, particularly when measuring 

spontaneous cry sounds, rather than pain-induced cry sounds, and when analyzing 

changes in the cry sounds over the duration of a cry bout (Green, Gustafson, & McGhie, 
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1998; Green et al., 2000).  Regardless, the primary notion of Golub’s model revolves 

around the understanding that cry sounds can be used to reflect early CNS functioning, 

but are not under a great deal of higher-level cortical control. 

 Rather than focusing on the role of the CNS, Lester & Zeskind (1982) propose 

that the autonomic nervous system (ANS) plays a large influence on the initiation and 

latency of cry bouts as well as the acoustic characteristics from the cry bouts.  In 

particular, Lester and Zeskind (1982) focus on two distinct parts within the ANS: the 

sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS).  

When the infants’ environment (internal or external) changes, the SNS excites the 

system, initiating the cry signal.  In response to SNS excitation, the PNS inhibits the 

infants’ responses to the environment through the vagus, a cranial nerve that sends 

information to and from different organs within the body and controls the laryngeal 

muscles involved in cry production.  Cry latency and duration can be used as measures of 

SNS functioning, while cry acoustics, particularly fundamental frequency and 

dysphonation, can be used as measures of PNS function.  Similar to Golub’s (1980) 

model, Lester and Zeskind’s (1982) biobehavioral model relies on the opposition between 

the SNS and PNS to characterize nervous system functioning in the newborn, given the 

qualities of the cry bout.  

 Porges et al. (1994) focus on the influence of the vagus system (which affects 

digestion, respiration, emotion, and communication) on emotional expression.  According 

to this model, physiological changes in the body experienced as a result of an emotional 

response to an internal or external source are due to the influence of the vagal system, 

which controls heart rate, respiration, and laryngeal muscles.  Vagal tone, a measurement 
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of heart rate variability, has been correlated with later developmental outcomes among 

newborns in areas of cognition, attention, and emotion-regulation (Porges et al., 1994; 

Porges, Doussard-Roosevelt, Portales, & Greenspan, 1996; Doussard-Roosevelt, Porges, 

Scanlon, Alemi, & Scanlon, 1997).   

However, only a small portion of the Porges et al. (1994) model addresses the 

neurophysiological influences of the vagus system on cry production.  The model 

proposed that acoustic qualities of cry sounds change according to control afforded by the 

laryngeal muscles, which are regulated by the vagus (Porges et al., 1994; Green et al., 

2000).  High-pitched and unstable cries, landmark characteristics of pathological and pain 

cries, are explained in this model as a result of the contraction and relaxation of the 

laryngeal muscles, given the degree of stimulation received from the vagus nerve fibers 

(Porges et al., 1994; Green et al., 2000).   

All cry production models focus on the role of the nervous system in stimulating 

cries and shaping cry acoustics, however, the specific acoustic characteristics associated 

with specific nervous system functioning remains unclear.  Newborn infants with CNS 

deficits have qualitatively different sounding cries, defined by higher-pitched, shorter 

duration, and more variable cries (Corwin, Lester, & Golub, 1996; Lester and Zeskind, 

1982; Porter, Porges, & Marshall, 1988; Wasz-Höckert, Michelsson, & Lind, 1985).  

Similarly, healthy pre-term infants produce cries that have a higher mean F0 than full-

term infants (Michelsson, 1971).  The mean F0 in infants’ cries increases as their 

gestational age decreases, suggesting that CNS maturation affects at least some degree of 

cry acoustics (Michelsson, 1971).  Furthermore, brain damaged infants typically produce 

high-pitched cries, with little variability in pitch (Michelsson, 1971; Michelsson, Sirviö, 
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& Wasz-Höckert, 1977).  However, it is uncertain how relevant these models are as the 

infant develops during the first year, or even how resilient these models are throughout 

the duration of a single cry bout (Green et al., 1998). 

Infant cries were initially conceptualized as being discrete signals for states such 

as hunger or pain (Wasz-Höckert, Lind, Vuorenkoski, Partanen, & Valanne, 1968); 

however, cries now are typically regarded as continuous, graded signals, given the adult 

cry perception literature (Sherman, 1927; Müller, Holien, & Murry, 1978; Gustafson and 

Harris, 1990; for review, see Gustafson, Wood, and Green, 2000).  Treating cries as 

graded signals reflecting changes in underlying arousal offers challenges to Golub’s 

(1980) model, because healthy infants, when under a great deal of distress, share some of 

these same cry characteristics as atypical infants, such as higher F0 and more instances of 

hyperphonation (Lester & Zeskind, 1982).  For example, Porter, Miller, and Marshall 

(1986) showed that cries from healthy newborn males undergoing circumcision had the 

highest and most variable F0 values during the most invasive parts of the procedure.  

Furthermore, Green et al. (1998) recorded spontaneous cries from a set of healthy 

newborn infants and found that maximum F0 and its variability increased as the cry bout 

progressed.  Acoustic characteristics common for hunger cries were prevalent early in the 

cry bout, while acoustic features common for pain cries were prevalent later in the cry 

bout (Green et al., 1998).   

Thus, acoustic variables such as maximum frequency, pitch, and their variability 

seem most related to arousability of the infant, which may help explain why premature 

infants with neurological disorders typically produce higher-pitched cries.  The viewpoint 

of crying as a graded signal complements cry production models presented by Lester and 
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Zeskind (1982) and Porges et al. (1994), both of which attribute changes in vocal 

production to increasing physiological arousability within an individual.   

Age Trends in Cry Acoustics 

Little is known about the developmental changes in cry acoustics during the first 

year of life (Green et al., 2000; Hopkins, 2000).  Such knowledge is needed to elucidate 

the links of early cry sounds to later developmental outcomes (Lester, 1987; Michelsson 

et al., 1977) and to understand more about the neurophysiological influences on cry 

acoustics that take place within the early postnatal period.  Many of the longitudinal 

studies that have looked at changes in cry vocalizations during the first year have 

extremely small sample sizes, large sampling intervals, and focus on the frequency of 

vocalization types (cry, fuss, cooing), often collected by parent-report, rather than 

changes in cry acoustics (Baeck & de Souza, 2007; Green et al., 2000; Wermke & Lind, 

2002).  For example, Brazelton (1962), through the use of parent diaries, documented a 

cry peak at 6 weeks of age, however the cry peak reflected an increase in infants’ cry 

frequency, which did not exclude less intense fuss sounds, nor did it measure total 

duration of cry bout (Hopkins, 2000).  Hopkins and van Wulfften Palthe (1987) 

videotaped 14 infants between 3 to 18 weeks during mother-infant interactions and when 

infants were alone; increased fussing and cooing vocalizations were observed between 2-

3 months, however, no acoustic analyses for any vocalizations were conducted.   

During the first postnatal week, cry duration decreases (Prechtl, Theorell, 

Gramsbergen, & Lind, 1969), as does the number of pitch-shifts within a cry (Wasz-

Höckert et al., 1968).  Prescott (1975) found that cry melody becomes more variable 

during the first few postnatal months, and suggests that such change is due to increased 
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control of the vocal tract and increased lung strength.  At 3 months of age, the larynx 

descends further down the vocal tract, allowing mouth breathing to occur and increasing 

the range of sounds that can be produced (Lieberman, 1985).   Also, around 3 months of 

age, the ribcage changes from being perpendicular to the spine to being angled downward 

from the spine, which allows for subglottal air pressure to be better regulated (Lieberman, 

1985) and greater variability in cry sounds produced (Hopkins, 2000).  Between 2-3 

months of age, there are transitions in the organization of the CNS (Emde, Gaensbauer, & 

Harmon, 1976); such a change can affect cry acoustics (Lester, 1985).  More research is 

needed to examine the way in which these neurophysiological changes in the infant 

affects the acoustic quality of the cry, and in turn, the extent to which observed 

differences in cry acoustics can be traced to neurophysiological measures. 

Rothgänger (2003) observed a significant increase in cry mean F0 throughout the 

first year of life and also observed cry melody contours to first follow symmetrical 

patterns during the first 3 months, and then falling patterns between 4-12 postnatal 

months.  Baeck and de Souza (2007) measured the F0 of hunger cries from 30 infants on a 

biweekly basis between 0 to 6 months and found a decrease in F0 during the first 2 

postnatal weeks, suggested by the authors to reflect a change in vocal tract maturation.  

Cry mean F0 increased steadily between 2 and 6 weeks, and finally stabilized between 8 

and 25 postnatal weeks, during which mean F0 values oscillated between 405-397 Hz.  

Overall, Baeck and de Souza (2007) reported mean F0 values in their study to be much 

more variable than previously measured in the literature.  There are other studies that do 

not find any age-related changes for cry mean F0.  For example, Murry, Hoit-Dalgaard, 

and Garacco (1983) found no changes in mean F0 from the cries of one infant at 4 and 8 
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weeks.  Similarly, Lind and Wermke (2002) focused on changes in F0 during spontaneous 

cries taken from one infant within the first 3 postnatal months, but found no significant 

increases in cry mean F0, unless they only analyzed cries lasting less than 0.8 seconds.  

Cries less than one second in duration are usually identified as fuss sounds, which are 

often analyzed separately in cry research.   

Studies thus far collected on acoustic changes in cry sounds during the first year 

focus, for the most part, on changes in the mean F0; however, the results are not in 

agreement, partly due to methodological differences.  Inclusion of other acoustic 

measures, such as variability of mean F0, and mean and variability of energy in specific 

frequency bands, melody contours, dysphonation, harmonicity, and maximum and 

minimum frequency, should be collected and analyzed for intra-individual changes 

throughout the first postnatal months, especially given the fact that inter-individual 

variability is highest during the first 3 months of life (Barr, 1990; Hopkins, 2000).   

From a systems framework, we may be able to pinpoint key periods of 

developmental transition if we focus more on variability measures, both within and 

between individual infants (Hopkins, 2000), expand our focus on limb movements that 

occur during cry bouts (Green et al., 2000), and obtain more neurophysiological measures 

during newborn cry bouts (Emde et al., 1976).  During cry bouts, infants receive both 

auditory and physiological feedback from limb and respiratory movements; such 

feedback may facilitate perception-action coupling needed for later speech (Hopkins, 

2000) and may explain the link of newborn crying to later developmental outcomes 

(Zeskind, 1985).  Therefore, it is plausible that cry acoustics may change as feedback 

experience is increased, both during a single cry bout and throughout the first year of life.   
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Specific characteristics of newborn crying have been used to predict later 

developmental outcomes.  Karelitz et al. (1964) correlated active crying (assessed by cry 

count) among newborn infants to higher Stanford-Binet IQ scores at age 3.  Lester (1987) 

found that newborn infants who had higher-pitched, more variable, and lower amplitude 

cries had poorer developmental outcomes at 18 months (Bayley Scales) and 5 years 

(McCarthy Scales; includes verbal score).  Wermke, Mende, Manfredi, and Bruscaglioni 

(2002) showed increasing melodic complexity of cries and more stable F0 values among 

infants between 2 and 3 months of age and proposed that such age-related changes 

reflected a developing CNS.  Wermke et al. (2002) hypothesized that infants with more 

complex cries, and thus, a matured CNS, will have optimal developmental outcomes.  To 

support this assertion, Wermke et al. (2007) recorded cries from 2-month-old infants and 

assessed language abilities among the same infants at 2.5 years; infants with more 

melodically complex cries at 2 months yielded higher language scores at 2.5 years.   

It is unclear whether the action of crying specifically contributes to later 

developmental outcomes, or if crying is simply an indicator of CNS function, which 

could be correlated to later outcomes.  Although such research is not conclusive, crying 

does serve as an important communicative tool for infants.  Parents perceive infant crying 

to be more intentional and communicative between 2-3 months (Boukydis, 1985; Lester 

& Boukydis, 1992).  Infant cry bouts are increasingly accompanied with gestures and 

gazes to the caregiver as their age increases (Gustafson & Green, 1991).  By the end of 

the first year, infants cry more when in sight of their caregiver (Bell & Ainsworth, 1972).  

Thus, crying, while not linguistically rich, does serve as an important aspect of pre-

linguistic communication.   
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Rationale for Present Study 

  The primary purpose of this study is to extend the previous work on the effects of 

DAF on newborn crying.  No study since Cullen et al. (1968) has investigated whether 

newborn crying can be disrupted by DAF.  Further, there are a few methodological 

problems with this original study.  First, Cullen et al. (1968) analyzed the effects of DAF 

on pain cries; use of DAF on spontaneous cries may yield different results, given that 

infants may be less responsive to auditory feedback when under conditions of pain.  

Second, only measures of cry and cry-pause duration and maximum sound pressure level 

were obtained in Cullen et al. (1968), and these measures were averaged across infants.  

Other acoustic measures should be considered in order to fully assess whether or not 

DAF might affect newborn cry bouts.  Also, individual-level responses to DAF should be 

considered in addition to group-level responses, given the large degree of variability seen 

in newborn infant cries (Barr, 1990; Hopkins, 2000).  Finally, in light of the order effects 

found in Cullen et al. (1968), it is still not clear that newborn infants have enough control 

over their vocalizations at this point in development to demonstrate DAF effects, given 

the neurophysiological constraints on newborn cry production (Lieberman, 1985).      

A secondary purpose of this study is to investigate age-related changes in crying 

during delayed and synchronous auditory feedback.  As noted in the literature review 

above, the few studies of age-related changes in cry acoustics have produced inconsistent 

results.  The current study will examine changes in several acoustic features of 

spontaneous cries of 4 and 8-week-old infants.  These two time-points were selected to 

bracket the well-known 6-week cry peak (Brazelton, 1962).  Also, while there are age-

related changes in responses to DAF (Belmore et al., 1973; MacKay et al., 1968), such 
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studies are cross-sectional, not longitudinal.  Finally, if newborn cry vocalizations are 

under higher levels of cortical control, rather than lower levels as traditionally assumed, 

then DAF effects should be observed within this age-period.  Thus, results from this 

study should add to our current understanding of the neurophysiological processes that 

underlie newborn infant crying. 

 

Method 

Participants 

 Seventeen healthy newborn infants (7 males and 10 females) participated in the 

study. One of the 17 infants was born prematurely (36 weeks and 6 days), but was of 

normal birth weight.  Eight infants were first-born and two infants were fraternal twins.  

Infants were seen twice, first at 4 weeks of age (M=4.5 wks, SD=.69, n=16) and again at 

8 weeks (M= 7.9 weeks, SD= .58, n=17).  Fifteen infants were Caucasian and 2 infants 

were Asian American.  Participants were recruited via email announcements sent through 

a university listserve and by word of mouth.   

Materials 

 A Shure SM57 microphone was used to transmit the cries to a Marantz digital 

sound recorder, recording 16-bit samples at a rate of 44.1 kHz.  Simultaneous and 

delayed auditory feedback effects were produced through software using a laptop.  Two 

pairs of Sennheiser headphones were used; one was worn by the experimenter and the 

other pair was placed on the infants’ ears by a second experimenter.  The amplitude of 

the auditory feedback was measured before all visits by a sound pressure meter to ensure 

that sound input would be played at safe levels for the infants.   
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Procedure 

 At both 4 and 8 weeks of age, infants’ spontaneous crying was recorded for 2 

minutes.  Most visits took place in the participants’ homes, but visits for four of the 

infants took place in a laboratory room because it was more convenient for the parent.  

Visits were scheduled about 30 minutes prior to a feeding.   Infants were placed in the 

supine position on top of a blanket resting on the floor.  A microphone was placed 

approximately 25 centimeters from the infant’s mouth, held in place by a microphone 

stand.  The infant’s parents were allowed to stay in the same room during the 2-minute 

recording, but were asked to keep outside of the baby’s field of vision.   

 Once the infant began to cry, the experimenter placed a pair of headphones on the 

infant.  A second experimenter supervised the recording equipment and initiated the 

delayed auditory feedback (DAF) at the correct time.  The first 40 seconds of crying 

served as a baseline of synchronous auditory feedback, followed by 40 seconds of DAF 

(500 msec delay), and ending with 40 seconds of return to synchronous feedback, using a 

simple A-B-A design.  The same procedure was followed at both visits.  In addition, the 

mother was asked to complete the soothability sub-scale from the Infant Behavior 

Questionnaire (Rothbart, 1981) at the 8-week visit.   

 The onset and offset of each expiration during the baseline and DAF sessions was 

marked using Praat, a software program for acoustic analysis of speech (Boersma & 

Weenink, 2010).  The beginning of the segment is defined at the point after each 

inspiration at which the waveform became noticeably higher in amplitude that the 

background noise.  The end of the segment was defined at the point when the waveform 

merged into background noise before the onset of the next inspiration.  Each expiratory 
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segment thus marked was labeled as a cry, a fuss, or unclassified sound.  A “cry” was 

defined as melodic and effortful, and could be a single sound or multiple sounds 

interrupted by stops and pauses.  A “fuss” was defined as less effortful, intense, and 

melodic than cry sounds.  The “unclassified” sounds included coughs, grunts, or simple 

breathing noises.  

 A second coder independently listened to a random sample of 20% of the total 

number of cry segments.  Reliability of coding was verified by calculating correlation 

coefficients between the primary and secondary coder for the cry count, r = .97, cry 

duration, r = .96, fuss count, r = .98, and fuss duration, r = .98, all of which were 

summed within each condition of each visit.  Paired-sample t-tests were conducted to 

compare mean differences for the total duration and count of fusses and cries within each 

condition.  All paired-sample t-tests were non-significant, p > .05.   

 Each cry and fuss was separately analyzed in Praat for several acoustic features 

(Table 1).  Means and standard deviations of cries and fusses within each condition were 

computed for the following variables in SPSS: count, duration, fundamental frequency, 

energy, harmonicity, maximum frequency, and proportion of total energy in bands 1-5 

(see Table 1 for definitions).    

Analyses 

 The study followed a simple A-B-A design, with the conditions Baseline 1, DAF, 

and Baseline 2.  Each acoustic variable for each cry and fuss sound was first 

characterized by its mean and standard deviation for each condition.  Then, ANOVAs 

were conducted on, for example, the mean cry duration and the standard deviation of the 

cry durations in each condition. For these analyses, the sample size was 17, the number of 
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infants in the study.  In addition, multilevel modeling was used as a second analysis 

strategy.  Here, cry sound (n= 1,721 cries) was used as the unit of analysis at Level 1, and 

the 17 infants constituted the Level 2 units.  For these models, the proportion of 

variability due to individual infants was first computed for each acoustic measure and 

then age and condition effects were added to the models as factors.  Fitting these models 

was done using maximum likelihood estimation, and approximate F values were 

computed from estimates of the model parameters and covariance matrix.   The 

hierarchical modeling strategy preserves the independently sampled unit (the infant) and 

provides more appropriate parameter estimates than the ANOVA approach.       

Results 

Simple ANOVA Results for Cry Sounds 

 A 2 (age) by 3 (condition) repeated-measures Analysis of Variance (ANOVA) 

was used to analyze the acoustic parameters of cries.   No significant main effects or 

interactions were found for the mean and standard deviation of cry count, maximum 

frequency, fundamental frequency, harmonicity, or proportion of energy in frequency 

bands 3, 4, and 5, p > .05.   

 The only interaction between age and condition was for the standard deviation of 

cry duration, F(2, 26) = 3.87, p = .034, ηp
2 = .230.  Post hoc analyses were conducted as 

recommended by Maxwell and Delaney (2000).   At 4 weeks, the variability of the cry 

duration decreased significantly between Baseline 1 (M = .86, SE = .14) and DAF (M = 

.67, SE = .09), p < .05, but no differences were found between DAF and Baseline 2, p > 

.05.  Post hoc analyses showed no significant differences between conditions among the 

8-week-old infants, p > .05.    
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 Age effects were only found for mean cry duration, F(1,14) = 4.74, p = .047, ηp
2 = 

.253 (Figure 1), and mean cry energy, F(1, 14) = 5.01, p = .042, ηp
2 = .263 (Figure 2).  

Mean cry duration increased between the 4-week (M = 1.35, SE= .10) and 8-week (M = 

1.67 sec, SE = .17) visits.  Mean cry energy (dB) increased between the 4-week (M = 

25.85, SE = 1.89) and 8-week (M = 31.43, SE = 1.83) visits. 

 Condition effects were found for the proportion of energy in the lower frequency 

bands, particularly between the 100-500 Hz frequency band, F(2, 28) = 3.39, p = .048, 

ηp
2 = .195 (Figure 3), and the 500-1,000 Hz frequency band, F(2, 28) = 3.56, p = .042, ηp

2 

= .203 (Figure 4).  In the first frequency band (which would generally contain only the 

F0), the proportion of energy in cry sounds increased significantly between Baseline 1 (M 

= .022, SE = .005) and DAF (M = .032, SE = .009), p < .001, but not between DAF and 

Baseline 2, p > .05.  Similarly, the proportion of energy in the second frequency band 

increased between Baseline 1 (M = .175, SE = .030) and DAF (M = .218, SE = .040), p < 

.01, but did not significantly change between DAF and Baseline 2, p > .05. 

 Condition effects were also found for the standard deviation of the proportion of 

energy in the second (500-1,000 Hz) frequency band, F(2, 26) = 3.46, p = .047, ηp
2 = 

.210.  Post hoc analyses showed a significant increase in the variability of energy in band 

2 between Baseline 1 (M = .017, SE = .005) and DAF (M = .028, SE = .009), p < .001, 

but no differences between DAF and Baseline 2.  

Multilevel Modeling of Cry Sounds 

 The repeated-measures ANOVAs summarized above used infants as the unit of 

analysis, averaging across all of the cries produced in each condition for each of the 

acoustic measures.  As noted above, multilevel modeling may be a better approach to the 
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analyses, as it can model variability across infants and preserves features of each 

individual cry.   

 A series of hierarchical models was evaluated for each acoustic feature to test for 

improvements in fit of the model due to age, condition, and their interaction.  The SPSS 

Mixed Models procedure was used to conduct these analyses, using a 2-level model, with 

random intercepts and fixed slopes.  Level 1 (i) consisted of the cry sound and level 2 (j) 

consisted of the 17 infants.  Fixed variables were age (4 weeks x 8 weeks), condition 

(Baseline1 x DAF x Baseline2), and the interaction of age and condition.  The regression 

equations for both the base and test models are shown below: 

Base Model: Yij = b0 + u0j + εij 

Test Model: Yij = b0 + b1(age)ij + b2(condition)ij + b3(age x condition)ij + u0j + εij 

Defined model terms: 

Yij is the acoustic feature for cry i for infant j 

b0 is the grand mean of the acoustic feature for all cry sounds from all infants 

 u0j is the variability of the mean of the acoustic feature for each infant, j, around  

  the grand mean 

εij is the residual or error term 

b1, b2, and b3 are the coefficients representing the effects of age, condition, and  

 the age by condition interaction, which are assumed to be the same for  

 each infant  

 Intra-class correlations (ICCs) were computed to estimate the proportion of 

variance of each acoustic feature due to the individual infants.  Large ICCs reflect large 

individual differences in the acoustic features, while small ICCs suggest that the 
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variability due to individual infants is small.  Each acoustic feature analyzed had an ICC 

larger than .20 (Table 2), and most were larger than .30 (median =  .39).  These values 

indicate that a substantial portion of the variability of each acoustic feature can be 

attributable to individual differences among the 17 infants.   

 Condition effects were found for cry duration, maximum frequency, standard 

deviation of mean F0, cry energy, and the proportion of energy in the first (0-500 Hz), 

second (500-1,000 Hz), and fourth (1,500-2,000 Hz) frequency bands (Table 3).  Post hoc 

analyses were conducted between Baseline 1 and DAF and between DAF and Baseline 2 

using the Bonferroni correction for multiple comparisons.  For all variables, significant 

differences (p < .05) were only found between 2 of the 3 consecutive conditions, mostly 

between Baseline 1 and DAF.  Estimated marginal means and standard errors for all 

acoustic features are shown in Table 4. 

 As noted before, condition was a significant predictor for proportion of energy in 

the lower and upper frequency bands, which are presumably controlled by the infants’ 

supraglottal muscles (Golub, 1980).  The proportion of energy in the first frequency band 

increased between Baseline 1 (M = .023, SE = .005) and DAF (M = .030, SE = .005), p = 

.005 (Figure 3).  Similarly, the proportion of energy in the second frequency band 

increased between Baseline 1 (M = .178, SE = 026) and DAF (M = .211, SE = .026), p = 

.001 (Figure 4).  Last, the proportion of energy in the upper fourth bandwidth decreased 

between Baseline 1 (M = .094, SE = .012) and DAF (M = .080, SE = .012), p = .011 

(Figure 5). 

 Condition was a significant predictor for cry maximum frequency, energy, and 

duration, all of which are presumably controlled by the infants’ subglottal muscles 



DAF EFFECTS ON CRYING   23 

(Golub, 1980).  For instance, maximum frequency decreased between Baseline 1 (M = 

1797.67, SE = 91.18) and DAF (M = 1650.27, SE = 90.17), p = .011 (Figure 6).  Cry 

energy also decreased between Baseline 1 (M = 29.40, SE = 1.34) and DAF (M = 28.46, 

SE = 1.33), p = .059 (Figure 7).  Cry duration decreased between DAF (M = 1.48 s, SE = 

.098) and Baseline 2 (M = 1.39 s, SE = .098), p = .054 (Figure 8).  Variability in mean F0, 

which is controlled by the infants’ glottal muscles, decreased between Baseline 1 (M = 

72.73, SE = 2.88) and DAF (M = 68.73, SE = 2.86), p = .025 (Figure 9).   

 Age was a significant predictor for cry energy, F(1, 32.83) = 4.53, p = .041.  

Energy in infants’ cries (db) increased between 4 weeks (M = 25.85, SE = 1.89) and 8 

weeks (M = 31.43, SE = 1.83).  Age did not improve model fit for any other variables, p 

> .05.  

Summary of Results 

 The standard ANOVA results showed that the proportion of energy in the first 

(100-500 Hz) and second (500-1,000 Hz) frequency bands increased between Baseline 1 

and DAF.  Also, the variability of the proportion of energy in the second frequency band 

increased between Baseline 1 and DAF.  The variability in cry duration decreased 

between Baseline 1 and DAF for the 4-week-old infants.  Finally, cry duration and energy 

increased between 4 and 8 weeks.   

 Using MLM, the same significant condition effects were found for the proportion 

of energy in the first and second frequency bands between Baseline 1 and DAF (see 

Table 5).  Significant condition effects were found for a number of other acoustic 

variables, as well, when using MLM analysis, particularly for maximum frequency, 

variance in mean F0, energy, duration, and for the proportion of energy in the fourth 
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frequency band (1,500-2,000 Hz).  Post hoc analyses for all condition effects found in the 

MLM results showed significant change only between Baseline 1 and DAF conditions, 

which is mirrored in the ANOVA results.  Although both energy and duration increased 

significantly between 4 and 8 weeks in the ANOVA results, only energy increased 

significantly between 4 and 8 weeks in the MLM results.  

The Soothability Subscale of the Infant Behavior Questionnaire 

 Eighteen items from the Soothability subscale of the Infant Behavior 

Questionnaire (IBQ) were averaged into a mean soothability subscale (α = .90).  High 

scores indicate that parents rated their infants as highly soothable. Parents’ mean 

soothability scores were 4.69 (SE = .20) out of 7 points, indicating that most parents felt 

their 8-week-old infants were soothable between “about half the time” (rating of 4) to 

“more than half the time” (rating 5).  Correlations were calculated between the primary 

caretakers’ mean soothability score and all acoustic measures (Table 6).  

 During the first baseline among 4-week-old infants, soothability scores were 

marginally negatively correlated with mean cry duration, r(15) = -.50, p = .061; as cry 

duration increased, soothability scores decreased.  During the first baseline among 8-

week-old infants, soothability scores were marginally positively correlated with mean 

harmonicity in cry sounds, r(17) = .47, p = .06; infants who were less soothable produced 

cries with more dysphonation.  Soothability scores during the first baseline among 8-

week-old infants were positively correlated with standard deviation of the proportion of 

energy in cry sounds between 1,000 and 1,500 Hz, r(17) = .53, p = .028, however, 

significance was lost when a single outlier was removed, r(16) = .33, p = .215.   
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 During DAF among 4-week-old infants, soothability scores were marginally 

positively correlated with cry count, r(16) = .50, p = .050.  During DAF among the 8-

week-old infants, soothability scores were marginally negatively correlated with cry 

duration, r(17) = -.48, p = .051, negatively correlated with standard deviation of cry 

duration, r(17) = -.51, p = .038, and positively correlated with negative sound count (cry 

and fuss sounds summed), r(17) = .73, p = .001. 

 No correlations between soothability scores and any of the cry variables were 

significant during the second baseline among 4-week-old infants.  During the second 

baseline (following DAF) among 8-week-old infants, soothability scores were negatively 

correlated with standard deviation of cry duration, r(17) = -.49, p = .045, and positively 

correlated to negative sound count, r(17) = .57, p = .016.   

 When collapsing across all three conditions at each visit, soothability scores were 

positively correlated with negative sound count (total number of cry and fuss sounds) 

among the 4-week-old infants, r(16) = .50, p = .047, and the 8-week-old infants, r(17) = 

.63, p = .007.  No other acoustic variables were correlated with soothability scores at 4 or 

8 weeks, p > .05.   

Summary of IBQ Correlations 

  Soothability was only significantly correlated (p < .05) to variability in cry 

duration and frequency of negative sounds (number of cry and fuss sounds summed) 

among 8-week-old infants during DAF and Baseline 2 conditions.  When collapsing 

across all conditions for each visit, soothability was positively correlated to negative 

sound count among 4- and 8-week-old infants.  Overall, 8-week-old infants with higher 

numbers of negative sounds and less variability in cry duration during DAF and Baseline 
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2 conditions had higher soothability scores.  Cry duration is marginally negatively 

correlated to soothability among 8-week-olds during DAF, implying that shorter cry 

durations are associated with more soothable infants, likely because cry sounds are not as 

intense.  

 More correlations between soothability and cry variables were found among 8-

week-old infants than 4-week-old infants; this is reasonable given the fact that the IBQ 

was administered to parents when infants were 8-weeks-old.  The highest number of 

correlations was found among 8-week-old infants during the DAF condition; infants who 

had more frequent negative sounds, and shorter and less variable cries had higher 

soothability scores, however, it is not clear the degree to which infants’ responses to DAF 

is influencing this correlation.     

Discussion 

 The effects of DAF on infant crying are subtle and partly determined by the 

method of analysis employed.  When using the 17 infants as the unit of analysis and 

comparing average acoustic parameters across conditions, DAF effects on cry sounds 

were only seen for mean proportion of energy in bands 1 and 2 and for the variability in 

proportion of energy in band 2.  Post hoc analyses indicate significant differences only 

between Baseline 1 and DAF for these effects.  The only interaction effect found in these 

ANOVAs was for the standard deviation of cry duration; the variability of cry durations 

significantly decreased between Baseline 1 and DAF conditions, but only for 4-week-old 

infants.   

When analyzing individual cry sounds as level 1 units in multilevel modeling, 

additional effects of DAF on cry sounds were found, specifically for cry duration, 
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maximum frequency, variability of the mean F0, energy, and the proportion of energy in 

frequency bands 1, 2, and 4.  Post hoc analyses indicated, again, significant differences 

between Baseline 1 and DAF conditions.  

Cullen (1968) found that cry duration decreased during DAF, regardless of test-

order.  Also, cries decreased in amplitude, but only when infants were tested in the order 

for which DAF occurred first.  However, no further acoustic analyses were conducted in 

Cullen’s study.   The current study did show DAF effects on cry duration and cry energy, 

but only in the MLM analyses.  Thus, both the current study and previous research 

suggest that DAF influences the duration of crying as well as the energy of the cry.  Both 

studies, though, indicate that order of conditions appears to influence cry sounds in 

addition to effects of DAF. 

Very few age effects were found in the current study, which followed a short-term 

longitudinal design with testing at both 4 and 8 weeks.  For the infants-as-units ANOVA 

analyses, cry duration increased and cry energy increased between infants’ 4- and 8-week 

visits.  For the cries-as-units MLM analyses, only cry energy increased between infants’ 

4- and 8-week visits.  Few studies to this date have focused on the developmental 

changes in cry acoustics during the infants’ first year; such studies typically emphasize 

changes in the mean F0 of infants’ cry sounds and thus do not fully capture the extent to 

which age effects are present, especially within the first three postnatal months.  A 

number of cry studies using healthy, full-term infants have not observed any age-related 

changes for cry mean F0 between the ages of 1- to 3-months (Baeck & de Souza, 2007; 

Lind & Wermke, 2002; Murry et al., 1983).  Similarly, in the current study, no age effects 

were found for mean F0 or its variability.  Thus, denser time-sampling, longer age spans, 
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and more extensive acoustic analyses are needed to determine if there are any changes in 

cry sounds during these early months.   

Cry sounds within a single infant should not be considered as independent 

observations; however, this is one of the key assumptions for the analyses typical in this 

literature.  MLM analyses allow for dependent observations, as data are treated as 

hierarchical.  Also, when analyzing cry acoustics, inter-individual variability is highest 

during the first three months of life (Barr, 1990; Hopkins, 200), increasing the likelihood 

that the homogeneity of variance assumption is violated when using ANOVA analyses in 

cry studies.  In contrast, MLM analyses can model variability across infants through the 

use of varying regression parameters.  Finally, valuable data are lost when acoustic 

measures relating to cry sounds are averaged for a single infant.  MLM analyses measure 

individual-level responses to independent variables, which is especially important when 

effects of such variables are unknown in the literature and when variability within infants 

is large.  Thus, MLM analyses are the more appropriate tools for infant cry studies 

analyzing several sounds from a relatively large number of infants.  To our knowledge, 

this study is the first to use MLM analyses in the acoustic analysis of cry sounds.  

There were a few significant correlations between infants’ soothability ratings and 

their frequency of negative (fuss and cry) sounds or their cry duration.  Interestingly, 

there were more significant or near-significant correlations between soothability and 

frequency or duration of crying among 8-week-old infants.  There are several possible 

explanations, but one likely reason for this change is that mothers’ perception of their 

infants’ temperament is only just crystallizing in the first 2 months (Rothbart & Bates, 

2006).  It seems likely that basic information about their infants’ cries (e.g., frequency 
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and duration) might be influencing mothers’ developing temperament characterizations.  

Perhaps previous studies that have linked early cry measures to later outcomes can be at 

least partially explained by a mediating effect of infant temperament. 

 If crying should be considered a graded signal, then the infant’s level of arousal 

should directly affect the acoustic characteristics of their cry sounds.  A number of 

studies support this, as cry characteristics have been linked to infants’ level of distress, 

rather than to specific contexts, like hunger or pain (i.e., Green et al., 1998; Lester & 

Zeskind, 1982; Porter et al., 1986).  There are also differences in the arousability of 

infants, as seen when comparing healthy infants to infants with CNS deficits (Karelitz et 

al., 1964) and among “colicky” infants (Barr & Gunnar, 2000).   

Beyond individual differences, infants’ current state of arousal can contribute to 

the initiation, intensity, and duration of their cry bouts.  This fact has direct consequences 

in the current study, as infants’ initial states of arousal were not necessarily uniform 

across infants, although the fact that recording did not begin until infants were crying 

steadily should ameliorate this.  However, some infants appeared to calm down during 

the middle of the cry recording, whereas other infants grew increasingly more distressed 

throughout the recording.  It is not clear whether DAF effects can be observed across all 

levels of arousal.  Infants may not respond to changes in feedback when in a highly 

aroused state, as they may not be closely attending to auditory stimuli when highly 

distressed.  Because infants’ arousal levels likely intensify throughout a cry bout, their 

responsiveness to DAF may be dependent on their level of distress.    

In studies, such as this one, that use a standard ABA design, the infants’ 

arousability is certainly a potential confound.  A standard threat to validity of these 
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designs is ‘historical’ change, which in this case would mean changes in arousal levels, 

albeit over a relatively brief interval of crying.  Although the hypotheses related to DAF 

predicted several U-shaped effects on cry acoustics, in many cases, the overall trend was 

linear or only showed a significant difference between DAF and one of the baseline 

conditions.  Despite these patterns, it is difficult to attribute the differences between DAF 

and one of the baselines solely to differences in arousal.  There is no a priori reason why 

cry acoustics should shift systematically after 40 seconds of crying in the first baseline, or 

after 80 seconds of crying (i.e., the end of DAF).  In fact, there is a critical need for 

detailed studies of changes in cry acoustics during long cry bouts in order understand 

how arousal relates to cry acoustics (Green, Gustafson, Irwin, Kalinowski, & Wood, 

1995; Green, Gustafson, & McGhie, 1998).   

Future studies of DAF might yield clearer results if the ABA design were 

replaced with other manipulations.  One possibility would be to alter the feedback during 

DAF itself, for example, by altering pitch of the cry feedback or using white noise as the 

delayed feedback.  If cry acoustics change differently in response to DAF of 

unmanipulated crying than to DAF of altered crying or white noise, the argument that 

higher brain centers are involved in the production of crying would be strengthened. 

 Historically, researchers presumed acoustic characteristics of cry sounds to be 

under primary control of lower-level CNS functions, linked to respiratory movements in 

particular.  If the condition effects observed here are explained as infants’ responses to 

DAF, then newborn cry sounds may be under greater cortical control than previously 

assumed.  High variability observed between infants suggests that some infants may be 

more responsive to DAF than others; infants most responsive to DAF may have higher 
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levels of cortical control over their cry sounds.  Collecting several samples from 

individual infants may reveal that DAF responses are a function of increased cortical 

control over cry sounds, which may not necessarily occur at consistent ages between 

infants, possibly explaining why so few age effects were found in the current study.   

If early cry acoustics can be linked to later outcomes, as found in studies 

conducted by Karelitz et al. (1964), Lester (1987), and Wermke et al. (2002), the question 

raised is whether such correlations are primarily explained by differences in cortical 

control over cry sounds, or whether these differences are a result of the infants’ 

interactions with their environment during cry bouts.  For example, there are a number of 

studies that link vagal tone (heart rate variability) to later social skills and emotion 

regulation (Porges et al., 1994; Porges, Doussard-Roosevelt, Portales, & Greenspan, 

1996).  Higher social skills could lead to better cognitive, language, and emotional 

outcomes.  Thus, in addition to temperament as a possible mediator of the relation 

between early crying and later outcomes, it would appear that basic CNS maturity or 

functioning might serve a similar role.   

The auditory and kinesthetic feedback received during cry bouts may enhance 

infants’ experiences in perception-action coupling, a necessity for later speech production 

(Hopkins, 2000).  Changing typical auditory feedback during cry bouts allows us to 

examine the role of auditory feedback on young infant cry production, and evaluate 

whether infants are able to self-organize when auditory feedback is no longer 

synchronous.  Infants that have ample experiences in perception-action coupling may 

more quickly perceive and react to changes in feedback than infants who are still 

developing skills in perception-action coupling.  It could be suggested that the infants 
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who are able to alter their cry sounds during DAF are the infants who are more advanced 

in perception-action coupling.  To extend this idea, it is possible that infants most 

responsive to DAF may produce their first words earlier in development.  Longitudinal 

follow-up studies are needed in order to evaluate this claim.   

Given the degree of variability seen between infants in this study, other measures 

of arousal, such as heart rate variability, cortisol levels and even brain imaging, should be 

combined along with cry acoustics to more accurately determine infants’ responses to 

delayed auditory feedback.  Also, it is important to differentiate whether infants’ 

responses are specific to self-feedback versus auditory feedback in general (from white 

noise or other infant cries, for example).  Furthermore, it would be beneficial to observe 

infants’ responses to DAF during cry bouts in atypical populations, such as in hearing-

impaired infants, infants with Williams Syndrome, and even in premature or low birth-

weight infants. 

In sum, this study showed that newborn infants’ cries may be affected by DAF, 

however, their responses are not consistent, nor are they necessarily seen within each 

infant.  A large part of this may be due to the lack of control infants have over their vocal 

tract at this age (4 and 8 weeks), which occurs before the many physiological changes 

that take place for the infant around 3 months of age (Emde et al., 1976; Lieberman, 

1985).  In the future, measuring infants’ limb movements during crying with and without 

delayed auditory feedback would give us more information on whether infants’ motor 

movements during cry bouts are affected by changes in their auditory feedback.    

To close, the exact role auditory feedback plays in later language development, 

and its role in cry production, is still unclear, especially given the inconsistencies in the 
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DAF literature for infants and children.  Given the number of condition effects seen in the 

current study, along with the high variability observed within and between infants, it is 

reasonable to assume that DAF does affect young infant crying.  However, there is no 

particular way in which infants should respond during DAF.  While some infants may 

have higher pitched cry sounds during DAF compared to baseline conditions, other 

infants may have lower pitched cry sounds during DAF.  The fact that infant responses to 

DAF are variable thus emphasizes the need for researchers to analyze individual, rather 

than group-level responses, as achieved through use of MLM.  Infants’ early responses to 

DAF may better inform us about the neurophysiological processes that underlie newborn 

cry production and thus help determine the role of early crying in later cognitive and 

language development.        
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    Figure 1. Age effects on mean energy in cry sounds. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
    Figure 2. Age effects on mean cry duration.   
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   Figure 3. DAF effects on mean proportion of energy in the 100-500 Hz band. 

 

 

 

 

 

 

 

 

 

 

 

     Figure 4. DAF effects on mean proportion of energy in the 500-1,000 Hz band.  

 

Condition 

M
ea

n 
Pr

op
or

tio
n 

of
 E

ne
rg

y 

Condition 

M
ea

n 
Pr

op
or

tio
n 

of
 E

ne
rg

y 



DAF EFFECTS ON CRYING   45 

 

 

 

 

 

 

 

 

 

 
Figure 5. DAF effects on mean proportion of energy in the 1,500-2,000 Hz band.   

 

 
 

 

 

 

 

 

 

 

 

 
 Figure 6. DAF effects on mean maximum frequency of cry sounds.  
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 Figure 7. DAF effects on mean energy in cry sounds.  

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 8. DAF effects on mean cry duration.  
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 Figure 9. DAF effects on the mean variability in cry mean F0 (Hz).   
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Table 1   

Definitions of Acoustic Measures  
 

Count Number of expiratory segments labeled cry or fuss 

Duration Time from beginning to end of each expiratory segment (in  

msec).  

Fundamental Frequency Mean and SD of the extracted pitch trace for the entire 

vocalization, estimated using an autocorrelation method 

with the pitch range set at 200-700 Hz. 

Energy Sum of the squared amplitudes of the time sampled 

vocalization.  Energy scores have been converted into 

decibel (dB) units.   

Maximum Frequency  The frequency in the long term average spectrum with the 

greatest amplitude (in Hz). 

Spectral Energy  The energy in selected frequency bands from the long term 

average spectrum of each cry or fuss. Expressed as a 

proportion of the total energy.  Band1= 100-500Hz, 

Band2= 500-1000Hz, Band3= 1000-1500Hz, Band4 = 

1500-2000Hz, and Band5 = 2000-2500 Hz. 

Harmonicity The degree of acoustic periodicity, expressed in dB.  The 

larger the value, the more periodic the cry or fuss, with less 

time spent in dysphonation or unusual phonatory segments 
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Table 2  
 
Intra-class Correlations (ICCs) for MLM Models on Cry Sounds 

 
  ICC  

 
 
Duration M (s) 0.35          
 
Max. Freq. (Hz) 0.22    
 
Mean F0 (Hz) 0.54    
 
SD Mean F0 (Hz) 0.27     
 
Energy (db) 0.56     
  
Harmonicity (db)  0.41     
 
Prop. Band 1 (Hz)  0.38     
 
Prop. Band 2 (Hz)  0.44     
  
Prop. Band 3 (Hz)  0.22     
 
Prop. Band 4 (Hz)  0.38     
 
Prop. Band 5 (Hz)  0.40     
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Table 3 

Condition Effects from Multilevel Modeling Analyses 
 

Variables df F p  
 

Duration (s) 2, 1691.2 8.79**  .000   

Max. Frequency (Hz) 2, 1692.6 6.27** .002  

Mean F0  (Hz) 2, 1689.6 0.48  .622 

SD Mean F0 (Hz)   2, 1693.2 3.71*  .025  

Energy (db) 2, 1689.7 5.13**  .006 

Harmonicity (db) 2, 1691.3 1.57  .208 

Prop. Band 1 (Hz) 2, 1691.6 6.79**  .001  

Prop. Band 2 (Hz) 2, 1690.5 8.02**  .000   

Prop. Band 3 (Hz) 2, 1694.6 1.71  .182 

Prop. Band 4 (Hz) 2, 1691.2 7.36**  .001 

Prop. Band 5 (Hz) 2, 1691.1 0.00  .997 
 

*p < .05                       ** p < .01 
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Table 4  
 
Estimated Marginal Means (SEs) by Condition at 4 and 8 Week Visits for Cry Sounds 

                  4 weeks                 8 weeks 

Variables               B1      DAF            B2              B1      DAF            B2 
 

 
Count 16.68 20.19 20.19 15.69 16.50 16.88 
  
 (2.51)         (2.33)  (3.03)    (2.38) (2.22) (2.34) 
 
Duration M (s)  1.51 1.39 1.25 1.64 1.58 1.52  
 
 (0.14) (0.14) (0.14) (0.14) (0.14) (0.14) 
 
Max. Freq. (Hz) 1745.34 1653.30 1540.84 1850.01 1647.25 1701.99 
 
 (131.20) (129.10) (128.90) (126.66) (125.93) (125.59) 
 
Mean F0 (Hz) 399.42 397.69       397.88          404.53   403.00     400.76 
 
 (12.53)     (12.47)      (12.47)  (12.12)       (12.10)      (12.09) 
 
SD Mean F0 (Hz)   71.84 64.44       66.73    73.61         73.02 72.56 
 
 (4.15)        (4.10)       (4.09)            (4.01)     (3.99)       (3.98) 
 
Energy (db)              26.75 25.39 25.40         32.04 31.54 30.71 
 
 (1.92) (1.91) (1.91) (1.86)  (1.86) (1.86) 
 
Harmonicity (db) 11.38 11.95 11.27 12.16 11.63 11.59 
 
 (0.86) (0.85) (0.85) (0.83) (0.83) (0.83) 
 
Prop. Band 1 (Hz) 0.029 0.034 0.034 0.017 0.026 0.028 
 
 (0.008) (0.008) (0.008) (0.007) (0.007) (0.007) 
 
Prop. Band 2 (Hz) 0.176 0.219 0.214 0.180 0.204 0.210 
 
 (0.037) (0.037) (0.037) (0.036) (0.036) (0.036) 
 
Prop. Band 3 (Hz) 0.229 0.242 0.262 0.215 0.205 0.212 
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 (0.022) (0.021) (0.021) (0.021) (0.021) (0.021) 
 
Prop. Band 4 (Hz) 0.083 0.078 0.069 0.105 0.083 0.083 
 
                       (0.017) (0.017) (0.017) (0.016) (0.016) (0.016) 
 
Prop. Band 5 (Hz) 0.085 0.088 0.086 0.097 0.094 0.096 
 
 (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) 

 
Note.  B1 = first baseline, DAF = Delayed Auditory Feedback, B2 = second baseline 
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Table 5 

Simple ANOVA analyses compared to MLM analyses for Cry Sounds

Variables            ANOVA                        MLM  

Duration (s) age effect condition effect2  

SD Duration (s)  interaction effect1; 4wks -------------------- 

Max. Frequency (Hz) no effects condition effect1 

Mean F0  (Hz) no effects no effects   

SD Mean F0 (Hz)   no effects condition effect1  

Energy (db) age effect age and condition1 effects 

Harmonicity (db) no effects no effects 

Prop. Band 1 (Hz) condition effect1 condition effect1 

Prop. Band 2 (Hz) condition effect1 condition effect1 

SD Prop. Band 2 (Hz) condition effect1 -------------------- 

Prop. Band 3 (Hz) no effects no effects 

Prop. Band 4 (Hz) no effects condition effect1 

Prop. Band 5 (Hz) no effects no effects 

Note.  SD variables that average across cries in each condition cannot be included in 

MLM analyses.  Only SD variables that produced significant effects are included in table. 

1 Post hoc analyses showed significant differences only between Baseline 1 and DAF. 

2 Post hoc analyses showed only marginally significant differences between DAF and 

Baseline 2. 
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Table 6  

Correlations between Soothability Scores and Acoustic Variables at 4 and 8 weeks 
 

Age  Condition   Acoustic Variable    r 
 

 4-Weeks Baseline 1   Mean Cry Duration  -.50† 

DAF    Cry Count    .50† 

Entire Cry Bout  Negative Sound Count  .50** 

8-Weeks Baseline 1   Mean Harmonicity    .47† 
 

   SD Prop Band 3   .53*a 

DAF    Mean Cry Duration  -.48† 

SD Cry Duration  -.51** 

Negative Sound Count  .73*** 

Second Baseline  SD Cry Duration  -.49** 

      Negative Sound Count  .57** 

Entire Cry Bout  Negative Sound Count  .63** 
 

Note. “Entire Cry Bout” was computed by averaging the number of fuss and cry sounds 

across all three conditions (Baseline 1, DAF, and Baseline 2).   

† p < .10 ** p < .05 *** p < .01       a p > .05 when single outlier is removed 
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