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Abstract 

 The ability to respond plastically to the environment has allowed amphibians to 

evolve a response to spatial and temporal variation in predation threat (Benard 2004).  

Embroys exposed to egg predation are expected to hatch out earlier than their 

conspecifics.  Larval predation can induce a suite of phenotypic changes including 

growing a larger tail area.  When presented with cues from both egg and larval predators, 

embryos are expected to respond to the egg predator by hatching out earlier because the 

egg predator presents an immediate threat.  However, hatching early may be costly in the 

larval environment in terms of development, morphology, and/or behavior.  We created a 

laboratory experiment in which we exposed clutches of spotted salamander (Ambystoma 

maculatum) eggs to both egg (caddisfly larvae) and larval (A. opacum) predators to test 

this hypothesis.  We recorded hatching time and stage and took developmental and 

morphological data of the animals a week after hatching.  Larvae were entered into lethal 

predation trials with a larval predatory sunfish (Lepomis sp.) in order to study behavior.  

We found that animals exposed to the egg predator cues hatched out earlier and at earlier 

developmental stages than conspecifics regardless of whether there was a larval predator 

present.  Animals exposed to larval predator cues grew relatively larger tails and survived 

longer in the lethal predation trials.  However the group exposed to both predators 

showed a cost of early hatching in terms of lower tail area and shorter survival time in 

predation trials.  The morphological and developmental effects measured of hatching 

plasticity were transient as there were no developmental or morphological differences 

between the treatment groups at metamorphosis.  Hatching plasticity may be transient but 

it is important to the development and survival of many amphibians. 
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Introduction 

 Amphibians have evolved the ability to plastically respond to the environment 

around them.  Transitions from egg to larva or from larva to adult are instances during 

which amphibians can alter development or morphology in order to adaptively contend 

with the environment around them (Rose 2005).   The ability to accelerate metamorphosis 

and speed up development allows animals to leave the aquatic larval environment to 

avoid desiccation or predation.  Since predation may be patchy in time and space, altering 

hatching time lets animals adjust to the environment around them.  Egg predators may 

induce early hatching to avoid being eaten while they are immobile in their egg capsules.  

However, with any plasticity there may be costs.  These costs can be in terms of 

development, morphological differences, or the ability to escape from predation and will 

be incurred and measured in future life stages.  

 Studies have found that embryos will often hatch out early when faced with an 

egg predator.  Gomez-Mestre et al. (2006) found that spotted salamanders (Ambystoma 

maculuatm), wood frogs (Rana sylvatica), and American toads (Bufo americanus) 

hatched out more quickly, at smaller size and earlier developmental stage when exposed 

to a deadly water mold.  Work with the Red-Eyed Tree Frog (Agalychnis callidryas) 

found that embryos exposed to egg predation would hatch out earlier than conspecifics 

that were undisturbed (Warkentin 1995, 1999, 2000).  Vonesh (2005) found that the 

African reed frog (Hyperolius spinigularis) responded in the same way with early 

hatching in response to egg predation. Chivers et al. (2001) discovered that Pacific Tree 

Frogs (Pseudacris regilla) and Cascades frogs (Rana cascadae) hatch early due to contact 

from both predatory leeches and non-predatory earthworms.  They also found that P. 
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regilla also hatches earlier when exposed to chemical cues of egg predators and injured 

eggs. 

 Larval predators do not reveal consistent effects across species.  Sih and Moore 

(1993) examined the effects of larval predator flatworms on hatching time of the Stream-

side salamander (Ambystoma barbouri).  They found that both the presence of flatworms 

and the presence of flatworm cues caused the embryos to delay hatching compared to 

animals in either the control freshwater or non-predatory isopod treatments.  Anderson 

and Petranka (2003) however found no change in hatching time in response to larval 

predation.  They exposed R. sylvatica and A. maculatum embryos to fed and unfed 

dragonfly larvae (Anax junius), conspecifics or control freshwater.  Neither R. sylvatica 

nor A. maculatum responded to any of the treatments in terms of hatching time.  In 

general, embryos seem to remain in protective eggs for as long as possible in order to 

grow and develop away from the larval environment unless an environmental change or 

predator forces them out.  While some embryos delay hatching in the presence of a larval 

predator, embryos seem to respond more strongly to the more immediate threat of an egg 

predator. 

The adaptive value of early hatching is clearly escaping from the egg predator. 

What, however, are the costs of such plasticity? These may take multiple forms.  For 

example, both size and shape at hatching can be affected by plasticity.  Early hatching 

embryos will tend to leave the egg at a smaller size and earlier developmental stage.  This 

difference in size between early and later hatching animals is a cost to altering hatching 

time.  Anderson and Petranka (2003) found no difference in size of larvae between 

treatments but they measured only total length.  When faced with predation animals may 
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not grow longer but may grow a larger tail to enhance escape ability (Van Buskirk and 

Relyea 1998; McIntyre et al. 2004).  Vonesh et al. (2000) also found that surviving 

Cinnamon-bellied Reed Frog (Hyperolius cinnamomeoventris) that had been exposed to 

fly predation as embryos were significantly smaller at hatching.  Being smaller at 

hatching may have a cost in a reduced ability to compete for food or escape from 

predation (Beckerman et al. 2007). 

In the aquatic environment tadpoles and salamander larvae use their tail fins for 

propulsion: a larger tail area will create more force and thus more speed (Wassersug & 

Hoff 1985; Aziz & Landberg 2002; McCollum et al. 1997).  A larger tail may also be a 

lure for a predator (Johnson et al. 2008; Blair & Wassersug 2000; Van Buskirk et al. 

2000a) because if the predator bites off a piece of the tail the animal is still alive and safe, 

whereas a smaller tail may not attract a predator and may not be large enough to ensure 

the body of the animals does not get bitten.  Larvae raised with predators are expected to 

have larger tails in order to escape from larval predation (Van Buskirk et al. 2000b; 

Steiner 2007; Relyea & Werner 2000). Van Buskirk and Relyea (1998) found that R. 

sylvatica reared in ponds with predators had deep tail fins, and dragonflies preferentially 

killed tadpoles that were smaller with shorter tail fins.  Relyea (2004) found increased 

predation of R. sylvatica resulted in deeper tails.  Relyea and Hoverman (2003) found that 

gray tree frog tadpoles (Hyla versicolor) grew a deeper tail fin with a shorter body when 

exposed to Anax larvae.  However, there may be a cost to this tail plasticity. 

When animals are exposed to multiple life stage predators there needs to be a 

mechanism by which they respond to multiple threats (Relyea 2001b; Van Buskirk 2001; 

Van Buskirk 2002a).  The animals will be responding to either the most immediate or the 
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most deadly threat.  Relyea (2001a) found that animals have predator specific responses.  

Ireland et al. (2007) exposed embryos of green frogs (R. clamitans) to an egg predator, a 

larval predator, a combination of both predators, and a control with no predators.  

Following the trend in other studies, they found that the egg predators alone induced 

early hatching at an earlier developmental stage and a smaller size than the control.  The 

larval predator however caused a delay in hatching with a later developmental stage and a 

larger size.  However, there were no significant differences in hatching time in the 

treatment with both predators when compared with either of the single predator 

treatments. The lack of response to the combination of predators led the authors to 

speculate that the combination of predators dampened the effect of either threat.  

 Relyea (2003a) exposed R. sylvatica tadpoles to four different predators that 

varied in the life stage that they threatened.  Animals were raised in single predator 

treatments as well as combined predator treatments.  Animals appear to have responded 

to the predator that was the greatest threat at a given time.  Unlike in Ireland et al., these 

animals responded to one of the combination of predators.  Vonesh et al. 2003 found that 

the combined effects of egg and larval predators on H. spinigularis were non-additive.  

The difference between these results and those of Ireland et al. may have been due to the 

different species of Rana or the predators used.   

We designed an experiment to test whether there are phenotypic costs of hatching 

plasticity in spotted salamanders (Ambystoma maculatum). We had two main objectives: 

to examine effects of egg predators on hatching time, and to study the effects that early 

hatching may have on the ability to respond to larval predators. To do this we used four 

treatments: egg predators, larval predators, both predators and no predators.  We 
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hypothesized that embryos that are exposed to an egg predator will respond by hatching 

earlier and at younger developmental stages than animals in the larval predator treatment 

or control.  We expected that regardless of whether there is a larval predator present or 

not, the embryos will respond to the immediate threat of egg predation, not the future 

threat of larval predation.  However, there may be a cost to hatching out early.  Larvae 

that remain in the egg longer should have the time and resources to put toward a larger 

tail area, which could be useful for escape behavior.  Animals exposed to larval cues 

should also be more adept at escaping predation.  Finally, animals that hatch out early 

may end up metamorphosing later than their conspecifics that hatched out on a regular 

schedule. 
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Materials & Methods 

Experimental Design 

Six spotted salamander (Ambystoma maculatum) clutches were collected from the 

Fenton River in Storrs, CT (on 4 May 2007), and placed in forty-eight thirty-eight-liter 

aquaria, arranged in two spatial blocks.  The animals ranged in stage from 37 – 39 

(Harrison 1969).  Each clutch was separated into eight equal parts for two replicates each 

of four treatments: control (no predator), egg predators (caddisfly larvae), larval predators 

(Ambystoma opacum), and both egg and larval predators. Tanks were randomly assigned 

to a treatment. Egg and larval predators were collected from the Fenton River in April 

2007 to create an environment as close to reality as possible (Miner et al. 2005). 

Animal husbandry 

 Air temperature was maintained at 15ºC, with a 12 hr light: 12 hour dark cycle.  

Tanks were divided with a fiberglass screen (2 mm pore size) in a Plexiglas™ frame 

(Figure 1A).  Each tank was then half filled with distilled water and adjusted with R/O 

Right™ salt to approximate physiological osmolarity.  Each tank had a constant supply of 

air being bubbled from a pump.  Experimental animals were fed aquatic invertebrates 

(~90% bloodworms) collected from a local fish hatchery.  Water was changed weekly, 

removing and refilling about 15 liters. 

 About a month into the experiment there were full tank deaths most likely due to 

a bacterial infection.  The animals had curved tails, exploded yolk sacs, and had lost their 

color.  All animals died in tanks 5, 12, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 

38, 40, 42.  Following tank deaths the tanks were emptied and cleaned with a mix of 

Bleach, soap and water.  Animals were redistributed on June 6, 2007 keeping animals in 
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the same treatment and clutch together.  After redistribution there were: clutch 1 – 7 

tanks, clutch 2 – 9 tanks, clutch 3 – 10 tanks, clutch 4 – 6 tanks, clutch 5 – 8 tanks, clutch 

6 – 8 tanks.  For treatments: egg predator – 10 tanks, egg/larval predator – 14 tanks, 

control – 12 tanks, and larval predator – 12 tanks. 

Predator treatments 

Predator cues differed between treatments. In the egg predator treatment, 

caddisfly larvae were placed in the side of the tank with the egg clutch.  They were 

observed walking around on the egg masses and manipulating them, but were not 

observed eating them. In the larval predator treatment, A. opacum were placed on the 

other side of the divider from the clutch of experimental animals.  These were fed with 

other A. maculatum larvae every 2-3 days.  This treatment allowed the chemical cues 

from the larval predator and their conspecifics to reach the egg masses without allowing 

predation on the experimental animals.  Treatments were terminated June 23rd, by 

removing all predators when A. opacum began to metamorphose (26 days after final 

hatching). A. maculatum were allowed to continue developing until August 30th(week 18) 

when animals in the first block were euthanized, photographed, tagged, and preserved in 

ethanol; animals in the second block were treated identically on September 6th(week 19). 

Developmental staging 

 Upon entering the experiment, all animals were staged in the egg.  Daily records 

were kept for the number of hatchlings per tank and the stage of hatched animals.  Newly 

hatched animals were staged following the Harrison staging table (Harrison, 1969). All 

animals had hatched by day 20.  The Harrison staging table, which stops at stage 46 

(animals with two front limb toes, one front limb toe bud and a hind limb bud), was 
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extended from stage 47 through 55 using similar criteria to the Harrison Staging table 

(Table 1). 

Table 1 – Continuation of the Harrison (1969) staging table for Ambystoma maculatum. 

Stage 

Front 

Limb 

Toe 

Bud1 

Front 

Limb 

Toe 

Hind 

Limb 

Bud2 

Hind 

Limb 

Toe 

Bud 

Hind 

Limb 

Toe 

45 0 2 Yes 0 0 

46 1 2 Yes 0 0 

47 0 3 Yes 0 0 

48 1 3 Yes 0 0 

49 1 3   2 0 

50 1 3   1 2 

51 0 4   0 3 

52 0 4   1 3 

53 0 4   0 4 

54 0 4   1 4 

55 0 4   0 5 

1A toe was differentiated from a bud by being longer than wide.   

2The hind limb was a bud until toes started to form. 

We recorded developmental stages again at the end of the experiment. We created 

a metamorphic staging table based on three characteristics that are known to change 

during metamorphosis: gill size, skin color pattern, and tail fin development (Figure 2).  

The salamander gills are large and robust (0) during the larval period and then become 

reduced (1); subsequently the filaments are resorbed leaving a bare rachis (2) until the 
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rachis is resorbed by the end of metamorphosis (3).  Skin coloration changes from a drab, 

solid color (0) during the larval stage to mottled with yellow pigment (1), through 

indistinct spots with ragged edges (2) to fully and distinctly spotted (3).  The tail fin of 

larvae extends far up the back to the head (0) during the larval period, gradually recedes 

posteriorly (1) and is ultimately completely resorbed leaving the adult’s muscular tail (2). 

Each animal was scored for all three traits and received a total score from 0 (fully larval) 

to 8 (fully metamorphosed). 

Morphology 

After hatching, photographs were taken weekly of each experimental animal. 

Each animal was photographed in a 10.2 x 10.2 x 7.6 cm Plexiglas™ box that had a scale 

bar for calibration.  Morphometric traits were measured from lateral view photos 

analyzed with Image J software (freeware available at: http://rsb.info.nih.gov/ij/).  

Measurements were taken of total length, snout-vent length, maximum tail height, and 

tail area (including the fin above the back anterior to the pelvis) according to Azizi & 

Landberg, 2002.   

Predation Trials 

Predation trials were run on May 29th, May 30th, May 31st and June 1st, running 

half a block, twelve tanks, per day.  Originally the predation trials were designed using 

the same larval predator the marbled salamander (Ambystoma opacum) which was 

providing cues in the experimental tanks.  Before beginning predation trials with the 

experimental animals we ran predation trials with another population of A. maculatum.  

While A. opacum would eat salamanders in the experimental tank, the predators would 
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only consume one hatchling per predation trial and most would not eat at all.  Due to the 

fact that we needed voracious predators we switched to sunfish (Lepomis sp.) and the fish 

trained very quickly.  By the time our experimental animals entered predation trials the 

fish had run enough trials that there was no learning curve on what they were eating.  

Five animals from each tank were randomly sampled, staged and photographed.  

These five animals became a predation trial replicate and were assigned to one of four 

predators (green or bluegill sunfish (Lepomis cyanellus and L. macrochirus respectively).  

Fish ranged in size from 9.6 cm to 10.2 cm.  Since the primary interest was in the 

relationship between tail morphology and escape performance, the predation tank was an 

open arena; there were no hiding places. This design maximizes reliance on escape 

swimming performance rather than refuge seeking behavior. The hatchlings were placed 

into a clear cylindrical Plexiglas™ predation trial tank (51 cm diameter, 23 cm deep) that 

had been filled with 30 liters of water (Figure 1B). A fish had previously been placed in 

the water so that all treatment groups started with the same predator cues.  Hatchlings 

were allowed to acclimate to the water for one minute before the fish was added.  Each 

trial was allowed to run for 10 minutes.  Investigators left the room and filmed trials from 

above at 30 frames/sec (Panasonic PV-GS59 digital camcorder and Sony mini digital 

video cassettes).  Each fish participated in three trials per day so fatigue or satiation was 

not an issue (i.e., all predators ate all the salamanders in every trial).   

Analysis of the predation trials was done from the videos uploaded to a Macintosh 

computer into iMovie HD.  First, the number of hatchling moves during the “pre-trial” 

was recorded in order to determine a baseline for movement.  Movement rate in the 

presence of fish (moves/animal/minute), the time at which each predation event occurred, 
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and the number and time of each escape response was recorded.  An escape response was 

defined as a high curvature movement (also known as a startle or escape response or c-

start; Azizi & Landberg, 2002) that the hatchling made while being targeted by the fish, 

which may or may not have ended in predation.  The end of the trial was the time at 

which the fish ate the fifth hatchling.  

Metamorphosis 

In order to determine if hatching plasticity affected the animals at later life stages, 

we looked at their development and morphology at metamorphosis.  We preserved 

animals from each block on a single day in order to get a cross-sectional look at their 

developmental morphology.  Animals in block two developed more slowly than block 

one and were given an additional week to develop (week 18 and 19 respectively). Total 

length and snout-vent length were measured from lateral view photographs, and 

developmental stages were calculated (criteria in Figure 2).   

Statistical Analysis 

Tanks are the unit of replication, so tank means are the data points.  All analyses 

were conducted with a linear model ANOVA and significant treatment differences were 

diagnosed with Tukey’s post-hoc test using JMP 5.0. All statistical tests included 

treatment, clutch and block as fixed factors. 

For hatching, the proportion hatched each day and developmental stage of the 

hatched animals were the variables of interest.  These data were analyzed for days 5-15 

when most of the hatching occurred.  Day and the interaction of treatment*day were 

included in the ANCOVA model.   
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 Total length was analyzed with ANOVA with block, clutch and treatment as fixed 

factors. Tail area from weeks 4 and 14 was analyzed with ANCOVA with total length as 

the covariate.  The interaction between total length and treatment was not significant and 

thus was excluded from the model.  The block*treatment interaction showed that three of 

the treatments (control, egg/larval, and larval) had larger tails in block 2 than in block 1.  

This did not affect our interpretation of the data in any way because the comparison 

between treatments in blocks was the same and therefore was also excluded from the 

model. 

 The ANCOVA for the predation trials had predation trial duration as the variable 

of interest with developmental stage and total length as covariates and predator ID (which 

fish was used) as fixed factor.  To see if escape or movement rates differed among 

treatment groups we ran ANCOVA with escape and movement rates as the variables of 

interest, with stage and total length as covariates.  Finally, to see if movement rate or 

escape rate affected survival time, we ran an ANCOVA with predation trial duration as 

the response, and escape rate, movement rate, stage and total length as covariates.  

 Rate of metamorphosis was analyzed with an ANCOVA with metamorphic stage 

as the variable of interest and included the interaction between treatment and total length. 

Since the interaction was not significant, it was excluded. Total length was also a variable 

of interest and we analyzed it with an ANOVA.  
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Results 

Hatching 

 The animals in the egg predator and egg and larval predator treatment groups 

hatched significantly earlier than those in the control and larval treatment groups (Tukey 

post-hoc test; Figure 3). Hatching (number hatched/total animals alive in tank) was 

analyzed using ANCOVA and the overall model was highly significant (p<0.0001) as 

were all of the factors and covariates (Table 2) 

 The animals in the egg predator and egg/larval predator treatment groups hatched 

at significantly earlier developmental stages than the animals in the control and larval 

treatment groups (Tukey post-hoc test; Figure 4).  Stages were analyzed using ANCOVA 

and the overall model was highly significant (p<0.0001) as were most of the factors and 

covariates (Table 3). 

Hatchling Morphology 

 We ran an ANCOVA on hatching morphology data to see if any of the 

morphological traits were different between the treatment groups.  There was no 

significant differences in the ANCOVA for total length (p>0.05). 

 The ANCOVA for tail area in week 4 was highly significant (p<0.0001) and 

explained 91% of the variation.  Tail area was greatest for the larval predator treatment 

and least for the egg predator treatment group (significant Tukey differences; Figure 5A). 

Animals in the egg and larval and control were intermediate and not statistically different 

from other groups. All of the covariates and factors that were put into the ANCOVA were 

significant (Table 4). 
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  Tail area in week 14 did not differ across treatment groups (Figure 5B).  Thus, the 

treatment effects observed in week 4 did not persist throughout the larval period. (Table 

5) 

Predation Trial Results 

 Survival time in the lethal predation trials was significantly affected by predator 

treatment and developmental stage (Figs 6 & 7). The ANCOVA model for survival time 

was statistically significant (p=0.0088) as were some of the factors and covariates (Table 

6). Animals in the larval predator treatment group survived longer than those in the egg 

predator treatment group with the other groups intermediate. Developmental stage 

negatively affected survival time (Figure 6).  Neither clutch nor predator ID had a 

detectable effect on the survival times. 

Metamorphosis 

 Time to metamorphosis (as measured by developmental stage in weeks 18 & 19 

for blocks 1 & 2 respectively) was not affected by predator treatment (Figure 8A). The 

ANCOVA model with metamorphic stage as the response variable was not significant 

(p=0.3169).  There was however one variable (total length; p=0.0249) that was 

significant indicating that larger animals were at a later developmental stages.  The rest of 

the variables were not significant (Table 7). 

 Body size (total length in week 18/19) was not affected by predator treatment 

(Figure 8B). The ANOVA model was not significant (Table 8).   
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Discussion 

Early exposure to egg predator cues appears to significantly affect hatching in the 

spotted salamander (Ambystoma maculatum).  The embryos in the two treatments with 

egg predators (egg only and egg/larval) hatched out earlier than in treatments lacking egg 

predators (fig. 3), supporting work in other studies (Warkentin 1995, 1999, 2000; Vonesh 

2005; Chivers 2001).  The immediate threat of potential egg predation appears to 

outweigh the future threat posed by larval predators.  The larval predator did not appear 

to have an effect on hatching time because the larval predator treatment group and the 

control were not significantly different from each other in terms of hatching time. 

 As found in other studies (Warkentin 1995, 1999, 2000; Vonesh 2005; Chivers 

2001) the animals in the egg predator and egg/larval predator treatment groups hatched at 

significantly earlier stages (fig 4) than the animals in the larval and control treatment 

groups.  This means they were having less time to develop in their eggs and doing more 

development in the larval environment.  Again, there was no evidence that the presence 

of the larval predator affected hatching stage because the larval and control groups were 

not statistically different from each other showing that the later life threat will not cause 

them to hatch at even later life stages.  

 These data confirms previous results of Anderson and Petranka (2003) who found 

that A. maculatum would not alter hatching time, hatching synchrony or developmental 

stage in the presence of an odonate larval predator.  This is most likely due to the animals 

remaining inside the relative safety of their egg for as long as possible unless something 

forces them out.  Our experiment, however, included the egg predator cues as well, which 

was the threat to cause the animals to hatch out of the egg, and in the treatment group 
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with both egg and larval predation cues the animals were confronted with threats in 

multiple life stages.  These animals still responded to the threat of egg predator cues and 

this effect was not dampened by the threat of the larval predator. This proves that in the 

presence of both an egg and larval predator, the animals still respond to the immediate 

egg predator threat over the future life stage larval predator. 

 Pictures of all the animals were taken weekly during the experiment so that trends 

in morphology and development could be measured.  While total length, snout-vent 

length and maximum tail height did not differ significantly between the treatment groups 

at any stage, the animals in the larval predator only treatment group had significantly 

larger tail areas for their body size than the animals in the egg predator only treatment 

group one week after hatching (fig 5A).  These data are consistent other work in which 

amphibians exposed to predator cues had larger tail areas.  A larger tail may help to 

increase thrust during locomotion to propel hatchlings faster in the water (Van Buskirk et 

al. 2000b; Van Buskirk and Relyea 1998; Wilson et al. 2005) as well as create a lure to 

draw larval predators away from the body (Johnson et al. 2008; Van Buskirk et al. 2003). 

 The cost of early hatching on hatchling morphology can be seen in the egg and 

larval predator treatment group.  These animals hatched out early to avoid predation by 

the egg predator but at an apparent cost in their tail morphology.  They also received 

larval predator cues but their tail morphology was intermediate and not significantly 

different from either the egg predator treatment or larval predator treatment.  This is 

consistent with the idea that in order to deal with both of the potential threats, the larvae 

hatched out early, but were not able to devote as many resources to building the larval tail 

fin. 
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 Anderson and Petranka (2003) also looked at morphology to see if they could find 

morphological differences between their treatment groups.  They measured total length, 

tail length, tail depth and muscle depth in the tail and found no significant differences 

between any of the treatment groups.  Similarly we found no difference in total length, 

snout-vent length, or maximum tail height, but we did find a difference in tail area.  We 

believe that if they had also measured tail area or population differences they may have 

had a different result.  Tail area is expected to be more closely correlated with escape 

performance because it measures the full surface area that the animal has to create thrust 

to propel itself through the water or lure a predator. 

 The lethal predation trials were run at week 4, about one week after the animals 

finished hatching.  At this point the animals also had significant tail area differences.  We 

designed the trials to measure the behavioral differences of the treatment groups.  The 

first, somewhat surprising discovery was that the animals that were at later 

developmental stages were surviving for shorter times in the trials (fig. 6).  This seems 

counterintuitive because generally one might think that animals that are more developed 

are better able to escape predators.  Development in this case reduced survival time; 

however, neither escape rate nor movement rate contributed significantly.  This means 

that the animals at younger stages were not escaping more often from the predators in 

order to survive longer and the animals at higher developmental stages were not moving 

significantly more to attract the predators.  Since the animals at higher developmental 

stages were slightly larger they may have been bigger targets.  This trend is consistent 

with another data set showing similar results (unpublished data: Artrip, Brown-Wilusz, 

Landberg).   In that study more developed animals were also eaten at a higher rate, but 
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with more trials we found a negative correlation between movement rate and survival 

time.  However, there could also be chemical, visual or behavioral cues that were not 

measured in this experiment. 

 In addition to development, predator treatment also affected survival time.  The 

larval predator treatment group survived significantly longer in the predation trials than in 

the egg predator treatment group (fig. 7).  The control and egg/larval predator treatment 

groups were intermediate.  This result mirrors the tail area data.  We do not know the 

mechanism underlying the difference in this fitness metric but it could be something 

chemical, behavioral, or visual used to avoid predation.  Since the animals in the larval 

predator treatment group were already exposed to larval predator they may have already 

known to behave to avoid detection and thus predation. 

 The differences in tail area seen shortly after hatching did not persist throughout 

larval development.  One explanation for this could be that all the predators were 

removed from the experimental tanks 8 weeks into the experiment when the larval 

predators began to metamorphose.  If the larval predators had remained in the tanks for 

the duration of the experiment, tail area differences may have been maintained.  Inducible 

defenses have been show to be reversible in other systems (Relyea 2003b; Van Buskirk 

2002b; Schoeppner 2008).     

 Another reason for this could have been the mortality that occurred during the 4th 

and 5th week of the experiment.  After redistribution some of the clutches were 

represented more than others and there were fewer animals in the experiment.  Infection 

may have caused the animals that were left to grow smaller, or there could have been a 

reduction in statistical power.   
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 Metamorphosis is the other major history transition in amphibian development.  

Therefore, we wanted to find out if hatching out early would mean that the animals would 

metamorphose at a later date.  Metamorphosing later is typically interpreted as a cost in 

amphibian development.  We examined a cross section of the metamorphic stages and 

staged all of the animals on the same day.  This way we could determine which animals 

were farther along in development on a particular day.   

 Animals that were larger were farther along in development.  This result makes 

sense because since metamorphosis is costly the animals that are bigger would have more 

resources to be able to devote to metamorphosis.  This pattern of larger animals being at 

later developmental stages was a pattern that was found across treatment groups. 

 Unlike other studies with larval predators (Vonesh and Warkentin 2006) there 

were no effects of predator treatment on either size or developmental stage at 

metamorphosis.  Although the egg predator induced early hatching, animals did not 

develop at different rates to metamorphosis.  This means the animals in the egg and 

egg/larval treatment groups were able to keep up with their counterparts in larval and 

control treatment groups. 

 Future research on hatching plasticity would need to include work to determine 

what exactly the cue is that the embryos are receiving.  The animals exposed to the egg 

predator may be receiving mechanical, chemical or visual cues that cause them to hatch 

out early.  In order to determine which cue it is, there would need to be treatments that 

just had chemical cues of caddisfly larvae, treatments that had non-lethal manipulation of 

the eggs, and the visual cue of the caddisfly without allowing the animals to receive 

chemical or mechanical cues.  Warkentin (2005) found that Red-Eyed Tree Frog 
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(Agalychnis callidryas) embryos responded to disturbance by a snake egg predator by 

hatching out early.  However, when she exposed the embryos to non-specific vibrations 

the animals did not hatch out.  This means that the animals can detect the differences in 

vibration and will only hatch out early when they are actually threatened.  As for the 

larval predator cues, the embryos did not have direct contact with the larval predators so 

the cue must be visual, chemical or a combination of both.  In order to determine which 

cue was contributing embryos would need to be exposed to only chemical cues, or the 

visual cue of the predator without chemical cues.  There is literature however to support 

the idea that it is generally a chemical cue that the embryos respond to (Moore et al. 

1996; Chivers et al. 2001) but more work does need to be done.  
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Conclusion 

 Hatching plasticity is a unique evolutionary strategy that allows animals to 

respond to environmental or predator cues around them.  In an attempt to understand this 

ability, scientists have performed experiments with varying levels of predation, 

competition, and environmental changes.  To fully understand salamander hatching 

plasticity animals need to be exposed to multiple life stage predators.  Animals will rarely 

be in an environment with just one type of predator cue and the response to the 

interaction between the multiple stage predators is very compelling.  Two studies on 

Ambystoma maculatum have shown that these animals do not delay hatching when 

exposed to larval predator cues, but our study shows that they will change their body 

morphology by growing a larger tail area.  They will respond to egg predator cues by 

hatching out earlier, but this comes at a cost.  Even if hatching plasticity is the main goal 

of the study, the effects on later life stages must also be taken into consideration.  The 

cost to hatching out early was seen in later life as the animals had smaller tail areas, and 

survived for shorter amounts of time in lethal predation trials.  By studying multiple 

predator effects on multiple life stages, the fascinating phenomenon of hatching plasticity 

may finally be understood.  
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Tables 
 

Table 2: ANCOVA for Hatching Proportions by Tank (R2 = 63%) 
Sources DF Sum of Squares F Ratio Prob > F 
Day 1 14.32 467.11 <.0001 
Treatment 3 1.03 11.22 <.0001 
Block 1 0.25 8.14 0.005 
Clutch 5 11.41 74.45 <.0001 
Treatment*Day 3 0.29 3.18 0.024 
     
     
     
     
     

Table 3: ANCOVA for Hatching by Developmental Stage (R2 = 62%) 
Source DF Sum of Squares F Ratio Prob > F 
Day 1 148.02 447.27 <.0001 
Treatment 3 11.99 12.08 <.0001 
Block 1 0.04 0.12 0.73 
Clutch 5 5.3 3.21 0.008 
Treatment*Day 3 22.02 22.18 <.0001 
     
     
     
     
     

Table 4: ANCOVA for Tail Area Week 4 (R2 = 92%) 
Source DF Sum of Squares F Ratio Prob > F 
Treatment 3 0.0012 4.36 0.0053 
Block 1 0.0005 5.27 0.0227 
Clutch 5 0.0061 12.95 <.0001 
Total Length 1 0.145 1560.12 <.0001 
Block*Treatment 3 0.001 3.62 0.0139 
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Table 5: ANCOVA for Week 14 Tail Morphology (R2 = 93%) 

Source DF Sum of Squares F Ratio Prob > F 
Treatment 3 0.023 0.69 0.56 
Block 2 0.104 4.68 0.011 
Clutch 5 0.16 2.91 0.016 
Total Length 1 16.61 1492 <.0001 
     
     
     
     

Table 6: ANCOVA for Predation Trial Data (R2 = 41%) 
Source DF Sum of Squares F Ratio Prob > F 
Treatment 3 49893.61 3.24 0.03 
Clutch 5 37466.22 1.46 0.22 
Developmental 
Stage 

1 59610.18 11.6 0.0013 

Total Length 1 16372.7 3.19 0.081 
Predator ID  3 35897.5 2.33 0.086 
     
     
     
     
     

Table 7: ANCOVA for Metamorphic Stage (R2 = 8%) 
Source DF Sum of Squares F Ratio Prob > F 
Treatment 3 9.93 1.41 0.24 
Block 1 5.36 2.28 0.13 
Clutch 5 6.27 0.53 0.75 
Total Length 1 12.12 5.15 0.02 
     
     
     
     

Table 8: ANOVA for Total Length at Metamorphosis (R2 = 10%) 
Source DF Sum of Squares F Ratio Prob > F 
Treatment 3 1.71 1.95 0.13 
Block 1 0.71 2.44 0.12 
Clutch 5 1.46 1.003 0.42 

 



A

B

Figure 1. Experimental animals were kept in (A) 48 38-liter tanks with four combinations of egg 
and larval predators.  Treatment groups were egg predator only, larval predator only, both preda-
tors, and no predators.  Egg predators were kept on the same side as the experimental animals and 
larval predators were separated from experimental animals by a screen. Once all the animals were 
hatched they were put into (B) lethal predation trials.  Five animals were randomly sampled from 
each tank for each predation trial.  The animals were put into the 51 cm diameter predation tank 
and allowed to acclimate for one minute.  A fish predator (Lepomis sp.) was put into the tank and 
allowed ten minutes in which to eat the salamanders.  Trials were filmed from above.  Trial length, 
time to predation events, escape rate, and movement rate were calculated from the video record-
ings.  (Drawings by T. Landberg)
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Gills Color Tail fin

complete completeuniformly dark

reduced reducedmottled

lacking filaments indistinct spots none

none distinct spots

0 0 0

1 1 1

2 2 2

3 3

Metamorphic staging table

Figure 2.  At the end of the experiment the metamorphic stage (0-8) was determined by the sum 
of three traits for each animal according to the staging table we created.  During metamorphosis 
gills go from complete (0), to reduced (1), then lose filaments leaving a bare rachis (2) and are 
finally totally resorbed (3).  The animals go from a uniformly dark larval color (0), to dark with 
yellow mottling (1), to indistinct spots with ragged edges (2), to distinct spots (3).  The tail fin 
goes from extending up to the back of the head (0), to reduced (1), to completely resorbed 
leaving the animal with the muscular adult tail (2).
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Figure 3. Hatching percentage as a function of treatment. Individual points on the graphs are the 
treatment means of tank proportions on a given day. The animals in the egg predator and egg & 
larval predator treatment groups hatched significantly earlier than the animals in the control and 
larval predator only treatment groups (Tukey test).
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Figure 4. Developmental stage at hatching as a function of treatment.  Animals in the egg and 
egg/larval  predator treatment groups hatched at earlier developmental stages than the 
animals in the control and larval predator treatment groups (Tukey test).
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Figure 5. Relative tail area in week 4 (A) and week 14 (B) as a function of predator treatment. 
During week 4 animals in the larval predator treatment group had significantly larger tail areas 
than the animals in the egg treatment group; control and egg/larval treatment groups were inter-
mediate (Tukey test).  Different letters represent treatments that are statistically different from 
each other.  During week 14 treatment effects were not significant (p=0.56).
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44 45 46 47 48

developmental stage

Figure 6. Survival time in lethal predation trials by developmental stage. Animals at later develop-
mental stages survived for shorter times in predation trials (ANCOVA; p=0.0013).  The overall 
ANCOVA model for survival time was statistically significant (p=0.009) and explained 41% of the 
variation.  Some values are negative because the durations (s) were adjusted for treatment, total 
length, and fish predator ID to allow for comparison of the trials.
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Figure 7. Survival time by treatment.  Previous exposure to predators had a statistically signifi-
cant effect on survival time (p=0.030).  The animals in the larval predator treatment group had 
significantly longer survival time than the animals in the egg predator treatment group.  The 
animals from the egg/larval and control treatment groups were intermediate.  (Different letters 
represent treatments that are statistically different than each other.)  The predation trial dura-
tion (s) were adjusted for developmental stage, total length, clutch and fish predator ID.
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Figure 8. Metamorphic stage (A) and total length (B) in weeks 18 (block 1) and 19 (block 2) respec-
tively.  Neither developmental stage nor total length was affected by the predator treatment 
(ANCOVA p>0.05).  There was a positive effect of total length on development but no treatment * 
total length interaction.
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