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Phagosomal signaling by Borrelia burgdorferi in human
monocytes involves Toll-like receptor (TLR) 2 and TLR8
cooperativity and TLR8-mediated induction of IFN-β
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cDepartment of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595; dCenter for Immunology and Microbial Disease, Albany
Medical College, Albany, NY 12208; and fDivision of Pediatric Infectious Diseases, Connecticut Children’s Medical Center, Hartford, CT 06106

Edited* by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved January 21, 2011 (received for review September 17, 2010)

Phagocytosed Borrelia burgdorferi (Bb) induces inflammatory sig-
nals that differ both quantitatively and qualitatively from those
generated by spirochetal lipoproteins interacting with Toll-like re-
ceptor (TLR) 1/2 on the surface of human monocytes. Of particular
significance, and in contrast to lipoproteins, internalized spiro-
chetes induce transcription of IFN-β. Using inhibitory immunoreg-
ulatory DNA sequences (IRSs) specific to TLR7, TLR8, and TLR9, we
show that the TLR8 inhibitor IRS957 significantly diminishes pro-
duction of TNF-α, IL-6, and IL-10 and completely abrogates tran-
scription of IFN-β in Bb-stimulated monocytes. We demonstrate
that live Bb induces transcription of TLR2 and TLR8, whereas
IRS957 interferes with their transcriptional regulation. Using con-
focal and epifluorescence microscopy, we show that baseline TLR
expression in unstimulated monocytes is greater for TLR2 than for
TLR8, whereas expression of both TLRs increases significantly
upon stimulation with live spirochetes. By confocal microscopy,
we show that TLR2 colocalization with Bb coincides with binding,
uptake, and formation of the phagosomal vacuole,whereas recruit-
ment of both TLR2 and TLR8 overlaps with degradation of the spi-
rochete. We provide evidence that IFN regulatory factor (IRF) 7 is
translocated into the nucleus of Bb-infectedmonocytes, suggesting
its activation through phosphorylation. Taken together, these find-
ings indicate that the phagosome is an efficient platform for the
recognition of diverse ligands; in the case of Bb, phagosomal sig-
naling involves a cooperative interaction between TLR2 and TLR8
in pro- and antiinflammatory cytokine responses, whereas TLR8 is
solely responsible for IRF7-mediated induction of IFN-β.

Lyme disease | endosomal receptors | type I interferons | phagocytosis

Lyme disease (LD), the most commonly reported vector-borne
illness in the United States (1), is a multisystem infectious

disorder caused by the spirochetal bacterium Borrelia burgdorferi
(Bb). Monocytes and macrophages are considered to be critical
cellular elements of the innate immune response to Bb (2–5).
Recognition of the spirochete was previously thought to result
primarily from the interactions of the bacterium’s abundant outer
membrane-associated lipoproteins with Toll-like receptor (TLR)
1/2 on the surface of innate immune cells (6). More recently, we
and others have provided evidence that phagocytosed live Bb
induces inflammatory signals that differ both quantitatively and
qualitatively from those generated by lipoproteins (2, 4, 7–9). In
addition to enhanced cytokine production, phagocytosed live Bb
induced transcription of IFN-β and several IFN-stimulated genes
(ISGs) in isolated human monocytes, whereas spirochetal lipo-
proteins were unable to do so (7).
Although production of type I IFNs was previously ascribed

solely to antiviral immune responses (10), it now is well estab-
lished that both intracellular (11–14) and extracellular bacteria
(11, 15–17) also induce transcription of these cytokines. Bacteria
can elicit type I IFNs either by activating TLRs (11, 12) or
through TLR-independent recognition of bacterial pathogen-

associated molecular patterns (PAMPs) within the host cell cy-
tosol (11, 18). We and others have begun to demarcate the
pathways by which live Bb induces type I IFNs in both mouse and
human cells (7, 19–22). Miller et al. (20) demonstrated that live
Bb induces transcription of several ISGs in bone marrow-derived
murine macrophages (BMDMs) independent of both MyD88
(20) and TRIF (21) yet requiring the transcription factor IFN
regulatory factor (IRF) 3. Using Bb-infected human peripheral
blood mononuclear cells (PBMCs), Petzke et al. (22) provided
evidence that human plasmacytoid dendritic cells (pDCs) are a
principal source of IFN-α in response to phagocytosed live spi-
rochetes and demonstrated that transcription and secretion of
this type I IFN was inhibited by blocking TLR7 and TLR9. These
two TLRs, together with TLR8, make up a family of endosomal
pattern recognition receptors that are capable of generating
MyD88-dependent type I IFNs by sensing pathogen-derived
nucleic acids (23, 24). In contrast to pDCs, human monocytes
constitutively express TLR8, and although they also express
TLR7, they do not express TLR9 (23, 25–27). The role of TLR8 in
modulating innate immune responses to Bb, including its in-
volvement in the production of type I IFNs, has not been
previously examined.
In this study, we used highly purified human monocytes to

characterize more precisely the mechanisms whereby in-
ternalization of the LD spirochete induces production of pro- and
antiinflammatory cytokines, including type I IFNs. We provide
evidence that phagosomal signaling in Bb-infected monocytes
involves a sequential and cooperative interaction between TLR2
and TLR8, which occurs exclusively by activation of TLR8 in the
case of IFN-β. Our combined observations take us well beyond the
simplistic notion that innate immune cell activation by Bb occurs
only at the plasma membrane through TLR1/2 and CD14 sig-
naling and, instead, reveal the importance of the phagosome as an
efficient platform for the recognition of diverse bacterial PAMPs.

Results
Phagocytosis of Bb Is Required for Transcription of IFN-β in Bb-
Infected Human Monocytes. We previously showed that in-
hibition of phagocytosis diminished NF-κB–dependent cytokine
production in Bb-stimulated PBMCs (2). More recently, we
demonstrated that the monocyte is a major source of these
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cytokines and solely responsible for the production of IFN-β (7).
We now provide evidence that internalization of the bacterium is
essential for the induction of IFN-β and for optimal production
of TNF-α in isolated human monocytes. When the actin filament
disrupter Cytochalasin-D is used to block phagocytosis, tran-
scription of ifnb is abrogated and secretion of TNF-α is signifi-
cantly diminished (Fig. S1). Thus, if sensing of the spirochete is
restricted to cell surface TLR2, induction of type I IFNs does not
occur and production of NF-κB–mediated cytokines is sig-
nificantly impaired.

Bb-Mediated Induction of IFN-β Cannot Be Explained by TLR2
Signaling. TLR2 signals were previously believed to be incapa-
ble of inducing type I IFNs (28). Two recent studies have chal-
lenged this notion by demonstrating that activation of TLR2, by
either viral (29) or bacterial (30) ligands, can induce transcription
of IFN-β in inflammatory human monocytes and murine macro-
phages, respectively. In a previous study, we provided evidence
that lipoprotein-rich borrelial lysates do not induce transcription
of IFN-β by human monocytes (7). In the same study, we showed
that production of IFN-β in Bb-infected murine BMDMs occurs
independent of TLR2. Nonetheless, in light of the recent finding
that a bacterial TLR2 ligand (Pam3CSK4) induces production of
IFN-β in murine macrophages (30), we have reexamined herein
the contribution of TLR2 activation in the production of this cy-
tokine by human monocytes. We first established that transcrip-
tion of IFN-β in Bb-stimulated monocytes does not begin in
earnest until 2 h of incubation and increases noticeably after 4 h
of stimulation (Fig. S2). In contrast to the robust type I IFN re-
sponses elicited by either LPS or live Bb, even high concentrations
of Pam3CSSNA failed to induce transcription of IFN-β in mon-
ocytes (Fig. S3). These combined observations are indicative that
TLR2 signaling does not play a significant role in the induction of
type I IFNs in Bb-infected monocytes.

TLR8 Is Required for Transcription of IFN-β and Cooperates with TLR2
in Generating Pro- and Antiinflammatory Cytokine Production in Hu-
man Monocytes. Having established that TLR2 signaling alone
cannot explain the type I IFN responses to live Bb, we hypoth-
esized that activation of an endosomal TLR could be responsible
for the induction of IFN-β in the monocyte. To explore this
possibility, we took advantage of the availability of specific in-
hibitory DNA–oligonucleotide sequences (IRSs) that have the
ability to block ligation of TLR7, TLR8, or TLR9 (31, 32). These
inhibitors were recently used by Petzke et al. (22) to demonstrate
that induction of IFN-α in Bb-infected pDCs is dependent on
TLR7 and TLR9. For these experiments, we first corroborated
that healthy volunteers’ monocytes expressed TLR7 and TLR8
and very little TLR9 (27) (Table S1). As depicted in Fig. 1A, we
then showed that inhibition of TLR8 by IRS957 eliminated
transcription of IFN-β, whereas induction of this cytokine by the
spirochete was unaffected by blocking TLR7 with IRS661
(P = 0.17 vs. no inhibitor) or TLR9 with IRS869 (P = 0.27 vs. no
inhibitor). The specificity of IRS957 for TLR8 in human mon-
ocytes has been previously confirmed by exclusion of reactivity to
TLR7 and TLR9 (32). Herein, we confirmed the specific in-
hibitory effect of IRS957 by demonstrating that production of
IFN-β was markedly decreased in response to the TLR7/8 ago-
nist R848 (Fig. S4) and the TLR8-specific ligand 3M-002 (Fig.
S5), whereas TLR7 inhibition had no effect on 3M-002–mediated
transcription of IFN-β. Moreover, the response to LPS, which
induces IFN-β through TLR4 (28), was unaffected by the TLR8
inhibitor (Fig. 1A). In concert with the role of TLR8 in the pro-
duction of NF-κB–dependent cytokines (33–35), IRS957 also
caused a significant decrease in secretion of TNF-α, IL-6, and IL-
10 by Bb-infectedmonocytes (Fig. 1B). In parallel experiments, we
verified using confocal microscopy that internalization of the spi-
rochete was not significantly affected by blocking TLR8 (no in-

hibition, 19.2% ± 4.1 vs. TLR8 inhibited, 14.2% ± 1.2; P = 0.2).
Taken as a whole, we interpreted these results as evidence that in
Bb-infected monocytes, TLR8 cooperates with TLR2 in the pro-
duction of NF-ĸB–mediated cytokines, whereas TLR8 alone is
responsible for transcription of IFN-β.
We next used RT-PCR to examine the expression profile of

TLR2 and TLR8 in Bb-infected monocytes and compared these
responses with those elicited by synthetic TLR2 and TLR8 ligands.
As shown in Table 1, live Bb differentially induced transcription
of both TLR2 and TLR8, although it had no effect on TLR7
or TLR9. In parallel experiments, we demonstrated that up-
regulation of both TLR2 and TLR8 was greatly diminished by
blocking TLR8 (Table 1). The inhibitory effect of IRS957 on
TLR8 protein levels was confirmed by Western blot analysis (Fig.
S6). The regulatory effect of TLR8 stimulation on TLR2 is not at
all unanticipated, given that IFN-β has been shown to up-regulate
expression of TLR2 (36). In support of this idea, R848 induced
transcription of both TLR8 and TLR2 (Table 1), whereas
Pam3CSSNA only affected TLR2. The inhibitory effect of IRS957
on TLR8 transcription is indicative that TLR8 is self-regulated on
engagement of its cognate spirochetal PAMP. These findings

Fig. 1. Transcription of IFN-β is abrogated after TLR8 inhibition in human
monocytes. (A) TLR8 inhibition by IRS-957 eliminated transcription of IFN-β in
Bb-infected monocytes (10:1 multiplicity of infection), whereas a control
ODN sequence did not. Transcription of IFN-β in response to LPS was not
affected by either treatment. Relative expression refers to ifnb gene ex-
pression normalized to gapdh. N.S., not significant; ODN, oligodeoxyr-
ibonucleotide. (B) Secretion of NF-κB–dependent cytokines (TNF-α, IL-6, IL-
10, and IL-1β) was diminished on inhibition of TLR8 in human monocytes. Un,
uninfected. P values correspond to paired analysis [Mann–Whitney U test (A)
and paired t test (B)] from a minimum of four independent experiments.
*P < 0.05; **P < 0.01.
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provide additional evidence that innate immune responses to Bb in
human monocytes result from a cooperative interaction between
TLR2 and TLR8.

TLR2 and TLR8 Colocalize with GFP-Bb to the Phagosomal Vacuole of
the Monocyte.Having established that phagocytosis is an essential
element of the innate immune response to the spirochete and
that TLR2 and TLR8 cooperate in generating phagosomal sig-
nals, we then used confocal microscopy to characterize the
spatial-temporal distributions between phagocytosed Bb and
TLR2 and TLR8 more precisely. We first showed that the
baseline expression of TLR2 in unstimulated monocytes was
greater than that of TLR8 (Fig. 2 and Fig. S7). TLR2 was vi-
sualized on the monocyte’s surface as well as on the cytoplasm,
whereas TLR8 was seen exclusively inside the cell. Within 30 min
of coincubation with Bb, expression of both TLR2 and TLR8
increased in Bb-infected monocytes and to a lesser extent in
bystander uninfected cells (Fig. 2 and Fig. S7). To capture spi-
rochete-TLR localization at both early and later stages of
phagocytosis, we analyzed multiple confocal images obtained at
several times of incubation, beginning with the 30-min stimula-
tion time point. TLR2 colocalized at the cell surface with spi-
rochetes that were attached and/or partially embedded in the
monocyte’s membrane (Fig. 3A and Movie S1). TLR2 also
colocalized to the phagosomal vacuole, with recently internalized
spirochetes shown as tightly wound bacterial coils (Fig. 3B and
Movie S2). TLR8 colocalized to phagosomal vacuoles containing
fully degraded spirochetes in the shape of bright fluorescent
blebs (Fig. 3C and Movie S3). Concurrent staining with TLR2
and TLR8 confirmed that both TLRs colocalize simultaneously
to phagosomal vacuoles containing degraded spirochetes (Movie
S4). Of particular significance, TLR2 colocalized with TLR8 in
the cytoplasm of Bb-infected monocytes (Fig. 2, Inset and Movie
S4), which suggests that TLR2 and TLR8 traffic to the phag-
osome from similar endosomal compartments. Taken together,
these images provide visual evidence that Bb is initially sensed by
TLR2 on the monocyte cell surface during binding and uptake,
whereas partially and fully degraded spirochetes interact with
both TLR2 and TLR8 in the phagosomal vacuole.

Live Bb Induces Transcription and Nuclear Translocation of IRF7. We
next sought to elucidate which transcription factor is associated
with TLR8-mediated induction of IFN-β. We focused on IRF3,
IRF5, and IRF7, all of which are associated with the induction of
genes that encode type I IFNs (37–41). We have previously
demonstrated that IRF7 is the only IRF that is significantly up-
regulated in PBMCs stimulated with live Bb (7). Herein, we show
by RT-PCR that IRF7 (but not IRF3 or IRF5) is also induced in
Bb-infected isolated human monocytes (Table 2). We also dem-
onstrate that the transcriptional regulation of IRF7 is eliminated
by blocking TLR8. Using epifluorescence microscopy, we then
confirmed that IRF7 is translocated into the nucleus of Bb-

infected monocytes and R848-stimulated cells (Fig. 4), a finding
that is indicative of IRF7 activation through phosphorylation (42).
A similar process did not occur in unstimulated monocytes or
bystander uninfected cells. A two-step process involving IRF3
activation before activation of IRF7 does not seem plausible,
because we did not observe any increase in IRF3 signal by mi-

Table 1. TLR relative expression in stimulated human
monocytes

n = 6

Bb, 10:1 MOI

Pam3CSSNA,10 μg R848,1 μgNo inhibitor TLR8-inhibited

TLR2 3.1 ± 0.5 1.9 ± 0.2* 2.8 ± 1.7 2.2 ± 0.4
TLR8 5.8 ± 0.7 −1.5 ± 0.6* −0.4 ± 1.9 14.2 ± 4.3
TLR7 1.4 ± 0.1 −0.4 ± 1.2* −1.3 ± 0.2 3.6 ± 2.7
TLR9 −3.6 ± 0.9 −2.5 ± 0.7 −1.5 ± 0.5 −3.1 ± 1.3

Values represent relative changes in gene expression compared with
GAPDH. MOI, multiplicity of infection.
*P < 0.05 (Mann–Whitney U test). Comparison analysis between TLR8-
inhibited and -uninhibited Bb-stimulated monocytes.

Fig. 2. TLR2 and TLR8 cellular expression. Costaining for TLR2 (green) and
TLR8 (red) is shown in unstimulated monocytes and in both infected and
uninfected cells (bystander) within 30 min of incubation with Bb (10:1 mul-
tiplicity of infection). TLR2 fluorescent signals are visualized in unstimulated
and bystander cells, greatly increasing in Bb-infected monocytes. TLR8 signals
are of very low intensity in uninfected monocytes and, like TLR2, increase in
Bb-infected monocytes. Black arrows point to degraded GFP-Bb. TLR2 coloc-
alizes with TLR8 even at locations that do not coincide with internalized GFP-
Bb (white arrows and region of interest). Numerical values shown in white
correspond to Mander’s colocalization coefficient (M2), indicative of the
proportion of the green signal (TLR2) overlapping with the signal in the red
channel (TLR8). DIC, differential interference contrast.

Fig. 3. Phagocytosed Bb colocalizes with TLR2 and TLR8 in human mono-
cytes. A composite of representative confocal micrographs shows three
consecutive Z-stack planes of GFP-Bb–stimulated human monocytes. Extra-
cellular Bb interacts with TLR2 at the plasma membrane of the monocyte (A),
whereas recently internalized (bacterial coil) and fully degraded (fluorescent
bleb) Bb colocalizes with TLR2 (B) and TLR8 (C). Mander’s colocalization
coefficient values (M2), shown in the upper right corner of each figure, are
indicative of the proportion of the green signal overlapping with the signal
in the red channel. Red depicts TLR2 signals in A and B and TLR8 in C, green
depicts GFP-Bb, and white represents red and green pixels that colocalize.
(Scale bar, 5 μm.) Colocalization through the Z-stack images illustrated in A
and B (TLR2) and in C (TLR8) is shown in Movie S1, Movie S2, and Movie S3.
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croscopy or translocation of IRF3 into the nucleus (Fig. S8).
Moreover, using Bb-infected monocytes in a time-chase experi-
ment, we confirmed that relative increases in IRF7 sequentially
preceded relative increases in IFN-β (Fig. S2). Blocking IRF7
phosphorylation using the kinase inhibitor staurosporine (43)
completely abrogated IFN-β induction (Fig. S9A) and greatly
impaired up-regulation of IRF7 (Fig. S9B). The amount of
staurosporine used was enough to block nuclear translocation of
IRF7 in the absence of apoptosis (Fig. S9C). Taken as a whole,
these results provide evidence that IRF7 induces transcription of
IFN-β in Bb-infected monocytes.

Discussion
The experimental evidence presented herein indicates that the LD
spirochete induces multifaceted innate inflammatory signals in
human monocytes that can only be fully coordinated during in-
ternalization of the bacterium and formation of the phagosome. As
maturation of the phagosome progresses, this unique vacuolar
structure very quickly gains capabilities for the recognition of di-
verse spirochetal PAMPs and becomes an increasingly more effi-
cient platform for signal generation, leading to enhanced pro-
duction of NF-ĸB–mediated cytokines and MyD88-dependent
induction of IFN-β. Ourfindings are unique in that they suggest that
internalization and degradation of the spirochete by the monocyte

facilitates sampling of liberated PAMPs through a sequential acti-
vation of cell surface TLR2, followed by signaling through TLR2
and TLR8 cooperatively at the phagosomal membrane.
Mammalian TLR8 is thought to signal exclusively through

MyD88 after recognition of single-stranded RNA ligands (44).
Human TLR8 can be activated by nucleic acids derived from
a variety of RNA viruses (45–48) as well as Escherichia coli RNA
in genetically complemented HEK293 cells (49). To date, TLR8
has been linked to the recognition of two different intracellular
bacteria, Mycobacterium bovis bacille Calmette–Guérin (bacillus
Calmette–Guérin) (35) and Helicobacter pylori (50). In the case of
bacillus Calmette–Guérin, TLR8 protein expression levels mark-
edly increased in infected macrophages derived from a human
acute monocytic leukemia cell line (THP-1 cells). Interestingly,
a significant boost in TLR8 expression levels was also seen in the
blood of patients with untreated Mycobacterium tuberculosis in-
fection (50). Using activated THP-1 cells, Gantier et al. (35)
demonstrated that expression of the two main human TLR8
variant mRNAs significantly increased following H. pylori
phagocytosis. In this study, we reveal a previously unappreciated
direct role for human TLR8 in transcription of IFN-β in Bb-
infected monocytes and cooperativity with TLR2 in the pro-
duction of several NF-κB–dependent cytokines. We hypothesize
that endosomal TLR8 is activated in response to spirochetal
mRNA released upon degradation of the bacterium into the
phagosomal cargo. In contrast to bacillus Calmette–Guérin and
H. pylori, Bb is an extracellular pathogen that is rapidly degraded
once phagocytosed; thus, it is not surprising that engagement of
TLR8 in the monocytes occurred soon after internalization of the
bacterium. Given that induction of type I IFNs in Bb-infected
pDCs is partially dependent on TLR9 (22), it is conceivable that
borrelial DNA also may play a role in activating TLR8 in human
monocytes. This premise is supported by the recent finding that
murine TLR8, which is functional in mice in the context of a viral
infection (51), can be activated by vaccinia virus (VV) DNA
through recognition of poly(A)T-rich motifs (52). Like VV DNA,
borrelial DNA also contains poly(A)T-rich motifs (53).
TLR2–spirochetal PAMP interactions were originally studied

as cell surface phenomena (54). Several studies have now dem-
onstrated that TLR2 is recruited to the phagosome, where it
becomes available for signaling (14, 55–57). Structurally, this
model is not at all unanticipated, given that the phagosomal
membrane is initially derived from the plasma membrane (58,
59). Consistent with this concept, Underhill et al. (55) found that
in a mouse leukemic monocyte macrophage cell line (RAW-
cells), cell surface TLR2 was recruited to phagosomes and colo-
calized with zymosan particles within minutes of their in-
ternalization, suggesting that TLR2-mediated signals occur within
a circumscribed window of time during the initial phase of
phagosome maturation. Studies conducted in Stephanie Vogel’s
laboratory (60), however, have revealed that prolonged TLR2-
dependent signaling from the phagosomal vacuole takes place in
murine macrophages infected with a mutant strain of Francisella
tularensis (Ft), which is unable to escape the phagosome. The
same group demonstrated that TLR2 and MyD88 colocalize to
the phagosomal vacuole of RAW macrophages infected with
a live vaccine Ft strain (14). TLR2 also can become available for
signaling from within endosomal vacuoles in human monocytes
stimulated with internalized staphylococcal lipoteichoic acid (56).
O’Connell et al. (57) demonstrated that intracellular TLR2 was
responsible for the initiation of signal transduction events by
Chlamydia trachomatis. Herein, we validate that TLR2 senses live
spirochetes at the plasma membrane during binding and uptake
and provide previously undescribed evidence that TLR2 is also
available for signaling at the phagosomal membrane of human
monocytes. The finding that TLR2 colocalizes with TLR8 in-
tracellularly in areas other than the phagosome (Fig. 4, region of
interest) suggests that TLR2 traffics to the phagosomal vacuole

Table 2. IRF Expression in Bb-stimulated human monocytes

n = 6 No inhibitor TLR8-inhibited

IRF 3 −1.1 ± 0.5* −2.1 ± 0.1
IRF 5 0.03 ± 0.6* −2.2 ± 0.3
IRF 7 7.2 ± 1.3* 1.6 ± 0.1

Values represent relative changes in gene expression compared with
GAPDH.
*P < 0.05 (Mann–Whitney U test). Comparison analysis between inhibited
and uninhibited Bb-stimulated human monocytes.

Fig. 4. Live Bb induces nuclear translocation of IRF7. IRF7 (red) is expressed
in the cytoplasm of uninfected monocytes and translocates to the nucleus
(DAPI, blue) in GFP-Bb–infected monocytes (indicated by black arrows) and
in R848-stimulated controls. Translocation of IRF7 into the nucleus is shown
in pink. BF, bright field.
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from two different locations: most certainly from the plasma
membrane but also from an as yet undefined cytosolic location/
structure, similar to the intracellular trafficking of TLR8. Taken
as a whole, we envision a model in which a superior TLR2-re-
ceptor density would become available for signaling in phag-
osomal vacuoles than can occur at the plasma membrane. The
presence of specific “docking” molecules within the budding
phagosomal vacuole would thus provide an effective scaffold for
inserting spirochetal lipoproteins proximal to their cognate
receptors. A higher receptor density, in combination with a large
concentration of exposed and liberated lipoproteins, would thus
greatly improve TLR2 signaling efficiency.
Although cross-talk between TLR2 and TLR8 occurs follow-

ing stimulation of PBMCs by their individual TLR ligands (61),
the transcriptional and translational responses shown here dis-
tinctively demonstrate that coordination between TLR2 and
TLR8 does occur in response to a live bacterium. How these
integrated responses facilitate control of the LD spirochete and
whether or not they are beneficial or detrimental to individuals
with LD have only begun to be uncovered. Evidence from re-
cently published studies suggests that endosomal TLR activation,
including TLR8, can have an impact on the ability of the host cell
to respond to stimulation of a different TLR (62, 63), including
TLR2 (62). Given that type I IFNs can shape a variety of
downstream inflammatory responses through positive and/or
negative regulation of the expression of hundreds of additional
genes involved in secondary host defenses, TLR8 activation is
likely to play a critical role in clearance of the spirochete and,
most importantly, disease control. Type I IFNs also can promote
inflammatory cell death of host cells (50, 64), a phenomenon that
we previously described in Bb-infected monocytes (4), and thus
may constitute an additional mechanism for controlling spiro-
chetal replication. Whether or not the presence of tlr8 SNPs in
patients with LD affects spirochetal clearance and/or dissemi-
nation, and whether these SNPs are linked to disease progression
and/or the severity of the initial clinical presentation, needs to
be studied.

Materials and Methods
Human Monocyte Isolation and Stimulation Conditions. All procedures in-
volving human subjects were approved by the Institutional Review Board at
theUniversity of ConnecticutHealthCenter. After obtainingwritten informed
consent, monocytes were isolated from LD-seronegative volunteers as pre-
viously described (7). Exceptwhere noted, cellswere incubated for 4 h at 37 °C/
5% (vol/vol) CO2 with live, low-passage, temperature-shifted GFP-Bb 1479 at
various multiplicities of infection. Appropriate controls, including a synthetic
TLR2 ligand (Pam3CSSNA), were used in the ex vivo stimulation model as
previously described (7). All culture media and reagents were confirmed to be
essentially free of LPS contamination (<10 pg/mL) by Limulus amoebocyte
lysate assay (Cambrex). In selected experiments, Cytochalasin-D was used as
previously described (2).

Endosomal TLR Blocking. Specific immunoregulatory DNA sequences (IRSs;
Integrated DNA Technologies) (31) were used to block TLR7 signaling (IRS661:
5′-TGCTTGCAAGCTTGCAAGCA-3′), TLR7 and TLR8 (IRS957: 5′-TGCTTG-AC-
ATCCTGGAGGGGTTGT-3′), and TLR9 (IRS869: 5′-TCCTGGAGGGGTTGT-3′) as
described by Petzke et al. (22). A non–TLR-specific oligodeoxyribonucleotide
sequence was used as a control, in the same concentration as the TLR in-
hibitor. R848 (Resiquimod; InvivoGen), a known synthetic ligand for human
TLR7 and TLR8 (32) and a potent inducer of IFN-β (65), was used to study the
response in monocytes. The specificity of the TLR7 and TLR8 inhibitors was
assessed with the TLR8-specific ligand 3M-002 (InvivoGen) (66).

Assessment of Monocyte Activation by Quantitative RT-PCR and Cytokine
Secretion. At the conclusionof the incubationperiod, cellswere harvested and
RNA was extracted using a total RNA isolation kit (Macherey–Nagel). cDNA
was prepared from extracted RNA using a high-capacity cDNA RT kit (Applied
Biosystems). RT-PCR conditions and reactions have been described previous-
ly (7). Commercially available primers (Applied Biosystems) used for amplifi-
cation included the following: ifnb (Hs00277188_s1), tlr2 (Hs00610101_m1),

tlr7 (Hs00152971_m1), tlr8 (Hs00152972_m1), tlr9 (Hs00152973_m1), irf3
(Hs01547283_m1), irf5 (Hs00158114_m1), irf7 (Hs00185375_m1), and gapdh
(Hs99999905_m1). Expression levels of all transcripts studiedwere normalized
to the GAPDH level, and the relative changes in gene expression generated
were calculated using the 2−ΔΔCT method. A cytokine bead array system
(Human inflammation kit; Becton Dickinson) was used to assay cytokines se-
creted by TNF-α, IL-10, IL-6, and IL-1β in culture supernatants. Secretion of IFN-
βwas determined using a commercially available ELISA method (VeriKine-HS;
PBL Biomedical Laboratories).

Western Blot Analysis of TLR8 Protein Expression. TLR8 expression was mea-
sured by Western blot analysis. Briefly, 40 μg of protein was loaded in each
correspondent lane, and protein was transferred to a PVDF membrane. Af-
ter blocking, the membrane was probed with TLR8 antibody (catalog no.
H00051311-MO1; Abnova). Membranes were washed, and secondary anti-
bodies were added. After 1 h, membranes were washed with PBS-Tween and
developed. The same membrane was stripped, reblocked, reprobed, and
developed for human GAPDH (Santa Cruz Biotechnology, Inc.) Densitometric
analysis of obtained bands was done using a Flurchem 8900 Chemilu-
minescence and Gel Imager (Alpha Innotech).

Cellular Localization of IRF7/IRF3, TLR8/TLR2, and GFP-Bb. To determine the
cellular localization of TLR2 and TLR8 in Bb-infected monocytes, we used
a modified version of the method described by Ma et al. (67). Briefly,
monocytes were plated in poly-D-lysine–treated culture slides (BioCoat; BD
Biosciences). Following different time points of stimulation (0 min, 30 min,
60 min, 90 min, 3 h, and 4 h), slides were fixed with 4% (vol/vol) para-
formaldehyde for 10 min at room temperature (RT); permeabilized with
0.2% saponin for 10 min; blocked with Connaught Medical Research Labo-
ratories (CMRL) 10% FCS for 2 h at RT; incubated overnight at 4 °C with
a rabbit anti-human IRF7 polyclonal or mouse anti-human IRF3 monoclonal
antibody (Santa Cruz Biotechnology, Inc.), a rabbit anti-TLR8 polyclonal
antibody (IMGENEX), or a rabbit anti-TLR2 polyclonal antibody (Rockland
Immunochemicals) (1:100 dilution for all); and subsequently incubated with
Texas RedR-X–conjugated goat anti-rabbit antibody (1:200 dilution; Invi-
trogen) for 1 h at RT or goat anti-mouse DyLight 594 (Thermo Scientific). For
TLR2 and TLR8 immunofluorescent costaining, we used the following anti-
bodies: a primary monoclonal mouse antibody to human TLR8 (IMGENEX)
followed by goat anti-mouse AlexaFluor 546 (Invitrogen) and a primary
polyclonal rabbit anti-TLR2 antibody (Rockland Immunochemicals) followed
by goat anti-rabbit AlexaFluor 635 (Invitrogen). Slides were washed and
mounted in Vectashield antifade reagent (Invitrogen) containing DAPI.
Images were acquired on an LSM-510 confocal microscope using a 63× (1.4
N.A.) oil immersion objective at a pixel resolution of 512 × 512. Image
analysis was performed using ImageJ (National Institutes of Health); pixel
colocalization was displayed using the colocalization plug-in. Mander’s
overlap colocalization coefficients (M1 and M2) were determined using the
JACoP plug-in (68). Movies were generated using ImageJ and Quicktime Pro
software (Apple, Inc.). To measure TLR2 and TLR8 cellular expression, ∼100
images of human monocytes, stained for either TLR2 or TLR8, were acquired
at a magnification of 100× in an Olympus BX-41 epifluorescence microscope
equipped with a digital camera (Q Imaging), using equal exposure time and
gain parameters. Regions of interest corresponding to individual cellular
contours were drawn using the Freehand selection tool of the ImageJ
software, and mean fluorescence intensity and cellular area were calculated.

Statistical Methods. General statistical analysis was performed using Graph-
Pad Prism 4.0. The fold increase or decrease for each specific gene transcript
assayed by quantitative RT-PCR and cytokine concentrations was compared
among the different stimuli using either a paired or unpaired Student’s t test
or the equivalent nonparametric method (i.e., Mann–Whitney U test). To
analyze changes over time, we used a nonparametric statistical test for trend
analysis (Kruskal–Wallis test), because a Gaussian distribution could not be
assumed. A P value <0.05 was considered significant.
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