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Implementation of the CLAS12 HTCC into GEMC 

N. Harrison1 

1University of Connecticut, Storrs, Connecticut 06269 

I. INTRODUCTION 

Experiments designed to probe the structure of the proton via electron-proton scattering date 

back to the 1960s when Hofstadter used a 188 MeV electron beam and hydrogen target to 

demonstrate the finite size of the proton. At such low energies, however, a high resolution model 

of the proton could not be developed. Further electron scattering experiments over the past fifty 

years have continued to reveal new information about the structure of the proton, but they too 

have suffered from shortcomings preventing them from revealing fully the structure and internal 

dynamics of the proton. 

The Continuous Electron Beam Accelerator Facility’s (CEBAF) Large Acceptance Spectrom-

eter (CLAS) at Jefferson Lab in Newport News, VA is currently undergoing an upgrade that will, 

among other things, involve an increase in beam energy from 6 GeV to 12 GeV. This upgraded 

detector is known as CLAS12. CLAS12 will have the technology to make measurements of both 

semi-exclusive as well as fully exclusive processes, allowing for the studies of the proton’s flavor 

structure and internal dynamics, respectively. The capacity to do this allows for measurements 

of deeply exclusive scattering processes to be made which connect transverse and longitudinal 

information, from which a three-dimensional image of the proton can be constructed. 

Accurate particle identification is essential to the success of CLAS12. One of the components 

of the detector that contributes to particle identification is the High Threshold Čerenkov Counter 

(HTCC). When a charged particle travels through a medium faster than light travels through 

that medium, radiation known as Čerenkov Radiation is emitted. The HTCC uses this principle 

to differentiate between electrons and charged -mesons. 

For simulation purposes, a computer model of the HTCC was built using a software package 

called GEANT4 (GEometry ANd Tracking) and implemented into another software package 

called GEMC (GEANT4 Monte Carlo simulator). GEANT4 was developed at the European 

Organization for Nuclear Research (CERN) and is a toolkit for simulating particles as they 

pass through matter; GEMC then uses this toolkit to run Monte Carlo simulations. Detector 

geometries can be replicated in GEMC by using predefined three dimensional shapes (boxes, 

ellipses, cones, etc.), and then combining two or more shapes or subtracting one shape from 
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another. The geometry of the CLAS12 HTCC was designed by Dr. Youri Sharabian. The 

following is a summary of that geometry as well as a description of how it was implemented into 

GEMC. 

II. COORDINATE SYSTEMS 

The coordinate systems used are all Cartesian. The absolute coordinate system is defined with 

the target at (x,y,z) = (0,0,0), the beam going in the +z direction, and the +y direction going 

straight up from the ground. Additionally, each shape created in GEANT4 has its own relative 

coordinate system (indicated with a prime symbol (′ )) that initially corresponds to the absolute 

coordinate system, but can be shifted and rotated. Rotations around the x, y, and z axes are 

performed in that order,unless otherwise specified, and are always with respect to the relative 

coordinates. Positive angles correspond to clockwise rotations. When performing a subtraction, 

for example, shape1 - shape2, the coordinates of shape2 are with respect to shape1’s relative 

coordinate system. 

III. THE FOUR MIRRORS 

The HTCC has 12 identical sectors (2 for each sector of the detector), each occupying 30◦ in 

the φ direction (see figure 3). Each sector consists of four mirrors. Each mirror is a piece of an 

ellipsoid of rotation. The geometry of the four ellipses defining these ellipsoids is summarized in 

figure 1 and table 1. The ellipsoids are created by spinning the ellipses about their major axes. 
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FIG.1: The four ellipses. The origin of the absolute coordinate system is indicated in red. The 
eight smaller circles indicate the positions of the ellipses’ centers and focal points. All of the 

ellipses share a common focal point at the origin. Also shown are the major and minor axes of 
each ellipse. 

Origin of relative system and angle rotated 
x (mm) y (mm) z (mm) γ (deg) 

Mirror 1 
Mirror 2 
Mirror 3 
Mirror 4 

0.0000 806.5149 -31.0234 
0.0000 894.3460 81.6664 
0.0000 951.2034 212.7408 
0.0000 973.4736 353.8694 

2.2029 
-5.2174 
-12.6070 
-19.9768 

Ellipsoid semi-axis radii and focal point (other is at origin) 
Rx (mm) Ry (mm) Rz (mm) x (mm) y (mm) z (mm) 

Mirror 1 
Mirror 2 
Mirror 3 
Mirror 4 

1728.6727 1907.8098 1728.6727 
1612.9985 1846.1550 1612.9985 
1497.6043 1786.8590 1497.6043 
1383.6210 1728.3754 1383.6210 

0.0000 1613.0299 -62.0467 
0.0000 1788.6919 163.3327 
0.0000 1902.4068 425.4815 
0.0000 1946.9473 707.7389 

Table 1: The values of all the parameters necessary to define the geometry of the four 
ellipsoids. See figure 1. 

The HTCC uses the fact that when a signal leaves a focal point of an ellipse, that signal will 

be reflected directly to the other focal point. By putting the target at one focal point of each 

ellipse and a photomultiplier tube (PMT) at the other (to collect Čerenkov light), and by filling 

ˇthe surrounding volume with a Cerenkov Gas, particles with certain properties can be detected 

by the ˇ Cerenkov Light gets reflected off of the mirror and Cerenkov Light that they emit. The ˇ

will then hit the corresponding PMT. The four aforementioned ellipsoids are each cut in such a 

way that each one forms a piece of the sector. The basic principle of the HTCC is illustrated in 

figure 2. Figure 3 shows the front view of the end result. 

FIG. 2: A simplified drawing of how the HTCC works. The four colored curves are each a 
section of one of the four ellipses from figure 1. Mirror 1 is shown in green and occupies from 
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27.5◦ to 35◦ in the θ direction. Mirror 2 is shown in blue and occupies from 20◦ to 27.5◦ in the 
θ direction. Mirror 3 is shown in maroon and occupies from 12.5◦ to 20◦ in the θ direction. 

Mirror 4 is shown in goldenrod and occupies from 5◦ to 12.5◦ in the θ direction. These 5 angles 
between 5◦ and 35◦ are shown in black. Also shown in colored straight lines are paths that 

Čerenkov Light might take. Since the signal will come from the origin, the light will always be 
reflected to the second focal points of the ellipses (shown by small circles) where PMTs will be 

located. 

FIG. 3: Front view of all 48 mirrors. All of the 30◦ slices in the φ direction have identical 
geometry. The origin of the x-y plane is at the center of the mirrors. 

IV. DIVIDING PLANES 

The interfaces between a mirror and the mirror inside and/or outside of it are defined by 

planes. These planes are defined by specifying three points in space. These three points for 

each plane of the “left” mirrors (see figure 4) are shown in table 2. However, when building 

the mirrors in GEMC, it is convenient to apply the dividing planes to unrotated mirrors (see 

figure 4) and then rotate the mirrors after the division has been applied. Therefore, the dividing 

planes must be rotated counterclockwise about the z-axis, the points for these new planes are 

also specified in table 2. 

Dividing planes for left mirrors After -15◦ rotation angle w/ x-z plane 
x (mm) y (mm) z (mm) x (mm) y (mm) z (mm) β (deg) 

M1/M2 0.000 342.103 2259.308 
0.000 932.040 1678.206 

466.020 807.171 1678.206 

-88.5428 330.4460 2259.3080 
-241.2300 900.2820 1678.2060 
241.2300 900.2820 1678.2060 

44.4392 

M2/M3 0.000 170.955 1954.026 
0.000 640.716 1663.568 

320.358 554.876 1663.568 

-44.2464 165.1298 1954.0260 
-165.8295 618.8841 1663.5680 
165.8296 618.8838 1663.5680 

57.3356 

M3/M4 0.000 146.195 1671.014 
0.000 370.630 1592.839 

185.315 320.975 1592.839 

-37.8381 141.2140 1671.0140 
-95.9261 358.0010 1592.8390 
95.9261 358.0010 1592.8390 

70.1703 
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Table 2: Values defining the planes that divide the mirrors. 

FIG. 4: Rotated and unrotated mirrors. In the lower picture, the directions of the PMTs, 
specified in table 3, are also shown. 

It can be seen in table 2 that the new dividing planes are perpendicular to the y-z plane and 

therefore form an angle β with the x-z plane (see figure 5). These angles are shown in table 2. 
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FIG. 5: The dividing planes after the -15◦ rotation. The β angles are given in table 2. 

V. PMTS 

The HTCC has 48 PMTs, one for each mirror. The PMTs are located at one of the focal 

points (the one not at the origin) of its corresponding elliptical mirror. These points are given 

in the bottom part of table 1 and specify the center of the PMT’s face. Note that these points 

are for the four unrotated mirrors. 

In addition to their positions, the PMT directions must also be specified. The direction angles 

are given in table 3. For GEMC, it is useful to also specify direction vectors, these are also given 

in table 3. These vectors were found using the common equations for the “direction cosines” of 

a vector and their lengths were arbitrarily chosen. Note that these directions are for the four 

rotated “left” mirrors. 

Direction angles Direction vectors 
ψx (deg) ψy (deg) ψz (deg) x (mm) y (mm) z (mm) 

Mirror 1 
Mirror 2 
Mirror 3 
Mirror 4 

85.2787 72.1106 161.4570 
81.6072 56.9940 145.6710 
78.6436 42.7025 130.4645 
77.5596 29.7704 116.0198 

1.0000 3.7319 -11.5182 
1.0000 3.7318 -5.6575 
1.0000 3.7321 -3.2958 
1.0000 3.7320 -1.8861 

Table 3: Direction angles and direction vectors defining the orientation of the axes of the
 
PMTs.
 

VI. GEMC - THE FIRST SHAPE - A SOLID ELLIPSOID 

The final mirror is a piece of this ellipsoid after is has had the appropriate cuts applied to it. 

It’s geometry is described in table 1, however, since this ellipsoid defines the back surface of the 

mirror, 0.3 mm is added to Rx, Ry, and Rz. 
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VII. GEMC - THE FIRST SUBTRACTION - A SMALLER ELLIPSOID 

The first subtraction is performed in order to turn the solid ellipsoid into an ellipsoidal shell. 

To do this, another, smaller ellipsoid is created and subtracted from the first. The geometry of 

this ellipsoid is the same as that of the previous one except for 0.3 mm addition. The absolute 

coordinates of this smaller ellipsoid are exactly the same as the absolute coordinates of the first 

ellipsoid, however, since it will be used for subtraction, its coordinates will be relative to the 

coordinates of the first ellipsoid. Therefore, the relative coordinates of the smaller ellipsoid are 

(x,y,z) = (0,0,0), and it is unrotated. This smaller ellipsoid defines the front surface of the 

mirror. See figure 6. 

FIG. 6: The ellipse defining the front surface of the mirror. The red lines show the origin of 
the absolute coordinate system. The ellipsoid is an ellipsoid of rotation and is created by 

rotating the ellipse about it major axis (y’). Shown in blue are the angles at which Čerenkov 
light will hit this mirror (mirror 1), 27.5◦ - 35◦ . The y’-axis forms an angle of 2.2029◦ with the 

y-axis. The x’-axis crosses the x-axis at x = -20997.9801 mm. 

VIII. GEMC - THE SECOND SUBTRACTION - A LARGE CUBE 

This large cube will be used to cut the ellipsoidal shell approximately in half. The length of 

a side of the cube is 10,000 mm. The absolute coordinates of the cube’s center are (x,y,z) = 

(0,0,-5000) and it is unrotated. Since it is used for subtraction, its relative coordinates need to 
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J

′ ′be specified, they are (x , y , z ′) = (0, −( (y2) + (z2)− 5000 ∗ sin(γ)), −5000 ∗ cos(γ)) and it is 

rotated about the x-axis by an angle of -γ, where y, z, and γ are given in the top part of table 1. 

FIG. 7: The ellipsoidal shell and cube used for subtraction, both shown in their absolute 
positions. 

FIG. 8: The result of the subtraction - approximately half of an ellipsoidal shell (shown at a 
different angle). 

IX. GEMC - THE THIRD SUBTRACTION - A CYLINDRICAL WEDGE 

To cut the mirror such that it occupies 30◦ in the phi direction, a cylindrical wedge is used for 

subtraction (more like a cylinder with a wedge cut out of it). The cylinder’s axis of symmetry 
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corresponds to the z-axis. Phi starts at 105◦ and ends at 75◦ (phi = 0 at the x-axis). The relative 
J 

′ ′coordinates of the cylinder’s center are (x , y , z ′) = (0, − (y2) + (z2), 0) and the cylinder is 

rotated about the x-axis by an angle of -γ, where y, z, and γ are given in the top part of table 

1. See figure 9. 

FIG. 9: The result of the subtraction. Beam also shown in orange. 

X. GEMC - THE DIVIDING PLANES 

The dividing planes are given in table 2 and figure 5. To apply these cuts, large boxes were 

created where the top or bottom of the box lies on the dividing plane. If the bottom of a mirror 

is being cut, the top of the box is used as the dividing plane, if the top of a mirror is being cut, 

the bottom of the box is used as the dividing plane. See figures 10 and 11. 
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FIG. 10: An illustration of how the boxes are oriented so that one of their surfaces lies on the 
dividing plane. See figure 5 as a reference. 

FIG. 11: The subtraction described above. Both objects shown in their absolute positions. 
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FIG. 12: The result of the subtraction. The beam is also shown in orange. 

Six boxes in total are used (bottom of mirror 1, top of mirror 2, bottom of mirror 2, top of 

mirror 3, bottom of mirror 3, and top of mirror 4), the relative coordinates of each box need 

to be calculated individually since the equations used depend on what quadrant (both in the 

absolute and relative coordinate systems) the box is in and whether γ is positive or negative. 

Figure 13 gives an example where γ is negative and the center of the box is in quadrant I of the 

absolute coordinate system and quadrant I of the relative coordinate system. 

FIG. 13: A drawing illustrating how to convert the absolute coordinates to relative 
coordinates. In this example, the box is in quadrant I of both coordinate systems. 
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Figure 13 gives the following results for the relative coordinates: 

′ z = cos(γ)(z0 − y0tan(γ)) 0 

′ ′ y0y = z0tan(γ) + − c0 cos(γ) 

where y0 and z0 are the absolute coordinates, γ is given in table 1, and 

J 
2c = y2 + z


where y and z are given in the top part of table 1.
 

The rotation of the box in the absolute system is now counterclockwise by an angle of β − γ.
 

XI. GEMC - THE TOP OF MIRROR 1 AND THE BOTTOM OF MIRROR 4 

When looking down the z-axis, the HTCC mirrors form a circle. Therefore, the top of mirror 

1 is cut with a cylindrical shell whose axis of symmetry lies on the z-axis and the bottom of 

mirror 4 is cut with a cone whose axis of symmetry also lies on the z-axis. See figures 14 and 15. 

FIG. 14: The cylindrical shell used to cut the top of mirror 1. Its inner radius is 1165.5073 
mm, it’s outter radius is chosen such that it is large enough to cut away the unwanted part of 

the mirror, 5500 mm was chosen. 
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FIG. 15: The cone used to cut the bottom of mirror 4. Its axis of symmetry lies on the z-axis 
and its surface forms an angle of 5◦ with said axis. The tip of the cone is at the origin of the 

absolute coordinate system. 

XII. GEMC - THE PMTS 

To model the PMTs, 48 cylinders were used. Their positions and orientations are given in 

tables 1 and 3, respectively. Figures 16 and 17 show a front view and side view, respectively, of 

the HTCC mirrors and PMTs. 

FIG. 16: A front view of the HTCC mirrors and PMTs. 
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FIG. 17: A side view of the HTCC mirrors and PMTs. 

XIII. SUMMARY, CONCLUSION, AND OUTLOOK 

To verify that the geometry is correct, the reflectivity of the mirrors was set to 1, and a beam 

of photons with a spread in the θ and φ directions was sent from the target towards the mirrors. 

Figure 18 shows that these photons were reflected off of the mirrors and were focused at the 

center of the face of the corresponding PMT, as expected, confirming the correctness of the 

geometry. 
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FIG. 18: Photons leaving the target follow the expected trajectory; they are reflected off of a 
mirror and hit the center of the face of the corresponding PMT. 

With the correctness of the geometry verified, the HTCC was added to the database of other 

CLAS12 components. Figure 19 shows the HTCC in its correct place amidst many of the other 

CLAS12 components that have already been built in GEMC. 

FIG. 19: Several components of the CLAS12 detector, including the HTCC towards the 
bottom right of the picture. 

Construction of the actual HTCC is already underway. Construction and installation are 

scheduled to be completed by January 2014 and the entirety of CLAS12 is scheduled to be ready 

to begin experiments in 2015. The simulation data provided by the detectors built in GEMC 

will be important for comparison purposes when real data becomes available. 
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