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Abstract
A characterization of a property of binary relations is of finite type if it is stated

in terms of ordered T-tuples of alternatives for some positive integer T. A charac-
terization of finite type can be used to determine in polynomial time whether a
binary relation over a finite set has the property characterized. Unfortunately,
Pareto representability in R2 has no characterization of finite type (Knoblauch,
2002). This result is generalized below Rl, l larger than 2. The method of proof is
applied to other properties of binary relations.
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1. Introduction.

It is in general useful to have a utility representation for the preferences of an indi-

vidual or group. When those preferences cannot be so represented, a useful alternative

is representation via a preference preserving function from the set of alternatives to a

Euclidean space ordered by the Pareto relation or the lexicographic order. Any such rep-

resentation provides a conceptual handle for preferences and, more concretely, can serve

as the first step in the transformation of a formless list of preferences into a more useful

object, such as a demand function.

Of course, before beginning a search for a particular form of representation for a

particular set of preferences, it is helpful to know whether or not that set of preferences

has a representation of that form. That is one of the roles of a characterization. We

introduce characterizations in a more general setting by considering any property possessed

by some binary relations and not by others, rather than limiting ourselves to preference

representations.

A characterization of a property of binary relations is a set of criteria that allow one

to determine easily whether a given binary relation has the property being characterized.

Perhaps the example best known to economists of a characterization of a property of binary

relations is Debreu’s (1964) and Birkhoff’s (Theorem 2, Chapter III, 1948) characterization

of representability by a utility function,1 which, for finite sets of alternatives, can be stated

in the following form: a binary relation � on a finite set X can be represented by a utility

function if and only if, for all x, y, z ∈ X , x � y implies x�∼y and x�∼y�∼z implies x�∼z.

(The weak preference relation �∼ is defined by a�∼b if and only if not(b � a)).

Knoblauch (2002) singled out for study characterizations of finite type. A characteri-

zation of finite type is a characterization that can be stated in terms of ordered T -tuples of

alternatives for some fixed positive integer T and such that conditions on ordered T -tuples

do not reference arbitrarily large integers (see Section 2 for counterexamples). Debreu’s

and Birkhoff’s characterization of utility representability stated above is a characterization

of type 3. A characterization of finite type has at least two desirable features. First, a

1 It has been pointed out to me by Juan Dubra that Birkhoff deserves but is rarely given partial credit

for this characterization.
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characterization of finite type enhances our general understanding of the property char-

acterized. For example, before Debreu’s characterization, economists often assumed the

existence of a utility function without a second thought. Now most know that a repre-

sentability test exists and some know that existence of a utility function representing a

binary relation � requires asymmetry of � and transitivity of �∼ . Second, a characteriza-

tion of finite type can be used to determine in polynomial time whether a binary relation

on a finite set has the property characterized: if � is a binary relation on a set X of N

elements and C is a characterization of finite type T for property Q, then, when using C

to determine whether � has property Q, one needs to consider only ordered T -tuples, of

which there are NT . There is a polynomial A such that for each ordered T -tuple A(N)

steps are sufficient to construct a table for � restricted to elements of that ordered T -tuple.

For each T -tuple C can be checked directly from the table constructed for that T -tuple

(as is the case for the Debreu-Birkhoff characterization) without referring to arbitrarily

large integers. Therefore, there is an integer B such that for each ordered T -tuple, C

requires the carrying out of a procedure the maximal number of whose steps is B. The

whole procedure takes at most NT (A(N) +B) steps, a polynomial in N . The existence of

such a polynomial is desirable since a polynomial P (N) grows with N much more slowly

than, for example, an exponential function of N . If the number of steps required to test a

binary relation is exponential in N , then as N grows the time required by even the most

powerful computer to carry out the test grows quickly from seconds to days to centuries.

Unfortunately, Knoblauch (2002) showed that there is no characterization of finite

type for Pareto representability 2 in �2. The proof revolves around the construction of

binary relations that are almost but not quite Pareto representable in �2. More precisely,

the proof contains a construction, for arbitrarily large N , of a binary relation � on a set

X of N alternatives such that � is not Pareto representable in �2, but � restricted to S is

Pareto representable in �2 for every proper subset S of X . That proof does not generalize

to Pareto representability in �l, l ≥ 2. The proof below that there is no characterization

of finite type for Pareto representability in �l again revolves around simply constructed

2 A Pareto representation in �l for a binary relation � on X is a function v: X→�l such that

x�y if and only if v(x)>v(y),where v(x)>v(y) if vi(x)≥vi(y) for 1≤i≤l and v(x)�=v(y).
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binary relations, but the proof that the binary relations constructed are “almost but not

quite Pareto representable in �l ” is more difficult and the words in quotes take on a

different meaning than they had in the proof for the case l = 2.

Sprumont (2001) and Aizerman and Aleskerov (1995) provide characterizations of

Pareto representability in �2 and in �l respectively. Sprumont’s characterization involves

intermediateness conditions, which are of finite type, and regularity and continuity con-

ditions, which are not. Earlier studies by Dilworth (1950), Hiraguchi (1955) and Leclerc

(1976) give upper bounds on l (in terms of |X | and properties of �) beyond which Pareto

representability in �l is guaranteed for a transitive, asymmetric binary relation � on a set

X . Of course none of these studies provides a characterization of finite type for Pareto

representability in �l for a fixed l ≥ 2.

The rest of the paper is organized as follows. A clearer (than that in Knoblauch,

2002) definition of a characterization of finite type is given in Section 2. Section 3 con-

tains statements of preliminary results and the statement and proof of our main result.

Three applications of the method of proof of our main result are given in Section 4. The

preliminary results are proven in Section 5. Section 6 contains a voting paradox and final

remarks.

2. Preliminaries; Characterizations of Finite Type.

A binary relation � on a set X is a subset of X × X . For convenience < x, y >∈ �
will be written x � y. Associated with binary relation � on X are binary relations �∼

and ∼ on X defined by x�∼y if not(y � x) and x ∼ y if x�∼y�∼x. If � on X and Y ⊆ X ,

the restriction of � to Y is defined by � |Y = � ∩(Y × Y ). If � on X and x ∈ X , let

W (x) = {z ∈ X : x � z} and B(x) = {z ∈ X : z � x}.
The symbol ⊕ will be used for addition mod n on the set {1, 2, . . . , n}; that is, for

i, j ∈ {1, 2, . . . n},
i ⊕ j =

{
i + j if i + j ≤ n
i + j − n if i + j > n

While addition mod n is usually defined on {0, 1, . . . , n − 1}, we use {1, 2, . . . , n} because

it is more compatible with the rest of our notation.

For a set X , |X | denotes the cardinality of X .
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The Pareto relation > on �l is defined by r > s if ri ≥ si for all i ∈ {1, 2, . . . , l} and

at least one inequality is strict. A Pareto representation in �l for � on X is a function

v: X → �l such that for all x, y ∈ X , x � y if and only if v(x) > v(y).

The definition of a characterization of finite type is due to Knoblauch (2002). We will

try to make the definition clearer here. For positive integer T , a characterization of type

T of a property Q of binary relations is a true statement of the form “A binary relation

� on X satisfies property Q if and only if for every ordered T -tuple < x1, x2, . . . , xT > of

elements of X , ...” where the ellipses represent conditions that can be checked using only

a table that lists the preferences � |{x1,x2,...,xT }. In addition these conditions must not

reference arbitrarily large integers. For example, the Debreu-Birkhoff characterization is

a characterization of type 3, but the two characterizations below are not characterizations

of finite type; although each places conditions only on ordered pairs, the first references

arbitrarily large integers through reference to inherent properties of elements of X and the

second references arbitrarily large integers through reference to |X |:

Characterization 1: � on X satisfies property Q if and only if for every ordered pair

< x1, x2 > of elements of X , x1 � x2 implies x1 and x2 are integers and x1 > x2.

Characterization 2: � on X satisfies property Q if and only if for every ordered pair

< x1, x2 > of elements of X , x1 � x2 if |X | is a prime number.

The key points of the definition are that a characterization of type T must not put

conditions on ordered tuples of length greater than T , and conditions must not reference

arbitrarily large integers.

For the sake of completeness we could allow in the definition finitely many occurrences

of “... for every ordered T -tuple ...” and finitely many occurences of “...there exists an

ordered T -tuple ...” all tied together with “and”s and “or”s. There are three reasons

for staying with the definition as stated. The first is simplicity. Second, the change in

definition wouldn’t affect our results. Third, many known characterizations of preference

representations take the form of our definition.
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3. Nonexistence of Characterizations of Finite Type for Pareto Representabil-

ity in �l.

The following example is central to the proof of the main result of this section.

Example 1. Suppose n and k are positive integers with n > k. Let Xn = {x1, x2, . . . , xn,

y1, y2, . . . , yn}. Define binary relation �n,k on Xn as follows: for w, z ∈ Xn,

w �n,k z if and only if w = xj , z = yj′
and j′ ∈ {j ⊕ 1, j ⊕ 2, . . . , j ⊕ k} (1)

Also, for w, z ∈ Xn recall that, as defined in Section 2,

w�∼n,k
z if and only if not (z �n,k w) (2)

For each l ≥ 3, Propositions 1 and 2 establish the existence of a binary relation that

is not Pareto representable in �l, but whose restriction to any subset of alternatives up to

a certain size limit is Pareto representable in �l.

Proposition 1. If l ≥ 3, k > l(l−1)
2

, n > k and (l−2)n < l(k−1), then �n,k is not Pareto

representable in �l.

See the Appendix for the proofs of Propositions 1 and 2.

Notice that for each l there are arbitrarily large values of n and k that satisfy the

hypotheses of Proposition 1.

Proposition 2. Suppose l ≥ 3, k > l(l−1)
2 , k − 1 is divisible by l − 2, n = l(k−1)

l−2 − l and

n ≥ 2l2. If S ⊆ Xn and |S| <
n
l −(l−1)

l , then �n,k |S is Pareto representable in �l.

Notice that for each l there are arbitrarily large values of n and k that satisfy the

hypotheses of Proposition 1 and Proposition 2.

Theorem 1. There is no characterization of finite type for Pareto representability in �l,

l ≥ 2.

Proof . For l = 2 see Knoblauch (2002). Suppose l ≥ 3, T is a positive integer and

C is a characterization of type T for Pareto representability in �l. Choose n and k

such that n, k, and l satisfy the hypotheses of Proposition 2 and n > l2T + l2 − l. Let
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< z1, z2, . . . , zT > be any ordered T -tuple of elements of Xn (which was constructed in

Example 1). Let S be any subset of Xn such that {z1, z2, . . . , zT } ⊆ S and |S| ≤ T .

Then |S| <
n
l −(l−1)

l
. By Proposition 2, �n,k |S is Pareto representable in �l. Since C is a

characterization of type T for Pareto representability in �l, �n,k |S is Pareto representable

in �l and < z1, z2, . . . , zT > is an ordered T -tuple of elements of S, �n,k |{z1,z2,...zT }

satisfies the conditions of characterization C. Since �n,k |{z1,z2,...zT } satisfies the conditions

of C, < z1, z2, . . . , zT > was an arbitrary ordered T -tuple of elements of Xn, and C is a

characterization of type T for Pareto representability in �l, �n,k is Pareto representable

in �l, contradicting Proposition 1.

The assumption that Pareto representablity in �l has a characterization of type T for

some l ≥ 3 has led to a contradiction.

4. Applications of the Method of Proof for Theorem 1.

In this section the method of proof used in Section 3 will be applied to three examples.

Example 2. Property Ext: binary relation � on X can be extended to a linear order on

X .

A linear order is an asymmetric, transitive binary relation such that x ∼ y implies

x = y. An extension of a binary relation � on X is a binary relation �′ on X such that

�⊆ �′. Let XN = {x1, x2, . . . xN} and define �N on XN by x1 � x2 � . . . � xN � x1.

Then �N cannot be extended to a linear order, since for any transitive extension �′ of

�N , x1 �′ x1. However, for any proper subset S of XN , the transitive closure of �N |S is

a linear order on S.

For each positive integer N we have produced a binary relation �N on XN such that

�N does not have Property Ext but �N |S does have property Ext for every proper subset

of XN . From this it follows, as in the proof of Theorem 1, that there is no characterization

of finite type for Property Ext.

Example 3. It was pointed out in Section 1 that the Debreu-Birkhoff characterization of

utility representability for binary relations on finite sets is a characterization of type 3. The

Debreu-Birkhoff characterization for utility representability of binary relations on any set
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contains a condition called separability (see Debreu, 1964) that is not of finite type. The

method of proof of Theorem 1 above can be used to prove that there is no characterization

of finite type for utility representability for binary relations on any set. Let �L be the

lexicographic order on �2. Then �L is not representable by a utility function, since �L

is not separable. However, �L |S can be represented by a utility function if S ⊆ �2

is finite. Therefore the method of proof of Theorem 1 can be used to show that utility

representability has no characterization of finite type.

It should be pointed out that we have proven in Theorem 1 that there is no char-

acterization of finite type even for Pareto representability of binary relations on finite

sets .

Example 4. Property Incl: For � on X , there exists a finite set A and a bijection

f : X → P (A), the set of subsets of A, such that, for x, y ∈ X x � y if and only if

f(x) ⊆ f(y).

Let XN be a set of 2N elements, N > 1, A = {1, 2, . . . , N} and f : XN → P (A) be

a bijection. Define �N on XN by x � y if f(x) ⊆ f(y). By definition �N has Property

Incl. However, for each x ∈ X , �N |XN−{x} does not have property Incl since |XN − {x}|
is not a power of 2.

Then by the method of proof of Theorem 1, Property Incl has no characterization of

finite type. Actually a slight variation of the method of proof of Theorem 1 is needed since

this time �N does have the property in question and restrictions of �N do not , rather

than the reverse situation as in Example 2, Example 3 and the proof of Theorem 1.

5. Proofs of Propositions 1 and 2.

Proof of Proposition 1.

Suppose k, l and n satisfy the hypotheses of Proposition 1 and v: Xn → �l is a Pareto

representation for �n,k. For i ∈ {1, 2, . . . , l} let vi: Xn → � be the ith coordinate of v.

Since yj′ �∼n,k
xj if j /∈ {j ⊕ 1, j ⊕ 2, . . . , j ⊕ k}, for each j there are n− k values of j′

such that yj′ �∼n,k
xj . Therefore |{< j, j′ >: yj′ �∼n,k

xj}| = n(n − k) and consequently

|{< i, j, j′ >: vi(yj′
) > vi(xj)}| ≥ n(n − k) (3)

8



Next we find another estimate for the cardinality of the set in (3).

Lemma 1. If A ⊆ {1, 2, . . . , n} and |A| = r > 0, then |{j′: xj �n,k yj′
for some j ∈ A}| ≥

min{k + r − 1, n}.

Proof . If |{j′: xj �n,k yj′
for some j ∈ A}| = n, then the conclusion of Lemma 1 holds.

Therefore suppose |{j′: xj �n,k yj′
for some j ∈ A}| < n. By the symmetry of �n,k,

suppose without loss of generality that 1 /∈ {j′: xj �n,k yj′
for some j ∈ A}. Write

A = {j1, j2, . . . , jr}. Here are k + r − 1 distinct elements of {j′: xj �n,k yj′
for some

j ∈ A}: j1 + 1, j2 + 1, . . . , jr + 1, J + 2, J + 3, . . . , J + k where J = max{j1, j2, . . . , jr}.
Now let j1, j2, . . . , jn be a permutation of 1, 2, . . . , n such that

v1(xjn) ≥ v1(xjn−1) ≥ . . . ≥ v1(xj1) (4)

Suppose r ∈ {1, 2, . . . , n}. By Lemma 1, |{j′: xjm �n,k yj′
for some m ≤ r}| ≥ min{k +

r−1, n}. Since v is a Pareto representation for �n,k, |{j′: v1(xjm) ≥ v1(yj′
) for some m ≤

r}| ≥ min{k+r−1, n}. By (4) |{j′: v1(xjr) ≥ v1(yj′
)}| ≥ min{k+r−1, n}, which implies

|{j′: v1(yj′
) > v1(xjr}| ≤ max{n − k − r + 1, 0}. Therefore,

|{< j, j′ >: v1(yj′
) > v1(xj)}| =

∑n−k
r=1 |{j′: v1(yj′

) > v1(xjr)}|

≤ (n − k) + (n − k − 1) + . . . + 2 + 1 = (n−k)(n−k+1)
2

Then |{< i, j, j′ >: vi(yj ′) > vi(xj)}| ≤ l(n − k)(n − k + 1)
2

(5)

Inequalities (3) and (5) imply l(n−k)(n−k+1) ≥ 2n(n−k). Since n−k > 0, l(n−k+1) ≥
2n which implies (l − 2)n ≥ l(k − 1) contradicting a hypothesis of Proposition 1. The

assumption that �n,k is Pareto representable in �l has led to a contradiction.

Proof of Proposition 2.

The proof will be seen to follow easily from the following lemma.

Lemma 2. Suppose k, l, and n satisfy the hypotheses of Proposition 2. For j0 ∈
{1, 2, . . . , n

l − (l − 1)} let Sj0 = ∪l−1
m=0{xj0+mn/l, xj0+mn/l+1, . . . , xj0+mn/l+(l−1), yj0+mn/l,

yj0+mn/l+1, . . . , yj0+mn/l+(l−1)}. Then �n,k |Xn−Sj0 is Pareto representable in �l.
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Proof . By the symmetry of �n,k it is enough to prove Lemma 2 for the case j0 = n
l −(l−1).

In the following definition of v1: Xn−S
n
l −(l−1) → � we break the string of inequalities

into 2l-2 pieces for easy reference. Define v1 to satisfy the following inequalities.

v1(x1) > v1(x2) > . . . > v1(x
n
l −l) > (6.1)

v1(x
n
l +1) > v1(x

n
l +2) > . . . > v1(x

2n
l −l) > (6.2)

. .

. .

. .

v1(x
(l−3)n

l +1) > v1(x
(l−3)n

l +2) > . . . > v1(x
(l−2)n

l −l) > (6.l − 2)

v1(y
(l−2)n

l +1) > v1(x
(l−2)n

l +1) > . . . > v1(y
(l−1)n

l −l) > v1(x
(l−1)n

l −l) > (6.l − 1)

v1(xn−l) > v1(xn−l−1) > . . . > v1(xn−2l+1) >

v1(y
(l−2)n

l −l) > v1(xn−2l) > . . . > v1(y
(l−3)n

l +l+1) > v1(x
(l−1)n

l +1) >

v1(y
(l−3)n

l +l) > . . . > v1(y
(l−3)n

l +2) > v1(y
(l−3)n

l +1) >




(6.l)

v1(y1) > v1(y2) > . . . > v1(y
n
l −l) > (6.l + 1)

. .

. .

. .

v1(y
(l−4)n

l +1) > . . . > v1(y
(l−3)n

l −l) > (6.2l − 3)

v1(y
(l−1)n

l +1) > . . . > v1(yn−l) (6.2l − 2)
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Notice that the first n
l − l xj ’s appear in (6.1), the second n

l − l xj ’s appear in (6.2), and

more generally the mth n
l −l xj ’s appear in (6.m) for 1 ≤ m ≤ l−2. The (l−1)st n

l −l xj ’s

and the (l−1)st n
l
−l yj’s appear in (6.l−1). The final n

l
−l xj ’s and the (l−2)nd n

l
−l yj’s

appear in (6.l). In (6.l + 1) through (6.2l− 3) the first through (l− 3)rd n
l − l yj ’s appear

and in (6.2l − 2), the final n
l − l yj’s appear.

It may help the reader to write out the string of inequalities for the case l = 3, k = 10,

n = 24. For this example, since l − 2 = 1, (6.1) − (6.l − 2) will be represented by (6.1),

and since 2l − 3 < l + 1, (6.l + 1) through (6.2l − 3) will not be used at all. The string of

inequalities will be written using only (6.1), (6.l − 1), (6.l) and (6.2l − 2).

Define vi: Xn−S
n
l −(l−1) → � for i = 2, 3, . . . , l by setting, for xj , yj ∈ Xn−S

n
l −(l−1),

vi(xj) = v1(xj⊕ (i−1)n
l ) and vi(yj) = v1(yj⊕ (i−1)n

l ) (7)

To show that v =< v1, v2, . . . , vl >: Xn − S
n
l −(l−1) → �l is a Pareto representation

for �n,k |
Xn−S

n
l
−(l−1) , we first show that v(xj) ≥ v(xj′

) for all xj , xj′ ∈ Xn − S
n
l −(l−1).

By the symmetry introduced in (7) we can assume 1 ≤ j ≤ n
l
− l. Then xj appears in

(6.1). If j′ ≥ j, then by (6.1) − (6.l), v1(xj) > v1(xj′
). If j′ < j, then by (7) and (6.l)

vl(xj) = v1(xj+
(l−1)n

l ) > v1(xj′+ (l−1)n
l ) = vl(xj′

).

The proof that v(yj) ≥ v(yj′
) for all yj, yj′ ∈ Xn − S

n
l −(l−1) is similar, but (6.l + 1)

takes the place of (6.1).

To show that v(xj) ≥ v(yj′
) for all xj , yj′ ∈ Xn − S

n
l −(l−1), first use the symmetry

introduced in (7) to assume 1 ≤ j ≤ n
l
− l. Then xj appears in (6.1) and clearly v1(xj) >

v1(yj′
).

Finally to show xj �n,k yj′
if and only if v(xj) > v(yj′

) for all xj , yj′ ∈ Xn−S
n
l −(l−1),

suppose xj , yj′ ∈ Xn − S
n
l −(l−1) and by the symmetry introduced in (7) assume 1 ≤ j ≤

n
l − l.

Then

v(yj′
) ≥ v(xj)

if and only if vi(yj′
) > vi(xj) for some i

if and only if vl−1(yj′
) > vl−1(xj) or vl(yj′

) > vl(xj) [since vi(xj) = v1(xj+
(i−1)n

l ),

11



and for i �= l − 1, l, xj + (l−1)n
l appears in (6.1), (6.2), . . . , or (6.l − 2)]

if and only if

(l−2)n
l + 1 ≤ j′ + (l−2)n

l ≤ j + (l−2)n
l [in which case

v1(yj′
+ (l−2)n

l
) > v1(xj + (l−2)n

l
) by (6.l − 1) so that

vl−1(yj′
) > vl−1(xj)] or

(l−2)n
l + 1 ≤ j′ ⊕ (l−1)n

l ≤ (l−1)n
l − l [in which case

v1(yj′ ⊕ (l−1)n
l

) > v1(xj + (l−1)n
l

) by (6.l − 1) and (6.l), so that

vl(yj′
) > vl(xj)] or

j + (l−3)n
l + l ≤ j′ ⊕ (l−1)n

l ≤ (l−2)n
l − l [in which case

v1(yj′+ (l−1)n
l ) > v1(xj+

(l−1)n
l ) by (6.l),

so that vl(yj′
) > vl(xj)].

if and only if

1 ≤ j′ ≤ j or (l−1)n
l + 1 ≤ j′ ≤ n − l or j + (l−2)n

l + l ≤ j′ ≤ (l−1)n
l − l

if and only if

j′ ≤ j or j′ ≥ j + (l−2)n
l

+ l.

In summary, for xj , yj′ ∈ Xn − S
n
l −(l−1) and j ≤ n

l − l,

v(xj) > v(yj′
) if and only if j < j′ < j +

(l − 2)n
l

+ l (8)

Next, for xj , yj′ ∈ Xn − S
n
l −(l−1) and j ≤ n

l − l,

xj �n,k yj′
if and only if j < j′ < j + k + 1

. From the hypotheses, n = l(k−1)
l−2

− l. Solving for k, k = (l−2)n
l

+ l − 1. Therefore

xj �n,k yj′
if and only if j < j′ < j +

(l − 2)n
l

+ l (9)

Comparing (8) and (9), xj �n,k yj′
if and only if v(xj) > v(yj′

). This completes the proof

that v is a Pareto representation for �n,k |
Xn−S

n
l
−(l−1) .

12



Returning to the proof of Proposition 2, suppose Y ⊆ Xn and Y ∩ Sj0 �= ∅ for all

j0 ∈ {1, 2, . . . , n
l − (l − 1)} (see the statement of Lemma 2 for the definition of Sj0). Since

an element of X can be an element of at most l Sj0 ’s, |Y | ≥ n
l −(l−1)

l
. Therefore if S ⊆ Xn

and |S| <
n
l −(l−1)

l , then S ∩ Sj0 = ∅ for some j0. For any such j0, S ⊆ Xn − Sj0 so that

by Lemma 2, �n,k |S is Pareto representable in �l.

6. Concluding Remarks and A Voting Paradox.

Suppose a finite set of alternatives is submitted to a committee and subsequently that

committee publishes its preferences over that set. Suppose also that neither the size of the

committee nor the procedure it uses to generate its preferences is known to you, and that

you would like to know whether the committee could possibly be using unanimous voting

to generate its preferences. Here we define unanimous voting to mean that each member

of the committee has preferences represented by a utility function; that the members vote

on each pair of alternatives; and that alternative x is preferred to alternative y if in the x

versus y vote all members who do not abstain vote for x, and at least one member does

not abstain.

Since a set of preferences could have been generated by unanimous voting by a com-

mittee of unknown size if and only if it has a Pareto representation in �l for some l if and

only if it is asymmetric and transitive (Dushnik and Miller, 1941) there is a characteriza-

tion of type 3 that can be used to decide whether the committee’s preferences could have

been generated by unanimous voting.

However, if you somehow discover the size of the committee, then by Theorem 1, there

is no characterization of finite type that can be used to decide whether the committee’s

preferences could have been generated by unanimous voting.

In short, it is easy to decide whether a committee could have generated its preferences

by unanimous voting, unless you know the size of the committee. Then it is hard.

One final remark. Fix l ≥ 2. Despite Theorem 1, there might exist an algorithm that

checks any binary relation on a finite set for Pareto representability in �l, and performs

that check in polynomial time. However, by Theorem 1 if such an algorithm exists, it will

not be a simple one; that is, it will not issue from a characterization of finite type.
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