University of Connecticut

Digital Commons@UConn

Economics Working Papers Department of Economics

9-1-2008

Stationary Markovian Equilibrium in Overlapping
Generation Models with Stochastic Nonclassical
Production

Olivier E Morand

University of Connecticut

Kevin L. Reffett

Arizona State University

Follow this and additional works at: http://digitalcommons.uconn.edu/econ_wpapers

Recommended Citation
Morand, Olivier F. and Reffett, Kevin L., "Stationary Markovian Equilibrium in Overlapping Generation Models with Stochastic

Nonclassical Production" (2005 ). Economics Working Papers. Paper 200552.
http://digitalcommons.uconn.edu/econ_wpapers/200552

This is brought to you for free and open access by the Department of Economics at Digital Commons@UConn. It has been accepted for inclusion in
Economics Working Papers by an authorized administrator of Digital Commons@UConn. For more information, please contact

digitalcommons@uconn.edu.


http://digitalcommons.uconn.edu?utm_source=digitalcommons.uconn.edu%2Fecon_wpapers%2F200552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/econ_wpapers?utm_source=digitalcommons.uconn.edu%2Fecon_wpapers%2F200552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/econ?utm_source=digitalcommons.uconn.edu%2Fecon_wpapers%2F200552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/econ_wpapers?utm_source=digitalcommons.uconn.edu%2Fecon_wpapers%2F200552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/econ_wpapers/200552?utm_source=digitalcommons.uconn.edu%2Fecon_wpapers%2F200552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@uconn.edu

University of
Connecticut

Department of Economics Working Paper Series

Stationary Markovian Equilibrium in Overlapping Generation
Modelswith Stochastic Nonclassical Production

Olivier F. Morand
University of Connecticut

Kevin L. Reffett
Arizona State University

Working Paper 2005-52

September 2005

341 Mansfield Road, Unit 1063
Storrs, CT 06269-1063

Phone: (860) 486-3022

Fax: (860) 486—4463
http://www.econ.uconn.edu/

This working paper is indexed on RePEc, http://repec.org/



Abstract

This paper provides new sufficient conditions for the existence, computation
via successive approximations, and stability of Markovian equilibrium decision
processes for a large class of OLG models with stochastic nonclassical production.
Our notion of stability is existence of stationary Markovian equilibrium. With a
nonclassical production, our economies encompass a large class of OLG mod-
els with public policy, valued fiat money, production externalities, and Markov
shocks to production. Our approach combines aspects of both topological and
order theoretic fixed point theory, and provides the basis of globally stable numer-
ical iteration procedures for computing extremal Markovian equilibrium objects.
In addition to new theoretical results on existence and computation, we provide
some monotone comparative statics results on the space of economies.
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1 Introduction

The problem of global stability of Markovian equilibrium decision policies (MEDP)
and the existence of stationary Markov equilibrium (SME) for stochastic over-
lapping generations (OLG) models with production is an important question
that has not been thoroughly examined. Existing studies have been exclusively
focused on models with simple classical production technologies, and it is not
clear whether their results and methods can be extended to models with pro-
duction non-convexities and public policy. Further, these studies almost always
follow topological approaches only capable of generating existential results (i.e.,
existence of Markov equilibria, of dynamic indeterminacies, of sunspot equi-
libria). It is then difficult to see how the current theoretical results can be
applied to construct successive approximation algorithms converging to actual
equilibrium objects.  Given the importance of numerical solutions in many
applied OLG models in public finance, economic demography and geography,
macroeconomics, and growth theory, this is a serious shortcoming. The lack
of constructive methods is also a serious impediment to the study of stability
in the sense of comparative statics results (with respect to ordered changes in
some of the parameters of the economy) for the set of Markovian equilibrium.

In this paper we develop a new monotone iterative approach for studying
the questions of existence, stability, and computation of Markovian equilib-
rium for a large class of OLG models with nonclassical stochastic production
and Markov shocks. We prove the existence of SME and provide successive
approximation methods for obtaining extremal “pure” SME corresponding to
each MEDP, thus directly addressing the question of stability for the class of
economies under consideration through the use of constructive methods. By
“monotone” (or “isotone”) approach we mean a collection of arguments and
techniques relying primarily on the preservation of order of particular mappings
as opposed to topological properties of such mappings. It is very important to
note that we work with stochastic OLG models with very general “nonclassical”
one-sector production technologies, a class of models known for their potential
to exhibit endogenous (expectational) fluctuations and/or local indetermina-
cies.! In particular, we argue that although local indeterminacies in the perfect
foresight Markovian equilibrium might be possible for our environments (e.g.,
as in the infinite horizon economies studied in Benhabib and Farmer [4], Farmer
and Guo [26], and Benhabib and Wen [5]), stationary Markov equilibrium do
exist from initial conditions. This arguments makes the important point that
although local analysis of MEDP around steady states might indicate local in-
determinacies, the underlying equilibrium dynamics in the stochastic model still
converges to a (non-degenerate) invariant distribution.

The paper makes four important new contributions to the existing literature
on the existence, stability, characterization, and computation of equilibrium ob-
jects in stochastic OLG models. First, we prove a new result concerning the

Our production specification is consistent with works in infinite horizon economies with
public policy of Coleman [11], Boldrin and Rustichini [8], Benhabib and Farmer [4], and
Farmer and Guo [26], for instance.



existence of SME in economies where the exogenous shocks follow a quasi com-
pact first-order Markov process and the MEDP is only measurable. Since the
quasi-compactness of the Markov process for shocks is equivalent to Doeblin’s
condition, and since we made no assumptions on the MEDP beyond its mea-
surability, this existence result is quite general. Second, with an additional
isotonicity assumption for the Markov process for shocks and under conditions
sufficient to obtain monotone MEDP, we present explicit computational algo-
rithms converging (in order and topology) to extremal SME. We thus remove
the need for the standard regularity conditions (namely, the Feller property)
when computing extremal SME for isotone Markov processes. Third, we ad-
dress the question of existence and construction of measurable isotone MEDP
in a large class of OLG models with potentially nonclassical production through
the application of the “Euler equation method” of Coleman [11]. This applica-
tion of the Euler equation method to OLG models is entirely new, and is shown
to yield powerful results. Fourth, we combine all these results and techniques
and derive sufficient conditions under which there exists a “pure” SME in wide
class of OLG models, which includes that of Wang[56] [57], and develops algo-
rithms to construct extremal “pure” SME. We view our approach as an attempt
to provide a detailed computational method for constructing particular MEDP
and their associated SME, to complement the earlier work of Wang [56][57] as
well as to generalize some of the results established in Erikson, Morand, and
Reffett [23] for models with stochastic production and independently and iden-
tically distributed (iid) shocks.

To discuss these contributions in greater details, we first compare several
methods of proof of existence of SME for economies where the Markov process
of the state vector is represented by a transition function Pj, (the associated
operator on probability measures is denoted T;).  Specifically, we consider
economies where P, results from the combination of a measurable selection h
from equilibrium correspondence ¥ with a given transition function @ charac-
terizing the Markov process for the exogenous variables. All these approaches
share the common insight of equating SME to fixed points of a particular map-
ping; they differ, however, in their choice of fixed point argument.? In all our
subsequent discussion, unless specified otherwise, the state space (or support
for limiting distributions) is assumed to be compact.?

A first approach relies on continuity, and is developed for instance in Stokey
& al. [51]and in Grandmont and Hildenbrand [25]. In Stokey & al. [51] it is the
Feller property of P}, (i.e., the “weak continuity” of 7)), that implies that all
sequences of N-period averages contain a subsequence weakly converging to an
invariant measure (Theorem 12.10). In Grandmont and Hildenbrand [25], the
continuity of h combined with the Feller property of @) imply the existence of

2This include the literature defining SME as distributions on ergodic sets, as for instance
in Duffie & al. [15].

3Recent work by Stachurski [50] indicates the possibility to generalize our results to cases
where the shock space is unbounded, by applying Lyapunov methods to characterize conditions
under which SME are both (i) nondegenerate, and (ii) globally stable (e.g., unique). We will
pursue this approach is subsequent work.



an invariant measure by Schauder’s Theorem. These existence results are very
useful, but in the absence of additional properties of P, (such as monotonicity)
there is no systematic way to compute any of the invariant measures, nor is there
any possibility to rule out trivial or degenerate fixed points. Furthermore, the
Feller property of P}, generally rests on the continuity of the selection h, and
often turns out to often be difficult to obtain: This is a serious drawback of the
continuity approach that has been applied in previous work.

A second approach emphasizes convexity, as in the work of Blume[7], Nachman[41],
and Duffie & al. [15]. Blume [7] shows that if the multivalued stochastic ker-
nel {P,, h € ¥} is convex valued and uhc it has an invariant measure by the
Fan-Glicksberg/Himmelberg fixed point theorem. Duffie & al. [15] extends
Blume’s result to non-compact state spaces by introducing self justified sets,
while Nachman[41] emphasizes the possibility of convexifying the equilibrium
correspondence by considering mixed strategy, i.e. randomizations over the
set of selections from the equilibrium correspondence (the “pure” strategies, or
“non-sunspots” equilibria). The advantage of the convexity approach is its
generality, and it is basically the strategy for the proof of existence of SME in
OLG models with Markov shocks of Wang [57]. The drawbacks are twofold:
First, the convex-valued requirement implies that it is generally not possible to
show that the invariant measure is associated with a non-sunspot equilibrium.
Second, as in the continuity approach, there is no information concerning the
computation of any particular MEDP/SME (e.g., extremal MEDP/SME equi-
libria). As in the first approach, stability of equilibrium from the perspective
of perturbations on the space of economies seems difficult to assess.

The third approach exploits monotonicities in the underlying equilibrium de-
cision processes, and is best presented in the work of Hopenhayn and Prescott[34]
as well as in the more general results of Heikkild and Salonen [33]. In this
approach, the existence of a SME follows from an application of a version of
Tarski’s fixed point theorem for an increasing self map (7} when h is isotone)
on a chain complete lattice (the space of probability distributions on a compact
support), as shown in Hopenhayn and Prescott ([34], Theorem 1). With the
addition of the Feller property it can be shown that a monotone Markov process
has extremal invariant measures which can be computed via successive approx-
imation.?  Further, Hopenhayn and Prescott ([34], Theorem 2) show that a
monotone Markov process satisfying a Monotone Mixing Condition (MMC) has
a unique invariant measure. Thus, absent the MMC, this monotone approach
has nothing to say about the computation of extremal invariant measures unless
Py, is assumed to have the Feller property, and this again puts great restrictions
on the computational power of the monotone approach and on its potential to
address stability issues.

Our existence result is distinct from the existing ones because it neither
requires the Feller property nor the isotonicity of Py, and it does not rely on the
convexity /uhc property of the multivalued stochastic kernel {Py,, h € U}. Our
proof, however, relies on the critical property of quasi-compactness of (), which

4This result is well-known (see, for instance, Stokey & al. [51] Exercise 12.12)



implies the quasi-compactness of the operator P, associated to any measurable
h.  Our contribution to the computation of extremal SME, although in the
line of the monotone approach of Hopenhayn and Prescott[34], does not rely
on the Feller property of Py, but, rather, on the much weaker® assumption of
order continuity of the operator 7} along monotone recursive T,;"—sequences.6
This is a very important result because we demonstrate that the isotonicity of
h (together with the isotonicity of Q) regardless of its continuity properties, is
sufficient for order continuity of 7" along monotone T*-sequences, and thus for
computing extremal SME. With our result, the monotone approach can truly be
called a monotone method since existence, characterization, and computational
and stability results can then be derived on the basis of algebraic and order
properties only, and without appeal to topological properties (except for the
compactness of the state space).

A contribution of this paper concerns the problem of finding sufficient con-
ditions for the existence of measurable and isotone MEDP in a large class of
stochastic non-optimal OLG models. Some of these issues have been addressed
in Hopenhayn and Prescott [34], Nishimura and Stachurski [43], and Nishimura
et al [44] in the context of infinite horizon economies with iid shocks, but none
of these papers directly study MEDP in non-optimal economies (either infinite
horizon or OLG). In addition, even for Pareto optimal economies with Markov
shock, Hopenhayn and Prescott’s conditions are extremely strong.” Mirman,
Morand, and Reffett [37] have obtained new results for a much more general
class of infinite horizon non-optimal economies with Markov shocks (which in-
cludes the models studied in Hopenhayn and Prescott [34] but also many other
environments), but only in the context of infinitely lived agent models.

In this paper we propose to use the “Euler equation method” pioneered by
Coleman[11], and applied to infinitely-lived agents models for instance in Green-
wood and Huffman [29], Datta & al.[18], Datta & al.[19] [20], and Morand and
Reffett[39]. The Euler equation method we use though is quite different than
in these papers, and uses the isotonicity and order continuity of an operator
defined from the Fuler equation and operating on a countable chain complete
poset of increasing measurable functions to show existence of MEDP in that
poset, and to present algorithms converging to extremal MEDP through succes-
sive approximations.® The method extends the results for OLG models with
iid shocks recently obtained in Erikson & al. [23]. Finally, combining our

5Much weaker in the sense that an increasing stochastic kernel with the Feller property is
order continuous along monotone 7™*-sequences.

6See Section 2 of the paper for the definition of order continuity.

"In particular, their assumption of strict complementarity of I'(x, z) = [0, f(=, )] in Propo-
sition 2 is generally not satisfied unless f is Leontieff, and such assumption is critical to ap-
ply Topkis results on preservation of supermodularity under maximization (See Lemma 1 in
Hopenhayn and Prescott[34]).

8In Miao and Santos [36] a MEDP exists as a particular selection from a Markovian cor-
respondence, but the authors provide no information converning the computation of such
selection. We improve upon Mia and Santos [36] by providing sharper continuity character-
izations of MEDP and results concerning the set of Markovian equilibrium, and by using an
approcah that ties numerical solutions directly to theoretical methods.



new findings concerning the construction of invariant measures with our results
on existence and construction of monotone measurable selections, we address
the problem of existence and construction of SME. This problem has been the
subject of fruitful research, beginning with the work of Galor and Ryder [28]
on deterministic OLG models, extended to stochastic models with iid shocks in
Wang[56], and later with Markov shocks in Wang [57]. In contrast to all the ex-
isting work, we give sufficient conditions for the existence of a “pure” stationary
Markov equilibrium, (i.e., a SME associated with a non-sunspot THME in the
terminology of Wang [57] and Duffie & al.[15]), and for each MEDP we produce
algorithms to compute extremal SME within a class of OLG models allowing
for non-convexities in production. All our proofs rely heavily on a construc-
tive version of Tarski’s fixed point theorem for countable chain complete lattice
which we establish early in the paper.

The paper is organized as follows. In the next section of the paper, we
presents the set of economies and the lattice theoretic concepts used in this pa-
per, including an order-based fixed point theorem for countable chain complete
lattices, and a discussion of the various partially ordered sets relevant to our
analysis. In section 3, we apply the Euler equation method to a large class
of overlapping generation models and obtain existence and computation results
for the set of MEDP. Section 4 addresses the issue of existence of SME. In this
section, we adapt some new results concerning the construction of SME first
presented in Morand [38] to our OLG setting.

2 Prerequisite Tools and Results

Our emphasis throughout the paper is on ordered spaces and order preserv-
ing functions and mappings, so lattice theory is the proper set of tools for our
analysis, but we keep its presentation to a bare minimum.” We discuss spe-
cific ordered sets (of functions, and of probability measures) in which we will
search for equilibrium objects as fixed points of some order preserving mappings.
Our results, although in the spirit of Tarski’s famous fixed point theorem, are
more than just existential since we propose constructive algorithm converging
to obtain the extremal fixed points. These algorithms are based on our own
order-based fixed point theorem which we develop below. Also, measurabil-
ity will turn out to be a critical issue, and we obtain it from the measurable
maximum theorem which we state without proof at the end of this section.

2.1 Results from the Theory of Ordered Sets

We begin with a brief summary of some concepts in the theory of (partially)
ordered sets and lattice theory the we shall use in the sequel. Recall a partially
ordered set (or poset) is a pair (P, <) where the set P endowed with a partial
order < (i.e., a reflexive, antisymmetric, and transitive binary relation). If

9For a thorough venture into lattice theory for economics, consult Topkis [53] and Veinott
[55].



(P, <) is a poset, then an upper bound (resp., lower bound) of A C P is any
element u (resp. v) such that Vp € A, uw > p (resp. v < p). A chain is a
linearly ordered subset of P. A sequence is a subset of P of the form {p, }nen.
If p; < pig1 (resp. p; > pig1) for all © € N the sequence is called increasing
(resp., decreasing). A countable chain is a linearly ordered subset of P that
can be written in the form of a “double sequence” {p,},/>° _ with p; < pi11
for all ¢ € Z.

A lattice is a poset (P, <) such that any two elements p and p’ in P, inf{p, p'}
and sup{p, p’} (i.e., the greatest lower bound and lowest upper bound of the set
{p,p'}) exist in P. In this case, which case we denote inf{p, p'} and sup{p,p’}
respectively by p A p’ and p V p’; a poset (P, <) that is a lattice is a complete
lattice if the greatest lower bound (glb) and lowest upper bound (lub) of any
subset P’ C P exists in P, in which case they are respectively denoted Ap P’ and
VpP'. A poset (P, <) is countably chain complete if the VpC and ApC of any
countable chain C of P exist in P. Finally, if (P,<p) and (L, <} ) are posets, a
function F': (P, <p) — (L, <y) is said to be increasing if it is order-preserving,
ie.,

V(p,p') € P x P, p >p p implies F(p) > F(p').

2.1.1 Spaces for Candidate MEDP

Next, we discuss the properties of function spaces in which we will search for
Markovian equilibrium decision policies (MEDP). In the remainder of this pa-
per,we will denote by the (minimal) state space for candidate MEDP as fol-
lows: let X = [0, kmax] € R where kpmax > 0, Z = [Zmin, Zmax] C R where
0 < Zmin < Zmax; S = X x Z, and §* =0, kmax} X Z. All compact subsets of
R™ that we shall use will be endowed with the standard pointwise partial order
< and the usual topology on R™. We will use B(.S) to denote the Borel algebra
corresponding to the set S.

We now develop two function spaces of interest in our work. Given a
function w : § — X that is bounded, increasing in s,'° continuous (and thus
B(S)-measurable), denote by W the set of all functions h : S — X such that
Vs € S 0<h(s) <w(s). Endow W with the standard pointwise order > on a
function space defined as follows:

wy > we iif Vs € S, wi(s) > wa(s).

Finally, we say that a function h € W is non-trivial if it is strictly positive on
S* that is:

Vs € S*, h(s) > 0.

10We say that a function h € (W, <) is increasing in s (equivalently isotone on (S, <)) if:
V(s,s") € S x S, s’ > s implies that h(s") > h(s).



By making successive restrictions on the functions h, we can consider several
subsets of W, each also endowed with the pointwise order >. First we add some
monotonicity restrictions to the elements of W to define the following subsets
G and H:

(i) G={h €W and h increasing on (5, <)},

(i) H={h €W and h increasing in x for all z € Z}.

Lemma 1 (G, <) and (H,<) are complete lattices with minimal and mazimal
elements 0 and w respectively.

Proof. It is easy to verify that glb and lub are constructed by pointwise
inf and sup, that is:

VD C Gand Vs € S, Ag D(s) =inf{h(s),h € D} and Vg D(s) = sup{h(s),h € D},

and similarly in H. It is important to note that for any increasing sequence
{hn}nen in H. V{h, }nen(s) = sup, ey hn(s) = limy, o0 hy(s) for all s € S.A

In many cases, we will seek MEDP with topological properties, i.e., semi-
continuity properties. Consider then the following two subsets U and L in
H C W, each endowed with the pointwise order >:

(iii) U = {h € H and upper semicontinuous (“usc”) in z for all z € Z},

(iv) L ={h € H and lower semicontinuous (“Isc”) in « for all z € Z}.1

Lemma 2 (U, <) and (L,<) are complete lattices with minimal and mazimal
elements 0 and w, respectively.

Proof. The lower envelope of a family of usc functions is usc (see, for
instance Aliprantis and Border[1]), hence:

VD CUand Vs € S, Ay D(s) =inf{h(s),h € D},

and since U has the top element w, by Davey and Priestley!! [21] (U, <) is a
complete lattice. It is important to note that, although the upper envelope is
increasing, it is not necessarily usc. However:

VDCcUandVse S, VyD(s)= iréf;{sup{h(t), h € D}}.

Symmetric results hold for (L, <).H

Finally, we add the algebraic requirement of B(S)-measurability to the sets
G, H, U, and L, and correspondingly define the sets G,,, Hy,, Uy, and L.

'To show that a partially ordered set is a complete lattice sometimes requires much less
work that the definition of completeness would have us believe: Davey and Priestly demon-
strate that a non-empty poset (P, <) is a complete lattice if and only if P has a top (resp.
bottom) element and for any P’ C P, ApP’ (resp. VpP’) exists (in P).



Lemma 3 (G, <), (Hm, <), (Un, <) and (L, <) are countably chain com-
plete Posets with minimal and maximal elements O and w, respectively.

Proof. The pointwise limit of a sequence of B(S)-measurable function is
B(S)-measurable. (See for example, Halmos [30], Theorem 20.A). Thus, (G, <
)y (Hmy <), (Un, <) and (L,,, <) are each o—complete lattices.

(ii) In particular, for any increasing sequence of functions {h, }nen in Hy,
or in G,,:

Ve, .Goiln}nen(s) =sup hy(s) = lirf hy(s) for all s € S,
neN n—+00

while a symmetric result holds for decreasing sequences of functions. Therefore
(G, <) and (Hy,, <) are countably chain complete Posets. For an increasing
sequence {hy }nen in (U, <), the functions Vi {hy, bnen(.) and lim, 1 by, (2)
coincide almost everywhere, which implies that Vi {hy, }nen is B(S)-measurable
and therefore precisely : Vy, {hn}neny = Vu{hn}tnen. Also, for any decreasing
sequence {hy, }nen in (U, <), Au,, {hn tnen(s) = infpen{hn(s)} = lim, o hn(s)
for all s € S. Symmetric results hold for monotone sequences in (L, <), which
proves the desired result in (ii).H

2.1.2 Spaces for Candidate SME

In this paper, tationary Markov equilibria will be defined as probability measures
satisfying certain properties. We prove now that the space of probability mea-
sures on a compact subset S C R"™ when endowed with the first-order stochastic
dominance partial order is a chain complete poset.'> We denote the space
of bounded and B(S)-measurable real valued functions by B(S, B(S)), and by
C(S, B(S)) the space of bounded continuous and B(S)-measurable!® real valued
functions, and we use the standard inner product notation:

(o) = /S f(s)u(ds), f € B(S,B(S)) and i € A(S, B(S)).

We denote by A(S, B(S)) the space of probability measures defined on the mea-
surable space (5,B(S)), which we first endow with the stochastic order >,
defined as follows: u > p’ if and only if:

(f,u) > (f,p') for all increasing f € B(S, B(S)).
Note that since S is compact, p >, ' if and only if:

(f,p) > (f, 1y for all increasing f € C(S, B(S)),

12Tn Erikson & al. [23], the authors work with the space of probability measures on a
compact subset S of the real line, which is shown to be a complete latice when endowed with
the partial order of first-order stochastic dominance. When S C R"™, this is no longer the case
(See Morand [?] for further discussion of these issues).

13Given the definition of S, every bounded continuous function f : S — R is B(S)-
measurable.



as shown for instance in Torres[54].

Next, we also endow A(S, B(S)) with the weak topology for which a sequence
of probability measures {u,, }nen in A(S,B(S)) is said to weakly converge to
e A(S,B(S)) if for all f € C(S,B(95)):

i (f, p,,) = (f; 1) 5 (CV)

n—oo

in which case we write u,, = p and call p the weak limit of the sequence
{ftntnen. Finally, we say that a sequence {u, }nen in A(S,B(S)) is said to
converge in the total variation norm to p € A(S,B(S)) if condition (CV) above
holds for all f € B(S,B(5)), and the convergence is uniform for all functions
with [|f]] < 1. By definition, convergence in the total variation norm clearly
implies weak convergence (see, for instance, Stokey & al.[51] for the various
definitions of convergence).

We now state and demonstrate an important result concerning the order
structure!* of (A(S,B(S)),>s) as well as the properties of monotone sequences
of probability measures in (A(S, B(S)), >s).

Lemma 4 (A(S,B(S)),>s) is a countable chain complete poset with minimal
and mazimal elements. In addition, for any increasing (decreasing) sequence

{#n Inen

oy, == V{Mn}nEN (resp. Hop, = /\{:U’n}TLEN)

Proof. Clearly (A(S,B(S)),>s) is a poset with minimal and maximal ele-
ments (the singular measures (g ...y and 0, . -y, respectively). Since all
monotone sequences of ([0, Zmax) X [Zmin, Zmax), =) (and therefore order bounded)
converge, by Lemma 1 in Heikkila and Salonen[33] all monotone sequences
{tty, nen in (A(S, B(S)), >5) (and thus order bounded) weakly converge.!> Con-
sequently, if {u, }nen IS an increasing sequence and p its weak limit, for all
increasing f € C(S,B(5)) and for all n € N:

and p is thus an upper bound for {u,}neny. Given any upper bound ¢ of
{14, }nen, for all increasing f € C(S,B(S5)):

For all i € N, (f, ;) <{f,q),

implying that:

! Following a different argument, Hopenhayn and Prescott [34] prove that (A(S, B(S)), >s)
is a chain complete lattice with minimal and maximal elements.

15This result is also a consequence of Helly’s Theorem (See, for instance, Corollary 1 to
Theorem 12.9 in SLP [51]).

10



and therefore that p <g q. Thus p is the lowest upper bound, and we have:

My == \/{:u’n}HGN'

A symmetric argument easily shows that every decreasing sequence { A\, }nen
weakly converges to its lower bound, i.e:

)"ﬂ = /\{/\n}nEN-

2.2 An order-based fixed point theorem

Within the framework of the seminal fixed point theorem of Tarski ([52], The-
orem 1) stating that an increasing map F that transforms a complete lattice
(P, <) has a non-empty set of fixed points, we prove a new result concerning
the construction of extremal fixed points of such a map under some additional
assumptions. First we called a monotone recursive F'-sequence any increas-
ing (decreasing) sequence C' of the form x < F(x) < ... < F™(z) < ... (resp.
x> F(x) > .. > F"(z) > ..). Given this definition, we say that a function
F that transforms a poset (P,>) into itself is order continuous along mono-
tone recursive F-sequences (in short “OCF”) if for any increasing (decreasing)
recursive F-sequence C' in P such that VC' (resp. AC) exists,

V{F(C)} = F(VC) (resp. A{F(C)} = F(AC)).

This definition calls for two important remarks relating to the literature:

(a). Unlike the property of order continuity, the OCF of F' does not imply
that F' is necessarily increasing. Consider for instance X = [0,1] C R and the
function F': X — X defined as follows:

0 forx=0
F(z) =< (1—x) for all x in ]0,1]
lforz=1

The only monotone recursive F-sequences are {F"(1/2)}nen, {F™(1) }nen and
{F"(0)Inen. Since V{F™(1/2)}nen = 1/2 = F(V{F"(1/2)}nen), V{F" (1) }nen =
1 = (VP (1)}nex) and V{F(0)}new = 0 = F({F™(0)}ner), clearly F is
OCF'6. Obviously F is not increasing.

(b). A function can be OCF without being continuous in the usual topo-
logical sense (F' in the example above is not continuous in the usual topology
on R).

The new constructive fixed point theorem we prove next establishes that if a
function F' from a countable chain complete lattice (P, >) into itself is increasing
and OC'F, then extremal fixed points can be obtained as glb or lub of particular

16The same results hold for the glb of these sequences.
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monotone sequences. Although this result is based on a theorem in Dugundgi
and Granas ([14], Theorem 4.2) and is also related very closely to Theorem
2.1 reported in Heikkild [32]. The version of the theorem we now prove was
first developed in Morand [38] for the study of SME in various economies. For
completeness, we give a detailed proof here also:

Theorem 5 Let (P,>) be a countable chain complete poset with maximal and
minimal element pimax and pmin, respectively, and F : (P,>) — (P, >) increasing
and OCF.

(a). If there exists a € P such that F(a) > a, then V{F™(a)}nen is the
minimal fized point of F in the order interval [a, Pmax] of (P,>).

(b). If there exists b € P such that b > F(b), then N{F™(b)}nen is the
maximal fized point in order interval [pmin, b of (P,>).

Proof. (a). Since F(a) > a and F isotone, recursively we prove that
Vn € N, F"*(a) > F™(a). Thus {F"(a)},en is an increasing sequence, and
since (P, >) is a countable chain complete poset V{F"(a)}nen exists. As F is
FOC, F(V{F™(a)}nen) = V{F"(a)}nen, that is, V{F"(a)}nen is a fixed point
of F. Consider any d > a such that F(d) =d. Since F is increasing, Vn € N,
d > F™(a) which implies that d is an upper bound of { F""(a)},en, which implies
that d > V{F"(a)}nen. As a result, V{F"™(a)}nen is necessarily the minimal
fixed point of F in [a, Pmax]-

(b). The proof follows a similar argument to that in (b).H

The following useful corollary to this theorem that we shall use in the sequel
reads as follows:

Corollary 6 V{F"(pmin) tnen and A{F"™ (Pmax) }nen are the minimal and maz-
imal fized points of F in (P,>).

2.3 The measurable maximum theorem

We require in this paper MEDP to be measurable functions, because that prop-
erty is needed to construct a Markov operator whose fixed points will be sta-
tionary Markov equilibria.  Since the MEDP are obtained as solutions to a
maximization problem, the measurable maximum theorem is a natural way to
establish their desired measurability. We state without proof this theorem (for
a proof, see for instance Aliprantis and Border[1]).

Theorem 7 Let'” ¢ : S — X be a weakly measurable correspondence with
nonempty compact values, and suppose f : S x X — R is a Caratheodory

1"We write S — X rather than S — P(X) where P(X) is the set of all subsets of X
(standard notation in AB99).
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function (B(S)-measurable for all x € X, and continuous in = for all s € S).
If we define the value function v:S — R by:

v(s) = max f(s,z),
z€p(s)

and the correspondence G : S — X of mazimizers by:

G(s) ={z € p(s) : f(s,2) = v(s)},

then (i) the value function v is B(S)-measurable, (ii) the correspondence G is
measurable, has non empty compact values, and admit a measurable selector,
and (i) if G(s) is singled valued for all s € S, then it is B(S)-measurable.

3 Setup, existence and construction of extremal
MEDP

We consider the class of OLG models described in Wang [57] which we modify
along several dimensions. First, the lifetime utility function U(cq,co) repre-
senting the agents’ preferences is required to be supermodular, in addition to
the standard restrictions specified in Assumption 1. Second, we generalize
the production function of Wang by allowing for nonconvexities in production
and various forms of public policy distortions, although the constant returns to
scale in private inputs, as in Wang, imply zero profits (see Assumption 2 and 27).
This setting is typical of the literature on infinite horizon nonoptimal economies
(see for instance, Coleman [11]), and may be taken as the reduced form for
a number of economies with frictions, as discussed for example in Greenwood
and Huffman [29]. Third, we put restrictions on the Markov shock process, as
described in Assumption 3 and 3’, that are different than those in Wang [56][57].

3.1 The primitives of the economy

We now discuss the primitive notions of preferences, technologies, and stochastic
structure. We begin with preference. Our assumptions on lifetime utility func-
tions are standard (e.g., see Wang [56]) except for the additional restriction in
IV where we assume ¢; and ¢p be weak complements, which is trivially satisfied
when utility is separable in its two arguments.

Assumption 1. The utility function U : Ry x Ry — R:

I. is continuously differentiable;

IT. is strictly increasing and strictly concave in each of its arguments;

III. satisfies Veo > 0, lim,, o+ Ui(c1,c2) = +ooand Vey > 0, lim,, o+ Us(cr,c2) =
+00;

IV. has increasing differences in (cq, ¢2).

With these assumptions on preferences, we are now ready to consider the
characteristics of the nonclassical production of the economies. By nonclassi-
cal production, we mean that production is allowed to possess particular types
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of equilibrium “spillovers”. Specifically, as in the literature on infinite hori-
zon economies (e.g., Coleman [11], Boldrin and Rustichini [8], Benhabib and
Farmer[4], Benhabib and Wen [5]) we assume that the nonclassical production
will have social inputs (K, N) and constant returns to scale in private inputs
(k,n), and denote by F(k,n,K,N,z) the production technology. Following
arguments well-known in the literature (e.g. Greenwood and Huffman [29] and
Datta & al. [18]), this reduced-form production specification F' can shown to
represent an economy with public policy, with production nonconvexities, with
monopolistic competition, or even a monetary economies. Our assumptions on
F, including the monotonic properties of the equilibrium wage rate and rental
rate of capital, are adapted from the literature on nonoptimal stochastic growth
(see Coleman [11] and Greenwood and Huffman [29] for the corresponding as-
sumptions in infinitely lived agent models).

ASSllHlptiOH 2. The production function F(k,n,K,N,z): Ry x[0,1] x
Ry x[0,1] x Z — Ry is:

I. twice continuously differentiable in its first two arguments;

IT. constant returns to scale in the private inputs (k,n);

ITI. such that w(k, z) = Fy(k, 1,k, 1, z) is increasing in &k and limg_,q w(k, z) =
0;

IV. such that r(k,z) = Fy(k,1,k,1,2) is strictly decreasing in k and that
limg o r(k, 2) = +00;

V. such that there exists kmax With V& > kpax and 32 € Z F(k,1,k,1,2) >
Emax, and Vk < kmax, V2 € Z, F(k,1,k, 1, 2) < kmax.

Note that in Assumption 2, we are anticipating n = 1 = N in equilibrium (as
households do not value leisure), so that 2.III, 2.V, and 2.V concern properties
of the function F(k,1, K,1,2). In particular, assumption 2.V implies that the
set of feasible capital stock can be restricted to be in the compact interval
X = [0, kmax| (as long as we place the initial date zero capital stocks ko = K
in X).To sharpen the characterization of equilibrium objects we will make the
following additional assumption (trivially satisfied, for instance, in setup with
multiplicative shock).

ASSUHlptiOIl 2. w(k,z) and r(k, z) are increasing in z.

Finally, uncertainty enters the production process in the form of a Markov
process with transition function @; as in Wang[57] shocks take their values on
the compact subset Z = [Zmin, Zmax] of R.  Our emphasis on monotone prop-
erties induces us to assume that the transition function for shocks is increasing
(Assumption 3), an assumption also made in Hopenhayn and Prescott [34]. Un-
like Wang[57], we relax the assumption of the Feller property for @ and only
require it to satisfy Doeblin’s condition (D), which is equivalent to the opera-
tor @ being quasi-compact (see Neveu [42], V.3.2). This is a significant step
as our MEDP will not necessarily be continuous, so the Feller property is not
particularly useful in this context. Finally, it is important to note that both
of these assumptions are trivially satisfied in the special case of iid shocks (in
particular, they are satisfied for the economies in Erikson & al.[23]).
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Assumption 3. The random variables z; follow a first order Markov
process with stationary transition function @ such that @ is increasing, that is,
for every increasing f € B(Z,5(Z)), the function:

Tf(z) = /f(z’)Q(z, dz') is increasing in 2.

Assumption 3'. The random variables z; follow a first order Markov
process with stationary transition function @) such that there exists v € A(Z, B(2))
and € > 0 with:

VB € B(Z), v(B) < e implies that Vz € Z, Q(2,B) <1 —e¢.

3.2 An Euler equation method for MEDP

Having specified the class of economies under consideration, we now develop
an “Euler equation” method adapted to the case of the stochastic OLG models
we are considering. Specifically from the Euler equation evaluated along an
equilibrium trajectory, we define a nonlinear operator A whose non-trivial fixed
points are precisely the MEDP. This nonlinear operator has is increasing and
maps a countable chain complete lattice of candidate equilibrium policies into
itself; the existence of fixed points follows from a direct application of Tarski’s
fixed point theorem. The construction of extremal non-trivial fixed points
through successive approximations then relies on the OCF properties of the
operator A, as well as some additional restrictions sufficient to prove existence
of a non-trivial minimal fixed point.

In many important ways, the Euler equation method generates sharper char-
acterizations of particular MEDP than the purely topological methods used in
Wang[57] and based upon Duffie & al. [15]. In particular, we develop condi-
tions under which MEDP are semi continuous (either upper or lower) versus
Lipschitz continuous, the latter property being important for developing error
bounds (e.g., see Santos [49]).

Consider the maximization problem of a typical agent earning the compet-
itive wage w in the first period of his life, and who must decide what part of
his earning to consume immediately, and what part to set aside for future con-
sumption. While making these decisions, the agent takes as given a law of
motion h for capital stock, which he uses to compute the competitive expected
return on his capital investment. Returns on labor and capital are precisely the
competitive prices w(k, z) = Fa(k,1,k, 1, 2) and r(k, z) = Fi(k,1,k, 1, z) issued
from the firm’s maximization. Thus given a candidate equilibrium law of motion
for the capital stock k' = h(k, z), an agent seeks to solve:

max /ZU(w(k7 z) —y,r(k,2")y)Q(z,dz"),

y€(0,w(k,2)]
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Under assumptions 1 and 2, the necessary and sufficient Euler equation asso-
ciated with this household maximization problem is:

/Z Us(w(k, 2) — g, r(h(k, 2), 2 9)Q(z d2')

= /ZUg(w(k,z)fy,r(h(k,z),z/)y)r(h(k,z),z/)Q(z,dz').

Recalling that we introduced in Part 1 the set W of functions h : S — X
with 0 < h(s) < w(s) for all s € S, we define a Markovian equilibrium decision
policy (MEDP) as follows:

Definition 8 A MEDP is a non-trivial function h € W such that, for all
(k,z) € S*:

/Z Uy (w(k, 2) — bk, 2), r(hk, 2), 2 h(k, 2))Q(z, d2) (E)

/ZUg(w(k7 z) = h(k,z),r(h(k,2), 2 )h(k, 2))r(h(k, 2),2")Q(z,dz").
and h(0,2z) =0 for all z € Z.

We use the Euler equation to define the non-linear operator A as follows.
For a given h € H,, and for any s = (k, z) € S*, consider the equation (E’) in
y below!'®:

/Z U (w(k, 2) — y,r(h(k, 2), 2 )9)Q(z, d=') ()

= /ZUz(UJ(k,Z)—y,T(h(kvZ),Z')y)r(yvz')Q(Z’dZ')’ (1)

_J 0ifh(s)=0
Ah(s) = { y* if h(s) >0 }’

where y* is the unique solution to equation (E’). Note that Assumptions 1-3 are
sufficient to establish the uniqueness of y* since these conditions imply that the
LHS of equation (E’) is increasing in y and satisfies lim,_, )~ LHS = 400,
and that the RHS of (E') is decreasing in y and satisfies lim,_,o+ RHS = +o0.
Since an element h in H,, is a MEDP if and only if it is a non-trivial fixed point
of A, the search for MEDP in H,, is equivalent to finding the nontrivial fixed
points of the operator A.

and set:

18 Notice the operator here differs from the infinite horizon case significantly; in particular,
the operator is not defined to be this periods "response" to a guess of next period’s law of
motion. In essence for this economy, we simply parameterize future prices via the marginal
product of capital, and then develop implied equilibrium law of motion. We then shall iterative
on this procedure from upper and lower solutions to find extremal fixed points, which are then
MEDP.
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3.3 Measurable MEDP

We first consider the question of existence of MEDP, which we establish is a
consequence of the particular order properties of the operator A.

Lemma 9 A is a self map on (H,,, <).

Proof. For any h € H,,, Assumptions 1-2 imply that the RHS of (E’) is
decreasing in k while the LHS is increasing in k. It then follows easily that the
function Ah : S — X is increasing in k for each z € Z. The B(S)-measurability
of Ah relies on the maximum measurable theorem. Indeed, by definition:

Ah(s) =arg max p(s,y) forall s = (k,z) € 5,
y€E[0,w(s)]

where:

p(s,y) = p((k,2),y) = —

/;[Ul (w(ka Z) - Y T(h(kv Z), Z/)y) - U2(w(kv Z) - Y T<h<k= Z)v z/)y)r(y, Zl)]Q(Zv dzl) :

Since h € H,, for all y € [0, w(k, z)] the function
Ul (w(kv Z) - Y r<h<k7 Z)a Z/)y) - U2<w(k7 Z) - Y T'(h(k, Z)v Z/)y>r(y7 ZI)

is continuous in 2’ and jointly measurable in (k, z) and therefore jointly measur-
able in (k, z,2’), which implies that p(s,y) is B(S)-measurable (See Appendix
A). Since p(s,y) is clearly continuous in y, the maximum measurable theorem
applies and Ah is B(S)-measurable. Thus A maps (H,,,>) into itself.H

Lemma 10 A is increasing on (H,,, <).

Proof. The RHS of (E’) is decreasing in h while the LHS is increasing in
h. As aresult, h < h' implies that Ah < A/, i.e., A is increasing in 1.l

Lemma 11 A is order continuous along any monotone sequence, and therefore
OCF.

Proof. Consider for instance an increasing sequence {ay, fnen in (Hy, <).
For all s € S, the sequence of real numbers {a,,(s)},,en is increasing and bounded
above by w(k, zmax), and therefore lim,, . an(s) = sup{a,(s)}tnen. Since
A is increasing, the sequence {Aa,(s)},en also satisfies lim,, o Aay(k, 2) =
sup{Aa, (k,2)}nen.  The pointwise limit of a sequence of B(S)-measurable
functions is a measurable function, and, for all s € S:

Vi, {antnen(s) = sup{a,(s) }neny and Vg, {Aapntnen(s) = sup{Aa,(s)}nen,
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By definition of Aa,, Yn € N, and V(k,z) € S*: The functions Uy, Us, and r
being continuous in the relevant arguments, taking limits when n goes to infinity
implies that:

/Z Us(w(k, 2) —
sup{ Aa, (k, 2) }nen, 7(sup{a, (K, 2) fnen, Z/) sup{Aa, (k, 2) }nen)Q(z, dzl)

/Z Us(w(k, 2) —
sup{Aay, (k, 2) }nen, 7(sup{an (k, 2) }nen, 2') sup{ Aay, (k, 2) tnen)r(sup{Aa, (k, 2) }nen, 2')Q(z, d2’),

which implies that A(sup{a,(s)}nen) = sup{Aa,(8) }nen. Thus Vg, {Aa, }tneny =
AV, {an}nen, and a similar argument can be made for any decreasing sequence
{an}nen in (Hyp, >) to establish that A, {Aay tneny = A An,, {antnen.l

With these lemmata in place, we are now ready to prove our first central
proposition of the paper concerning existence and computation of MEDP. Let
H 4 be the set of fixed points of the operator A in (H,,, <).

Proposition 12 Under Assumptions 1,2 and 3, the set of fixed points Hy C
(Hym, <) is non empty. Further, this fized point correspondence admits minimal
and mazimal fized point that can be computed as Vi, {A"0}peny = VHA and
Am,, {A"w}nen = AH 4, respectively.

Proof. Since A is increasing, OCF', and a self map on the countable chain
complete poset (H,,, <), the proposition follows from our fixed point theorem
in Part 2; that is, there exists a non empty set of fixed points, the maximal fixed
point in (H,,,<) is Ap, {A"w},en which is obtained as Ap, {A"w}nen(s) =

lim,, o0 A™w(s), and the minimal fixed point is Vg, {A"0},en = 0.0

3.4 Increasing measurable MEDP

We now establish the existence of non-trivial fixed points of A in the space
(G, <) of increasing measurable MEDP. First, it is to be expected that to
prove that an MEDP is increasing in the exogenous shock (we already know that
it is increasing in the endogenous state k) will require additional restrictions on
the primitives. Intuitively, an increase in z leads to an immediate increase in
wealth as well as an expected increase in the rate of return on savings under
the assumption of an increasing transition function Q.'” As a result, young
agents do not necessarily respond to an increase in z by increasing their savings.
Assumption 4 below presents a set of sufficient conditions for A to be a self map
on (G, <). Second, recall that by construction the minimal fixed point of A

9Naturally, if shocks are independently distributed, an increase in z generates only a con-
temporaneous positive wealth effect to which an agent respond by increasing savings (see [23]).
No additional assumptions on shocks are then needed.
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is zero, a trivial object that we exclude from the set of MEDP. Consequently,
we give in Assumption 5 a simple sufficient condition for the existence of a
non-trivial minimal fized point of A in (G, <), which by definition will be
the minimal MEDP in (G,,,<). Finally, under the combined Assumption 1
through 5 we state our result concerning the construction of extremal increasing
and measurable MEDP.

We begin with sufficient conditions for Ah to be increasing in z whenever
h is, so that A maps the countable chain complete lattice (G, <) into itself.
Denote by G 4 the set of fixed points of G in (G,,, <).

Assumption 4.

(a). Utility is separable, that is U(c1, c2) = u(er)+v(cz), andv” (ca)ea /v (c2) >
0 for all ¢ > 0.

(b). Shocks are multiplicative, that is the production function is such that

fk, K, 2z)=zf(k,K).

Proposition 13 Under Assumptions 1,2,2',3 and 4, G4 C (G, <) is non-
empty and there exist minimal and maximal fived points.

Proof. We prove that A is a self map on (G,,,<). Under Assumption 4
equation (E’) becomes:

W (w(k,2) — ) = / b(z,y, 2)Q(z. d2), (B

in which we write b(z,y,2") = o' (r(h(k, 2),2")y)r(y,2") for simplicity. The
function b has several properties.
(a). b(z,y,2") is increasing in 2’ since

ab)02 = v (ex)yr(y,2)or(h(k,z),2")]0z" + v (c2)dr(y, 2") /02

oo () (B2 o

[0 (c2)ea + v (c2)] Or(y, 2') /07
> 0,
by Assumption 4.

(b). b(z,y,2") is increasing in z whenever h € G,,.
Consider then any y € [0, w(k, z2)], and any z; > z2. We have

/ b2y, ) Q2 d2) < / b1y, 2) Qe d2') < / b1y, 2) Q1 d2),

where the first inequality results from (a) and the second from (b) and the
property that @) is an increasing transition function. This establishes that the
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right hand side of (E”) is increasing in z, and since the left hand side is clearly
decreasing in z, for all h € G,,, 21 > zo implies that Ah(k,z1) > Ah(k, z2);
thus A maps G, into itself. The proof of OCF of A in (G,,, <) is the same
as that in the previous theorem in the last subsection of the paper since for any
increasing sequence {a, tnen of Gy, C Hpp,

\/Gm {an}HGN — \/Hm {an}nGNa

(a symmetric result holds for decreasing sequences) and the existence of a non-
empty set of fixed points in (G,,, <) follows from our fixed point theorem in
Section 2.1

Our next assumption concerns the limit behavior of the rental rate of capital
when the capital stock goes to 0. We show that it implies that A maps strictly
up the order interval |0, ho[ of (G, <), and it is thus sufficient to establish the

existence of a non-trivial minimal fixed point of A (which is then by definition
the minimal MEDP in (G,,, <)).

Assumption 5. lim, g+ r(z, zmax) = 0.

Lemma 14 Under Assumption 5, there exists hg € (L, <) N (G, <) such
that:

Vs € S*, Aho(s) > ho(s) > 0,
and:

Vs € S*,0 << ho(s) = Az > .

Proof. See Appendix C.H

We can now state an important result concerning the construction of the
maximal fixed point of A in the set of functions that are isotone in (k, z), and
B(S)-measurable.

Proposition 15 Under Assumptions 1,2,2',3,4, and 5, the set of MEDP in
(G, <) is nonempty, and has a mazimal MEDP is Ag,, { A" w}nen (in practice
constructed as Ng,, {A"w}lnen(s) = lim, oo A"w(s) for all s € S), while the
minimal MEDP is V¢, {A"hotnen (and is constructed as V¢, {A"ho(8) fnen =
lim,, oo A"ho(s) for all s € S).

Proof. Ag, {an}neny = Am,, {an}nen for all decreasing sequence {a,, }nen in
(Gmy <) 80 A, {A" W} nen(s) = lim,—.oo A™w(s) for all s € S, and by Theorem
2 Ag,, {A"w}en is the maximal fixed point of A (since as A is OCF and increas-
ing on the countable chain complete (G,,,<)). By our fixed point theorem of
Section 2, Theorem 5 and its corollary above implies that Vg, {A™hg }nen is the
minimal fixed point of A in the order interval ([hg, w], <) C (L, <) C (G, <).
Tt is thus strictly positive. By lemma 14 above Az > x for all 0 < z < ho(s),
and A thus cannot have a fixed point in [0, hg] other than 0. As a result,
Ve, {A"ho tnen is the minimal strictly positive fixed point of A in (G,,, <).1
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3.5 Semicontinuous MEPD

We now show next that our operator A is transformation (e.g., self-map) on
the countably chain complete poset of semicontinuous (in k) functions (U,,, <)
(resp. (L, <)). It is then not too difficult to also prove that A is OC'F on both
(U, <) and (L,,, <)?" thus establishing that the existence of a nonempty set
of MEDP in (U, <) (resp. (L, <), in each case of the domain, the operator

A admitting maximal and minimal elements of the fixed point set which can
be obtained by successive approximations from upper and lower solutions (i.e.,
”end” points that map up and down with the fixed point contained within the
resulting order interval).

Lemma 16 A is a self map on (U, <) and on (L, <).

Proof. We prove that A is a self map on (U,,, <) (the case of (L,,, <)
is symmetric). Counsider h € (U,,,<) C (H,,,<) and any z € Z. Since
Ah is increasing in k, if it is right continuous at every k € [0, Zyax| it is then
necessarily upper semicontinuous in k. Suppose on the contrary that there
exists (k,z) € [0, Zmax[xZ where Ah is not right continuous at k, i.e., that
there exists A > 0 such that:

lim Ah(kn, 2) = Ah(k, z) + A,

J—

where k,, — kT denote convergence?! of the sequence {k,}nen in X from the
right ( i.e., from above). By definition of Ah, we have, for all k,,, n € N, and
all z e K :

/Zul(w(kzn, 2) — Ah(ky, 2),7(h(kn, 2), 2" ) Ah(kn, 2))Q(z, d2')

/ZUQ(w(k:n, 2) — Ah(ky, 2),7(h(kn, 2), 2" ) Ah(kp, 2))r(AR(kn, 2), 2 )Q(2,d2")

By hypothesis, h is increasing and usc and therefore continuous to the right at
k, so

lim h(kn, 2) = h(k, 2).

kp—kt

20Tt should be noted that order continuity of A in (L, <) (as well as in (Un,, <)) does not
follow immediately from the order continuity of A in (Gm, <) since, for instance, Ar, {A"w}
and Ag,, {A™w} are generally distinct (however they a.e. coincide).

21Since {knl}nen is a decreasing sequence and Ah is increasing in k, {Ah(kn,2)}nen
is a decreasing (and bounded) sequence, and therefore convergent, so the expression
lim, 5 Ah(kn, z) is legitimate.
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By continuity of uy, us,and r, letting k,, converges to k from the right, we have:

/Z uy(w(k, z) — Ah(k, 2) — A, r(h(k, 2), 2 ) (Ah(k, 2) + A)Q(z, d2')

/Z up(w(k, 2) — Ah(k, 2) — A, r(h(k, z), 2') (Ah(k, 2) + A)r(Ah(k, 2) + A, 2)Q(z, d2')

But A # 0 contradicts the uniqueness of the solution to (E') given (k,z). It
must therefore be that A = 0, which proves that Al is right continuous at any
k € [0, kmax[, and thus upper semicontinuous.l

Proposition 17 Under Assumptions 1,2,2',3',4 and 5, Ag,, {A"w}nen is the
mazximum MEDP in (Up,,<) and Vg, {A"ho}tnen is the minimum MEDP in
(L, <). As a result, if the MEDP is unique, it is necessarily continuous in k.

Proof. By the previous lemma A is a self map on (U,,, <). By lemma 10,
A is increasing on (H,,, <), and therefore increasing on (U,,, <) (resp, (L, <).
Further since w € (U,,, <) and A is a self map on (U, <), A"w € (U, <)
for all n € N. Thus Ag,, {A"w},en is the lower envelope of a family of usc
functions, and is therefore usc in k on [0, Tmax[. Since hg € (L, <) and A is
a self map on (Ly,, <), A"hy € (L,,,<) for all n € N. Thus Vg, {A"ho }nen
is the upper envelope of a family of Isc functions, and is therefore Isc in k on
10, Zrmax ). M

Finally, we note that the maximum MEDP in (L,,, <) (minimum MEDP in
(Upm, <)) can easily be constructed by altering the maximum MEDP in (U,,, <)
(resp. minimum MEDP in (L,,, <)) at its discontinuity points.

4 Stationary Markov equilibria

In this section, we follow the work of Grandmont and Hildenbrand [25], Futia [27]
and Hopenhayn and Prescott [34], and define a stationary Markov equilibrium
(SME) in the form of an invariant distribution. We initially postulate the exis-
tence of a MEDP h in (W, <) which is only assumed to be B(S)-measurable®?,
and we only require the transition function @ to be quasi-compact: Under these
conditions, we demonstrate that there always exists a SME associated with h.
We then discuss the existing literature on existence of SME obtained as fixed
points of particular mappings, and show that our result is new. This existence
result, however, offers no information on how to compute this SME. Most im-
portantly, it offers no guarantees that the candidate SME is not a trivial one

(i.e., all the probability mass concentrated at stationary capital stock equal to
0).

22We proved in the previous section that finding a MEDP in (Hp,, <) (C (W, <)) requires
no additional assumptions beyond the standard ones.
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In light of this possibility, we prove two additional results. First, under
the additional combined assumptions of isotonicity of h (i.e., h € (G, <)) and
of @ (i.e., @ is now assumed to be quasi compact and increasing) we show
that minimal and maximal SME associated with h can be constructed through
successive (monotone) approximations. This is a new finding, since existing
computational results rely on a different -although generally more restrictive-
set of assumptions on h or @ (or on both). Second, we present sufficient
conditions within the class of OLG models that we study under which there
exists a non trivial SME associated with the minimal MEDP. We also give
sufficient conditions under which the minimal nontrivial SME associated with
the minimal MEDP can be constructed through successive approximations. All
conditions are expressed as restrictions on the set of primitives of the problem.

4.1 Definition of SME and existence results

Given a B(S)-measurable function h in (W, <) and with no restrictions on @,
it is well known (see, for instance, Stokey & al. [51]) that the state vector
s = (x,2) € S follows a first-order Markov process with transition function Py,
defined by:

(z,B) if h(z,z) € A

VA B € B(S), Pyr.zA,B) = { B D)1 G2

Equivalently:

Py(xz,2;A,B) = / Ta(h(x,2))Q(2,d2"),
B

where I4(h(x, 2)) is the indicator function of A (i.e., I4(h(z,z)) = 1 if and only

if h(x, z) € A, and 0 otherwise). In the notations of Duffie & al. [15] (S, Py,) is a

Time-Homogenous Markov Equilibrium (THME), more precisely a nonsunspot

THME (see Wang [57] Definition 3.4). Associated with the transition function

Py, are the operators Ty, : M(S, B(S)) — M(S, B(S)) defined by:

Vi € M(S, B(S)), Tf(s) = / F(5') Pi(s, ds'),
S
and Ty : A(S, B(S)) — A(S, B(S)) defined by:
YD € B(S). pya(D) = Tiua(D) = [ Putos Dyu(as).
The quantity T 1,1 (D) is thus the probability that the next period value of the
state vector lies in the set D if the current period state vector is drawn according
to the probability measure p,, and if all agents follow the optimal decision rule

h. This leads us to define a (pure) stationary Markov equilibrium??® (in short,
SME) for the MEDP h as follows:

23Since this SME is associated with a known law of motion (the MEDP h), we may call it a
“pure” SME, in contrast to Duffie & al. [15] and Wang [57] where there is no such information.
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Definition 18 A (pure) SME associated with the MEDP h is a probability mea-
sure € A(S,B(S)) such that:

For all D € B(S), u(D) = T (D) = /S Ph(s: D)u(ds).

In light of this definition the study (i.e., the issues of existence, unique-
ness, and computation) of SME is identical to that of the fixed points of T}
in A(S,B(S)).2* We first remind the reader of the two classes of results con-
cerning the existence of SME obtained as fixed points of the operator T} in the
theorem immediately below. Recall that the transition function P, has the
Feller property if, T'(C(S, B(S))) C C(S, B(S)). This is equivalent to T, being
“weakly continuous”, that is, for all sequence {\, }nen in A(S, B(S)):

Ap, = A implies Tj\,, = Ty A.

Theorem 19 (i). If h € (G, <) and Q satisfies Assumption 3, then there
exists a SME associated with h.

(i1). If P, has the Feller property, then there exists a SME associated with
h.

Proof. (i) Both h and @ increasing imply that T, is an increasing self
map on (A(S, B(S)), <) (and S has the minimal element (0, 2y )), and the result
follows from Corollary 2 in HP[34]. (ii) See Stokey & al. ([51]Theorem 12.10).
Consider any f € C(S, B(S)), any sequence {s,, = (Zn, 2n) }nen in S converging
to s = (x,2) € S, and h € C(S,B(S)). Since S = [0, Tmax) X [Zmin; Zmax] C R?,
f(h(k,z),2") is uniformly continuous on S x Z. As a result, Ve >0, 3 N € N
such that Vz/ € Z and Vn > N :

f(h(z,2),2") —e < f(M(an, 20),2") < f(h(z,2),2) + ¢,
and by integration:
/ F(h(,2), 2)Q(en,d2) — e < / F((ns 2), 2)Q(2m, d2')
z z
< / f(h(z,2),2")Q(2pn,dz") + € for all n > N.
z

If @ has the Feller property, then for any g € C(S,B(S)), [59(s)Q(s,ds") is
continuous. In particular,

im [ f(h(z, 2), YOz, d2') = /Z F(h(z, 2), £)Q(z, d),

n—o0 z

24Note that in Wang [57] terminology, (S, Py, i) is a SME.
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and the previous inequalities imply that:

fim [ f(h(aa20). 20 d) = [ Fh(2.2).2)Q ),

n—oo A

which proves that Pj, has the Feller property since:

/f(x',z')Ph(x,z';dx*dz):/f(h(x,z),z')Q(z,dz').
z z

Thus, if A is continuous and ) has the Feller property, then Pj, has the Feller
property.Hl

As shown in the theorem above, current arguments establishing the exis-
tence of a SME through a fixed-point approach require either the isotonicity
of both @ and h, or the Feller property of P}, the latter generally relying on
the continuity of A. Our contribution is to demonstrate the new result that the
B(S)-measurability of the MEDP h is sufficient for the existence of a SME with-
out isotonicity or continuity properties of i, but as long as @ is quasi-compact.

Theorem 20 If Q) satisfies Assumption 3', then for any B(S)-measurable func-
tion h in W there exists a SME associated with h.

Proof. The first critical step in this proof is to note that Assumption 3’
on  implies that P, satisfies Doeblin’s condition (identified as condition (D)
in Doob[?] or Stokey & al. [51], for instance). Indeed, given any arbitrary p €
A(X,B(X)), consider the probability measure v = p®~ € A(S, B(S)), where
is the probability measure in Assumption 3. By definition P, (x,z; A x B) <
Q(z, B), and Assumption 3’ then implies that there exists £ > 0 such that:

VAx B € B(S),7y(AxB)<~(B)<e
= VzeZ Py(r,z2;Ax B)<Q(z,B) <1-—¢,

which is precisely condition (D) for P,. The second step rests on a theorem in
Stokey & al. ([51], Theorem 11.9), which says that if P}, satisfies Doeblin’s condi-
tion, then for any uo € A(S,B(S5)), the sequence {\,, = (1/n) Z?:_Ol T g bnen
converges in the total variation norm and its limit is an invariant of 7}". It is
therefore a SME associated with /.l

4.2 OCF property and computation of extremal SME

We turn now to the problem of computing the extremal SME through successive
approximations, for which we first state the existing results in a theorem below.
This theorem shows that when P}, cannot be shown to have the Feller property,
not much can be said about the construction of extremal SME unless P, satisfies
a Monotone Mixing Condition. This is a problem, since we already noticed that
the Feller property of P, often relies on the continuity of the MEDP h, something
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that is generally difficult to obtain in many problems including the OLG setup
of this paper.?®

We address this problem in the remaining of this subsection of the paper
by showing that under the assumption of isotonicity of h and @, the quasi-
compactness of ) (a weaker requirement than that of the Feller property) is
sufficient to permit the construction of extremal SME by successive (monotone)
approximations. Before establishing this result, we first present the existing
computational results in the theorem below.

Theorem 21 (i). Ifh € (G, <) and Q satisfies Assumption 3, and Py, has the
Feller property, then the sequences {T3™6(5. . = ytnen and {Tp"6(0 2000 fneN
converge weakly respectively to the maximal and minimal SME associated with
h.

(ii). If h € (G, <) and Py, satisfies the Monotone Mixing Condition, then
for all pin A(S,B(S)), the sequence {T;™ 1}nen converges weakly to the unique
SME associated with h.

Proof: (i). Since 6(4,,.. 2m..) (the probability measure associating mass
one to the maximal point of S) is the maximal element of A(S,B(S)), then,
necessarily:

T}jé(zmaxyzmax) SS 6(wmaxgzmax)'
If Ty is increasing, then the sequence {104, .. »...) nen is decreasing, and
therefore weakly convergent (to is glb, which we denote p). The weak continuity
(i.e., the Feller property) of T} then implies that p = T p.. Next, consider any
fixed point A of T*. Since 7} is increasing:

>\ § 6($max7zmax) = )\ = CZ";:”)\ SS Tftnéb(l’maxazmax) for all ne N’

and A is therefore a lower bound for {T;"6(, . .. . }nen, which implies that
A <g p.  Symmetric arguments can be made for the increasing sequence
{T3™6(0,2m1n) fnen- (il) See Hopenhayn and Prescott,[34] Theorem 2.1

It is easy to see in the proof of (i) above that the topological property
of weak continuity of the isotone operator 7} is not necessary, and that the
OCF property of T} is sufficient for the proof. Indeed, recall that 7} is OCF'
(short for “order continuous along monotone recursive T} -sequences” ), if for any
increasing (decreasing) sequence of the form C' = {T}"y},en in A(S, B(S)):

Vas,BH)ATH (O} = Ti(Vacs,ss)C) (resp. Ancs,B(s)) 1Th (C)} = Tj (Aacs,Bs)C)),

which turns out to be equivalent to:

lim 7"y =Ty ( lim T;"),

n—oo

25There are results giving sufficient conditions for the existence of a continuous selection
out of a usc correspondence, but these are of very little use for computational purposes.

26



for any monotone sequence {T}"v}nen, i.e., the weak limit of the sequence
{T"v}nen is a fixed point of T}.%6

We now prove the important result that the OCF property of T} is satisfied
without any topological assumption on h. This is an important result, and a
significant addition to the constructive theorem above, since it implies that the
continuity of h is irrelevant for the construction of extremal fixed points of T}’

Proposition 22 For any function h in (H,,, <) and Q salisfying Assumption
3, Ty is OCF.

Proof. Consider an increasing sequence of the form {77 11 }nen in A(S, B(5)).
Denoting pt = Va(s,8(5) 115" 1o tnen its weak limit, by definition, for all isotone
f€C(S,B(S)) and all € > 0 there exists N € N such that:

anN) |<f’T;:nN’O>_<fa,u’>| <e

Given the sequence {\, = (1/n) >1) T; 1o }nen, any isotone f € C(S, B(S)),
and n > N:

|<f7)\n> - <f)y’>|

N—-1 n—1
(1) < S @t - >+<1/n> <f,z<T,:mo—u>>|
1=0 i=N

N—1
<f7 (Th Ho — >
i=0

o)

IN

(1/n) (1/n) Z\ £ T o) = (fom)]

IN

(1/n) +e.

This clearly implies that:
Jim (£, An) = (Frm] =0,

proving that the sequence {\, },en weakly converges to . On the other hand,
since P, satisfies condition (D) by Theorem 11.9 in Stokey & al [51] the sequence
{An }nen converges in the total variation norm (and therefore weakly converges),
and its limit is an invariant measure of 7}, which by uniqueness of the limit is
necessarily p. This establishes the order continuity along monotone recursive
Ty -sequences (a symmetric argument is easily made for decreasing recursive

Ty -sequences).ll

Finally, when h belongs to (G, <) C (H,, <) and @ increasing and quasi-
compact, the operator T} is then increasing and also OCF (by the previous
proposition since (G, <) C (H,,, <)). Given that A(S,B(S5)) is a chain com-
plete lattice with minimal and maximal elements, the following result is a direct
consequence of our constructive fixed point of Section 2.

26 Note that, for an isotone operator T} on a countable chain complete Poset, weak continuity
implies order continuity along monotone Tj-sequences, hence our claim that OCF is less
restrictive than weak continuity.
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Theorem 23 If h € (G, <) and Q satisfies Assumptions 3 and 3/, the se-
quences {1570z, 2y fnenN and {136 2, ) bnen converge weakly respectively
to the maximal and minimal SMFE associated with the MEDP h.

4.3 Non-trivial SME in stochastic OLG models

As noted before, one problem concerning the existence and computation of
extremal SME is the possibility that the set of SME reduces to a single “trivial”
probability measure, where by “trivial” we mean a probability measure for which
all mass is concentrated at &k = 0. Indeed for a MEDP h satisfying h(z,z) < x
for all (x, z) € S*, any SME is necessarily trivial, and an obvious case when this
happens is if when V(z, 2) € S*, w(x, z) < x.

We want to find sufficient conditions preventing the existence of a unique but
trivial SME, and we want to state these conditions in terms of the primitives of
the problem, unlike Galor and Ryder [28] or Wang[56][57]. We show that under
Assumption 6 below, there exists a minimal MEDP h.;, and there also exists
a non-trivial SME associated with this hpi,. Furthermore, under the assump-
tion of isotonocity of @), we show that there exists a non-trivial minimal SME
associated with the minimal MEDP h,,;,, and we give an algorithm converging
monotonically it.

We first make the following technical assumption we shall use in the sequel:

Assumption 6.

1. There exists a right neighorhood A C X of 0 such that, for all k£ € A,
w(k, Zmin) > k.

2. The following inequality holds:

li k min _kv ka max k
i s (ki) — K. 0,z )
<

lim ws(w(k, 2min) — k, 7(k, Zmax)K)7(k, Zmin)-

k—0t

Note that with separable utility, assumption 6 becomes:
lim ' (w(z, 2min) — ) < klim+ V' (r(z, Zmax)T)
-0

k—0+

We have the following important result.

Proposition 24 Under Assumptions 1,2,3,3/, and 6, there exists a non-trivial
pure SME, which we construct as associated with the minimal MEDP in (H,,, <

).
Proof summary. A complete proof can be found in Appendix B, and

we here just present the successive steps of the proof to show the constructive
nature of the argument.
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Step 1. Under Assumption 6 we show that there exists a function gy €
(G, <) C (Hp,, <) and a right neighborhood © =]0, ko[ of 0 such that:

(i) go(z,z) = = on O,

(ii) Ago(s) > go(s) for all s € 5™,

(iii) if 0 < & < go(s), then Az > x.

Step 2. We will now exploit the results established in Step 1 to construct
the minimal (non-trivial) MEDP. Since A is isotone on (H,,, <) and gy belongs
to (Hy,, <) (ii) above implies that A maps the subset [go, W], of H,, into itself.
Given that ([go, w]m, <) is an order interval of (H,,, <), it is also a countable
chain complete lattice. Recalling that A is OCF, our fixed point theorem of
Section 2 implies the existence non-empty set of MEDP in ([gg, w], <), with
minimal and maximal elements.

Next, (iii) implies that A cannot have a fixed point in (H,,,<) smaller
than go other than 0. As a result, hyin = Vi, {A"g0}nen is the minimal
strictly positive fixed point of A in (H,,, <) and hmin > go, and by (i) and (ii),
hamin (2, 2) > x at least on the open interval © =|0, ko|.

It is important to note that the function g is in fact an element of (G,,, <),
but is also constructed to be continuous in z for all z and lower semi continuous
in x for all z (see the complete proof in Appendix B). This implies that hpyin,
as the upper envelope of the family {A"gg},en of 1sc functions in 2 and in z,
is Isc in x and in z. This also implies that, under Assumption 6, hyi, is the
minimal strictly positive fixed point of A in (G,,, <) and hmin > go, and thus
the minimal MEDP in (G,,, <).

Step 3. We show that the singular measure 6 = 0(xy/2,2,.;,) 18 such that
Tpn 6 >4 6 for all n € N. There are now two cases.

1. If Q is not isotone and only quasi compact, then we know the sequence
{\n = (1/n) Z?;OI Ty O}nen converges to an invariant measure y, which is
non-trivial since A\, >, ¢ for all n € N, and thus p >, 6.

2. If we assume that @ is isotone (in addition to being quasi-compact), then
Ty is an isotone operator and the sequence {T;" 0}nen is increasing. By
the quasi-compactness of @, u = V{T;" 6},en is then a fixed point of T and
a non-trivial SME since p >4 6.

It is important to notice that our result concerning the existence of a non-
trivial SME thus does not depend on isotonic properties of @, hmin, or P,
although it obviously holds when @ is an increasing transition function. What
we gain with the monotonicity of @ is the possibility of constructing the minimal
SME by successive approximations. This is because the sequence {T,’fmmé}neN
is then an increasing sequence, so the quasi compactness of () guarantees that
its lub is a fixed point of 7j; = and therefore a non-trivial SME. We announce
that result in the following proposition.

Proposition 25 Under Assumption 1,2,3,3’, and 6, there exists a mon trivial
minimal SME associated with the minimal MEDP hyi,. This SME has support
in the set B = [ko, Tmax] X Z and can be obtained as V{T}" Ok, znin) fnen for
any k € © =|0, ko|.
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Proof. The state space S = [0, Zmin] X [Zmins Zmax] €an be partitioned
in three disjoint sets with different ergodic properties. The three sets are
{0} x Z, © x Z (recall that © =]0, ko[ is introduced in Assumption 4 above),
and E = [k, Tmax| X Z.

(i) The set {0} x Z is obviously ergodic since h(0, z) = 0 for any MEPD h.

(ii). The set © x Z is transcient since given any MEDP h and associated
transition P}, there is a positive probability of leaving that set and no probability
of returning in it. Indeed, consider any zp € ©. The sequence {x,}nen
recursively defined by @41 = hmin(Zn, 2min) for n € N, is strictly increasing,
bounded above by Zmax, and therefore convergent. If x is its limit, then the
lower semicontinuity of Amin (., Zmin) implies that i, (%, Zmin) = z, so that x >
ko necessarily since hpin (K, Zmin) > 9o (k, Zmin) > k for k €]0, ko). This (together
with the isotonicity of hmyin in z) implies that for any s € © x Z there exists
n € N such that P! = (s;0 x Z) = 0, which implies that Pj'(s;© x xZ) = 0 for
any MEDP h since h > hpyin. Also, for all (x, 2) € E hyin(z, 2) > go(x, 2) = ko,
which implies that for all MEDP h:

Pp(s;0 x Z)=0for all s € E,

(and Py (0, z; [ko, Tmax] X Z) = 0 as well).
(iii). The set E = [ko, Tmax] X Z is invariant since for all s € E, h(s) €
[k0, max] and therefore:

Py(s; E) = 1.

Next, for any given k €]0, ko[, V{T}". Ok, zmn) fnen is a fixed point of Ty
whose support belongs to E since © x 7 is transient and {0} x Z is ergodic. Con-
sider any k' € ©. Clearly, §(xr 2,y <s VAT 8(k,zmn) fnen and by isotonicity
of Ty

min

\/{T}tn 6(k’,zm;n)}n€N Ss \/{T}Tn 6(k,zm;n)}n€N-

min min

Als0, 8k, zmin) <s VATR". (k' 2mim) fnen and therefore:

V{T;{Ziné(kvzmin)}neN <s V{T}tn 6(k’,zmin)}n€N;

min

which implies that V{T;" 8 znin) tneNn = VATE™ 8 znn) Jnen. Finally, con-
sider any other SME A with support included in E. Since 6 ,,...) <s A for all
k € ©, by isotonicity of Tj;

VATR" Ok, zmin) fneN Ss A,

Rmin

which prove that V{T;" 6k ....) tnen is the smallest SME with support in-
cluded in E.

4.4 Equilibrium Comparative statics

We now discuss the possibility of generating comparative statics results for the
set of SME with respect to the space of economies by way of an example.
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Consider two productions functions f and f’ such that the associated wage
rates are w > w'. Noting that Ah is increasing in w in equation (E’) in Section
3, necessarily for any h, A(h; Fy) > A(h; Fz). By a recursive argument, it is
easy to see that the extremal fixed points of A are then increasing in w (see
also Proposition 2.3 in Heikkild [32] on fixed point comparative statics results
for increasing operators on chain complete posets). This implies that the set of
MEDP are increasing in w in the weak induced set order, and that the extremal
MEDP are increasing in w in the pointwise order sense (See Topkis, [53], p.38
for a discussion of the weak induced set ordering). We now show that the
pointwise ordering of two MEDP implies the ordering of their corresponding
Markov operators in the following sense.

Proposition 26 For any Q satisfying Assumption 3 and B(S)—measurable
functions k' > h in (H,,, <):

VA € A(S, B(S)), Ti" A > Ti" X for alln € N

Proof. We prove the result by a recursive argument. First, for any
increasing [ € C(S,B(9)):

Wz h— k) €S [ 100 2 [ k2,22,

and thus, VA € A(S, B(S
/f )T A(ds) //f (W (k, ) (z,dz’))\(dk:*dz)2//f(h(k:,z),z’)Q(z,dz’))\(dk:*dz):/f(s)T;{/\w

so Ty A >5 Ty A, Next, suppose now that T;:/"fl)\ >, T;"il)\ for n > 2.

/f Ty \(ds) //f(h'(k,z),z')Q(z,dz’)T,jT’l)\(ds)

v

/ / F (k, 2), 2)Q(z, d2') T~ A(ds)

Y]

[ [ i), QG azads) = [ T,

which implies that 777"\ >, T, A.1

A direct application of this previous proposition then implies that the point-
wise ordered change in w, which implies a pointwise ordered change in the
extremal MEDP, induces a ordered change (in the stochastic order sense) in the
extremal SME.

Corollary 27 The extremal SME are increasing (in the stochastic order sense)
mw.
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5 Appendix

5.1 Appendix A

Lemma. Consider any function g : X x Z x Z — R bounded and B(X x Z x Z)-
measurable. Then

ik, 2) = / gk, 2, 2)Q(zd2),

is B(X x Z)-measurable.

Proof. The proof is in three steps.
Step 1. for any Ax B x C € B(X x Z x Z), consider the indicator function
XaxBxc- We have:

ik, z) = /XAXBXC(k’ZaZ/)Q(ZadZ/) = {

Q(z,C)if ke Aand z€ B
0 otherwise ’

‘ fisse (X xZ Ax B
{(k,2), j(k,2) Sa}:{ A x (Em{z,Q()z,\Cg) Sa}% }

Since Q(., C) is a measurable function for all C' € B(Z), Ax (BN{z,Q(z,C) <
a}) € B(X x Z). Thus, j is B(X x Z)-measurable.

Step 2. Consider any B(X x Z x Z)-measurable bounded simple function
®: X xZ xZ—R. The standard representation of ® is:

n
o = § AiX A, xB; xC;»
i=1

and:

J(kv'z) :/ZaiXAixBixCi(kvZ=ZI)Q(ZadZI) :Zai/XAixBixCi(k=Zﬂz/)Q<Z=dZ/)=
i=1 =1

which is B(X x Z)-measurable since the sum of n B(X % Z)-measurable functions.

Step 3.  For any B(X X Z x Z)-measurable bounded function g : X X
7 x Z — R, there exists an increasing sequence of B(X X Z x Z)-measurable
bounded simple functions {®,,} converging pointwise to g. By the Monotone
Convergence Theorem:

j(k, z) :/g(k,z,z/)Q(z,dz/) = lim [ ®,(k,z 2)Q(z,d2").

n—oo

This shows that the sequence of B(X x Z)-measurable functions [ @, (k, z,2')Q(z, dz")
converges pointwise to j(k, z), which therefore is B(X x Z)-measurable.
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5.2 Appendix B

The proof is in two parts. Part 1 establishes the existence of go : X X Z — X,
isotone and B(S)-measurable that is mapped up by the operator A and part 2
shows the existence of a probability measure 1, that is mapped up 7}, where
h is any fixed point of A in the interval [go, w].

Part 1. By continuity of all functions in k, the inequality in Assumption 6
implies that there exists of © =]0, ko] C A C X such that, Vk € © :

ur(w(k, Zmin) — k, 7(k, Zmax)K)

Uz (w(kv Zmin) -k, T(k, Zmax)k)r(ka Zmin)~
Consequently, Vk € © =]0, kol:

/Z wn(wk, 2) — k, r(k, 2 )B)Q(2, d2)

<

uy (U)(ki, Zmin) -k, T<I€= Zmax)k)
<

UQ(W(k, Zmin) —k, T(k, Zmax)k)r(k7 Zmin)
<

/Zug(w(k, 2) = k,r(k, 2 k)r(k, 2)Q(z,dz").

Next, consider gg € (G, <) defined as:
0ifk=0,2¢Z

go(k,2)= kit0<k<ky,z€eZ .
koif k> ko, z€ Z

Clearly go is isotone in (k,z), continuous in z for all k (since constant in
z), and continuous in k for all z and therefore B(S)-measurable (since it is
a Caratheodory function). We show now that Ago(k,z) > go(k,z) for all
(k,z) € X* x Z. Suppose first that there exists 0 < k < kg and z € Z such
that Ago(k, z) < go(k,z) = k. Then:

/Zul(w(k:, 2) — 1k, 2 )R)Q(2, d2)
<
UQ(w(k’ Z) - kv T(ka Zl)k)r(k’ ZI)Q(Za dzl)

S

IN

ug(w(k, z) — Ago(k, 2),r(k, 2" ) Ago(k, 2))r(Ago(k, 2), 2 )Q(z, dz")

S

uy(w(k, z) — Ago(k, 2),r(k, 2")Ago(k, 2))Q(z, dz").

S
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where the first inequality stems from a result just above, the second inequality
from ugo < 0, uiz > 0 and 7 decreasing in its first argument, and the equality
follows from the definition of Agg. Thus, we have:

/Zul(w(la 2) — vk, 2)R)Q(z, d2)
<
/Zu1 (w(k, z) — Ago(k, 2),r(k,2")Ago(k, 2))Q(z, d2").

which is contradicted by the hypothesis that u1; < 0 and w2 > 0. It must
therefore be the case that, for all (k, z) €]0, ko] * Z, Ago(k, z) > go(k, z) = k.
Also, for any k > ko and z € Z:

Ago(k, z) > Ago(ko, z) > go(ko, 2) = ko = go(k, 2),

since Agg is isotone. Thus, Agy > go on X* x Z, and by Theorem 2 there
exists a non-empty set of fixed points of A in the order interval ([go,w], <
) C (G, <), and the minimal fixed point of A in ([go,w],<) C (G, <) is

Ve, {A"90} = hmin. Recall from Example 3 in Section 2 that the increasing
sequence {A"go }nen of functions in (G, <) C (Hp,, <):

Vi, G {A" go}nen(s) = lim A"go(s).

Since go is continuous in k for all z, A" gy has the same property for all n € N,
and Ay, is therefore Isc in k for all z as the upper envelope of a family of
continuous functions.

We next prove that there cannot be a fixed point of A in (G,,,<) or in
(H,,, <) that is smaller than hy;, other than 0. For any (k,z) €]0, ko] x Z,
consider any y such that 0 < y < go(k, z) = k, and suppose that Ay < y. Since
y < k < ko by assumption w(y, z) > y and we have:

/Z i (w(y, 2) — v, (v, 2)y)Q(z, d2')

/Zw(w(% z) —y,r(y, 2 )y)r(y, 2)Q(z,d2")

IN

/Z ws(w(y,2) — Ay,r(y, ') Ay)r(Ay, 2)Q(z, d2')

/Z wi(w(y,2) — Ay,r(y, ) Ay)Q(z d2'),

where the first inequality follows from Assumption 6, the second from Ay < v,
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and the equality from the definition of Ay. Summarizing, we have:

/Z ur(w(y, 2) —y, r(y, 2 )y)Q(z, dz')

<
/Zu1 (w(y, 2) — Ay, r(y, 2 ) Ay)Q(z,dz"),

which contradicts Ay < y under the assumption that u;; and wui3. Thus it
must be that Ay > y for all y €]0, kg]. Thus:

Vs € 8%, 0 <y <go(s)(< ko) = Ay >y,

and there cannot be a strictly positive fixed point of A in (G,,, <) or in (H,,, <
)that does not belong to the order interval ([go,w], <): hmin is therefore the
minimum strictly positive fixed point of A in (G,,, <) or in (H,,, <).

Part 2. Consider py = 6(x,/2,2,;,) Which concentrates all the mass at
(k0/2, Zmin). Since humin(ko/2, 2min) > ko/2 the support of T iy is included
in Jko/2, Tmax] X Z, which implies that Ty 1y > pig (in fact Ty g > p1g)-
If Ty is isotone, then we know that V{T;" pg}nen is a SME. If Ty is not
isotone, it is easy to prove recursively that:

support of T;" g is included in |ko/2, Tmax] X Z,

using the property that h(z,z) > ko/2 for all (x,2) €]ko/2, Tmax] * Z. As a
result, Tp" 1g > p1g for all n € N, and A, = (1/n) ZZL;OI Triug >s 1o Recall
that the weak limit p of the sequence {\, = (1/n) Z?:_Ol T g bnen is a SME
so that p > g since A\, >5 p for all n.

5.3 Appendix C

First, fix k € X*. For any z € Z:

lim [ w(w(k,2z) —x,r(z, 2 )2)Q(z,d2")

z—0t J 7

/ us (w(k, 2), 0)Q(z d2')

IN

uy (w(k, Zmin),0).

Thus there exists ¥ =]0,Z], such that, for all x € ¥ and all z € Z:
/ ul(w(k’ Z) -z, T(:C, Z/)x)Q(Za dZ/)
z
2uy (w(k, Zmin), 0).
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Secondly, if lim, g+ 7(Z, Zmax)x = 0 then for all £ € X*:
U2 (w(k, Zmin) - &€, T(ZE, Zmax)z) = lim u2(w(k’ Zmin)’ T(ZE, Zmax)fﬁ) = +00.

1m
z—01,2€]0,w(k,2min)[ z—0+

The expression us(w(k, Zmin) — T, 7(Z, Zmax)®) can therefore be made arbitrarily
large in a right neighborhood of 0. Thus there exists  =]0, k] with 0 < k& <
w(k, Zmin) and M > 0 such that, for all z € €,

w2 (w(k, Zmin) — T, 7(Z, Zmax)x) > M.

For any x € Q :

/ ug(w(k,z) — x,r(x, 2" )x)r(z, 2)Q(2,d2")
z

>
/Zug(w(k7 Zmin) — T, (T, Zmax)2)7 (2, 2)Q(2, d2")
> (1)
/Mr(mz')Q(z,dz')
z
>

Mr(x, Zmin)

where the first inequality stems from w15 > 0 and us decreasing, and the second
from above. This last expression can be made arbitrarily large, independently
of z, by choosing x in €2 sufficiently close to 0. That is, it is always possible to
choose z, independently of z, sufficiently small in Q 0¥ so that

Mr(x, zmin) > 2u1 (w(k, Zmin), 0) (E2)

Pick such an x and set §¢(k, z) = x for all z € Z. Combining (E0), (E1), (E2),
x = bo(k, z) necessarily satisfies, for all z € Z, the following inequality:

/ ws(w(k,2) — o, 7z, 2 )2)r(z, )Q(z, d')
Z

/ ur(w(k, 2) — 2, v(x, )2)Q(z, =)
zZ

That is, by construction, we have:

/ZuQ(w(k7 z) = bo(k, 2),7(80(k, 2), 2" )0 (k, 2))r(60(k, 2), 2 )Q(z,dz")
>

/Zul(w(k, 2) — 6o(k, 2),r(60(k, 2), 2 )00 (k, 2))Q(2,d2")
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By repeating the same operation for each k in X*, and setting 6((0, z) = 0, we
thus construct a function ¢ : X x Z — X constant in z, and therefore increasing
in z.

Note that if k" > k then 6y(k, z) necessarily satisfies:

/Z s (w(k', 2) — ok, 2), 7(60(k, 2), )80 (K, 2))r(80(k, 2), ) Q(z, d2')
>

/Zu1 (w(k',2) — 6o(k, 2),7(60(k, 2), 2 )00 (k, 2))Q(2,d2").

Consequently, 6o(k’, z) can always be chosen to be at least as great as o(k, 2).
In other words, the function 6y : X X Z — X can be constructed to be increasing
in k.

Note that, by construction, for any (k,z) € X* x Z, any 0 < 2/ < 8¢(k, 2)
also satisfies (E0), (E1), (E2) and therefore (E3).

In particular, the function py : X x Z — X defined as:
po(k, z) = Elgi{é(’(k/’ 2)}.

satisfies (E3) for any (k,z) € X* % Z, is increasing in k for all z, and constant in
z for all k& (and thus continuous in z for all k). Finally, the function hg defined
as follows:

_ supgepopPo(K,2) for ke X*, ze Z
ho(k, 2) = { Ofork=0,2z¢ Z

is smaller than pg (and therefore than 6y, hence it satisfies (E3)), increasing in
k for all z, constant in z for all k, and lower semicontinuous in & for any given
z€Z.

We now prove that V(k,z) € X* x Z, Aho(k,z) > ho(k,z) > 0. Since
ho(k,z) > 0 by construction, suppose then that there exists k € X* and z € Z
such that Ahg(k, z) < ho(k,z). As a result:

/Zul(w(k, 2) — ho(k, 2),r(ho(k, 2), 2" Yho(k, 2))Q(z,dz")

/ZUQ(w(k;, z) — ho(k, 2),r(ho(k, 2), 2" Yho(k, 2))r(ho(k, 2), 2 )Q(2, d2")

IN

/Z ws(w(k, 2) — Aho(k, 2), r(ho(k, ), /) Aho(k, 2))r(Aho(k, 2), 2)Q(z, d=)

/Zul(w(k, 2) — Aho(k, 2),r(ho(k, 2), 2" ) Aho(k, 2))Q(z, d2’).
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where the first inequality stems from (E3), the second from the assumptions
on the primitives, and the equality follows from the definition of Ahg(k, z).
Summarizing, we have:

/Zul(w(k:, 2) — ho(k, 2),r(ho(k, 2), 2" Yho(k, 2))Q(z,dz")

<
/Zul(w(k, z) — Ahg(k, 2),r(ho(k, 2), 2" ) Aho(k, 2))Q(z, d2").

which is contradicted by the hypothesis that uy; < 0 and w2 > 0. Thus,
necessarily, Aho(k,z) > ho(k,z) and A maps hg strictly up. Finally, from
the Remark above, recall that for a given (k,z) € X* x Z, any 2’ such that
0 <2’ < ho(k,z) < necessarily satisfies:

/Zul (w(k, z) — z,r(z, 2 )2)Q(z2,dz")

<

/ ug(w(k,z) — x,r(x, 2" )x)r(z, 2)Q(2,d2"),
z

and it must therefore be the case that Az’ > 2.
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