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Abstract 

Ordinal data are widely available to educational researchers. One of the most commonly 

used models to analyze ordinal data is the proportional odds (PO) model, which is also 

known as the cumulative odds model. However, when the research interest is focused on 

a particular category rather than at or below that category, given that an individual must 

pass through a lower category before achieving a higher level, the continuation ratio 

model (Fienberg, 1980; Hardin & Hilbe, 2007; Long & Freese, 2006) is a more 

appropriate choice than the proportional odds model. The purpose of this paper was to 

demonstrate the use of the continuation ratio (CR) model to analyze ordinal data in 

education using Stata, and compare the results of the CR model with the PO model. 

Ordinal regression analyses are based on a subset of data from the ELS (Educational 

Longitudinal Study): 2002, in which the ordinal outcome of students’ mathematics 

proficiency was predicted from a set of students’ classroom practices. 

 

Keywords: Continuation Ratio Models, Proportional Odds Models, Mathematics 

Proficiency, Stata, Comparison. 
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Ordinal Regression Analysis: Fitting the Continuation Ratio Model to Educational Data 

Using Stata 

 

Introduction 

Ordinal data are widely available to educational researchers. For example, it is 

common to see student’s SES ordered from low to high, a response to a survey item 

scaled from strongly disagree to strongly agree, children’s proficiency in early reading 

scored from level 0 to 5, and students’ educational proficiency level in a state test ranging 

from fail, pass to proficient. To model these ordinal data, one of the most commonly used 

models is the proportional odds (PO) model, which is also known as the cumulative odds 

model (Agresti, 1996, 2002, 2007; Armstrong & Sloan, 1989; Long, 1997, Long & 

Freese, 2006; McCullagh, 1980; McCullagh & Nelder, 1989; O’Connell, 2000, 2006; 

Powers & Xie, 2000). It is an extension of binary logistic regression models when the 

response variable has more than two ordinal categories.  The proportional odds model is 

used to estimate the cumulative probability of being at or below a particular level of the 

response variable, or its complementary, the probability of being beyond a particular 

level. However, when the interest of research is focused on a particular category rather 

than at or below that category, given that an individual must pass through a lower 

category before achieving a higher level, the continuation ratio (CR) model (Fienberg, 

1980; Hardin & Hilbe, 2007; Long & Freese, 2006) is a more appropriate choice than the 

proportional odds model. In particular, the CR model is more appealing than other 

models when analyzing educational attainment data (Allison, 1999). Under the No Child 

Left Behind Act (NCLB), when students’ academic proficiency level is measured 
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annually or frequently using a mastery test, this model is extraordinarily useful in 

analyzing this type of data. 

In the CR model, the ordinal categories represent successive stages or proficiency 

levels through which an individual can advance; for example, faculty ranks from assistant 

professor, to associate professor, and to full professor, or educational attainment from a 

high school diploma, a Bachelor’s degree, and a Master’s degree to a doctorate degree. 

Individuals must pass through lower stages or levels in order to reach a higher stage or 

level. For instance, a faculty member needs to be granted the assistant professor title 

before he/she achieves the full professor position. Similarly, a person needs to be 

awarded the lower level degree before he/she received the doctorate degree. This model 

estimates the odds of being in a certain category relative to the odds of being in that 

category or beyond. In terms of probability, this model estimates the probability of being 

in a category, given that an individual has been in that category or beyond. In addition, it 

estimates the conditional probability of being beyond a category given that person has 

attained that particular category, since these two conditional probabilities are 

complementary.  

Although the PO model is commonly used, the CR model seems to be 

overlooked. The purpose of this article was to demonstrate the use of the continuation 

ratio (CR) model to predict mathematics proficiency of high school students using Stata, 

and compare the results of fitting the continuation ratio model and the proportional odds 

model. Ordinal regression analyses were based on the data from the ELS (Educational 

Longitudinal Study): 2002, in which the ordinal outcome of students’ mathematics 

proficiency was predicted from a set of students’ classroom activities, such as, reviewing 
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work from the previous day in math class, listening to teachers’ lectures, copying notes from 

board, using books besides textbooks, doing problem solving in class, using general and 

graphing calculators, using computers, explaining work orally, and participating in 

student-led discussions. 

Theoretical Framework 

 

General Logistic Regression Model and the Proportional Odds Model 

In a binary logistic regression model, the outcome variable has two levels, with 1 

= experiencing the events, and 0 = not experiencing the events. This model estimates the 

log odds of the outcome, and thus the probability of success on a set of predictors. The 

logistic regression model can be defined as: 

ln(Y′) = logit [π(x)] = ln 
( )

( )








− xπ1

xπ
= α + β1X1 + β2X2 + …+ βpXp.                         (1) 

In an ordinal logistic regression model, the outcome variable has more than two 

levels. It estimates the probability of an observation being at or beyond a specific 

outcome level, given a collection of explanatory variables. The ordinal logistic regression 

model can be expressed as a latent variable model (Agresti, 2002; Greene, 2003; Long, 

1997, Long & Freese, 2006; Powers & Xie, 2000; Wooldridge & Jeffrey, 2001). 

Assuming a latent variable, Y* exists, we can define Y* as a function of a set of predictor 

variables and a random error. Let Y* be divided by some cut points (thresholds): α1, α2, 

α3… αj, and α1<α2<α3…< αj. The values of the observed ordinal variable, Y, fall within 

the regions divided by these cut points (thresholds). For example, Y = 0, if Y* ≤  α1. 

Considering the observed mathematics proficiency level is the ordinal outcome, y, 

ranging from 0 to 5, we define: 



6 

 

y = 































∞≤<

≤<

≤<

≤<

≤<

≤

*5

*4

*3

*2

*1

*0

5

54

43

32

21

1

yif

yif

yif

yif

yif

yif

α
αα
αα
αα
αα

α

                                                                                       (2) 

Therefore, we can predict the probability of a student achieving each proficiency 

level, and the cumulative probabilities as well. P(Y≤j) = F (αj - xβ), where j = 1, 2,…J-1.                                                                                            

Since different software packages employ different parameterizations in 

estimating logit coefficients, the ordinal logistic regression model can be expressed in 

different forms (Liu, in press).  In Stata, the ordinal logistic regression model assumes 

that the outcome variable is a latent variable. It is expressed in logit form as follows: 

ln(Yj′) = logit [π(x)] = ln 
( )

( )










− xπ1

xπ

j

j
= αj + (−β1X1 -β2X2 - … -βpXp),                (3) 

where πj(x) = π(Y≤j|x1,x2,…xp), which is the probability of being at or below category j, 

given a set of predictors. j =1, 2, … J -1. αj are the cut points, and β1, β2 …βp are logit 

coefficients. This is the form of the proportional odds (PO) model because the odds ratio 

of any predictor is assumed to be constant across all categories. This equal logit slope 

assumption can be assessed by the Brant test (Brant, 1990).  Similar to logistic 

regression, in the proportional odds model we work with the logit, or the natural log of 

the odds. To estimate the ln (odds) of being at or below the jth category, the PO model 

can be rewritten as:   

logit [π(Y≤j | x1,x2,…xp)] = ln 
( )
( ) 











>

≤

p

p

xx

x

,...,x|jYπ

,... x,x|jYπ

21

21
=  αj + (−β1X1 -β2X2 - … -βpXp)                                           

                                                                                                                                (4) 
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Thus, this model predicts cumulative logits across J -1 response categories. By 

transforming the cumulative logits, we can obtain the estimated cumulative odds as well 

as the cumulative probabilities being at or below the j
th

 category. Just as Stata, the ordinal 

logit model is also based on the latent continuous outcome variable for SPSS PLUM, it 

takes the same form. 

However, SAS uses a different ordinal logit model for estimating the parameters 

from Stata. For SAS PROC LOGISTIC (the ascending option), the ordinal logit model 

has the following form:           

logit [π(Y≤j | x1, x2,…xp)] = ln 
( )
( ) 











>

≤

p

p

xx

x

,...,x|jYπ

,... x,x|jYπ

21

21
=  αj + β1X1 +β2X2 + … +βpXp; 

                                                                                                                                (5) 

Using SAS with the descending option, the ordinal logit model can be expressed as:           

logit [π(Y≥j | x1, x2,…xp)] = ln 
( )
( ) 











<

≥

p

p

xx

x

,...,x|jYπ

,... x,x|jYπ

21

21
=  αj + β1X1 +β2X2 + … +βpXp, 

                                                                                                                                 (6) 

where in both equations αj are the intercepts, and β1, β2 …βp are logit coefficients. 

The Continuation Ratio Model 

When estimating the conditional probability of being beyond a category given 

that individual has attained that particular category, i.e., π(Y > j | Y ≥j |), the CO model 

can be expressed in this form (Agresti, 2007; Allison, 1999; O’Connell, 2006): 

ln 
( )
( ) 











=

≥

p

p

xx

x

,...,x|jYπ

,... x,x|jYπ

21

21
=  αj + β1X1 + β2X2 + … + βpXp                                     (7) 
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where π(Y ≥ j |x1,x2,…xp)  is the conditional probability of being beyond a category j, 

conditional on being in that category, given a set of predictors. j =1, 2, … J -1. αj are the 

cut points, and β1, β2 …βp are logit coefficients. SAS follows this form in estimating the 

continuation ratio model with the PROC LOGISTIC command. Before the model is 

fitted, the data set needs to be restructured following a series of steps (Allison, 1999; 

O’Connell, 2006). First, separate sub-data sets need to be constructed with the binary 

outcome variable being beyond a category coded as 1 and 0 otherwise. Individuals who 

have not advanced to a particular proficiency level are dropped at each stage. If the 

ordinal dependent variable has j categories, J-1 sub-data sets should be created. Then, 

these data sets are combined into one data set with a new binary outcome variable with 1 

= beyond a particular category. Finally, the CR model is fitted using the SAS PROC 

LOGISTICS with the descending option.  

The CR models also estimates the odds of being in a particular category j relative 

to being that category or beyond. In this situation, the CR model can be formulated as 

(Ananth & Kleinbaum, 1997; Armstrong & Sloan, 1989; Fienberg, 1980; Long & Freese, 

2006): 

ln 
( )
( ) 











≥

=

p

p

xx

x

,...,x|jYπ

,... x,x|jYπ

21

21
=  αj + (−β1X1 -β2X2 - … -βpXp)                                  (8) 

where π(Y = j |x1,x2,…xp)  is the conditional probability of being in category j, 

conditional on being that category or beyond, given a set of predictors. j =1, 2, … J -1. αj 

are the cut points, and β1, β2 …βp are logit coefficients. Different from SAS, Stata follows 

this form to fit the CR model, which is known as the forward CR model (Bender & 

Bender, 2000). Another distinctive difference is that Stata does not require data 
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restructuring before model fitting, which makes data analysis of the CR model much 

easier. The following analyses demonstrate how to fit the CR model using Stata. 

Methodology 

Sample 

The data were from the Educational Longitudinal Study (ELS: 2002). The ELS: 

2002 study, conducted by the National Center for Educational Statistics (NCES), was 

designed to provide longitudinal data regarding the transitions of 2002 high school 

sophomores to postsecondary school education and their future careers. In the 2002 base 

year of the study, more than 15,000 high school sophomores, from a national sample of 

752 public and private high schools, participated in the study by taking cognitive tests 

and responding to surveys.  

The outcome variable of interest was students’ mathematics proficiency levels in 

high schools, which was an ordinal categorical variable with five levels (1 = students can 

do simple arithmetical operations on whole numbers; 2 = students can do simple 

operations with decimals, fractions, powers, and root; 3 = students can do simple problem 

solving; 4 = students can understand intermediate-level mathematical concepts and/or 

find multi-step solutions to word problems; and 5 = students can solve complex multiple-

step word problems and/or understand advanced mathematical material) (Ingels, Pratt, 

Roger, Siegel, & Stutts, 2004, 2005). These five proficiency domains were hierarchically 

structured:  mastery of higher proficiency level indicated mastery of all previous levels. 

Students needed to pass through the first four levels of proficiency before achieving the 

final fifth level. Those students who failed to pass through level 1 were assigned to level 

0. Table 1 provides the frequency of six mathematics proficiency levels. 
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Data Analysis  

We began by fitting the continuation ratio model with a single explanatory 

variable using Stata OCRATIO command (Wolfe, 1998) with the link functions of logit 

and cloglog. Then, we fitted a proportional odds (PO) model. Finally, a full-model with 

all 11 explanatory variables was fitted. The eform option was used to estimate the odds 

ratios and corresponding standard errors and the confidence intervals. Stata OLOGIT 

command was used to fit the proportional odds models. The results from both the 

continuation ratio models and the proportional odds model were compared.  

Results  

Continuation Ratio Model with a Single Explanatory Variable 

A continuation ratio model with a single predictor, gender was fitted first. Stata 

OCRATIO command with the logit function as default was used. Figure 1 displays the 

Stata output for the single predictor continuation ratio model. The log likelihood ratio 

Chi-Square test with 1 degree of freedom, , LR χ
2

(1) = 38.90, p < .001, indicating that the 

logit regression coefficient of the predictor, gender was statistically different from 0, so 

the full model with one predictor provides a better fit than the null model with no 

independent variables in predicting conditional probabilities for mathematics proficiency 

level. The Pseudo R
2
=.0008, which is the likelihood ratio R

2
L, suggested that the 

relationship between the response variable, mathematics proficiency, and the predictor, 

gender was small. 

The estimated logit regression coefficient, β = .1416, z = 6.23, p < .001, indicating 

that gender had a significant effect on mathematics proficiency. Substituting the value of 

the coefficient into the formula (8), logit [π(Y= j | Y ≥ j, gender)] = αj + (−β1X1), we 
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calculated logit [π(Y= j | Y ≥ j, gender)] = αj - .1416 (gender). OR = e
(-.1416)

 = .8680, 

indicating that male students were .8680 times the odds for female students of being in 

any category compared to being in  higher categories, i.e., female students were more 

likely than male students to stop out in a particular category, because males are coded as 

1 and females are coded as 0.  

To estimate the conditional probability of being beyond a category of 

mathematics proficiency, which is the complement of the conditional probability of being 

at a category, we just need to change the signs before the cutpoints and the estimated 

logits in the equation (8) and then calculate logit [π(Y>j | Y≥j, gender)] = -αj + .1416 

(gender). By exponentiating .1416, we got the OR of 1.152, which indicated that male 

students were 1.152 times more likely to be beyond a particular mathematics proficiency 

level than female students. 

The CR model could also be fitted using the complementary log-log link (clog-

log) with the cumulative option within the Stata OCRATIO command. The CR model 

with the complementary log-log link is actually the discrete-time proportional hazards 

model for the event history analysis or survival analysis (Allison, 1999; O’Connell, 

2006). It estimates the hazard ratio (HR) rather than the odds ratio (OR) of being in a 

particular category relative to advancing to a higher category. Figure 2 displays the Stata 

output for the clog-log continuation model. 

The log likelihood ratio Chi-Square test with 1 degree of freedom, LR χ
2

(1) = 

51.38, p < .001, indicating that the full model with one predictor provides a better fit than 

the null model with no independent variables. The Pseudo R
2
=.0011, suggested that the 
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relationship between the response variable, mathematics proficiency, and the predictor, 

gender was small. 

The estimated clog-log coefficient, β = .1257, z = 7.17, p < .001, indicating that 

gender had a significant effect on mathematics proficiency. Since Clog-log [π(Y=j | Y≥j, 

gender)] = log(-log(1- π)) = αj + (−β1X1), we calculated log(-log(1- π))  = αj - .1257 

(gender). By exponentiating -.1257, we got the hazard ratio, HR = e
(-.1257)

 = .8819, 

indicating that the hazard of being in a particular proficiency level rather than beyond for 

male students was .8819 times the hazard for female students, i.e., the hazard for female 

students of stopping out in a particular category was 1.134 times as great as that for male 

students.  

Proportional Odds Model with a Single Explanatory Variable 

Next, for comparison purpose, a proportional odds model analysis with the same 

single predictor, gender was conducted using the Stata OLOGIT procedure. Figure 3 

displays the Stata output for the one-predictor proportional odds model. LR χ
2

(1) = 28.13, 

p < .001, indicating that the one-predictor PO model provided a better fit than the null 

model with no independent variables in predicting cumulative probabilities for 

mathematics proficiency level. The Pseudo R
2 

= .0006, which was as small as that in the 

continuation ratio model. 

The estimated logit regression coefficient, β = .1527, z = 5.30, p < .001. Since the 

PO model estimates the cumulative odds and cumulative probabilities of being at or 

below a particular category of the ordinal response outcome, we calculated logit [π(Y≤j | 

gender)] = αj - .1527 (gender). By exponentiating the logit, -.1527, we obtained the odds 

ratio (OR), e
(-.1527)

 = .8584, indicating that the odds of being at or below a mathematics 
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proficiency level were .8584 times as great for male students as they were for female 

students, i.e., female students were more likely than male students to be at or below a 

particular proficiency level. 

The PO model can estimate J-1 cumulative probabilities of being at or below a 

category of the ordinal response variable with j levels. When the ordinal response 

variable, mathematics proficiency, has six levels from 0 to 5, the proportional odds model 

estimates five cumulative probabilities, which include P(Y ≤ 0), P(Y ≤ 1), P(Y ≤ 2), P(Y 

≤ 3), and P(Y ≤ 4). The cumulative probabilities of being beyond a category can also be 

estimated since they are the complementary probabilities of the being at or below a 

particular category. 

Different from the cumulative probabilities in the PO model, the logit CR model 

estimates the conditional probabilities. In the gender-only CR model, it estimates the 

conditional probability of being in category j, conditional on being at or beyond that 

category, i.e., P (Y = j | Y ≥ j, gender). This CR model can also estimate the conditional 

probability of being beyond a category given that individual has achieved that particular 

category, since P (Y > j | Y ≥ j, gender) is the complementary form of P (Y = j | Y ≥ j, 

gender). 

Another difference between the CR model and the PO model is the change in the 

sample size. In the gender-only PO model, the sample size was 15,325. However, the 

number of observations has been increased to 51,353 in the CR model due to different 

comparisons between proficiency levels, which included level 0 versus levels 1, 2, 3, 4, 

and 5; level 1 versus levels 2, 3, 4, and 5; level 2 versus 3, 4, and 5; level 3 versus 4 and 

5; and level 4 versus level 5 (Table 2 provides the comparisons between six proficiency 
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levels). Fitting the CR model using SAS requires a restructured data set from the J-

1concatenated sub-data sets from the comparisons between proficiency levels (Allison, 

1999; O’Connell, 2006), while Stata can fit the CR model directly without the data 

restructuring procedure. 

Continuation Ratio Model with 11 Explanatory Variables 

Next, we fit a CR model with 11 explanatory variables, which was referred to as 

the Full Model. Figure 4 and Table 3 display the results for the fitting of the full model 

with 11 explanatory variables. 

The log likelihood ratio Chi-Square test, LR χ
2

(11) = 3069.32, p < .001, indicating 

that the full model with 11 predictor provides a better fit than the null model with no 

independent variables in predicting conditional probability for mathematics proficiency. 

The likelihood ratio R
2

L = .0777, much larger than that of the gender-only model, but still 

small, suggesting that the relationship between the response variable, mathematics 

proficiency, and 11 predictors, was still small. AIC Goodness-of-fit statistics were used 

for model comparisons. Compared with the gender-only model (.9224), the AIC statistic 

indicated that the full-model fit the data much better (.8483). 

Using the eform option, we could obtain odds ratios for all the predictors. Overall, 

these predictors, such as, being male students (bygender), reviewing work from the 

previous day in math class (bys29a), listening to teachers’ lectures (bys29b), doing 

problem solving in class (bys29e),  using general calculators (bys29f), using graphing 

calculators (bys29g), and explaining work orally (bys29i), were positively associated 

with the odds of being beyond a particular mathematics proficiency level. Copying notes 

from board in class (bys29c), using books besides textbooks (bys29d), using computers 
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(bys29h), and participating in student-led discussions (bys29j) were less likely to advance 

to a higher proficiency level, i.e., they were more likely to stop out in a particular 

proficiency level. 

 In terms of odds ratios, male students were 1.359 the odds for female students to be 

beyond a given proficiency level (OR = 1.359), after controlling for the effects of other predictors 

in the full model. The odds of being beyond a particular proficiency level  relative to being in that 

level were 1.166 times greater with one unit increase in the frequency of reviewing work from the 

previous day (OR = 1.166). Similarly, listening to teachers’ lectures (OR = 1.192), doing 

problem solving in class (OR = 1.077), using general calculators (OR = 1.179), using 

graphing calculators (OR = 1.173), and explaining work orally (OR =1.066) were more 

likely to be in a higher proficiency level. In the other hand, for every one unit increase in 

copying notes from board in class, the odds of being beyond a particular category 

decreased by a factor of .96 (OR = .96). In other words, the more the students copied 

notes from board, the more likely they would stop out in a mathematics proficiency level. 

Similarly, the odds decreased by a factor of .785 (OR = .785), for a unit increase in using 

textbooks besides the mathematics textbook; they decreased by a factor of .833 for a unit 

increase in using computers in math classes; and they decreased by a factor of .892 in 

participating in student-led discussions, holding the effects of the other variables 

constant. 

Table 3 also provides the results of the multiple regression (MR) analysis. 

Although the results of MR analysis looked similar to those estimated by the CR model, 

they were different in nature: the former estimates the linear effects the classroom 

practices on mathematics proficiency level, while the latter estimates the conditional 

probability of being in a proficiency level relative to being beyond, or its complement, 
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the probability of advancing to a higher proficiency level rather than being in that 

particular level. The MR analysis could be used as a preliminary analysis before the CR 

model fitting. 

 

Conclusions 

In this article, the use of continuation ratio models was illustrated to estimate high 

school students’ mathematics proficiency from a set of predictors of classroom practices. 

Modeling fitting started from a single-variable CR with both logit and clog-log links, and 

then the PO model, and finally the full CR logit model with 11 predictor variables. 

Results between the single-variable CR logit model and the PO model, and between the 

single-variable and the full CR logit model were interpreted and compared.  

Results from the CR models suggested that some classroom practices, such as 

reviewing work from the previous day in math class, listening to teachers’ lectures, doing 

problem solving in class, using general calculators, using graphing calculators, and 

explaining work orally, had positive effects on the odds of being beyond a particular 

mathematics proficiency level relative to being in that level; while other classroom 

practices, such as, copying notes from board, using books besides textbooks, using 

computers in class, and participating in student-lead discussions were associated with 

odds of stopping out in a particular proficiency level rather than advancing to a higher 

proficiency level.  

In education research, the use of ordinal categorical data becomes abundant, and it 

is crucial for researchers to understand different statistical methods while analyzing 

ordinal response variables. With the availability of statistical software packages, it is 
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hoped that this article would help researchers be familiar with continuation ratio models 

and utilize them correctly in their research. 
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Table 1: Proficiency Categories and Frequencies (Proportions) for the Study Sample, ELS:2002 ( 
N = 15,976)  

Proficiency 

Category 

 

Description 

 

Frequency 

0 Did not pass level 1 842 (5.27%) 

1 Can do simple arithmetical operations 

on whole numbers 

3882 (24.30%) 

2 Can do simple operations with 

decimals, fractions, powers, and root 

3422 (21.42%) 

3 Can do simple problem solving 4521 (28.30%) 

4 Can understand intermediate-level 

mathematical concepts and/or find 

multi-step solutions to word problems 

3196 (20.01%) 

5 Can solve complex multiple-step word 

problems and/or understand advanced 

mathematical material 

113 (0.71%) 

 

 

 

 

 

 

 

 

 

 



21 

 

Table 2: Category Comparisons for the Continuation Odds Model with Six Mathematics 

Proficiency Levels (j = 0, 1, 2, …, 5). 

Category  Conditional 

Probability 

P(Y= j | Y≥j) 

Odds Ratio Probability 

Comparisons 

Proficiency 0 P(Y= 0 | Y≥ 0) � �� � 0�

� �� � 0�
 

Category 0 versus 

all categories above 

Proficiency 1 P(Y= 1 | Y≥ 1) � �� � 1�

� �� � 1�
 

Category 1 versus 

Categories 2 

through 5 

Proficiency 2 P(Y= 2 | Y≥ 2) � �� � 2�

� �� � 2�
 

Category 2 versus 

Categories 3 

through 5 

Proficiency 3 P(Y= 3 | Y≥ 3) � �� � 3�

� �� � 3�
 

Category 3 versus 

Categories 4 and 5 

Proficiency 4 P(Y= 4 | Y≥ 4) � �� � 4�

� �� � 5�
 

Category 4 versus 5 
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Table 3:  Results of the Continuation Ratio Model and the OLS Regression Model (Full 

Model), n = 42,992 

 Continuation Ratio Model (logit)       OLS Model 

Variable b (se(b))  OR  

α1 -1.50  (.08)             1.15 (.06) 

α2 .49  (.08)   

α3 .89  (.08)   

α4 2.27  (.08)   

α5 5.64  (.13)   

Gender
δ 

.31  (.03)
 **

 1.36 .21 (.02)
 **

 

Review .15   (.01)
 **

 1.17 .12
  
(.01)

 **
 

Listen .18  (.01) 
** 

1.19 .13 (.01)
  **

 

Copynote -.04  (.01)
 **

 .96 -.02 (.01)
  *

 

Usebooks -.24  (.01)
 **

 .79 -.18 (.01)
  **

 

Probsolv .07  (.01)
 **

 1.08 .05 (.01)
  **

 

Usecalcu .16  (.01)
**

 1.18 .12 (.01)
**

 

Usegraph .16 (.01)
**

 1.17 .11 (.01)
**

 

Usecompu -.18 (.01)
**

 .83 -.14 (.01)
**

 

Explain .06 (.01)
**

 1.06 .05 (.01)
**

 

Participate -.11 (.01)
**

 .89 -.09 (.01)
**

 

R
2
 R

2
L = .078  R

2 
= .221 

Model Fit
a
 χ2

11 = 3039.32 (p < 

.0001) 

 F(11, 12768) = 329.24
**

 

δ
 gender: male=1 

a
 Likelihood ratio test 

*Significant at p<.05; ** p<.01 
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Figure 1: Stata Continuation Ratio Model with Logit Link: Single Predictor, Gender 

. ocratio Profmath BYGENDER, link (logit) 
 

Continuation-ratio logit Estimates                     Number of obs =   51353 

                                                       chi2(1)       =   38.90 

                                                       Prob > chi2   =  0.0000 

Log Likelihood =  -23683.4                             Pseudo R2     =  0.0008 

 

------------------------------------------------------------------------------ 

    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   .1416361   .0227235     6.23   0.000     .0970989    .1861732 

------------------------------------------------------------------------------ 

 _cut1   |  -2.790613   .0372137             (Ancillary parameters) 

 _cut2   |  -.9961043   .0219305 

 _cut3   |  -.7736138   .0238228 

 _cut4   |    .368887    .026111 

 cut5   |   3.392331   .0966743 

------------------------------------------------------------------------------ 

. ocratio Profmath BYGENDER, link (logit) eform 

 

Continuation-ratio logit Estimates                     Number of obs =   51353 

                                                       chi2(1)       =   38.90 

                                                       Prob > chi2   =  0.0000 

Log Likelihood =  -23683.4                             Pseudo R2     =  0.0008 

 

------------------------------------------------------------------------------ 

    Profmath | Odds ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   1.152157    .026181     6.23   0.000     1.101969    1.204631 

------------------------------------------------------------------------------ 

 _cut1   |  -2.790613   .0372137             (Ancillary parameters) 

 _cut2   |  -.9961043   .0219305 

 _cut3   |  -.7736138   .0238228 

 _cut4   |    .368887    .026111 

 _cut5   |   3.392331   .0966743 

------------------------------------------------------------------------------ 

 

. aic 

AIC Statistic =   .9224153 

 

Figure 2: Stata Continuation Ratio Model with Clog-log Link: Single Predictor, Gender 
. ocratio Profmath BYGENDER, link (cloglog) cumulative 

 

Ordered cloglog Estimates                              Number of obs =   51353 

                                                       chi2(1)       =   51.38 

                                                       Prob > chi2   =  0.0000 

Log Likelihood = -23677.16                             Pseudo R2     =  0.0011 

 

------------------------------------------------------------------------------ 

    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   .1256615   .0175265     7.17   0.000     .0913103    .1600128 

------------------------------------------------------------------------------ 

 _cut1   |  -2.826367   .0356499             (Ancillary parameters) 

 _cut2   |  -.9834265    .022463 
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 _cut3   |  -.2817271   .0217445 

 _cut4   |   .5087509   .0202158 

 _cut5   |   1.663668   .0274349 

------------------------------------------------------------------------------ 

 

. aic 

AIC Statistic =   .9221723 

 
. ocratio Profmath BYGENDER, link (cloglog) eform cumulative 

 

Ordered cloglog Estimates                              Number of obs =   51353 

                                                       chi2(1)       =   51.38 

                                                       Prob > chi2   =  0.0000 

Log Likelihood = -23677.16                             Pseudo R2     =  0.0011 

 

------------------------------------------------------------------------------ 

    Profmath | Haz. ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   1.133898   .0198732     7.17   0.000     1.095609    1.173526 

------------------------------------------------------------------------------ 

 _cut1   |  -2.826367   .0356499             (Ancillary parameters) 

 _cut2   |  -.9834265    .022463 

 _cut3   |  -.2817271   .0217445 

 _cut4   |   .5087509   .0202158 

 _cut5   |   1.663668   .0274349 

------------------------------------------------------------------------------ 

 

Figure 3: Stata Proportional Odds Model: Single Predictor, Gender 

ologit Profmath BYGENDER 

 

Iteration 0:   log likelihood = -23702.845 

Iteration 1:   log likelihood = -23688.779 

Iteration 2:   log likelihood = -23688.778 

 

Ordered logistic regression                       Number of obs   =      15325 

                                                  LR chi2(1)      =      28.13 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -23688.778                       Pseudo R2       =     0.0006 

 

------------------------------------------------------------------------------ 

    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   .1527419   .0288057     5.30   0.000     .0962839       .2092 

-------------+---------------------------------------------------------------- 

       /cut1 |  -2.785918   .0381689                     -2.860728   -2.711108 

       /cut2 |  -.7893203   .0224898                     -.8333995   -.7452411 

       /cut3 |   .1072826   .0214844                       .065174    .1493911 

       /cut4 |   1.402499   .0246227                      1.354239    1.450758 

       /cut5 |   4.981085    .095611                      4.793691    5.168479 

------------------------------------------------------------------------------ 

 

Figure 4: Stata Continuation Ratio Model with Logit Link: Full Model 
. ocratio Profmath BYGENDER  BYS29Arec  BYS29Brec  BYS29Crec  BYS29Drec BYS29Er 

> ec BYS29Frec  BYS29Grec  BYS29Hrec  BYS29Irec  BYS29Jrec, link (logit) 

 

Continuation-ratio logit Estimates                     Number of obs =   42992 

                                                       chi2(11)      = 3069.32 
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                                                       Prob > chi2   =  0.0000 

Log Likelihood = -18223.82                             Pseudo R2     =  0.0777 

 

------------------------------------------------------------------------------ 

    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   .3068651   .0267692    11.46   0.000     .2543984    .3593318 

   BYS29Arec |   .1533858   .0099134    15.47   0.000     .1339559    .1728157 

   BYS29Brec |   .1758252   .0127855    13.75   0.000      .150766    .2008843 

   BYS29Crec |  -.0407896   .0123618    -3.30   0.001    -.0650184   -.0165608 

   BYS29Drec |  -.2416916   .0093455   -25.86   0.000    -.2600084   -.2233748 

   BYS29Erec |    .073735   .0112281     6.57   0.000     .0517284    .0957416 

   BYS29Frec |   .1644396   .0113946    14.43   0.000     .1421066    .1867726 

   BYS29Grec |   .1594446   .0087424    18.24   0.000     .1423098    .1765794 

   BYS29Hrec |  -.1828204   .0114234   -16.00   0.000    -.2052098    -.160431 

   BYS29Irec |   .0638591   .0107391     5.95   0.000     .0428109    .0849074 

   BYS29Jrec |  -.1145253   .0108834   -10.52   0.000    -.1358564   -.0931942 

------------------------------------------------------------------------------ 

 _cut1   |  -1.504545   .0834409             (Ancillary parameters) 

 _cut2   |   .4853076   .0788576 

 _cut3   |   .8863932   .0812187 

 _cut4   |   2.266622   .0846272 

 _cut5   |   5.643517   .1346226 

. aic 

AIC Statistic =   .8482891 

 
. ocratio Profmath BYGENDER  BYS29Arec  BYS29Brec  BYS29Crec  BYS29Drec BYS29Er 

> ec BYS29Frec  BYS29Grec  BYS29Hrec  BYS29Irec  BYS29Jrec, link (logit) eform 

 

Continuation-ratio logit Estimates                     Number of obs =   42992 

                                                       chi2(11)      = 3069.32 

                                                       Prob > chi2   =  0.0000 

Log Likelihood = -18223.82                             Pseudo R2     =  0.0777 

 

------------------------------------------------------------------------------ 

    Profmath | Odds ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    BYGENDER |   1.359158   .0363836    11.46   0.000     1.289686    1.432372 

   BYS29Arec |   1.165775   .0115568    15.47   0.000     1.143342    1.188647 

   BYS29Brec |    1.19223   .0152433    13.75   0.000     1.162725    1.222483 

   BYS29Crec |   .9600311   .0118678    -3.30   0.001     .9370503    .9835756 

   BYS29Drec |   .7852983    .007339   -25.86   0.000     .7710451     .799815 

   BYS29Erec |   1.076522   .0120873     6.57   0.000      1.05309    1.100475 

   BYS29Frec |   1.178732   .0134312    14.43   0.000       1.1527    1.205353 

   BYS29Grec |   1.172859   .0102536    18.24   0.000     1.152934    1.193129 

   BYS29Hrec |   .8329177   .0095147   -16.00   0.000     .8144764    .8517766 

   BYS29Irec |   1.065942   .0114472     5.95   0.000     1.043741    1.088616 

   BYS29Jrec |   .8917894   .0097057   -10.52   0.000      .872968    .9110165 

------------------------------------------------------------------------------ 

 _cut1   |  -1.504545   .0834409             (Ancillary parameters) 

 _cut2   |   .4853076   .0788576 

 _cut3   |   .8863932   .0812187 

 _cut4   |   2.266622   .0846272 

 _cut5   |   5.643517   .1346226 

------------------------------------------------------------------------------ 

 


	University of Connecticut
	DigitalCommons@UConn
	10-20-2010

	Ordinal Regression Analysis: Fitting the Continuation Ratio Model to Educational Data Using Stata
	Xing Liu
	Recommended Citation



