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Abstract 

 

The ability to respond plastically to the environment has allowed amphibians to evolve 

adaptive responses to spatial and temporal variation in predation threat.  However, animals 

exposed to predators may also show costs of plasticity or tradeoffs.  This study examines 

predator-induced plasticity in larval development, behavior, and metamorphosis in the spotted 

salamander, Ambystoma maculatum.  Salamanders were raised in two treatments: with predator 

cues (a fish predator, genus Lepomis, on the other side of a divided tank), or without predator 

cues.  During the larval stage the predator treatment group experienced higher mortality rates 

than the no-predator treatment group.  Behavioral trials revealed that predator treatment animals 

ate less than those not exposed, and that this feeding response was immediately inducible and 

had lasting effects.  Animals in the predator treatment group had smaller tail areas during the 

mid-larval period.  Feeding and body size effects may have contributed to increased mortality in 

the predator-treatment animals. The timing of metamorphic onset was not affected by the 

presence of predators, but predator-treatment salamanders had shorter snout/vent lengths at 

metamorphosis.  The duration of metamorphosis showed a potentially adaptive plastic response 

to the presence of predator cues: metamorphosis was longest in the no-predator treatment group, 

reduced in the predator treatment group, and even further reduced for animals exposed to 

predator cues only during metamorphosis.  Overall, we found a mix of potentially adaptive and 

costly plastic responses in spotted salamanders.   
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Introduction 

 Plasticity is the ability of an organism to alter its phenotype, development, or behavior in 

response to the environment.  Amphibians are known to be extremely sensitive to a variety of 

environmental cues (Rose 2005).  The capacity to plastically respond to conditions around them 

allows amphibians to utilize habitats that are often extremely heterogeneous or variable spatially 

or temporally.  Many types of plastic responses have been well studied in amphibians, but these 

studies have largely focused on anurans.  In addition, the process of metamorphosis as a 

potentially plastic life stage has also been neglected (Downie et al. 2004).   

 Amphibians have been shown to exhibit plasticity in response to environmental factors 

such as crowding, predators, food resource levels, pond drying, and temperature, and to respond 

during hatching, the larval period, or metamorphosis.  Predation risk is an important component 

of the environment that can induce behavioral, developmental, or morphological plastic 

responses, but these defenses may come with costs or tradeoffs.  Costs of predator-induced 

plasticity may include reduced larval survival, lowered growth rate, (McCollum and Van Buskirk 

1996, Van Buskirk 2000), or increased susceptibility to predators at a later life stage (Benard and 

Fordyce 2003).   

Many anuran species show phenotypic plasticity in the presence of predators.  A 

distinctive morphology is often induced in the presence of predators; relatively shorter, deeper 

tail fins are often brightly colored with dark spots (Van Buskirk 2002, McCollum and Van 

Buskirk 1996, Schoeppner and Relyea 2008a, 2008b, Van Buskirk et al. 2004).  This type of 

induced phenotype may be an adaptive response because it draws predator strikes to the tail and 

spares the more vulnerable body core (Van Buskirk et al. 2003, Van Buskirk et al. 2004).  

Alternatively, studies in the gray tree frog (Hyla versicolor), agile frog (Rana dalmatina) and 
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southern leopard frog (Rana sphenocephala), showed that longer tails with deep fins are induced 

by the presence of predator cues, and that this morphology increases escape performance (Van 

Buskirk and McCollum 1999, 2000, Teplitsky et al. 2005, Johnson et al. 2008).  In these cases, 

vulnerability to predation during the larval stage has driven the evolution of phenotypic 

plasticity.   

Behavioral plasticity has also been well studied in many larval amphibians.  Wood frogs 

(Rana sylvatica) and American toads (Bufo americanus) have been shown to increase hiding 

behavior and decrease activity rates in the presence of predators (Schoeppner and Relyea 2008a, 

2008b, Skelly and Werner 1990, Smith et al. 2008, Sih et al. 1988).  A study by Orizaola and 

Braña (2003) found only hiding activity to be affected.  In general, in the presence of predation 

threat, reduced activity and foraging, accompanied by more refuge use or hiding, are potentially 

adaptive because they reduce susceptibility to attack by predators.  However, this plasticity 

engenders costs in some species – reduced feeding causes reduced size or growth rates, which 

could delay the onset of metamorphosis (Skelly and Werner 1990). 

Amphibians have also been shown to exhibit developmental plasticity at ontogenetic 

niche shifts (life history switch points).  Hatching plasticity, the ability of embryos to hatch out 

early in response to an environmental cue, especially from predators, is a strategy to avoid 

immediate risk and has been well-studied in amphibians.  After a certain stage, after which 

embryos are viable outside the egg in the water, embryos will hatch out in response to egg 

predators (e.g., snakes, wasps, amphibians; Warkentin 1995, 2000, Vonesh 2005, reviewed in 

Wells 2007) or fungal infections (Warkentin et al. 2001).   Hatching may be delayed in the 

presence of a larval predator (Sih and Moore 1993), but immediate threats to embryos take 

precedence over potential future threats to larvae (Brown-Wilusz and Landberg, unpublished 
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2008).  Costs of early hatching are manifested in embryos that hatch at smaller sizes and earlier 

stages of development, and are more vulnerable to larval predators.   

The larval developmental rate and thus the onset of metamorphosis are also capable of 

responding to predators.  Development to metamorphosis may be accelerated in ephemeral 

environments, when pond drying poses a threat, but this adaptive response comes at the cost of 

decreased size at metamorphosis (Newman 1989, 1992).  During the larval period, theory 

predicts that predation pressure will cause amphibians to accelerate development and initiate 

metamorphosis earlier and at smaller body size (Werner 1986).   Observed responses have not 

always matched these predictions.  Red-eyed tree frogs, Agalychnis callidryas, accelerate the rate 

of larval development in the presence of predaceous giant water bugs (Belostoma spp.; Vonesh 

and Warkentin 2006), while Relyea (2007) reports that most caged-predator studies that 

examined the effects of predator cues independent of other predator effects, found that prey 

species did not initiate metamorphosis earlier or at a different size.  

Alternatively, the process of metamorphosis itself may manifest predator-induced 

plasticity.  Metamorphs are considered more vulnerable to predation by aquatic predators than 

larvae, since in this transitional stage their locomotor performance is diminished (Arnold and 

Wassersug 1977, Rose 2005, Walsh et al 2008a).  Therefore theory predicts that selection should 

have minimized the total duration of metamorphosis.  However, the ability to plastically alter the 

duration of metamorphosis could be an adaptive response if predation threat is not constant 

during this transitional process, as is the case in many amphibian habitats (Wassersug and Sperry 

1977).  In the African clawed toad, Xenopus laevis, the duration of metamorphosis was reduced 

in response to predation (Walsh et al. 2008b).  However, the potential for plasticity of 

metamorphosis has not been studied widely (Downie et al. 2004).   



8 

 

In this study, we raised spotted salamanders, Ambystoma maculatum, either with or 

without cues from a sunfish (Lepomis spp.) predator.  We measured developmental stage, 

mortality, body size, feeding and hiding behavior, timing of and size at metamorphosis, and the 

duration of metamorphosis for plasticity.  The study aimed to identify evidence of adaptive 

plastic responses, or costs and tradeoffs associated with exposure to predators.  Adaptive 

responses would be expected to reduce the overall time spent in the presence of the predator, 

such as hiding, shortening the larval period and initiating metamorphosis early, or reducing the 

duration of metamorphosis.  Potential costs would be observed in reduced survival, development, 

or feeding, lower body size, or poor condition.   
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Materials and Methods 

Experimental Design: 

This study used a split-clutch, randomized block design.  Six egg masses (clutches) of 

spotted salamander, Ambystoma maculatum, eggs were collected from the Fenton River, Storrs, 

CT (April 24, 2008), and distributed into forty-eight 38 liter (10 gallon) aquaria.  Each of the six 

egg masses were divided into eight approximately equal sections that contained 19 ± 0.3 (mean ± 

SE) eggs, with salamander embryos ranging in stage from 20-35 (Harrison, 1969).  Each of these 

sections was assigned randomly to one of two treatments, no-predator (hereafter NP) or predator 

(hereafter P, containing sunfish: Lepomis macrochirus or L. cyanellus).  There were four 

replicates per treatment: two replicates within each of two spatial blocks, with tanks randomly 

assigned to a treatment.  Fish were supplied by the Connecticut Department of Environmental 

Protection and the Kentucky Department of Fish and Wildlife.   

Due to disproportionate mortality experienced by the P treatment group, salamanders 

from NP tanks were moved to P tanks within clutch and block three times, on June 23, July 24, 

and July 28, to maintain more even salamander densities across tanks.  This redistribution would 

tend to bias this study against detecting treatment effects.   

Animal Husbandry: 

 All animals were maintained in an Aquatic Animals Facility (Room 106) in the Torrey 

Life Sciences Building of the University of Connecticut, Storrs, CT.  Air temperature was kept at 

12°C until June, and was then increased two degrees per week throughout the summer.  

Throughout the experiment, the animals experienced a 12 hour light: 12 hour dark cycle.  All 

tanks were divided into two equal halves by a fiberglass screen with 2 mm pores (Figure 1A), 

which allowed visual and chemical predator cues to reach the salamanders, but prevented fish 
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from eating the salamanders.  The P treatment tanks had a sunfish in the rear half of the tank, 

while the NP treatment tanks did not.  All aquaria were filled with distilled water mixed with RO 

Right brand salt (1 tbsp/5 gallons) to match the salinity of normal freshwater conditions.  Several 

terra cotta pieces were placed on the bottom of the tank, to provide a substrate in which the 

salamander larvae could hide.  Air was constantly supplied to all tanks from a bubbler connected 

to a pump.  Water, with any dirt or debris, was changed once per week or as necessary.  Tanks 

were checked daily, any dead fish were promptly removed, and the tank was bleached and 

washed before addition of new water and reinstatement of the salamanders.  Live invertebrates 

(primarily chironomid larvae and oligochaetes) were collected from the Quinnebaug Valley 

Trout Hatchery weekly and supplied to the salamanders every two to three days.  Fish were fed a 

mixture of aquatic invertebrates, Ambystoma maculatum larvae, Rana tadpoles, and earthworms. 

When a salamander initiated metamorphosis, it was removed from its home tank and 

placed individually in an acrylic aquarium (“box”) (10x10x6 cm) containing water from the 

experimental tanks and a concave shard of terra cotta, which salamanders could utilize as a 

hiding place and to climb out of the water.  Animals from the NP treatment were randomly 

assigned to a box containing either no-predator water or predator water.  This created a new “box 

treatment:” no predator-predator (hereafter NP-P).  All P treatment salamanders continued to be 

housed in predator water during metamorphosis.  Water was changed every third day.  NP 

treatment boxes received a mixture of water from each of the NP tanks, while NP-P and P 

treatment boxes received a mixture of water from each of the P tanks.     

At the end of the experiment (December 22, 2008, Day 203), all salamanders were 

overdosed with buffered 2 g/L tricaine methanosulfonate (MS-222), and preserved in formalin.   
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Staging: 

Animals were staged according to a modified staging table based on Harrison (1969).  

Harrison’s stages stop at stage 46, in which animals have two toes and one toe bud on the front 

limbs, and one toe bud on the hind limbs.  A toe bud is longer than it is wide, and then elongates 

into a toe.  Previous research (Brown-Wilusz and Landberg, unpublished, 2008) extended this 

table to include stages 47 to 55, using the additional development of toe buds to toes (four total 

front limb toes and five total hind limb toes) (Table 1).  This staging table was extended to 

include an additional 6 stages which encompass further larval development and metamorphosis.  

These stages are defined based on visible external changes in skin pigmentation, gill resorption, 

and tail fin resorption, and are summarized in Table 1.   

Development: 

The number of animals hatched was recorded weekly until June 2, 2008, when all 

animals had hatched (designated day 0 of the experiment).  All salamanders were counted and 

staged approximately every two weeks, a total of ten times over 90 days, and the mean stage was 

calculated for each tank.  From these counts, the death rate was calculated as proportion dead per 

day ([nprevious date – ncurrent]/duration).   

As individuals neared metamorphosis, tanks were checked daily and any individuals at 

stage 56 were transferred to individual boxes.  All metamorphs were staged daily according to 

the extended metamorphic staging table.   

Behavioral Trials: 

 Home water (7/9/08, Day 37):  One haphazardly chosen salamander from each tank was 

placed into an acrylic “box” (10x10x6 cm), containing water and a piece of terra cotta from that 

animal’s home tank, and exactly five bloodworms (n=38 boxes) (Figure 1B).  Each animal was 
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staged as it was placed into its corresponding box.  The trial lasted 90 minutes for each 

salamander, and the animals were not disturbed for the duration of the trial.  At the end of the 

trial, whether or not the salamander was hiding (at least 50% of body under the terra cotta piece) 

and the number of worms that had been eaten were recorded for each animal.  After completion 

of the trial, all animals were returned to their home tanks.   

 Opposite water (7/22/08, Day 50):  The behavior trial was repeated as above, but all 

animals were placed into boxes containing water and a piece of clay from randomly assigned 

tanks of the opposite treatment (n=35 boxes).  Thus, NP treatment salamanders experienced 

novel chemical predator cues, and P treatment animals experienced a lack of predator cues for 

the duration of the experiment.  Additionally, all aquaria were covered and left over night.  The 

next morning, at the end of 1,350 minutes (22.5 hours) since the start of the behavior trial, hiding 

and the number of worms eaten was recorded once again.   

 Home water vs. foreign water (7/29/08, Day 57):  In order to rule out the possibility that 

any changes in behavior observed during the trials was due to receiving water that was simply 

different than the home water and not of a different treatment in particular, we conducted another 

set of behavioral trials.  Two salamanders were haphazardly chosen from each tank containing at 

least two salamanders.  One salamander from each tank was placed into a box containing water 

and clay from the home tank while the other salamander was placed into a box containing water 

and clay from a foreign tank, that is, a different, randomly chosen tank from the same treatment 

(n=56 boxes).  The trial proceeded as described previously: hiding and the number of worms 

eaten was recorded for each box at the end of 90 minutes.   

 Foreign water vs. opposite water (7/31/08, Day 59):  This trial was repeated as described 

directly above for the “home water vs. foreign water” trial, however one salamander from each 
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tank was placed into a box containing foreign water (same treatment), while the other 

salamander was placed into a box containing water from a randomly assigned tank of the 

opposite treatment (n=56 boxes).  The trial proceeded as previously described for 90 minutes, 

and hiding and the number of worms eaten was recorded.   

Morphometrics: 

 Body size measurements were taken from high resolution digital lateral-view 

photographs taken in the small acrylic boxes (10x10x6 cm) that had a 2 cm scale bar for 

calibration.  These photographs were analyzed using Image J software for several traits: total 

length, snout-vent length, tail length, maximum tail height, and tail area (i.e. Azizi and Landberg, 

2002).  These photographs were taken at the time of the behavioral trials (7/10/08, Day 38) 

during the mid larval period.  In addition, all new metamorphs (stage 56) were photographed 

before they were placed into their individual boxes.   

 At the time of the behavioral trials, on 7/10/08 every salamander was weighed.  

Individuals were patted dry with a piece of paper towel, and then weighed on a slip of paper 

towel on a digital balance.  The paper towel was then weighed alone and the difference was 

recorded as the weight of the animal.  Each animal was then returned to its home tank.   

Statistical Analysis: 

 Statistical analyses were conducted using JMP 5.0 software.  Tank mean values were 

used in all analyses (prior to metamorphosis), since tanks were our unit of replication, not 

individuals.  A linear model analysis of variance (ANOVA) was used in all tests, and significant 

differences were determined using Tukey’s post-hoc test of tank means which were conducted 

for all analyses, with clutch, block, and treatment as fixed factors.  Day of the experiment, stage, 
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and body size were covariates when appropriate.  Individuals were the units of replication used 

in the analysis of the duration of metamorphosis.   
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Results 

Larval Development and Survival 

 P and NP treatment groups did not differ in their rate of development during the larval 

stages, with day as a covariate (ANCOVA, p=0.68, Tukey post-hoc test, Table 2, Figure 2).  

Clutches began at different stages.   

 Average death rate per day was significantly affected by treatment, day, and the 

interaction of treatment and day (Table 2).  Death rate declined over time in both treatments; 

however, animals in the P treatment had a significantly higher death rate than those in the NP 

treatment (ANCOVA, p<0.0001, Tukey post-hoc test, Figure 3).   

Behavioral Trials 

 Home water (7/9/08, Day 37):  The NP treatment group ate significantly more worms in 

home water than the P treatment group (ANCOVA, p=0.0003, Tukey post-hoc test, Table 3).  

NP treatment animals tended to hide more, but the difference was not significant (p=0.09; Table 

4; Figure 4A).   

Opposite water (7/22/08, Day 50):  Salamander larvae exposed to water of the opposite 

treatment for either 1.5 or 22.5 hours did not show differences in the number of worms eaten 

between treatments. The NP treatment group reduced its feeding rate to levels similar to the P 

treatment group.  The number of worms eaten did not differ between treatments for either time 

span (1.5 hrs: p=0.63; Table 2; 22.5 hrs: p=0.63; Table 3).  Hiding was also not affected by 

treatment (nominal logistic fit test; 1.5 hrs: p=0.61; 22.5 hrs: p=0.14; Table 4).   

 Home water vs. foreign water (7/29/08, Day 57):  The number of worms eaten did not 

differ between water type (home water or foreign water from a different tank of the same 
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treatment) for either treatment (ANCOVA, Table 3, Figure 4B).  Hiding behavior did not differ 

between water types within treatment (nominal logistic fit test; p=0.28; Table 4).   

 Foreign water vs. opposite water (7/31/08, Day 59):  The treatment*water type 

interaction was highly significant for number of worms eaten indicating that animals in the two 

treatments responded differently to foreign vs. opposite water type (p<0.0001, Table 3).  For the 

NP treatment group, the number of worms eaten was significantly higher in foreign (NP) water 

than in opposite (P) water (Figure 4C).  Within the P treatment group, there was no difference in 

feeding between the two water types (Figure 4C), nor was the number of worms eaten by the P 

treatment animals different from the number eaten by the NP treatment group in P water.  There 

was no difference in hiding between water type within treatment (nominal logistic fit test; 

p=0.30; Table 4). 

Morphology and body weight:   

At the time of the behavioral trials, on 7/10/08, the P and NP treatment groups did not 

differ in mass (ANCOVA, p=0.48, Table 5).  The NP treatment group had larger relative tank 

mean tail areas (corrected for total length) than the P treatment group (ANCOVA, p=0.0024, 

Tukey post-hoc test, Table 5, Figure 4D).  No other size measurements showed significant 

effects of treatment.   

Onset of Metamorphosis 

The tank mean age at the onset of metamorphosis (Stage 56) was not different for NP and 

P treatment salamanders (ANCOVA, p. = 0.41, Table 6, Figure 5A).  The snout/vent length at 

the time of onset of metamorphosis was affected by treatment (ANCOVA, p=0.017, Table 6).  

The NP treatment group was larger at metamorphic onset (Tukey post-hoc test; Figure 5B).    
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Snout-vent length and tail length had significant effects on the age at onset of 

metamorphosis (ANCOVA; p=0.0008, p<0.0001, respectively; Table 6), but they act in opposite 

directions.  Tail length is inversely related to mean age at metamorphosis, across treatments 

(Figure 5C), while snout-vent length is directly related to the age of metamorphic onset (Figure 

5D).   

Duration of Metamorphosis:   

The duration of metamorphosis was examined in terms of box treatment (NP, NP-P, or 

P).  The duration of metamorphosis was significantly affected by the box treatment nested within 

tank treatment (ANCOVA, p=0.004, Tukey post-hoc test; Table 6, Figure 6).  All three box 

treatments had statistically different mean durations of metamorphosis.  The duration of 

metamorphosis was highest in the NP treatment, reduced in the P treatment, and further reduced 

in the NP-P treatment.   
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Discussion 

Exposure to fish predator cues throughout development significantly affects larval 

survival, feeding behavior, relative tail area, size at metamorphosis, and the duration of 

metamorphosis in spotted salamanders (Ambystoma maculatum).   

 Survival of salamanders exposed to fish predator cues was dramatically lower than for 

those not exposed; the death rate was approximately twice as high in the predator (P) treatment 

group as in the no-predator (NP) treatment group (Figure 3).  Since fish were isolated from the 

experimental salamanders, this mortality was not a result of predation.  Instead, it appears to be 

an effect of perception of chemical and/or visual cues.   

Gray tree frog (Hyla chrysoscelis) tadpoles exposed to caged predators also had lower 

survival (McCollum and Van Buskirk 1996).  Contradictory to these results, a study of the 

response of A. maculatum actually exposed to Lepomis macrochirus predators, found that the 

presence of fish did not affect larval survival (Figiel and Semlitsch 1990).  In that study, there 

was no difference in mortality between populations raised in the presence or absence of 

predators, but the highest mortality occurred in salamanders from source ponds that contained 

sunfish, suggesting that survival may be related to the historical predator environment.  In our 

study, all salamanders came from the same source, which may have allowed effects of predator 

presence for the duration of larval development to emerge.  Figiel and Semlitsch also found that 

resource (zooplankton) density was lower in experimental pools with fish.  It is possible that 

sunfish preferentially fed on zooplankton, especially since salamander larvae decreased their 

activity and hid.   

It is possible that in our study the high level of chemical cues led to an unnaturally high 

stress response (scared to death!), although not all salamanders in the P treatment died.  Other 
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possible contributors include fish death affecting water quality, or perhaps chemicals released by 

stressed fish.   

 For those animals surviving in the P treatment, the rate of development during the larval 

period was not affected by the presence of predator visual and chemical cues (Figure 2).  This is 

in agreement with the previous study by McCollum and Van Buskirk (1996), who found that 

gray tree frogs in the presence of a caged odonate predator also develop at the same rate as those 

not exposed.  This suggests that the rate of larval development is not accelerated by the 

perception of larval predators.  Reducing the amount of time spent in a risky larval environment 

(such as one containing predators) would be adaptive if there was no cost associated with doing 

so.  Since we know that some environments do cause an acceleration of larval development 

(Newman 1989, Vonesh and Warkentin 2006), these results suggest that A. maculatum are either 

unable to increase accelerate development due to physiological constraints or because a cost of 

doing so prohibits it.   

 Amphibians have been shown to frequently exhibit behavioral plasticity in response to 

predation threat.  Our expectation, based on previous studies, was that salamanders would 

decrease their active feeding behavior and increase their hiding behavior, or refuge use to avoid 

detection by predators (Schoeppner and Relyea 2008).   Hiding behavior was never affected by 

the presence or absence of chemical predator cues (Figure 4A), in contrast to many previous 

studies, in which hiding increased in the presence of predators or predator cues (Sih, Kats, and 

Moore 1992, Sih, Petranka, and Kats 1988, Orizaola and Braña 2003).  A study by Walls (1995) 

compared A. talpoideum to A. maculatum in the presence or absence of a mutual predator, and 

found that refuge use did not increase in the presence of a larval predator (Ambystoma opacum) 

for A. maculatum.  A. maculatum is a superior forager, so a possible explanation is that in the 
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presence of predation and competition, they took advantage of their competitive advantage in 

feeding success despite the predation risk.  In addition, our trials only used chemical predator 

cues.  It is possible that the addition of visual cues might have elicited a hiding response.   

 In their home tank water, that is, the water that the larvae were raised in, larvae exposed 

to predator cues ate significantly less during behavioral trials.  This matched our predictions, and 

was in agreement with previous studies that also found a decrease in foraging activity (Skelly 

and Werner 1990, Smith et al. 2007, Schoeppner and Relyea 2008, Figiel and Semlitsch 1990).  

By reducing foraging activity salamander larvae should be less detectable to visual predators 

such as sunfish.  Although our animals exposed to predator cues did not hide more, they may 

have moved less overall, effectively using stillness as a type of refuge.  However, we did not 

measure activity directly.   

 Comparing the feeding rates in home tank water to the feeding rates in “foreign” water 

(from a different tank of the same treatment) allowed us to test the possibility that changing the 

water source caused the observed effect on feeding rate, rather than exposure to predator cues. 

Since there was no difference between the feeding rates in home or foreign water for animals of 

either treatment (Figure 4B) we can rule water change out.  Finally, comparing the feeding rates 

in foreign water to the feeding rates in opposite water confirmed that the reduction in feeding 

behavior was due to predator cues.  Animals raised without predator cues and then exposed to 

predator cues have significantly lower feeding rates than NP animals in NP water. P treatment 

animals with historic exposure to predators did not similarly increase their feeding rates in NP 

water (Figure 4C).  This means that the effect of predator cues on feeding behavior, a reduction 

in the amount of food consumed, is immediately inducible, but not reversible in the same time 

frame.  This suggests that exposure to predator cues has lasting effects.  Decreased foraging rate 
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is potentially adaptive in the immediate presence of a predator, because reduced activity reduces 

susceptibility to detection (Sih 1992).  However, our predator treatment group was chronically 

exposed to predator cues, and still had a reduced feeding rate.  This potentially has great costs, if 

it leads to reduced growth (Skelly and Werner 1990).  The decreased survival, smaller tail area, 

and smaller snout/vent length at metamorphosis that we observed may be potential costs.  

 Tail area was the only size metric that responded significantly to predator exposure, but 

in the opposite direction predicted: P treatment animals had a smaller mean tail area (Figure 4D).  

Past research has found that in the presence of predators, tadpoles may develop enlarged tail fins, 

which may act as a lure to draw predator strikes away from the more vulnerable body core (Van 

Buskirk et al. 2003).  In some cases, tadpoles also develop conspicuous coloration or spots on the 

tail, which enhances its effect in drawing predator strikes (Van Buskirk et al. 2004, McCollum 

and Van Buskirk 1996).  It is unclear whether large tail areas, with deep tail fins, also increase 

escape performance.  Johnson et al. (2008) showed that tadpoles (Rana sphenocephala) with 

long, deep tails had the fastest burst swimming speeds, but that did not enhance survival against 

Anax junius dragonfly larvae.  Van Buskirk and McCollum (2000) showed that Anax species 

dragonfly larvae induced short bodies with long, deep tails in Hyla versicolor tadpoles, but there 

was no improvement in burst swimming speed.  However, odonates are sit-and-wait predators, 

against which fast swimming speeds might not be an effective defense.  Many fish, including 

those in our study, are active foragers, against which fast swimming speeds might be effective in 

avoiding predation.  Teplitsky et al. (2005) showed that stickleback fish predators induced deep 

tailfins and long tails in Rana dalmatina, and that these tadpoles have faster swimming speeds 

than those reared with dragonfly (Aeshna) larvae or no predators.  Wilson et al. (2005) found that 

Rana lessonae raised with pumpkinseed sunfish (Lepomis gibbosus) had shallow tails with small 
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tail heights and higher swimming speeds than tadpoles raised in the presence of Aeshna larvae or 

without predators.  The animals in our study had smaller tail areas in the presence of a Lepomis 

predator, which appears to be in agreement with the latter finding, but escape swimming 

performance was not measured.  It is unclear whether in this case small tail area is adaptive or 

represents a cost of reduced feeding rates.  

 We expected to see plasticity of time to metamorphosis because anuran metamorphs have 

been shown to be more vulnerable to predation than either larvae or adults. Metamorphosis is 

considered to be a hazardous life stage between two different adaptive peaks (Arnold and 

Wassersug 1978), since metamorphs are more vulnerable to predation (Arnold and Wassersug 

1978 [garter snake predators, Thamnophis]) due to decreased locomotor and escape 

performances (Wassersug and Sperry 1977, Dudley, King, and Wassersug 1991, Huey 1980).  

Adaptive plastic responses to predation threat at metamorphosis could manifest themselves in 

two ways.  Predator-exposed salamanders could initiate metamorphosis earlier or they could 

increase the rate of development during metamorphosis, decreasing its duration.  Either or both 

of these plastic responses could be adaptive by allowing animals faced with an aquatic predator 

to escape the threat of predation by completing metamorphosis earlier.   

 Previous theory has predicted that a perceived threat of mortality to aquatic larvae will 

cause amphibians to initiate developmental switches earlier and at a smaller size (Werner 1986).  

For example, embryos have been shown to hatch early in response to egg predators (Ireland et al. 

2007, Brown-Wilusz and Landberg unpublished 2008, Capellán and Nicieza 2008).  For 

metamorphic plasticity, however, there has been mixed support for the theory.  In the red-eyed 

tree frog, Agalychnis callidryas, larval predators cause earlier metamorphosis at a smaller size, 

while metamorph predators cause tadpoles to metamorphose larger and later, supporting the 
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theoretical predictions (Vonesh and Warkentin 2006).  Figiel and Semlitsch (1990) showed that 

even with predation by fish, spotted salamanders did not initiate metamorphosis earlier.   

In studies of the effects of caged predators on the onset of metamorphosis, predator cues 

did not generally induce earlier metamorphosis or smaller size at metamorphosis (Relyea 2007, 

Benard 2004).  Our findings are in agreement with this result in terms of age at metamorphic 

onset: animals in the P treatment group did not differ from those in the NP treatment group 

(Figure 5A).  Again this suggests that the length of the larval period, and subsequently the age of 

metamorphic onset, is constrained or costly to alter (Hensley 1993).  Costs of metamorphosing at 

small body size might include increased mortality during or after metamorphosis, or lower body 

condition (Walsh et al. 2008a).  In addition, although non-significant, the response of the P 

treatment group is in the opposite direction than that predicted by theory, with predator exposed 

animals metamorphosing slightly later. 

Animals in the P treatment group had shorter snout/vent lengths at the start of 

metamorphosis (Figure 5B).  This may be the result of reduced growth rates due to lowered 

larval feeding rates in response to predator cue exposure.  Although we did not see any 

differences in body length between predator-exposed and predator-naïve salamanders at mid-

larval stages (e.g., stage 49), at stage 56 when metamorphosis begins, P treatment animals that 

have experienced reduced feeding rates throughout development are indeed shorter.  We did not 

test whether this body size difference had a fitness effect during metamorphosis.  Smaller 

metamorphs may be more vulnerable to predation because of their size, or less vulnerable if 

predators target larger prey.  These questions have not yet been examined.   

Snout/vent length and tail length were correlated with the age at metamorphic onset in 

opposite directions.  This was a surprising result.  Age at metamorphosis was positively 
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correlated with snout/vent length (Figure 5D), but negatively correlated with tail length (Figure 

5C).  This suggests that the allocation of resources to different parts of the body and different 

types of growth may have independent effects on the age at which animals metamorphose.  Good 

conditions allowing an individual to grow to a large snout/vent length may favor a delay in 

metamorphosis to take continued advantage of a favorable environment before transitioning 

(Morey and Reznick 2000).  In contrast, tail length may determine when individuals are capable 

of metamorphosis: individuals with small tail lengths may have not yet accrued enough resources 

to initiate metamorphosis.  Thus, those individuals metamorphosing the earliest are expected to 

have small snout/vent lengths but long tail lengths, meaning that the larval environment has been 

poor for growth, but they have the capacity to begin the transition.  The underlying mechanisms 

and timing of these opposite relationships are still unknown.   

 Animals never exposed to predator cues (NP), had the longest duration of 

metamorphosis, those exposed to predator cues throughout development (P) reduced the duration 

of metamorphosis, and finally, the shortest duration was for previously predator-naïve animals 

exposed to predator cues only during metamorphosis (NP-P; Figure 6).  This means that the 

duration of metamorphosis, and therefore the rate of development during metamorphosis, 

responds plastically to predator cues.  That novel predator cues during metamorphosis reduce its 

duration more than chronic cues may imply some degree of habituation to a constant predator 

threat.  It is also possible that NP-P treatment animals are more physiologically competent due to 

their presumed better condition, so that when the need to respond to predator cues arose, they 

could do so better than P treatment animals.  Overall, a newly perceived threat of predation 

reduces the duration of metamorphosis, allowing salamanders to leave the aquatic environment 
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earlier, minimizing the time spent in this vulnerable life stage.  This is a potentially adaptive 

response to predator cues.   

 Evolutionarily, it is thought that the duration of metamorphosis should have been 

minimized, with little plasticity, because vulnerability to predation is so high at this stage, with 

both locomotor and escape performance compromised (Rose 2005, Walsh et al. 2008a).  

However, any mechanism that further reduces the duration of metamorphosis could be adaptive 

if predation rates during metamorphosis are especially high (Wassersug and Sperry 1977).  The 

duration of metamorphosis has not been studied widely, but recent studies (limited to anurans) 

suggest that amphibian metamorphosis can be plastic.  For instance, metamorphic duration has 

been shown to be influenced by temperature (Walsh et al. 2008a), snout/vent length and tail 

length (Downie et al. 2004), and predators (Walsh et al. 2008b).  Walsh et al. (2008b) found that 

Xenopus laevis accelerated their development through metamorphosis, which agrees with our 

results.  In contrast, Van Buskirk and Saxer (2001) found that the rate of development through 

metamorphosis was not affected by the presence of a predator in the water frog Rana ridibunda.  

These mixed results, and the relatively few studies that have directly examined predator-induced 

plasticity in the duration of metamorphosis, highlight the need for continued research on 

plasticity of this life stage in amphibians.   

This research did not address whether the observed plasticity at metamorphosis has 

potential future costs.  It is currently not clear why metamorphic duration is plastic if amphibians 

are so vulnerable to predators during this period.  It is possible that there are costs associated 

with rapid metamorphic development, such as increased mortality or decreased locomotor 

performance (Walsh et al. 2008a, Arendt 1997). 
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Overall our results indicate that, in response to exposure to predators, spotted 

salamanders exhibit behavioral plasticity in feeding rates as larvae, plasticity in the size at 

metamorphic onset, and plasticity in the duration of metamorphosis.  Although feeding behavior 

and refuge use have been well studied in response to predators in amphibians, metamorphosis, 

and the duration of metamorphosis in particular, remain understudied.  Animals in the presence 

of an aquatic predator did not reduce larval duration, but they did reduce the duration of the 

vulnerable metamorphic period.  Thus the spotted salamander, Ambystoma maculatum, can alter 

its rate of development during metamorphosis as a potentially adaptive response to the perceived 

threat of predators.   

Predators are a key component of the environment that impact many aspects of 

development and can pose a driving force for selection.  Amphibians have been shown to have 

the ability to distinguish many types of environmental cues, including predator cues, and alter 

their development in response (Rose 2005, Benard 2004).  Predator presence may induce 

adaptive responses, but these may have costs.  Understanding the intricate balance of benefit and 

cost to the organism, and how this dictates the specific responses observed is important to 

understanding how predators can affect plasticity in organisms with complex life cycles.   

In the field, the pools in which salamanders develop and metamorphose may or may not 

have fish predators.  Therefore, an understanding of the specific effects of predators on 

development, mortality, and metamorphosis is environmentally and evolutionarily relevant.  In 

particular, metamorphosis, the bridge between larval and adult life stages and between the 

aquatic and terrestrial environment, may be very vulnerable (Arnold and Wassersug 1978).  

Since it also provides the opportunity for amphibians to escape the larval environment (Benard 

2004), the potential for plasticity may be useful if environments shift from year to year.  This 
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study examines the ways in which sunfish predators affect the survival, development, growth, 

and metamorphosis of spotted salamanders.  In the future, the mechanisms underlying the 

changes observed and the associated costs should be explored more.  
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Tables 

 
 

Table 1.  Continuation of the Harrison (1969) staging table for Ambystoma maculatum by 

Brown-Wilusz and Landberg (A) and Dwyer (B).   

 

A.  
Stage Front Limb 

Toe Bud 

Front Limb 

Toe 

Hind Limb 

Bud 

Hind Limb 

Toe Bud 

Hind Limb 

Toe 

44 0 2 Yes 0 0 

45 1 2 Yes 0 0 

46 0 3 Yes 0 0 

47 1 3 Yes 0 0 

48 1 3  2 0 

49 1 3  1 2 

50 0 4  0 3 

51 0 4  1 3 

52 0 4  0 4 

53 0 4  1 4 

54 0 4  0 5 

 

B.  
Stage Tail  Gills Coloration  

54 > 2:1 upper 

fin/lower fin 

Full, with 

filaments 

Light color, larval 

spots 

Larval 

55 2:1 upper 

fin/lower fin 

Full, with 

filaments 

Uniformly dark Mature Larval 

56 4:1 upper 

fin/lower fin 

Full, with 

filaments 

Uniformly dark, 

starting to mottle 

Initiation of 

Metamorphosis 

57 10:1 upper 

fin/lower fin 

Mottled Peak Metamorphosis Reduced 

filaments 

58 1:4 upper 

fin/tail no lower 

fin 

Mottled Peak Metamorphosis 

59 1:10 upper 

fin/tail 

Bare Rachis 

Mottled Continuation of 

Metamorphosis 

60 No fin Nub Indistinct Spots Continuation of 

Metamorphosis 

61 No fin No Nub 

Gills 

resorbed 

Spots Adult 
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Table 2.  ANCOVA for development and survival 

Response Predictors DF F Ratio Prob>F 

Clutch 5 10.5040 <0.0001 

Block 1 1.2562 0.2630 

Treatment 1 0.1649 0.6849 

Tank mean stage 

 

(n = 429) 

Day 9 3485.664 <0.0001 

Clutch 5 1.0110 0.4159 

Block 1 0.1863 0.6670 

Treatment 1 28.3221 <0.0001 

Day 2 50.0730 <0.0001 

Death rate 

 

(n = 104) 

Treatment*Day 2 3.3566 0.0392 

 

 

 

 

 

Table 3.  ANCOVA for feeding during behavior trials 

Response Predictors DF F Ratio Prob>F 

Clutch 5 4.0568 0.0074 

Block 1 0.3831 0.5413 

Treatment 1 17.7929 0.0003 

Home water: 

N worms eaten 

 

(n = 38) Stage 4 2.9880 0.0373 

Clutch 5 0.8693 0.5150 

Block 1 4.5932 0.0416 

Treatment 1 0.2374 0.6302 

Opposite water,  

90 minutes: 

N worms eaten 

(n = 35) Stage 1 0.3366 0.5668 

Clutch 5 0.9371 0.4735 

Block 1 0.0048 0.9451 

Treatment 1 0.2319 0.6342 

Opposite water,  

1350 minutes: 

N worms eaten 

(n = 35) Stage 1 2.7859 0.1071 

Clutch 5 0.5132 0.7648 

Block 1 0.0367 0.8489 

Treatment 1 10.1732 0.0026 

Stage 1 1.2852 0.2629 

Water type 1 1.0914 0.3017 

Home vs. foreign 

water: 

N worms eaten 

 

 

(n = 56) Treatment*water type 1 0.4445 0.5084 

Clutch 5 0.9132 0.4811 

Block 1 0.0250 0.8750 

Treatment 1 0.2262 0.6367 

Stage 1 1.8518 0.1804 

Water type 1 9.2900 0.0038 

Foreign vs. 

opposite water: 

N worms eaten 

 

 

(n = 56) Treatment*water type 1 18.6251 <0.0001 
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Table 4. Nominal logistic fit test of hiding during behavioral trials.  Clutch, block, treatment, and 

stage were predictors for all tests, with water type as an additional predictor when appropriate. 

Response DF Chi Squared Prob>Chi Squared 

Proportion hiding:  

Home water                                        (n = 38) 8 13.81751 0.0866 

Proportion hiding:  

Opposite water, 90 minutes                (n = 35) 8 6.327149 0.6106 

Proportion hiding:  

Opposite water, 1350 minutes            (n = 35) 8 12.37478 0.1352 

Proportion hiding:  

Home water vs. foreign water            (n = 56) 9 10.86934 0.2848 

Proportion hiding:  

Foreign water vs. opposite water       (n = 56) 9 10.70425 0.2965 

 

 

 

Table 5. ANCOVA for weight and morphometrics at the time of the feeding trials 

Response Predictor DF F Ratio Prob>F 

Clutch 5 2.5721 0.0500 

Block 1 0.1889 0.6673 

Treatment 1 0.5054 0.4833 

Stage 1 3.6741 0.0659 

Tank mean snout/vent length 1 8.2421 0.0079 

Tank mean mass 

 

 

 

 

(n = 38) 
Tank mean tail length 1 0.0676 0.7968 

Clutch 5 1.5269 0.2123 

Block 1 0.2968 0.5900 

Treatment 1 2.1809 0.1505 

Tank mean total 

length 

 

(n = 38) 
Tank mean stage 1 23.3464 <.0001 

Clutch 5 1.3468 0.2730 

Block 1 0.3682 0.5487 

Treatment 1 2.8220 0.1037 

Tank mean 

snout/vent length 

 

(n = 38) 
Tank mean stage 1 19.5009 0.0001 

Clutch 5 2.4681 0.0558 

Block 1 0.2195 0.6429 

Treatment 1 1.4669 0.2356 

Tank mean tail 

length 

 

(n = 38) 
Tank mean stage 1 20.7008 <.0001 

Clutch 5 2.5847 0.0482 

Block 1 1.0129 0.3228 

Treatment 1 11.1340 0.0024 

Tank mean stage 1 1.3943 0.2476 

Tank mean tail 

area 

 

 

(n = 38) 
Tank mean total length 1 49.9697 <.0001 
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Table 6. ANCOVA/ANOVA for metamorphosis data 

Response Predictor DF F Ratio Prob>F 

Clutch  5 1.0622 0.3978 

Block 1 1.2266 0.2756 

Treatment 1 0.6990 0.4088 

Tank mean snout/vent length 1 13.3202 0.0008 

Tank mean age  

 

 

 

(n = 45) Tank mean tail length 1 27.3755 <0.0001 

Clutch 5 1.2909 0.2888 

Block 1 0.3429 0.5617 

Tank mean snout/vent length 

 

(n = 45) Treatment 1 6.2860 0.0167 

Clutch 5 4.2727 0.0036 

Block 1 0.0149 0.9035 

Tank mean tail length 

 

(n = 45) Treatment 1 0.1831 0.6712 

Box treatment[Tank treatment] 1 9.0045 0.0039 

Clutch 5 1.7621 0.1345 

Duration  

 

(n = 125) Block 1 0.6091 0.4382 
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Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  (A) Animals were 

housed in 48 38-liter (10-gallon) 

tanks with one of two treatments: 

no-predator (NP) or predator (P).  

Predators were separated from 

the experimental salamanders by 

a porous screen.  (B) Behavioral 

trials took place in small acrylic 

boxes.  Salamanders were given 

a concave piece of clay to hide 

under, and exactly five worms; 

hiding and feeding behavior were 

recorded after 90 minutes.  

Figures are not to scale.  

Drawings by Tobias Landberg.    
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Figure 2.  Tank mean stage by day represents development in the two treatment groups.  

There is no significant difference in the stages of animals in the no-predator (NP) and 

predator (P) treatment groups; as larvae, they develop at the same rate (Tukey test).  Black 

filled squares are the data points for the P treatment, while white open circles are the data 

points for NP treatment.  Note that day 0 is the day that all experimental salamanders were 

hatched.   
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Figure 3.  Death rate, the proportion dead per day, as a function of day (ANOVA adjusted 

tank means).  The predator (P) treatment group has a higher death rate than the no-predator 

(NP) treatment group (Tukey test), and mortality declines over time in both treatment 

groups.  Black filled squares are the data points for the P treatment, while white open circles 

are the data points for the NP treatment. 
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Figure 4.  Behavioral Trials 

White bars are the no-predator 

(NP) treatment, while black bars 

are the predator (P) treatment.   

(A) The proportion of salamanders 

hiding at the end of 90 minutes 

for two treatments, in home 

tank water.  Hiding behavior 

was not affected by treatment 

in any of the trials (nominal 

logistic fit tests).   

(B) The mean number of worms 

eaten in home water vs. foreign 

water (same treatment) for the 

NP and P treatment groups.  

The number of worms eaten 

was not different for home and 

foreign water, across 

treatments (Tukey test).  NP 

treatment animals ate 

significantly more than P 

treatment animals (Tukey test). 

(C) The mean number of worms 

eaten in foreign water (same 

treatment) vs. opposite 

treatment water, for each 

treatment group.  NP treatment 

animals significantly reduce the 

number of worms eaten in 

opposite (P treatment) water 

(Tukey test).  For P treatment 

animals, there is no difference 

in the number of worms eaten 

in foreign and opposite water 

(Tukey test).   

(D) Tail area (cm
2
) (ANCOVA 

adjusted tank means) at the 

time of the behavioral trials for 

the NP and P treatments.  The 

P treatment group has a smaller 

mean tail area than the NP 

treatment group (Tukey test).    
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Figure 5.  Onset of 

Metamorphosis 

No-predator (NP) treatment is 

represented as white bars, and the 

predator (P) treatment is 

represented as black bars.  Tank 

means are ANCOVA adjusted.   

(A) The tank mean age, in days, at 

the onset of metamorphosis 

(stage 56) for the NP and P 

treatments did not differ 

(Tukey test) 

(B) The tank mean snout/vent 

length at the onset of 

metamorphosis for the two 

treatments.  The P treatment 

animals have shorter snout/vent 

lengths than the NP treatment 

animals when they initiate 

metamorphosis (Tukey test).   

(C) Tank mean age at 

metamorphosis as a function of 

tail length.  Across treatments, 

tail length inversely affects the 

age at metamorphosis (Tukey 

test; p<0.0001).   

(D) Tank mean age at 

metamorphosis as a function of 

snout/vent length.  Across 

treatments, snout/vent length 

positively affects the age at 

metamorphosis (Tukey test; 

p=0.0008).   
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Figure 6.  Duration of metamorphosis in days for each of three box treatments: no-predator 

(NP), no-predator-predator (NP-P), and predator (P).  All three are statistically different; 

the duration of metamorphosis is longest in the NP treatment group, reduced in the P 

treatment group, and further reduced in the NP-P treatment group (Tukey test).  The white 

bar represents the NP treatment, the grey bar the NP-P treatment, and the black bar the P 

treatment. 
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