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Abstract
This study seeks to advance and test the knowledge-based theory of the firm

as it applies to explaining the governance structure of R&D alliances. Unlike
transaction-cost economics, the knowledge-based theory attempts to explain or-
ganizational form not primarily in terms of incentive misalignment but in terms of
the creation, acquisition, and coordination of productive capabilities. To study the
role played by firm-specific technological competencies, I consider three techno-
logical characteristics of an alliance technological similarity, technological relat-
edness, and technological diversity. With a sample of 111 biotech-biotech R&D
alliances, I find that technological relatedness and diversity increase the proba-
bility that allying firms would select the higher integration mode. Technological
similarity, though, bears a non-monotonic relationship with organizational choice.
Overall, the results support the knowledge-based argument that the idiosyncrasy
in technological traits influences which type of alliance forms would be selected
by allying firms.
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1. Introduction 

Since the 1970s, R&D alliances have become an important way through which 

firms acquire, develop and create new technologies.  Many literatures discuss why 

alliances appear so frequently and what their effects are (Shan et al. 1994; Chan et al. 

1997; Powell et al. 1996; Zucker et al. 1998; Niosi 2003).  Less has been asked about 

what influences the firm’s choice of alliance forms.  Alliances take on numerous forms, 

ranging from licensing contracts to collaborations to joint ventures to mergers and 

acquisitions.  A discussion on the determinants of the choice among alliances forms 

would deepen the understanding of the boundary of the firm.  Specifically, the 

proliferation of lateral relationship in high-technology industries, such as 

pharmaceuticals, biotechnology, and semiconductors, provides a unique opportunity to 

examine the arguments in the knowledge-based theory of the firm. 

This study seeks to advance and test the knowledge-based theory of the firm as it 

applies to explaining the governance structure of R&D alliances.  In particular, it 

investigates organizational choices by US public biotechnology firms among three types 

of alliances: R&D agreements, R&D collaborations and minority equity R&D alliances1.  

It employs three measures to describe the technological characteristics of an alliance: 

technological similarity, technological relatedness, and technological diversity.  The 

results suggest that the idiosyncrasy in technological traits influence what type of alliance 

forms would be selected by allying firms. 

                                                 
1  As defined by ReCap: in a research agreement, a sponsoring party engages another party to perform 
R&D services in the discovery and/or lead stages of an R&D project; in a development agreement a 
sponsoring party engages another party to perform R&D services beyond the stage of lead generation; in a 
collaboration agreement, two or more parties perform research and/or development activities in a single 
R&D program.; an equity agreement describes the issuance of a minority share (<50%) of legal ownership 
interest in an entity.  I define minority equity R&D alliance as research agreements, development 
agreements or collaborations that involve an equity agreement.   
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On the question of how technological similarity affects the firm’s ability to integrate 

knowledge, two lines of thought in the knowledge-based perspective predict two distinct 

relations.  The study argues that the difference arises only because researchers analyze 

two different aspects of the firm’s knowledge-related activities: managing and learning.  

The results provide supportive evidences for both streams of thought.  Allying firms with 

more divergent technologies are more likely to select a more highly integrated alliance 

form.  At higher levels of technological similarity, however, the relationship between 

technological similarity and organizational choice reverse the direction: a higher degree 

of technological similarity leads to a higher integration mode in alliances.  It suggests 

dynamic changes in the gains and costs in learning and managing.  The gains for learning 

within the boundary of the firm exceed the managing costs when technologies are highly 

dissimilar, suggesting the firm would integrate divergent technologies.  The gains 

diminish as similarity in technologies increase.  When technologies are highly similar, 

managing costs, which are lower for more homogenous technological portfolio, became a 

greater influence on the firm’s decision on the organizational choice. 

In measuring technological relatedness, it adopts the survivor measure originally 

designed by Teece et al. (1994).  The results show that closely complementary 

technological capabilities increase the probability that allying firms would select the 

higher integration mode, that is, minority equity R&D alliances over R&D collaborations, 

or R&D collaborations over R&D agreements, although the length of establishment may 

reduce this influence. 

Firms also differ with respects to technological diversity.  Diversity of current 

technological stock influences firms’ future technology-related decisions.  For a given 
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level of technological similarity, a technological generalist may be more willing and able 

to bring technologies in-house than a technological specialist.  The empirical test shows 

that the technological diversity of the client firm2 is positively related to the probability 

of selecting a high integration mode, with technological similarity controlled. 

In the paragraphs follow, I first review the literature on the knowledge-based theory 

of the firm and its application to the organizational choice of R&D alliances.  Then I 

develop the theory on the basis of the knowledge-based theory and present the 

hypotheses to be tested on how technological characteristics influence organizational 

choices.  Description of the U.S. biotechnology industry, the sample used, measures and 

statistical models follows.  I present the empirical results by comparing three models:  

“transaction costs perspective”, “traditional knowledge-based approach”, and “complete 

knowledge-based approach”, respectively.  A discussion on the findings concludes. 

 

2. The knowledge-based theory of the firm, technological capabilities and R&D 

alliances 

The idea of looking at firms in terms of their resource endowments goes back to 

the seminal work of Penrose (1959), who defines a firm as “a pool of resources the 

utilization of which is organized in an administrative framework.”  Wernerfelt (1984) 

includes machine capacity, customer loyalty, production experience, and technological 

leads as examples for attractive resources of firms.  Many researches following Penrose’s 

definition focus on technological knowledge endowed in the firm.  The endowment of 

knowledge, also called capabilities or competence by various writers, is different among 

                                                 
2 As defined in ReCap: an R&D firm is “the party in the alliance associated with the technology’s research 
and development.”  An client firm is “the party in the alliance that is gaining access to a technology 
developed by the R&D partner.” 
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firms and consequently influences the firm’s behavior and performance.  Part of this 

resource is “knowing that”, but much of it is “knowing how”, which is not reducible to 

mere information to be passed on but consists also of experience and skills.  A resource-

based perspective of the firm thus entails a knowledge-based theory of the firm. 

In the knowledge-based theory, firms are viewed as bundles of technological 

capabilities.  This theory brings a new perspective in answering “why does the firm 

exist?”  Since Coase (1937), researchers have believed that a firm exists as an “incentive 

coordination” mechanism solving the problem of how the members of a firm can be 

rewarded and induced to work efficiently (Alchian and Demsetz 1972).  Unlike previous 

theories of the firm, the knowledge-based theory always looks to “qualitative 

coordination”3 as the mechanism that aligns the creation, acquisition, and coordination of 

technological knowledge of the various players (Langlois 1997). 

From inter-firm R&D alliances, firms can get access to new technologies, realize 

economies of scale and scope in their R&D activities, and shorten development time.  

These benefits may spread out beyond the life of the alliance, as firms learn skills and 

gain competencies form their partners.  Yet, to benefit from R&D alliances, firms must 

create an organizational structure that supports the efficient recognition, assimilation, and 

application of knowledge-based assets. 

Coase’s 1937 paper on “The Nature of the Firm” suggests that organizational choice 

is decided by a cost comparison between the market and the firm.  In the ensuing 

                                                 
3 “The firm is an institution that lowers the costs of qualitative coordination in a world of uncertainty, 
where by coordination I mean the process of aligning the knowledge and expectations of the parties who 
need to cooperate in production, and by qualitative coordination I mean coordination involving the 
transmission of information beyond price and quantity.” (Langlois 1997, p. 6) 
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literatures, different understandings of the sources of costs led to different explanations of 

why firms exist. 

In transaction-cost economics, opportunism has long been in the main concern.  And 

hierarchy is the weapon of choice against transaction costs brought on by opportunistic 

behavior.  Pisano (1990, 1991) studies the make-or-buy decision of R&D alliances in 

biotechnology industry using this approach.   I argue that transaction costs economics’ 

emphasis on incentive alignment and its unwillingness to analyze knowledge 

coordination makes it inappropriate for the question of R&D alliances, whose main 

objective is to acquire and create new technologies.  Moreover, it is hard to relate the 

characteristics of knowledge assets with the probability of opportunistic behavior.  Some 

argue that the probability of opportunistic behavior is low when knowledge is highly 

similar because there is no new knowledge for leakage (Sampson 2004).  This is not 

necessarily true. 

Unlike transaction costs economics, the knowledge-based theory of the firm 

attempts to explain organizational form not primarily in terms of opportunism or 

incentive misalignment but in terms of the creation, acquisition, and coordination of 

productive knowledge or capabilities.  It assumes that opportunism is unrelated to the 

characteristics of the technological assets. 

Two papers in the current literature apply the knowledge-based theory to explaining 

the organization form of alliances.  Sampson (2004) uses a sample of 237 alliances 

during 1991-1993 in the telecommunication equipment industry to test hypotheses 

derived from transaction-cost economics and knowledge-based theory.  Her result is in 

favor of transaction-cost economics.  Colombo (2003) studies alliances among the world 

 - 5 -



largest IT companies. His results show that both theories can explain part of the 

organizational arrangement.  When discussing the knowledge-based theory, these two 

studies restrict their attention in investigating only how learning influences organizational 

choice and similarity is the only technological characteristic included in their model. 

In the model, I suggest that technological similarity has different effects in the two 

technology-related activities within an alliance: managing and learning (Penrose 1959; 

Richardson 1972; Loasby 1998; Conner and Phrahalad 1996).  The previous literature 

suggests that other technological characteristics apart from similarity also influence the 

firm’s behavior.  I consider technological relatedness (Hagedoorn and Duysters 2002) 

and technological diversity (Stuart 1995) in the model. 

 

3. Technological characteristics and organizational choice: theory and hypotheses 

Unanimously, the knowledge-based theory views the firm as a bundle of 

technological capabilities and sees the firm as qualitative coordination mechanism that 

aligns the creation, acquisition, and coordination of knowledge of the partners.  On the 

question of firms’ ability to integrate knowledge, however, this theory would seem to be 

of two minds.  One strand of thought holds that firms are limited in integrating and using 

knowledge very different from what they already possess; the other strand suggests that 

firms have advantages over markets precisely when knowledge is most different from the 

existing base. 

The first line of thought, arguing that the firm is better at integrating similar 

knowledge than dissimilar knowledge, goes back to Penrose (1959)’s The Theory of the 

Growth of the Firm, where she provided us with excellent accounts of how firms grow in 
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directions set by their capabilities and how these capabilities themselves slowly expand 

and alter.  Richardson, in his 1972 paper “The Organization of Industry”, expands this 

idea and points out that the firm would find it expedient to concentrate on activities 

requiring similar capabilities.  Coordination of dissimilar knowledge has to be brought 

about either through inter-firm ex ante cooperation, or through the process of adjustment 

by the market mechanism.  Loasby (1998)’s “The Organization of Capabilities” is of 

special importance as it explicitly distinguishes indirect capabilities from direct 

capabilities.  Direct capabilities involve knowing how to do certain things by the firm 

itself, whereas indirect capabilities involve knowing how to get things done for the firm 

by others.  Penrose, Richardson, and Loasby’s discussion focuses on indirect capabilities.  

Indirect capabilities are of two kinds: the firm may be able to get things done for itself 

either by gaining controls of others’ capabilities through hierarchies or by obtaining 

access to them across markets.  A cost comparison between control and access decides 

the choice between firms and markets.  Loasby (1998, p. 152) believes that “it is not even 

sensible to extend a firm into areas of activity that require capabilities which are 

significantly different from those already developed.” 

Conner and Prahalad develop the other view in their 1996 paper, “A Resource-based 

Theory of the Firm: Knowledge Versus Opportunism.”  Its theme is that the 

organizational mode through which individual firms cooperate affects the knowledge 

they apply to business activities.  They argue that a firm is superior to a market in 

learning dissimilar knowledge.  Thus, when the firm needs to learn dissimilar knowledge, 

it should do so through integration. 
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Both lines of thought view the firm as a bundle of capabilities or technological 

knowledge.  Also, both aim at developing an empirically relevant and complementary 

theory based on irreducible knowledge differences between individual firms rather than 

on the threat of purposeful cheating or withholding of information.   It is the great 

similarity between them that makes their contradictory conclusions even more 

interesting. 

The difference arises only because these writers analyze two different aspects of the 

firm’s knowledge related activities: managing and learning.  Penrose, Richardson and 

Loasby elucidate how the firm gets things done for itself by either gaining control of or 

obtaining access to other’s knowledge.  They believe that firms have a higher managerial 

cost when technologies are dissimilar.  Conner and Prahalad, however, emphasize that 

the firm passes its capabilities onto others by either directing others within the boundary 

of the firm or having its own capabilities internalized by others in the market.  They 

believe that firms are more efficient in learning dissimilar knowledge than markets.  The 

former group of researchers compares those two kinds of indirect capabilities to choose 

between control and access, while the latter studies whether gains in direct capabilities, 

that is, do-it-by-yourself abilities, can better be obtained within an organization like the 

firm or through the market. 

Inter-firm cooperation is concerned very often with the transfer, exchange and 

pooling of knowledge between cooperating firms.  Thus, managing the other’s 

knowledge and passing on one’s own knowledge (or learning the other’s knowledge) are 

two different activities dwelling in the same process.  In order to see the whole picture, a 

valid conceptual framework needs to consider them simultaneously. 

 - 8 -



3.1. Managing technology  

Penrose (1959) points out that hierarchical administration is itself a capability 

with limits, which implies that including too diversified knowledge within the boundary 

of the firm would result in diseconomies of scale in the management resources of the 

firm, something originally alluded to by Coase (1937, p. 394) under “decreasing returns 

to the entrepreneur function.”  In Richardson’s (1972) opinion, organizations would tend 

to specialize in activities where their capabilities offer some comparative advantage.  He 

believes that these activities will generally be similar in the sense of requiring similar 

knowledge.  Thus, managing technology suggests: 

Hypothesis 1a: With all else equal, in technological alliances greater similarity in 

allying firms’ technological portfolios will result in a higher propensity for high 

integration modes. 

This line of thought also suggests that technological relatedness influences the 

decision on the choice between firms and markets.  Loasby (1998) believes that control 

has substantial advantages but it is likely to be more costly than access.  Firms can access 

more than they can control. Therefore, they should limit their attempts at control to those 

capabilities which are both “crucial and manageable” Loasby (1998, p. 149).  By “crucial 

and manageable” capabilities, he means a range of related skills.  He believes knowledge 

development must be guided in a compatible direction and in appropriate ways. 

It is therefore clearly not sensible to attempt to manage an economy as 
one enormous firm; it is not even sensible to extend a firm into areas of 
activity that require capabilities which are significantly different from 
those already developed, and so it is not surprising that firms so often 
develop a product portfolio which depends on a range of related skills. 
(Loasby 1998, p. 152) 
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Another reason that firms would retain closely related technologies within its 

boundary is related to the dynamic transaction costs in the market.  Langlois (1992, p. 99) 

defines dynamic transaction costs as “the costs of persuading, negotiating, coordinating, 

and teaching outside suppliers” or as “the costs of not having the capabilities you need 

when you need them.”  Such costs increase with technological relatedness between firms, 

because closely related or closely complementary technologies are usually necessary for 

firms’ production and development.  The more related the technologies are, the higher the 

probability that the firm will need it frequently; thus it would be more costly to leave the 

access to the technologies in the market. 

In a word, the firm should retain within its boundary only a set of “related” 

technologies requiring more or less the same kind of knowledge in order to minimize 

managerial costs and dynamic transaction costs. 

Hypothesis 2: With all else equal, in technological alliances the greater 

relatedness in allying firms’ technological specialization will result in a higher propensity 

for high integration modes. 

3.2. Learning technology 

Learning technology suggests a different relationship between technological 

similarity and organizational choice from that suggested by the analysis of managing 

costs.  On the one hand, since the firm is familiar with the knowledge that is similar to its 

own base, if it wants to acquire more knowledge in this line, market contracting is 

relatively cheaper, because there is less asymmetric information about knowledge 

compared with the situation in which the firm has to learn highly different knowledge.  

Meanwhile, it is usually costly to compromise between two firms’ managerial styles even 
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when they manage identical knowledge bases.  On the other hand, as Conner and 

Phrahalad (1996) assert, the firm is relatively more efficient than the market in learning 

highly different knowledge, even after considering management frictions. 

Conner and Prahalad (1996) argue that the organizational mode through which 

individuals cooperate affects the knowledge they apply to business activity.  The 

difference in the knowledge that is brought to bear under the two organizational modes 

would impact the choice of mode itself.  They mainly consider two effects that 

organizational modes have on knowledge transfer: “knowledge substitution effect” and 

“flexibility effect.” 

The knowledge substitution effect is about how the parties’ starting knowledge 

endowments are blended and used.  The ability of a firm to learn the partner firm’s 

knowledge in the market varies with the degree of difference in their knowledge bases.  

The more similar the target knowledge is to the firm’s own knowledge base, the easier it 

is to acquire the partner’s knowledge.  Alternatively, the more dissimilar the target 

knowledge is, the more difficult (i.e. the higher the cost) for the firm to master it through 

the market. 

Conner and Phrahalad (1996) emphasize that different economic organizations 

facilitate knowledge transfer differently because of different ways in economizing on 

bounded rationality.  Market contracts solve bounded rationality by specialization only, 

while firms economize on cognitive limitations through both specialization and 

knowledge-substitution or what Langlois (1997, p. 6) calls “qualitative coordination.”  In 

their argument, a firm has to understand and accept the other firm’s knowledge before it 

takes any action in accordance with the other’s knowledge in the market.  However, 
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within the boundary of a firm, employees can be directed on the basis of the employer’s 

knowledge without internalizing it first. 

The initial knowledge status of cooperating parties affects the benefits brought by 

knowledge substitution in different organization modes.  Conner and Prahalad (1996) 

suggest that expected difficulties in knowledge absorption cause cooperating parties to 

favor a firm, because the organizational integration would allow one firm’s knowledge 

dominate the other’s.  It implies that the greater is the initial difference in the knowledge 

between two organizations, the more likely is a firm to be used in the cooperation. 

Conner and Prahalad (1996) define flexibility as the ability of the organization to 

apply and develop knowledge.  I agree with them that different economic organizations 

have different flexibility.  However, I give different explanations for the difference.  In 

Conner and Prahalad’s view, flexibility is mainly a problem of market uncertainty.  If 

market conditions are expected to be highly uncertain, they conclude, a market contract 

has higher costs in flexibility since many follow-up renegotiations will be necessary 

because of changes in the future.  The costs are low within the firm because it is easier to 

change directions in the firm in response to both internal and external changes. 

Their conclusion depends on the assumption that it is desirable for cooperation 

between the two firms to continue.  However, this may not be true all the time.  In fact, as 

market conditions changes, cooperation between the two firms may turn out to be 

infeasible, and it becomes better for both parties to terminate the cooperation or to change 

partners.  In this case, a market contract is more flexible because its cost to change the 

cooperative relationship is low.  The firm, in contrast, has higher costs to terminate 
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cooperation.  I consider it inappropriate to assert that the firm is more flexible in an 

uncertain world based only on considering the problem of renegotiation. 

Loasby (Foss 1997, p. 12) draws the analogy of an economic organization as a 

reservoir, that is, a pool of resources (capabilities).  Different capabilities have different 

present and future values to the organization: some are currently useful while some are 

idle but may be useful in the future.  Firms require both because nobody can predict 

exactly what is going to happen in the future.  The analogy tells us that the firm can store 

knowledge whose potential uses they do not immediately know.  It is common to obtain 

and reserve some idle technologies in the evolutionary process of the firm (such as side 

products from research and development activities) which are of “no use” at present.  If 

the same research and development is carried out in the market, those technologies may 

be ignored and lost because there are immediate costs to incorporate or store the 

knowledge but no immediate benefits in sight.  Basically, it is a “no rider” problem.  

However, the “idle” knowledge may be important for future development and 

competition.  The costs are much lower for the firm to reserve “idle” technologies after 

they have already come in existence.  In this sense, the firm is more flexible than the 

market in incorporating the unexpected technology output from R&D activities.  Also, 

the firm as a reservoir is better at maintaining continuity in knowledge application and 

development. 

Uncertainty is an inherent characteristic of R&D activities.  The similarity 

between the knowledge bases of two cooperating R&D partners is an important factor 

that affects the degree of uncertainty.  The less similarity between the two partners there 
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is at the beginning, the more difficult it is for them to predict the process of cooperating 

in R&D, and the higher will be the uncertainty in R&D results.   

Therefore, a firm is superior to a market in learning dissimilar knowledge because 

of substitution and flexibility effects.  The market organization is better for learning when 

the partners have similar knowledge, since the costs for writing and carrying out the 

contract are relatively low.  In this case, integration generates little knowledge gain, while 

incurring significant set-up cost.  By contrast, when the target knowledge is quite 

different, it is difficult to learn through contracting because of both unfamiliarity and 

uncertainty.  Thus, it is better to integrate with the organization owning that knowledge 

when the firm learns some knowledge quite dissimilar to what it already knows.  

Considering knowledge substitution and flexibility, learning technology suggests: 

Hypothesis 1b: With all else equal, in technological alliances greater divergence 

in allying firms’ technological specialization will result in a higher propensity for high 

integration modes. 

This argument is consistent with Cohen and Levinthal (1990)’s discussion of 

“absorptive capacity.”  They suggest that the ability to evaluate and utilize outside 

knowledge is largely a function of the richness of the preexisting knowledge structure of 

the firm.  They point out that “learning is cumulative, and learning performance is 

greatest when the object of learning is related to what is already known.” (Cohen and 

Levinthal 1990, p. 131)  It also implies, when knowledge is dissimilar, integration is 

preferred in order to compensate for the lack of absorptive capacity in the market. 
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3.3. Technological diversity 

Technological diversity has an effect on both learning and managing technology.  

In terms of learning, technology diversity influences gains through knowledge 

substitution and flexibility.  Research in the area of cognitive and behavioral sciences 

suggests that diversity enhances a firm’ learning and innovation abilities in two ways: 

experiences in learning dissimilar knowledge and novel associations with and linkage to 

existing knowledge (Cohen and Levinthal 1990).  Thus, a more diversified firm 

accumulates more experiences in learning.  In terms of managing technology, managing 

costs are different for a technological generalist and a technological specialist in 

integrating same knowledge.  I argue that generalists have lower costs in learning and 

managing dissimilar technologies because of accumulated experiences. 

Hypothesis 3: With all else equal, in technological alliances the greater diversity 

in allying firms’ technological portfolios will result in a higher propensity for high 

integration modes, technological similarity constant. 

 

4. The U.S. biotechnology industry 

According to the Department of Commerce (DOC) 2003 survey, biotechnology is 

defined as the application of molecular and cellular processes to solve problems, conduct 

research, and create goods and services.  Biotechnology emerged as an industry in the 

late 1970s and it has been in rapid development since then, especially from the mid-

1980s.  R&D activities are the most prominent driver of the growth.  The R&D intensity 

of biotech business lines was 33.4% in 2001, compared with 9.5% for the firms’ entire 

businesses and 4.3% for total U.S. corporate R&D spending.  Furthermore, the firms’ 
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near-term business strategies are still focused primarily on R&D activities.  In the 2003 

survey, 53% of the respondents say their business strategy is to develop technologies that 

can be licensed to others and 47% are seeking opportunity to acquire technologies from 

other companies through licensing arrangements.  Active research and development 

makes biotechnology a good candidate to study and test the knowledge-based theory of 

the firm. 

There are seven areas for biotechnology application according to the Department 

of Commerce4 .  Some researchers (e.g. Powell et al. 1996) concentrate on human health 

service because of different incentives and regulations between human health activities 

and agriculture or environmental remediation.  Many researchers (e.g. Barley et al. 1992) 

treat the wide array of biotechnology companies as comparable.  I follow this approach 

and include R&D alliances between all for-profit public biotechnology firms established 

after 1976 in the sample. 

In the current U.S. statistical system, biotechnology is not an independent 

industry.  It is not feasible to choose firms according to SIC or NAICS categories.  For 

the alliance data, I simply rely on ReCap data’s categorization of firms (See below).  For 

the biotechnology industry sample in calculating technological relatedness matrix, I rely 

on the collection of public companies listed on NYSE and NASDAQ (See below). 

 

5. Data and method 

To study the relationship between technological characteristics and organizational 

choice, I use alliance and firm data in the biotechnology industry and U.S. patent data for 

                                                 
4 The seven areas include (DOC 2003, p. 10) human health, animal health, agriculture and aquacultural / 
marine, marine & terrestrial microbial, industrial & agricultural-derived processing, environmental 
remediation & natural resource recovery and others.   
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the knowledge base of the firms.  The main source of alliance data is from ReCap, which 

contains high-level summaries of more than 13,500 alliances in the life sciences which 

have been formed since 1973.  I employ publicly listed NYSE and NASDAQ 

biotechnology and pharmaceutical firms in the calculation of the survivor measure of 

technological relatedness. 

5.1. Alliances data 

I study biotech-biotech alliances during 1998-2000 in the U.S.  There are three 

restrictions on biotech firms in the sample: (1) Only U.S. firms are included.  This is 

because I use U.S. patents to build the firm’s knowledge base.  Including only U.S. firms 

avoids the bias brought by the patent application intention.  Also, R&D alliances 

involving foreign companies may have different incentives from those domestic alliances 

(Sampson 2004).  (2) Only firms incorporated after 1976 are included.  By this time 

constraint, I concentrate on newly established biotechnology firms.  America’s first firm 

to exploit rDNA, Genentech, was established in 1976.  Old firms, such as big 

pharmaceutical firms, are also doing research and development in biotechnology.  

However, both their knowledge bases and their characteristics are quite different from 

those of new biotechnology firms.  (3) Only public firms are included.  This constraint 

arises from data availability.  I need to build a profile for each firm in the sample, such as 

incorporation year, the number of employees, the family tree, and R&D expenses.  Such 

information is difficult to obtain for private firms.   

I collect a sample of 111 alliances during 1998-2000 between U.S. public biotech 

firms established in or after 1976.  Among various alliances forms, I study the following 
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three types:  R&D agreements, R&D collaborations and minority equity R&D alliances.  

Table 1 shows a summary of the sample. 

[Table 1 here] 

I create profiles for each firm and identify their family trees by the following 

sources: (1) Mergent Industrial Manual, Mergent OTC Industrial Manual and Mergent 

OTC Unlisted Manual (2001-1999); (2) LexisNexis/company profile and SEC filing 

(online database at University of Connecticut Libraries); (3) ReCap data base (June 2004-

June 2005). 

5.2. Patents as an indicator for technological capabilities 

Different indicators have been applied in studying technological activities of 

firms.  The ideal way would be to obtain the firm’s R&D expenditure and split it into 

different technological sectors.  However, R&D information is rarely available at the firm 

level, not to mention at the activity level.  Some researchers use survey data, which is 

hard to generalize.  These weaknesses of R&D and survey data explain the relative 

success of patents as an indicator of firms’ innovation activities.  The United States 

Patent and Trademark Office (USPTO) keeps records of patents it assigned since 1790.  

More important, USPTO provides consistent technology classification for each patent it 

assigned.  The completeness, continuousness, and consistency of the patent data provide 

us a good indicator for the firm’s technology capabilities. 

I use Delphion to collect patent data, including the patent number, the granted 

date, the filed date and the current U.S. classification for each patent.  There are two 

classifications for US patents: US classification and International Patent Classification.  I 

use US classification in the study because it emphasizes the technological aspect of 
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patents.  The patent portfolio of a firm includes all patents assigned to itself and to all its 

subsidiaries in a sample year. 

There are some potential problems in using patents, though.  Technologies from 

different disciplines may be closely integrated.  And arbitrariness cannot be avoided in 

the division between certain patent classes (Cantwell 2004).  Even without the problems 

with patents classifications, it is necessary to recognize that patents have limited use 

outside high-tech industries.  Moreover, the codified knowledge embodies in patents 

usually cannot be readily translated into production and commercialization. 

Cantwell (2004) have tried to alleviate the difficulties in directly using the patent 

classification system by devising a classification scheme that groups together patent 

classes that are the most technological related.  Each patent in the data has been classified 

according to this scheme.  Some technology sectors do not appear.  Also, because I study 

only the biotechnology industry, I further divide Sector 12 (Pharmaceutical and 

Biotechnology) into four subclasses5.  After these adjustments, patents are classified into 

16 technological sectors. 

5.3. A survivor measure for technology relatedness in the biotechnology industry: 

sample and methodology 

To collect a sample for the biotechnology industry, I have checked carefully 

several databases for biotech companies, including BioScan, ReCap, Bio member 

directory, and Mergent (Mergent Industry Review and Mergent Industry Code).  The 

collections of biotech firms are quite different in each database.  The main reason for 

inconsistency is that there has not yet been a unified definition of “biotechnology 

                                                 
5 Class 12 Biotechnology is divided into 4 subclasses: 424 and 514: Class 121; 435: Class 122; 436: Class 
123; 800: Class 124. 
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industry” and also because of the close relationship between the new biotechnology and 

the old pharmaceutical companies.  In the current U.S. statistical system, biotechnology is 

not an independent industry.  Since I lack the expertise and detailed information that are 

needed to decide if a company majors in biotech or not, I depend on a database that has 

put serious efforts in clearly and consistently defining the biotechnology industry, namely 

the data from NASDAQ and NYSE listed company profiles. 

The NASDAQ Biotechnology Index contains companies that are classified 

according to the FTSE™ Global Classification System as either biotechnology or 

pharmaceutical.  These companies must also meet other eligibility criteria.6  NYSE 

applies the Dow Jones Industry Classification System to identifying biotechnology 

companies.  I combine the listed firms in these two stock markets to construct the sample 

for the biotech industry.  Considering the close relationship between biotech and 

pharmaceutical companies, I also include pharmaceutical companies listed in NYSE. 

The sample includes all the companies that appeared in NASDAQ Biotechnology 

100 Index during 2000-2004 (which is available) and companies listed in the NYSE in 

2004.  The initial sample includes 230 public biotechnology and pharmaceutical 

companies (including foreign companies).  I exclude companies that have none patent 

and companies that only have patents in a single technology sector.  The sample used for 

relatedness matrix includes 186 companies.  According to Ernst & Young’s 2004 

biotechnology industry report, there are 1,473 biotechnology companies in the United 

States, of which 314 are publicly held.  It is reasonable to believe that the sample is well 

defined and representative for the U.S. biotech industry. 

                                                 
6 For details, see NASDAQ website: <http://dynamic.nasdaq.com/dynamic/nasdaqbiotech_activity.stm> 
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I collect patents for all the 186 companies during 1985-2004.  The patent portfolio 

of a firm includes all patents assigned to itself and to all its subsidiaries.  I use Mergent 

and SEC filings to identify companies’ subsidiary structure.  All patents have also been 

classified according to Cantwell’s scheme.  Some technology sectors do not appear.  

Also, we further divide Sector 12 into four subclasses.  After these adjustments, patents 

are classified into 56 technological sectors7. 

There are essentially two fundamental approaches to measure technological 

relatedness (Cantwell and Noonan 2004).  The first considers relatedness to be an ex ante 

phenomenon and points to the underlying scientific or engineering principles as 

indicating the degree of relatedness between technologies (Breschi et al. 2004).  The 

alternative approach is to view relatedness as an ex post phenomenon.  I adopt the second 

approach and the survivor principle in measuring the relatedness between technologies 

(Teece et al. 1994; Cantwell and Noonan 2004).  The relatedness between any two 

technology sectors andi j ( ) is : ijR

ij

ijij
ij

n
R

σ
μ−

=  

Where: actual number of linkages between technologies i and=ijn j ; 

            =ijμ the expected number of linkages between technologies i and j  under 

the hypergeometric distribution; and 

            =ijσ standard deviation of the number of linkages under the 

hypergeometric distribution. 

                                                 
7 Class 12 Biotechnology is divided into 4 subclasses: 424 and 514: Class 121; 435: Class 122; 436: Class 
123; 800 Class 124.  Among Cantwell’s 56 technology sectors, Class 24, 27, and 55 do not appear. 
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As suggested by Teece et al. (1994), if firms are assigned technologies randomly, 

ijR  should be insignificantly different from 0.  Of the 3,136 possible linkages between 

pairs of technology sectors, 2740 were observed.  An measure of relatedness was ijR

calculated for each of such pair.   is ranged from 13.6015 to -1.6212.  The average ijR

relatedness is 3.64 and the standard deviation is 2.62.  Thus, the randomness assumption 

is rejected, which has already been shown by Teece et al. (1994) and Breschi et al. 

(2004).  I further employ the relatedness matrix obtained here to measure technological 

relatedness between allying firms in the following discussion8. 

 

6. Model  

All hypotheses concern factors that play a role in influecing the likelihood of a 

particular alliance form chosen between two allying firms.  Therefore, I model the 

probability of an alliance form between two allying firms using a cumulative logit 

multinomial model.  I use a categorical variable (ORG) to indicate the organizational 

form of alliances.  ORG equals 0 when the alliance is R&D agreement, 1 when it is R&D 

collaboration, and 2 if organized as minority equity R&D alliance.  Thus, a higher value 

of ORG indicates a higher integration mode. 

6.1. Model specification: unobserved heterogeneity and network autocorrelation 

Before discussing the measurement of the variables included in the models, I note 

the inclusion of a number of control variables designed to account for unobserved 

heterogeneity.  Heckman and Borjas (1980) have demonstrated that unobserved 

heterogeneity across observations is likely to result in “occurrence” dependence.  In other 

                                                 
8 The relatedness matrix obtained here includes 56 technological sectors.  I use only those 16 technological 
sectors that appear in allying firms’ patent portfolios.  
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words, past realizations of a dependent variable are likely to be positively associated with 

the likelihood that a similar event will occur in the future.  To account for unobserved 

heterogeneity in the data, I following Stuart (1995)’s approach.  I include a variable 

(PALLI) that represents the total number of times that two allying firms have allied 

before.  The reason for including this variable is to try to build into the model the 

unobserved tendency for two firms to collaborate.  A number of factors – such as the 

presence of a high degree of trust among the two firms because of prior, successful 

collaboration—could affect the further organizational choice of alliances.  This proclivity 

is likely to be captured by the history of realized partnerships among the two firms in an 

alliance. 

Another type of statistical issue is the network autocorrelation.  As noted by 

Lincoln (1984), the problem with dyadic data is that observations are non-independent: 

within a time period, the same firm may be involved in multiple dyads, perhaps leading 

to a “common” actor effect.  Although there seems to be no widespread agreement on a 

computationally inexpensive method to handle network agreement, Lincoln (1984) 

suggests the inclusion of an additional variable as a “quick and dirty” means to treat 

autocorrelation in the data.  For each alliance, I construct the mean of the dependent 

variable computed across all other alliances in a year that involve either of the current 

two allying firms and normalized by the number of firms in the sample of that year. 

6.2. Independent variables 

(1) Knowledge similarity between allying firms (SIM) 

Revealed technological advantage (RTA) (Cantwell and Piscitello 2000) measures 

the concentration of the firm’s technological specialization in favored sectors.  The RTA 
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for each particular sector of technological activity is defined by the firm’s share in that 

sector of US patents applied9 by firms in the same industry, relative to the firm’s overall 

share of all US patents assigned to firms in the industry in question.  Specifically, 

denoting as the number of US patents applied in sector ijP j  by firm  in a particular 

industry, the RTA index is defined as follows: 

i

∑ ∑ ∑
∑=

j i j ijij

i ijij
ij PP

PP
RTA

/
/

 

Cantwell and Colombo (2000) point out that the reliability of RTA index may be 

harmed by “small numbers” in patents.  Some firms in my sample have a total of only a 

few patents or a few patents in some classes.  Regrouping patents by Cantwell’s 

classification scheme is one of the ways to solve this problem.  Only 16 sectors out of the 

56 are involved in this study of the biotechnology industry10.  Also, I use the adjusted 

RTA suggested by Cantwell and Vertova (2004) to avoid certain computation problem: 

1
1
1

1)( +
+

−
=+

ij

ij
ij RTA

RTA
RTAAdj  

I calculate Pearson’s correlation coefficient between RTA distributions of Firm 

 and Firm  across all the technological sectors.  Colombo (2003) suggests that the 

index  measures the technological overlapping between the two firms.  Thus, for an 

alliance between Firm  and Firm , technological similarity between them equals 

ikr

i k

ikr

i k

ikik rSIM =  

                                                 
9 Different form Cantwell and Piscitello (2000), I establish the firm’s patent portfolio according to the 
patent’s application date, instead of grant date.  For example, for a firm’s patent portfolio in year 2000, I 
include all granted patents that were applied before January 1, 2001.  
10 I include the technological sectors with more than 10 patents in any of three sample years. 
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(2) Interaction between technological diversity and technological similarity 

(SIMDIVC and SIMDIVD):  

I have argued that diversity of initial technologies influences a firm’s learning 

ability and managerial costs.  For a given level of technological similarity, a diversified 

firm may be more capable of learning dissimilar knowledge and at the same time may 

incur lower managerial costs.  To test its effect, I include an interaction term between 

technological diversity and technological similarity. 

I use the inverse of the coefficient of variation of the RTA index, across all 

the relevant sectors for the firm, to measure the firm’s technological diversity.  For Firm 

 in each period considered, the proxy for technological diversity will be the 

reciprocal of  that is: 

,iCV

i iDIV

,iCV

,1

i

i

RTA

RTA

i
i CV

DIV
σ
μ

==  

where 
iRTAσ is the standard deviation and 

iRTAμ is the mean value of the RTA distribution 

for Firm i (Cantwell and Piscitello 2000). 

As the motivation for the client firm and the R&D firm in an alliance may differ, I 

establish separate interaction terms for them: SIMDIVC is the interaction term for the 

client firm and SIMDIVD is the interaction term for the R&D firm. 

(3) Technological relatedness 

The allying firms are aiming at learning from partners.  Thus, the technological 

forte of the partner is what matters the most.  RTA index measures the relative 

technological strength of a firm in a particular technological sector.  A firm with a higher 

RTA in a sector is technologically superior in that sector.  Assume two allying firms,  i
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and j , are active in a total of  technological sectorsn 11.  Technological relatedness is 

then calculated as 
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where Firm  is the firm (either Firm  or Firm m i j ) with a higher RTA in the technology 

sector .   represents the number of patents applied by Firm in technology 

sector .   is the relatedness between technology sector  and b  

obtained from the related matrix calculated by the 2004 biotechnology sample. 

b amPatent , m

a ),( basrelatednes a

6.3. Control variables 

To compare with Sampson (2004) and Colombo (2003)’s discussions on the 

knowledge-based and transaction-cost perspectives, I also include the following control 

variables: 

Breadth of Alliance Activities (BREADTH): “Breadth of Alliance Activities” is 

set to one when an alliance includes activities beyond just collaborative research and 

development.  Sampson (2004) shows that wider alliance activities lead to a higher level 

of integration in the alliance form. 

Prior and Concurrent Alliances (PALLI): This measure is calculated by the 

number of prior and concurrent ties between allying firms in the focal alliance (Sampson 

2004).  She suggests that the more prior and concurrent alliances there are between the 

allying firms, the less is the probability of opportunistic behavior; thus, the less 

                                                 
11 To be considered as being active in a technological sector, the firm needs to have at least 6 patents in that 
sector. 
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integration is needed.  The variable is also included as a control for occurrence 

dependence problem. 

General Firm Reputation (REPU): A firm’s reputation effect is the lowest 

number of prior alliances for all allying firms in the focal alliance.  As in the case of the 

PALLI variable, transaction-cost economics predicts that with a higher reputation, less 

integration is needed. 

I include the following control variables in the model, which are suggested by 

previous literatures. 

The AGE is the years of establishment of the younger firm in the focal alliance.  

R&D Intensity of the alliance (SIZE) is the R&D expenditures to employee ratio.  I use 

this index to measure the relative size of alliances.  Difference in R&D intensity 

(RD_GAP) and difference in technological diversity (DIV_GAP) between allying 

firms have sometimes been used as proxies for the extent of divergence of firms’ 

capabilities.  I include these two variables to control for any difference in capabilities that 

has not been captured by technological similarity (SIM), technological relatedness (REL), 

and technological diversity.  To control for time-specific patterns, I have dummies for 

years 1999 and 2000 (Y99 and Y00) in the model. 

I also include an interaction term between age and technological relatedness 

(RELAGE). Teece et al. (1994) and Breschi et al. (2004) both suggest that firms develop 

in a coherent way.  Firms are constrained in the directions of their technological search, 

which is strongly influenced by firms’ core technologies and products.  I suggest that the 

firm gives critically related technologies a priority in the process of knowledge 

acquisition.  After years of establishment, the firm would have already obtained the most 

 - 27 -



closely related technologies and formed a relatively stable path of technological 

expansion.  Therefore, technological relatedness may have different influences on 

younger firms and older firms. 

 

7. Results: comparison among three models 

Table 2 and Table 3 show the descriptive statistics and the Pearson correlation 

matrix of independent and control variables.  Results of the econometric estimates of the 

multinomial logit models are illustrated in Table 4.  The table shows the estimates of the 

coefficients of the independents variables, their standard errors, and the individual and 

joint significant levels. 

[Table 2 here] 

[Table 3 here] 

[Table 4 here] 

The main objective of this study is to highlight the role played by the firm-

specific technological characteristics in the choice of R&D alliance forms.  I run three 

models to compare the transaction-cost perspective, the “traditional” knowledge-based 

theory, and the “complete” knowledge-based theory.  The findings of the regressions 

clearly support the arguments inspired by the knowledge-based theory of the firm. 

Model 1 is the model tested by Sampson (2004).  I do not include Narrow or 

Broad Alliance Activity because of information availability.  Also, I omit the Multilateral 

Alliance because all the alliances are bilateral.  In Sampson’s model, which is in favor of 

transaction costs economics, both SIM and the squared term of SIM were significant, 

which implies a quadratic relationship between organizational choice and knowledge 
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similarity (technological diversity in her model).  However, in Model 1 here both terms 

are insignificant.  Also, BREADTH is significant and negative, which means the more 

different types of activities the alliances involves, the more likely the allying firms 

choose less integrated organizational mode, which is opposite to the positive and 

significant estimate from Sampson’s model. 

The difference between Model 2 and Model 3 is that Model 2 only considers 

technological similarity, as most studies on the organizational form in the knowledge-

based theory did.  In Model 2, the coefficient of technological similarity (SIM) is 

negative and significant, implying a less integrated mode is preferred for alliances 

between firms with highly similar technologies.  The result is consistent with Hypothesis 

1b about learning technology.  BREADTH is still negative and significant.  SIZE is 

positive and significant.  Recall that SIZE is calculated as R&D intensity of the alliance.  

Thus the higher the intensity of the R&D activity, the more likely the allying firms 

choose the higher integrated organizational mode.  An intensive R&D investment shows 

the critical importance learning and innovation.  With this key business strategy, a firm 

values gaining knowledge and is willing to bear higher costs in managing dissimilar 

knowledge. 

In Model 3, I include technological similarity, relatedness, and diversity measures 

and the interactions terms.  All technology-related variables are significant, except the 

interaction between similarity and R&D firms’ diversity. 

An initial inspection of the results in Table 4 shows general support for the 

hypothesis about technology similarity derived from the learning-knowledge line of 

thought – increasing technological dissimilarity between allying firms increases the 
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probability that allying firms choose a more integrated mode.  As firms become less 

overlapped in their technological expertise with their partners, they are more likely to 

choose a more integrated mode, such as a minority equity R&D alliance instead of a 

simple R&D agreement.  The more dissimilar a firm is from its partner in terms of 

technological specialization, the greater the need and the gains from enhanced knowledge 

substitution and flexibility over the course of the alliance.  In this sense, firms appear to 

choose alliance form mainly in response to considerations over learning technology. 

At a higher level of technological similarity, however, the results suggest a 

slightly different story – the relationship between technological similarity and 

organizational choice reverse in sign.  The coefficient on squared technological similarity 

is positive and significant.  Initially, rising similarity decreases the probability of 

choosing a higher integration mode.  However, beyond a certain level of technological 

similarity, this relationship turns positive.  Technological similarity beyond this minimum 

point actually increases the probability that a more integrated mode is chosen. 

To better illustrate the relationship between technological similarity and 

organization choice, I calculated the expected probability that partners select a minority 

equity R&D alliance and the expected probability that partners select a collaborative 

R&D agreement at all levels of technological similarity.  Follow Sampson (2004)’s 

method, I take the estimates form Table 4 and evaluate these estimates at the median 

values of the independent and the control variables.  I then calculate the expected 

probability over all values of technological similarity in the sample, ranging from 

 to .  These calculations are graphed in Figure 1 and Figure 2. 50657.0− 73335.0

[Figure 1 here] 
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[Figure 2 here] 

The figures show that technological similarity definitively bears a non-monotonic 

relationship with alliances’ organizational choice.  Allying firms more likely select a 

more integrated mode as their technological specialization diverges.  Beyond a relatively 

high level of similarity, though, firms are more likely to choose a high integration mode 

as technological similarity increases.  The fact that this effect inverses as partners’ 

technologies become more overlapped lends empirical support to the line of thought 

emphasizing managerial costs as two firms with similar technologies cooperate 

(Hypothesis 1a).  Firms tend to bring in-house similar technologies which incur lower 

managerial costs to realize economies of scale in managerial ability.  It follows that 

taking advantage of economies of scale and lower managerial costs is the main concern in 

R&D alliances between firms with a certain high level of technological similarity. 

The coefficient of technology relatedness is positive and significant, which 

supports Hypothesis 2.  Superior in closely related technologies leads to a more 

integrated mode in R&D alliances.  Keeping closely complementary technologies within 

a closer access realizes the economies of scope of the fixed level of managerial resources 

and avoids the high dynamic transaction costs caused by leaving complementary 

technology assets in the market.  The interaction term between the years of establishment 

of younger firms and technological relatedness is negative and significant, though.  This 

shows that firms’ technological capabilities grow in a dynamic and path-dependent way.  

Newly established firm needs to acquire and assimilate closely related technologies.  

They are more likely to acquire related technologies by integration in R&D alliances.  

However, the firm’s core competence, which decides both its technology profile and 
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growth direction, would become stable after years of development.  Thus, older and more 

established firms would have already established its unique technological portfolio, 

which contains complementary technologies critical to its survival and growth.  Thus, 

technological relatedness has a weaker influence on organizational choice in the alliances 

between older firms. 

Technological diversity of client firms has a positive and significant interaction 

with similarity.  For a given level of similarity, a technologically diversified client firm 

increases the probability that an alliance is formed as a highly integrated mode.  The 

finding supports that the firm is stable in its technological strategies – a technological 

generalist tends to go on as a generalist.  The effect of R&D firms’ technological 

diversity is not significant.  It may be because that client firms take a more active role in 

learning and managing new technologies in R&D alliances than R&D firms. 

In Model 3, BREATH is still negative and significant.  The positive and 

significant effects of AGE and SIZE suggest that older and R&D intensive firms tend to 

employ more integrated modes in R&D alliances. 

 

8. Discussion and conclusions 

Previous studies have already provided evidence related to the relation between 

firm’s technological capabilities and alliance form.  Relying mainly on arguments in 

transaction-cost approach, Nakamura et al. (1996) contend that joint ventures are 

generally aimed at combining dissimilar yet complementary specialized intangible assets 

possessed by different firms.  Colombo (2003)’s study supports the knowledge-based 

theory that in technological alliances divergence in partners’ technological specialization 
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results in a higher propensity to use equity form.  Stuart (1995) highlights that the firm’ 

technological characteristics, including overlapping technological niches and 

technological diversity, affect the likelihood of two firms to form an alliance. 

The main objective of this paper is to provide a thorough analysis and empirical 

test of arguments suggested by the knowledge-based theory of the firm as regards the 

organizational choice of R&D alliances.  The findings in the study are consistent with 

previous researches.  And it supports the knowledge-based theory in a more direct way 

by a thorough analysis of how firms’ tacit and idiosyncratic technological capabilities 

influence the choice of alliance form. 

Previous studies believed that it is difficult to test whether an independent 

knowledge-based theory of the firm is needed besides transaction costs economics in 

explaining the organizational choice problem since the predictions of such theories often 

coincide (Sampson 2004; Conner and Phrahalad 1996).  However, two problems in 

current studies may mistakenly lead to the coincidence. 

First, to discuss the influence of knowledge similarity on the organizational 

choice, transaction costs economics assumes a specific relationship between knowledge 

similarity and the probability of opportunistic behaviors.  Transaction cost economics has 

been highlighting the need to cope with opportunistic behavior and emphasizing using the 

highly integrated organizational mode to control opportunistic behaviors and reduce 

opportunism-related transaction costs.  As suggested by Colombo (2003), transaction cost 

economics has no clear predictions as to the influence exerted by knowledge similarity on 

the choice of the governance mode of alliances.  The divergence of partners’ 

technological capabilities may lead to either a decrease or an increase in transaction costs, 
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depending on whether appropriability hazards caused by unintended knowledge 

spillovers to partners or contractual hazards associated with the “hold-up” problem 

prevail.  It is hard to draw a conclusion generally.  The knowledge-based theory, 

incorporating both learning and managing technology, suggests that if allying firms have 

dissimilar technology capabilities, they tend to choose a higher integration mode to 

facilitate knowledge flow.  When two allying firms have highly similar technologies 

capabilities, the main concern of the alliances would be to take advantage of the 

economies of scale in managing technology, and thus the higher integration mode would 

be chosen within an alliance between two firms with highly similar technological 

portfolios.  This result is consistent with Sampson (2004) result in the study of 

telecommunication industry, although she explained the trend through transaction costs 

perspective.  Generally, learning technology is the dominating process in R&D alliances.  

The negative and significant effects of knowledge similarity is observed in both Colombo 

(2003) and the study here (Model 2). 

The other problem is the lack of differentiation between technological similarity 

and technological relatedness.  There is a tendency to mean “related technology” by 

saying “similar technology.”  However, “similar” technologies are not necessarily 

“related.”  Richardson (1972, pp. 888-890) defines “similar activities” as “activities 

which require the same capability for their undertaking,” while he explains 

complementary activities or related activities as “ activities … present different phases of 

a process of production and require in some way or another to be coordinated” and he 

points out complementary activities need not to be similar.  The tire industry is closely 

complementary (related) to the car industry.  However, technologies in these two 
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industries are not necessary similar to each other12.  Previous researches have been 

studying the relationship between technology capabilities and organizational choice 

without unambiguously distinguishing between similar capabilities and related 

capabilities.  The findings show that these two technological characteristics have distinct 

contributions to explaining the organizational choice.  Technological relatedness 

significantly increases the possibility of allying firms to use a higher integration mode in 

R&D activities. 

Besides technological similarity and relatedness, technology diversity also has a 

significant impact on the choice of the governance form.  The findings show that the firm 

is consistent in its technological development strategy.  At the same level of 

technological similarity, a technology generalist tends to integrate more technologies 

within its boundary. 

                                                 
12 Thanks for Richard N. Langlois for clarifying these two concepts.  
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Table 1 

R&D Alliances in the U.S. Biotechnology Industry during 1998-2000 

Year R&D Alliances Firms Patents 

 

R&D 

Agreements 

R&D 

Collaborations

Minority Equity 

R&D Alliances Total 

1998 7 16 1 24 34 3506

1999 14 20 3 37 46 4537

2000 21 23 6 50 72 5483

Total 40 59 10 111 115
 



Table 2  

Descriptive Statistics  

Variable N Mean Std Dev Sum Minimum Maximum

Alliance Form (ORG) 
 

111 0.71171 0.62359 79 0 2 

Technological Similarity (SIM) 
 

111 0.27043 0.27699 30.01787 -0.50657 0.73335 

Square of Technological Similarity (SIM * SIM) 
 

111 0.14916 0.15317 16.55713 0.0000276 0.5378 

Technological Relatedness (REL) 
 

111 2.07157 0.75692 229.94433 -0.16714 4.29575 

Interaction: REL*AGE (RELAGE) 
 

111 14.76916 10.12672 1639 -1.83853 50.64456 

Interaction: SIM*DIVCa (SIMDIVC) 
 

111 0.15071 0.20706 16.72923 -0.83341 0.66756 

Interaction: SIM*DIVDb (SIMDIVD) 
 

111 0.14294 0.15613 15.86678 -0.33586 0.5636 

Breadth of Alliance Activities (BREADTH) 
 

111 0.09009 0.28761 10 0 1 

Prior and Concurrent Alliances (PALLI) 
 

111 0.16216 0.41649 18 0 2 

General Firm Reputation (REPU) 
 

111 16.34234 12.42541 1814 0 66 

The Age of the allying firm (AGE) 
 

111 7.22523 3.96045 802 0 21 

R&D Intensity of alliance (SIZE) 
 

111 0.13351 0.08393 14.81991 0.00255 0.62573 

difference in R&D intensity (RD_GAP) 
 

111 0.10976 0.09534 12.18351 0.0007359 0.56975 

difference in knowledge diversification (DIV_GAP) 
 

111 0.25282 0.24074 28.0625 0.0003812 1.20061 

network autocorrelation adjustment (CORRECT) 
 

111 0.02673 0.0301 2.96743 0 0.13043 
       

 

                                                 
a DIVC is technological diversity of the client firm. 
b DIVD is technological diversity of the R&D firm. 
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Table 3  
Pearson Correlation Matrix  

 ORG SIM SIM*SIM REL RELAGE SIMDIVC SIMDIVD BREADTH 
ORG 1        
Alliance Form         
SIM -0.02299 1       
Technological Similarity (0.8107)        
SIM*SIM 0.05446 0.77071 1      
Square of Technological Similarity (0.5702) (<.0001)       
REL -0.03395 -0.01208 -0.06224 1     
Technological Relatedness (0.7235) (0.8998) (0.5164)      
RELAGE -0.10401 0.00032 -0.00748 0.47907 1    
Interaction: REL*AGE (0.2773) (0.9973) (0.9379) (<.0001)     
SIMDIVC 0.01902 0.885 0.57081 0.00997 0.02631 1   
Interaction: SIM*DIVC (0.8429) (<.0001) (<.0001) (0.9173) (0.784)    

SIMDIVD -0.01421 0.89232 0.63552 0.10708 0.09619 0.79947 1  
Interaction: SIM*DIVD (0.8824) (<.0001) (<.0001) (0.2633) (0.3153) (<.0001)   

BREADTH -0.20869 -0.04313 -0.02503 0.12148 0.10951 -0.04312 -0.0668 1 
Breadth of Alliance Activities (0.0279) (0.6531) (0.7943) (0.204) (0.2526) (0.6532) (0.4861)  
PALLI -0.06338 0.17781 0.1787 -0.03475 -0.1454 0.21007 0.20135 0.02872 
Prior and Concurrent Alliances (0.5087) (0.0619) (0.0606) (0.7173) (0.1278) (0.0269) (0.0341) (0.7648) 
REPU -0.1033 -0.04238 -0.072 0.07766 0.21529 -0.02081 0.06104 -0.11046 
General Firm Reputation (0.2806) (0.6588) (0.4527) (0.4179) (0.0233) (0.8283) (0.5245) (0.2484) 
AGE -0.04709 0.02795 0.04301 -0.06678 0.80118 0.03574 0.06746 0.06184 
The Age of the Allying Firm (0.6236) (0.7709) (0.654) (0.4862) (<.0001) (0.7096) (0.4818) (0.5191) 
SIZE 0.27292 0.17137 0.05481 -0.08314 -0.09405 0.12473 0.14409 -0.20297 
R&D Intensity of the Alliance (0.0038) (0.0721) (0.5678) (0.3856) (0.3262) (0.1921) (0.1314) (0.0326) 
RD_GAP 0.03069 0.02934 -0.06597 0.20042 -0.00983 -0.01161 0.01317 0.25065 
Difference in R&D Intensity (0.7491) (0.7599) (0.4915) (0.0349) (0.9184) (0.9037) (0.8909) (0.008) 
DIV_GAP -0.01634 -0.2504 -0.05949 0.14652 0.06374 -0.17889 -0.20027 -0.02188 
Difference in Technological Diversity (0.8648) (0.008) (0.5351) (0.1249) (0.5063) (0.0603) (0.0351) (0.8197) 
CORRECT -0.07215 -0.01364 -0.07644 0.12102 -0.23289 0.0792 0.02018 -0.02708 
Network Autocorrelation Adjustment (0.4518) (0.887) (0.4252) (0.2058) (0.0139) (0.4086) (0.8335) (0.7778) 
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Table 3 (Continued) 
Pearson Correlation Matrix  

 PALLI REPU AGE SIZE RD_GAP DIV_GAP CORRECT 
ORG   
Alliance Form   
SIM   
Technological Similarity   
SIM*SIM   
Square of Technological Similarity   
REL   
Technological Relatedness   
RELAGE   
Interaction: REL*AGE   
SIMDIVC   
Interaction: SIM*DIVC   
SIMDIVD   
Interaction: SIM*DIVD   
BREADTH        
Breadth of Alliance Activities        
PALLI 1       
Prior and Concurrent Alliances        
REPU 0.09809 1      
General Firm Reputation (0.3057)       
AGE -0.13257 0.17928 1     
The Age of the Allying Firm (0.1654) (0.0597)      
SIZE -0.02029 0.04999 -0.08861 1    
R&D Intensity of the Alliance (0.8326) (0.6023) (0.355)     
RD_GAP 0.06008 -0.00688 -0.11889 0.35014 1   
Difference in R&D Intensity (0.5311) (0.9428) (0.2139) (0.0002)    
DIV_GAP 0.16114 0.0234 -0.01215 -0.20719 -0.0516 1  
Difference in Technological Diversity (0.0911) (0.8074) (0.8993) (0.0291) (0.5907)   
CORRECT 0.21134 0.16902 -0.37582 0.04941 0.24767 0.12278 1 
Network Autocorrelation Adjustment (0.026) (0.0762) (<.0001) (0.6066) (0.0088) (0.1992)  



Table 4 

Determinants of Organizational Choice: 
Estimation of Cumulative Logit Multinomial Model 

Parameter Model 1 Model 2 Model 3

Intercept1 (ORG=2) 
-1.7567***

(0.5888)

-2.5895***
(0.7292)

-5.7139***
(1.6936)

Intercept2 (ORG=1) 1.1872**
(0.5507)

0.5627
(0.6521)

-2.2760
(1.5975)

SIM -1.2727
(1.1078)

--2.1246*
(1.2330)

-8.8635***
(3.3317)

SIM*SIM 2.3426
(2.0513)

3.5354
(2.1953)

6.9359***
(2.5801)

REL 1.4842**
(0.6491)

RELAGE -0.1881**
(0.0797)

SIMDIVC 5.6977**
(2.5391)

SIMDIVD 2.3713
(3.1623)

BREADTH -1.7040**
(0.7501)

-1.4298*
(0.8296)

-1.6210**
(0.9308)

PALLI -0.1424
(0.4748)

-0.0646
(0.4874)

-0.2736
(0.5191)

REPU -0.0196
(0.0158)

-0.0213
(0.0163)

-0.0189
(0.2886)

AGE 0.3703**
(0.1815)

SIZE 7.0431**
(2.8745)

8.7791***
(3.1367)

RD_GAP 0.6574
(2.5385)

0.7682
(2.7216)

DIV_GAP -0.1922
(0.8990)

-0.7108
(0.9562)

CORRECT -3.5646
(6.8087)

-6.1385
(7.3867)

-10.3184
(8.1665)

Y99 0.0154
(0.5188)

-0.0212
(0.5508)

0.0539
(0.5743)

Y00 -0.1748
(0.7362)

-0.5350
(0.5504)

-0.4649
(0.6045)

N 111 111 111
LOG(L) -97.6257 -93.1116 -87.0614
LR test 9.099 18.1272* 30.2276**
D.O.F. 8 11 16

*** chisq < 0.01 
**   chisq < 0.05 
*     chisq < 0.1 
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Figure 1 

The Effect of Technological Similarity on Organizational Choice 

(Between ORG=2 and ORG=0) 
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Figure 2 

The Effect of Technological Similarity on Organizational Choice 

(Between ORG=1 and ORG=0) 
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