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Stirling’s Approximation

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060
(Dated: May 3, 2007)

I. SYNOPSIS

Stirling’s approximation to the factorial, which is used
in the Lagrange multiplier derivation of the Boltzmann
distribution, is explained here.

II. INTRODUCTION

¢n (N!) is the starting point for this derivation, rather
than N factorial (N!) itself.

InN!={nN +In(N —1)+n(N —2)---

can be re-written as

j=N—-1

nN! = Z In(N — j)
§=0

We can picture this sum as the sum of the lengths of all
the vertical lines shown in Figure [I]
We now write this backwards:

j=N
nN! = Z n(j)
j=1

which covers the same territory. This can be seen in
Figure
Next, we convert this sum to an area by constucting
horizontal bridges (as shown, see Figure [3)) where the
width of each rectangle is going to turn out to be one (1)!
This means that the height and the area are synonymous!
We then have (see Figure [3)):

j=N
InN! = Z ()]G +1) = 7]

as an area, and we rewrite this as
N '
nN! = [sum?zl fn(j)} Aj

preparatory to making the histogram to continuous func-
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In(N—j)

FIG. 1: The logarithmic factorial sum, shown explicitly.

tional area transformation taught in first year calculus.
We then have

=N
nN! :/ n(j)oy
j

=1
which is trivially integrable to give
Nt = (jenj — )=y
which evaluates to
InN!= NinN — N — (lénl — 1)
which is, in the limit N much larger than 1

InN!= NinN — N
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FIG. 2: The logarithmic factorial sum, reversed.
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FIG. 3: The logarithmic factorial sum, converted to a his-
togram.
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