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Abstract
A problem frequently encountered in Data Envelopment Analysis (DEA) is

that the total number of inputs and outputs included tend to be too many relative
to the sample size. One way to counter this problem is to combine several inputs
(or outputs) into (meaningful) aggregate variables reducing thereby the dimension
of the input (or output) vector. A direct effect of input aggregation is to reduce the
number of constraints. This, in its turn, alters the optimal value of the objective
function. In this paper, we show how a statistical test proposed by Banker (1993)
may be applied to test the validity of a specific way of aggregating several inputs.
An empirical application using data from Indian manufacturing for the year 2002-
03 is included as an example of the proposed test.

Journal of Economic Literature Classification: C61, C43
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INPUT AGGREGATION IN MODELS OF DATA ENVELOPMENT ANALYSIS: 
 A STATISTICAL TEST WITH AN APPLICATION TO INDIAN MANUFACTURING 

 
 
The numbers of identifiably different inputs and outputs typically involved in a production 

process   are quite large. In the interest of tractability, one has to aggregate various individual 

inputs (or outputs) into a smaller number of composite inputs (or outputs) that can be manageably 

incorporated in an appropriate specification of the technology through a production, cost, or profit 

function. In agriculture, for example, various kinds of equipment (like tractors, harvesters, grain 

elevators, etc.) are suitably combined into a single input called machinery. 

 

 In the context of an econometric model of a production function, such input aggregation amounts 

to imposing some prior restrictions on the coefficients of a regression model and appropriate tests 

(like the F test or a likelihood ratio test) may be employed to check the validity of such 

restrictions. The problem is different in the context of Data Envelopment Analysis (DEA) which 

is based on mathematical programming where the number of different inputs and outputs 

included in the model define the number of constraints in the relevant programming problem. 

There a direct effect of input aggregation is to reduce the number of constraints. This, in its turn, 

alters the optimal value of the objective function. In this paper, we show how a statistical test 

proposed by Banker (1993) may be applied to test the validity of aggregating the inputs. 

The rest of the paper is organized as follows. In section 2, we present the basic DEA 

methodology for efficiency evaluation and use the dual or multiplier form of the relevant linear 

programming (LP) model to show the similarity between input aggregation in DEA and 

parameter restriction in regression models. Section 3 offers a brief description of Banker’s 

interpretation of the DEA efficiency score as a maximum likelihood estimator and the “F” tests 

developed by him. Section 4 includes an empirical application of the test procedure in this paper 

using data from Indian manufacturing. Section 5 is the conclusion. 

 
2. The DEA Methodology 
 

In parametric models, one specifies an explicit functional form for the frontier and 

econometrically estimates the parameters using sample data for inputs and output. Hence the 

validity of the derived technical efficiency measures depends critically on the appropriateness of 

the functional form specified.  
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In contrast, the method of DEA introduced by Charnes, Cooper and Rhodes (CCR) 

(1978) and further generalized by Banker, Charnes, and Cooper (BCC) (1984) provides a 

nonparametric alternative to parametric frontier production function analysis. In DEA, one makes 

only a few fairly weak assumptions about the underlying production technology. In particular, no 

functional specification is necessary. Based on these assumptions a production frontier is 

empirically constructed using mathematical programming methods from observed input-output 

data of sample firms. Efficiency of firms is then measured in terms of how far they are from the 

frontier. 

Consider an industry producing a scalar output, y, from a bundle of m inputs, 

x=(x1,x2,…,xm). Let (xj, yj)  be the observed input-output bundle of firm j (j= 1,2,…, N). The 

technology is defined by the production possibility set  

  T={( x, y ): y can be produced from x }.  (1) 

An input-output combination (x0, y0) is feasible if and only if (x0, y0) ∈  T. 

We make the following assumptions about the technology: 

• All observed input-output combinations are feasible. Thus, (xj, yj) ∈  T (j = 1,2,…,N). 

• The production possibility set, T, is convex. Hence, if (x1, y1) ∈  T and (x2, y2) ∈T, then 

(λx1+(1-λ)x2, λy1+(1-λ)y2)∈T, 0 ≤ λ 1≤ . 

In other words, weighted averages of feasible input-output combinations are also feasible. 

• Inputs are freely disposable. Hence, if (x0, y0)∈T and , then (x01 xx ≥ 1, y0)∈T. This rules out 

negative marginal productivity of  inputs. 

• Output is freely disposable. Hence, if (x0, y0)∈T and , then (x01 yy ≤ 0, y1)∈T 

Varian (1984) pointed out that the smallest set satisfying the above assumptions  is; 
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Under the CRS assumption, the output-oriented technical efficiency of any firm producing output 

y0 from input x0 is *1 φ , where   

  = max  *φ .),(: 00 CSyx ∈φφ

To compute technical efficiency1 one solves the following linear programming problem:  

       kφ  = max    φ                         ),...,1( Nk ∈                 

s.t                                       ;∑ ≥
N

i

kj
j yy ϕλ

                                                                                       (4)   

              

;∑ ≤
N

i

kj
j xxλ

).,...,2,1(;0 Njj =≥λ   

The dual of the LP problem (4) is 

 

                                 kxw'min

s.t.           (5) ;0'' ≥− jj ypxw

             ;1' =kxw

              .0;0 ≥≥ pw

 

For a simple example, consider the 3-input 1-output case. Thus, the input-output bundle of firm j 

is (x1j, x2j, x3j; yj) (j=1,2,…,N). For this example the explicit form of problem (4) above is 

 ϕϕ max=k  

          s.t.  ;∑ ≥
N

i
kjj yy ϕλ

  ;11∑ ≤
N

i
kjj xxλ

  ;22∑ ≤
N

i
kjj xxλ

     (6) ;33∑ ≤
N

i
kjj xxλ

          ).,...,2,1(;0 Njj =≥λ  

                                                      
1 Under constant returns to scale the output- and input-oriented technical efficiency measures coincide. 
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The corresponding dual problem is 

            kkk xwxwxw 332211min ++

s.t.                  (j=1,2,…,k,…,N); (7) ;0332211 ≥−++ jjjj pyxwxwxw

                  ;1=kpy

                  .0,,, 321 ≥pwww

Now impose an additional constraint  .021 =− bwaw  That is,  .12 ww b
a=  

  The restricted version of (6) would then be 

                           kkb
a

k xwxxw 33211 )(min ++  

s.t.         ;0)( 33211 ≥−++ jjjb
a

j pyxwxxw          (j=1,2,…,k,…,N); (7a) 

                  ;1=kpy

              .0,, 31 ≥pww

Define, now, the aggregated input  

                 .211 jb
a

jj xxX +=  

Problem (7a) would then become 

      kk xwXw 3311min +

s.t.                  (j=1,2,…,k,…,N); (7b) ;03311 ≥−+ jjj pyxwXw

                  ;1=kpy

              .0,, 31 ≥pww

The dual of this problem is 

 

ϕϕ maxˆ =k  

          s.t.  ;∑ ≥
N

i
kjj yy ϕλ

   ;11∑ ≤
N

i
kjj XXλ

               (8) ;33∑ ≤
N

i
kjj xxλ

          ).,...,2,1(;0 Njj =≥λ  
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Obviously, when a = b, X1 is simply the sum of the quantities of the inputs x1 and x2. In that case, 

the two inputs are treated as perfect substitutes. Further, because (7b) is a restricted version of (7) 

the minimum value of the objective function at the optimal solution of (7b) will be no lower than 

what is obtained at the optimal solution of (6). Therefore, by standard duality results, for 

every k.  The test of validity of the aggregation amounts to a decision as to whether the 

distributions of efficiency with and without the restriction are significantly different

k
k ϕϕ ˆ≤

2. In 

regression models, a commonly used test of significance compares the restricted and unrestricted 

residual sums of squares. We now consider a comparable F test developed by Banker in the 

context of DEA. 

 

3. DEA as Maximum Likelihood Estimation and Banker’s F Test 

We start with N observed input-output bundles. The pair  (xj, yj) represents the input 

bundle xj used by firm j to produce the scalar output yj. Next, following Banker (1993), consider 

the production function mapping from the n-element input bundle x0 onto the non-

negative scalar output y

nRX +⊆∈

0: 

  y0 = g(x0).  (9) 

We assume that the production function satisfies the following postulates:. 

(P1) g(x) is monotonic in x. That is if x1’ ≥ x2, then g(x1) g(x≥ 2).  

(P2)  g(x) is concave. Hence, if x1, x2 X∈ and x*= λx1+(1-λ)x2, 0 < λ <1, then  

         g(x*) ≥ λ g(x1) + (1-λ) g(x2). 

(P3) For each observation (xj, yj), g(xj) ≥ yj ; (j = 1,2,…, N). 

(P4) For any other function )(~ xg also satisfying (P1-P3), )()(~ xgxg ≥ for all  .Xx ∈

Now consider the set Clearly, X∑∑
==

⊆≥=≥=
N

j
jJ

N

j

j
J XxxxX

11

* .}0;1;:{ λλλ * is the free 

disposal convex hull of the observed input bundles. Banker has shown that the unique function 

 y = g(x) determined for x∈ X* by the postulates (P1-P4) corresponds to that estimated by DEA. 

                                                      
2 Pastor, Ruiz, and Sirvent (1995) performed a nonparametric statistical test of  nested  radial DEA models 
to determine the optimal choice of inputs and outputs. 

 5



 We first note that if the function )(ˆ xgy = satisfies properties (P1-P4) and if 

for  , then , where )(ˆˆ 0
0 xgy = *0 Xx ∈ )(ˆ 0*

0 xgy =
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j yyxg ∑
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It is easy to see that g*( . ) satisfies (P1-P3). First, consider the input bundle .~ 0xx ≥ Obviously, 

the optimal solution for the DEA problem for x0 is a feasible solution of the DEA problem for x~ . 

Thus, clearly, ).()~( 0**
0

* xgyxg =≥ Next we show that g*(x) is concave. Suppose that 

and is the optimal solution of the DEA LP problem for the input 

bundle x
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solution for the DEA LP for x leading to the objective function value 

Obviously, the optimal solution ).''()1()'( ** xgxg θθ −+ )(* xg satisfies 

).''()1()'()( *** xgxgxg θθ −+≥ This verifies that is a concave function. )(* xg

 Let be the optimal solution of the DEA LP for x∑
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Thus, the function )(~)(* xgxg ≤  for any function )(~ xg satisfying (P1-P3) for any function 

)(~ xg satisfying (P1-P3 over the set X*. An implication of this is that the deviation 

j
j

j yxg −= )(~ε is minimized for each observation j by the function  ).(* xg

 Now consider the frontier production function 

  .0;)( ≥−= εεxgy   (11) 

Here, the non-negative deviation of the observed output y from the frontier g(x) has some one-

sided probability distribution f(ε). Then the likelihood maximization problem can be specified as: 

 maximize  L=  ( )∏
=

−=
N

j
i

j
j yxgf

1

)(ε

                   f(.),g(.) 
                 subject to          (12) ;0)( ≥− j

j yxg

                  is a monotone increasing and concave function.  (.)g

It may be noted that the DEA efficiency residuals εj are obtained independently of each other. 

This is in contrast with the frontier production function model proposed by Aigner and Chu 

(1968). In their case, a single parametric function is fitted to the entire data set and the efficiency 

residuals are jointly derived and, therefore, are not independent of one another. Now suppose that 

we choose a probability density function  f( . )  such that f εj) is monotone decreasing in the 

efficiency residuals. In that case, because the DEA estimate of the production function minimizes 

each εj, it thereby maximizes each f(εj). Hence, the DEA frontier g*(x) maximizes the likelihood 

function subject to the constraints specified above. 

Banker specifies the deterministic frontier where the random inefficiency component of y appears 

in an additive manner. One may directly link the one-sided econometric frontier with the DEA 

frontier by specifying (11) differently as 

   (11a) 0;)( ≥= − εεexgy

leading to 
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 .1;)( ≥= ϕϕyxg    (11b) 

Thus, 

           .0)ln( ≥= ϕε    (11c) 

Note that all the preceding arguments about the DEA frontier g*(x) as a maximum likelihood 

estimator of the unknown frontier g(x) remains valid.  

Banker has proposed a number of statistical tests for comparing two groups of firms to assess 

whether one group is more efficient than the other. Assume that there are N firms in the sample of 

which m1 are in group 1 and m2 are in group 2. Firms in group1 have the exponential distribution 

of (in)efficiency  εj with parameter σ1 and those in group 2 also have the exponential distribution 

but with parameter σ2 . Designate the first group of firms as M1 and the second group as M2.  

Consider the residuals εj
*(j =1,2,..,N) obtained from DEA. Under the maintained hypothesis, the 

sample statistic 

 ∑
∈ iMj i

j

σ
ε *

has the χ2 distribution with 2mi (i= 1, 2) degrees of freedom. 

Under the null hypothesis σ1 = σ2, the test statistic 

 
2

*

1
*

2

1

m

m
F

Mj
j

Mj
j

∑

∑

∈

∈=
ε

ε
  (13) 

has the F distribution with (2m1, 2m2) degrees of freedom. 

 On the other hand, if the εj s have the half Normal distribution, (i.e., the Normal 

distribution with mean 0 and variance σ2 truncated from below at 0), then  ∑
∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1

2

1

*

Mj

j

σ
ε

has the χ2 

distribution with m1 degrees of freedom. Similarly, ∑
∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2

2

2

*

Mj

j

σ
ε

has the χ2 distribution with m2 

degrees of freedom. Hence, in this case, under the null hypothesis σ1 = σ2,, the statistic 
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2

2*

1
2*

2

1

)(

)(

m

m
F

Mj
j

Mj
j

∑

∑

∈

∈=
ε

ε
  (14) 

has the F distribution with (m1, m2) degrees of freedom.  

One would use for the aggregated (i.e., the restricted) model and for the 

disaggregated (i.e., the unrestricted) model in an empirical application. For appropriate 

distributional assumption the aggregated model would be rejected only when the test statistic 

exceeds the critical value for the relevant degrees of freedom.  

)ˆln(*
kk ϕε ≡ )ln(*

kk ϕε ≡

 

4. Application to Indian Manufacturing 

In the empirical application we use state level aggregate data on output and inputs in total 

manufacturing for the different states (and union territories) of India from the Annual Survey of 

Industries (ASI) for the year 2002-03. A single output (y) measured by the value of production at 

current prices is considered. Because it is a single cross section data set and state level indexes of  

output price are not available, the quantity of output is treated as proportional to its value. Inputs 

considered were (a) production workers (L1), non-production workers (L2), fixed capital (K), fuels 

(F), and materials (M). The two labor inputs are measured in numbers of persons employed. All 

other inputs are expressed in value terms. The data used are reported in Table 1.  

Two different DEA models were considered. In one the two labor inputs are treated separately. In 

the other they are combined into a single labor input (L). The optimal DEA objective function 

values and the corresponding (inefficiency) residuals are reported in Table 2. The columns 

labeled kϕ and kε relate to the disaggregated model where the two kinds of labor are treated as 

two distinct inputs. Similarly, kϕ̂ and kε̂ relate to the model where the total employment is treated 

as a single input. As expected, for many states, DEA inefficiency residuals are larger in the 

restricted model with aggregated labor. The summary statistics relevant for the F tests are 
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reported in Table 3. Under the assumption that ε has an exponential distribution, the test statistic 

is 

 835.1
0.9749294
1.7834756

==F . 

This exceeds the critical value (1.610) of the F distribution with 46 degrees of freedom for both 

the numerator and the denominator at the 5% level of significance in a 1-tailed test. Thus the 

model using total labor as one input is rejected and a disaggregated model with production and 

non-production workers treated as distinct inputs is chosen. 

For the alternative assumption that ε has a half Normal distribution, the test statistic is 

 .725.2
0.1005418
0.2740236

==F  

The critical value of F23,23 at the 5% significance level is 2.01 for a 1-tailed test. Thus, the 

aggregated model is rejected under the half-Normal distributional assumption as well. 

In this application, we treated production and non-production workers as perfect substitutes and 

measured the aggregate labor input by total employment. In light of skill differences in the two 

kinds of labor, such simple aggregation is questionable and some kind of differential weighting is 

called for. We tried an alternative aggregation procedure using the relative wage rates of 

production and non-production workers as weights. Using all-India data, we found that the annual 

earnings of a non-production worker was 2.9787 times the earnings of a production worker. We, 

therefore, counted one non-production worker as equivalent to 2.9787 production workers and 

created total labor in production worker equivalents accordingly. This time the respective F 

statistics for the exponential and the half-Normal assumptions were 1.6283 and 2.26. Thus, even 

when we use salary-weighted employment as a single labor input, the aggregated model is clearly 

rejected for the half-Normal distribution. Under the exponential distributional assumption, 

though, the p-value barely exceeds 5% and the aggregated model is marginally rejected. 
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5. Conclusion 

A problem frequently encountered in DEA is that the total number of inputs and outputs included 

tend to be too many relative to the sample size. Because each additional input or output included 

in the analysis imposes another constraint, the set of feasible solutions tends to become smaller 

and more and more firms tend to lie on or close to the frontier. One way to counter this problem 

is to combine several inputs (or outputs) into (meaningful) aggregate variables reducing thereby 

the dimension of the input (or output) vector. In this paper we show how an F test developed by 

Banker may be employed under appropriate distributional assumptions of the efficiency 

component to test the validity of any specific aggregation procedure.  The empirical application 

using data from Indian manufacturing suggests that using total employment as a single labor input 

is not a valid aggregation of production and non-production workers. 

 

 

 

 11



 Table1.  ASI State-level Input-output Data in Manufacturing 2002-03 

State        Y      L1       L     K       F       M 
JK 175631 19636 24881 37863 8361 108479 
HP 611899 25375 34023 358278 52533 323166 
PU 4057079 276677 351102 1119761 322346 2614087 
CH 114081 5180 8243 28005 5072 61798 
UT 603559 27815 41485 204586 49348 342505 
HA 5261740 223831 299765 1410886 209354 3381965 
DE 1724437 85693 127935 249193 44935 979492 
RA 3311696 190971 244265 1355028 362936 1868534 
UP 8052063 409116 542160 2847631 475443 4930123 
BI 807680 44280 54184 317048 23045 551546 
AS 1250610 93129 110879 596413 64932 766956 
WB 4873244 428096 538858 2458806 320238 3041783 
JH 2476429 121427 156497 1576865 264896 1082276 
OR 1486235 92686 118187 1061308 210580 747136 
CT 1449707 63771 93794 728551 209379 669932 
MP 3805750 156565 208874 1389786 304492 2228977 
GU 18269979 528217 717055 8235801 981847 12488798 
MH 21759551 829305 1170461 7697089 970795 13006687 
AP 8228642 864822 1007463 3206186 432844 5466125 
KA 6568082 370217 485917 3307273 349655 3664688 
GO 895740 24318 35061 342420 43042 544433 
KE 2665085 227347 270548 679483 132151 1885033 
TN 10807543 920127 1125497 4347893 708413 6697103 

 

Notes:  
(i) Variable Definition: Y = output; L1 = production workers; 
           L= total labor; K = fixed capital; F = fuel; M = materials.       
     Labor inputs are measured by number of persons employed; 
      all other inputs are in lakhs of Rupees at current prices ( 1 lakh=0.1 million).                 
(ii) State Names:  
JK: Jammu & Kashmir; HP: Himachal Pradesh; PU: Punjub; CH: Chandigarh; 
UT: Uttaranchal; HA: Haryana; DE: Delhi; RA: Rajasthan; UP: Uttar Pradesh; 
BI: Bihar; AS: Assam; WB: West Bengal; JH: Jharkhand; OR: Orissa; 
CT: Chhattisgarh; MP: Madhya Pradesh; GU: Gujarat; MH: Maharashthra; 
AP: Andhra Pradesh; KA: Karnataka; GO: Goa; KE: Kerala; TN: Tamilnadu.  
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    Table 2. DEA Results from Disaggregated and Aggregated Models 

State    kϕ    kϕ̂      kε     kε̂  

JK 1.11571 1.11571 0.10949 0.10949
HP 1.04076 1.04076 0.03995 0.03995
PU 1.06577 1.18864 0.0637 0.17281
CH 1.00146 1.00146 0.00146 0.00146
UT 1.06137 1.06137 0.05956 0.05956
HA 1 1.01053 0 0.01047
DE 1 1 0 0
RA 1.03272 1.10962 0.03219 0.10402
UP 1.05402 1.10688 0.05261 0.10154
BI 1 1 0 0
AS 1.03953 1.14278 0.03877 0.13347
WB 1.17665 1.19726 0.16267 0.18004
JH 1 1 0 0
OR 1.1441 1.1441 0.13462 0.13462
CT 1 1 0 0
MP 1 1.03452 0 0.03393
GU 1 1.0027 0 0.0027
MH 1.01165 1.02236 0.01158 0.02212
AP 1.13296 1.2282 0.12484 0.20555
KA 1.00898 1.05314 0.00894 0.05178
GO 1 1 0 0
KE 1.01945 1.27955 0.01927 0.24651
TN 1.12219 1.18943 0.11528 0.17348

 

State Names:  
JK: Jammu & Kashmir; HP: Himachal Pradesh; PU: Punjub; CH: Chandigarh; 
UT: Uttaranchal; HA: Haryana; DE: Delhi; RA: Rajasthan; UP: Uttar Pradesh; 
BI: Bihar; AS: Assam; WB: West Bengal; JH: Jharkhand; OR: Orissa; 
CT: Chhattisgarh; MP: Madhya Pradesh; GU: Gujarat; MH: Maharashthra; 
AP: Andhra Pradesh; KA: Karnataka; GO: Goa; KE: Kerala; TN: Tamilnadu.  
 

 

Table3. Summary Statistics of DEA Residuals from Alternative  Models                        
 
Distributional 
Assumption ∑ kε  ∑ kε̂  ∑ 2

kε  ∑ 2ˆkε  

     
Exponential 0.9749294 1.7834756   
Half-Normal   0.1005418 0.2740236 
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