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1. INTRODUCTION.

The adult population seeking orthodontic care has increased considerably

over the past ten years. Some patients may have severe types of malocclusion

which cannot be successfully treated by orthodontics alone, and, therefore, may

require orthognathic surgery as an adjunctive treatment. These patients may have

less concern about the cosmetic improvement they might obtain with orthognathic

surgery than they may have regarding the functional improvement of their

masticatory apparatus following surgery. At the present time, however, there is

no quantitative clinical data available to show that orthognathic surgery is justified

according to functional criteria, in particular increased bite force brought about

by improved muscle function. Therefore, a fundamental question we need to

address is whether orthognathic surgery can produce changes in masticatory

muscle function, and, if so, the direction and extent of these changes for a

particular surgical procedure.

Numerous previous studies have tried to demonstrate the two-way

relationship between muscle function and facial form. It is commonly believed

that masticatory muscle function can influence and, in turn, be influenced by facial

growth and surgically induced changes in skeletal structure. Orthognathic

surgery has the potential to affect muscle function in two ways: mechanically, by

altering jaw geometry, and physiologically, by changing sensory and
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proprioceptive inputs and muscle length. The masticatory muscles may either

adapt to these new requirements or, conversely induce adaptation of the

associated skeletal structures.

Most previous studies have focused on the effects of the masticatory

muscles in relation to surgically induced changes in craniofacial morphology

(skeletal adaptation) rather than the influence of the changes in jaw geometry on

muscle function (muscle adaptation). This is largely due to the use of wire fixation

and intermaxillary fixation (IMF)instead of rigid fixation during orthognathic

surgery. In using wire fixation, muscle tension is considered sufficient to

reposition the different segments into their stable positions before complete

healing of the osteotomy sites; movement of the segments takes place until a

biological equilibrium is established between healing and muscle tension. Rigid

fixation, by maintaining the contiguous segments together, allows the healing

process to take place directly into the osteotomy sites until muscle adaptation

occurs. For these reasons, the amount and occurrence of relapse (skeletal

adaptation) is considerably decreased in rigid fixation vs. wire fixation (Komori

et al, 1987; Ellis et al, 1988, 1990; Will et al, 1989; Satrom et al, 1991).

Studies which evaluated the effects of facial type or orthognathic surgery

on maximum voluntary bite force production could not show a relationship

between the direction of the bite force change and the structural changes



(Johnston et al, 1984; Proffit et al, 1989). This may be due to the use of a

biomechanical model established from a lateral cephalometric radiograph where

the localization of muscle vectors from landmarks almost impossible to identify,

is quite arbitrary and most often not reflective of the real mechanical advantages.

To overcome this lack of consistency, structural changes should be measured by

comparing cephalometric measurements from reliable skeletal and dental

landmarks before and after surgery instead of simply comparing the presumed

mechanical advantages of the different muscles that might result from surgery.

Previous investigators who used EMG measurements to assess and to

compare functional characteristics of masticatory muscles have also been

inconsistent in their results when seeking to link muscle activity to facial form

(Moiler et al, 1966; Ingerval et al, 1974; Lowe et al, 1984; Ahlgren et al, 1985).

Local electrode conditions and the difficulty in standardizing function result in

poor reproducibility of this measurement technique. However, methods using the

relationship between EMG activity and bite force which have been shown to be

reproducible might minimize this variability problem.

The purpose of this study was to evaluate the variations in maximum bite

force as well as the changes in the contribution of the masseter and anterior

temporalis muscles to the generation of bite force in relation to surgically induced

changes in skeletal morphology.



2. BACKGROUND.

2.1. RELATIONSHIP BETWEEN MASTICATORY MUSCLE FUNCTION

CHARACTERISTICS AND CRANIOFACIAL MORPHOLOGY.

Numerous studies have hypothesized that intersubject differences in

muscle function can be linked to variations in craniofacial morphology.

2.1.1. Bite force and craniofacial morphology.

According to Proffit et al (1989), the masticatory apparatus is a classic lever

system, with the musculature positioned between the fulcrum at the jaw joint and

the point of force application between the teeth. The geometry of this lever

system can affect occlusal force directly by varying the mechanical advantages

of the muscles (Throckmorton et ai, 1984). Individuals with anteriorly located and

perpendicularly oriented muscles would be expected to produce the largest bite

forces most easily.

In 1989, Sasaki et al evaluated the role of muscle cross-sectional size and

lever arm length in bite force production by correlating these variables in 11

healthy patients. Axial and coronal images obtained by magnetic resonance were

combined with conventional lateral cephalograms and dental cast data to

4



reconstruct the craniomandibular morphology in each subject. The

cross-sectional sizes of the masseter and medial pterygoid muscles, their lever

arms, and the bite-point lever arms were estimated from these reconstructions.

Physiological recordings, of bite force were made at the first molar by the use of

a customized transducer. Despite the fact that craniofacial spatial morphology

may differ among the subjects, they found that jaw muscle size alone seems to

explain most of the variation in bite force.

These findings are in agreement with those reported by Van Spronsen et

al (1992) who showed that differences in the size of the masseter muscle cross-

sectional area of long-face and normal subjects might explain, in part, the

observed differences in maximum molar bite force.

However, Koolstra et al (1988a) showed that a 10% difference in jaw

muscle cross-sections had only a small effect on the magnitude and direction of

the molar bite force, whereas modification of jaw muscle orientation profoundly

influenced the outcome of biomechanical calculations. Another factor that should

be taken into account is the variation of the direction of the bite force (Van Eijden,

1991). If the direction of the bite force differs between long-face and normal

subjects, the moment arm of this force will also differ. For example, the length

of the bite force moment arm will increase by approximately 20% when its

direction changes from ten degrees posteriorly to ten degrees anteriorly (Van
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Eijden, 1991).

In the bite force predictions of the-Van Spronsen et al study (Van Spronsen

et al, 1992), it was also assumed that the intrinsic strength of the jaw muscles of

long-face and normal subjects was equal. It has been shown that type fibers

produce less force per unit area than type II a and b fibers (Close, 1972; Burke

et al, 1973; Burke, 1981). Therefore, muscles with a high percentage of type

fibers are less powerful than muscles with a predominance of type I! fibers. In a

normal population, Ringqvist (1973b, 1974) found a significant positive correlation

between molar bite force and the proportion of type II masseter fibers.

Unfortunately, there is no consensus about the distribution of jaw muscle fiber

type in long-face subjects. Finn et al (1980) and Boyd et al (1984) found a high

percentage of type fibers in long- face subjects, whereas Warner (1984) reported

the opposite findings and Shaughnessy et al (1989) found no significant

relationship between facial type and muscle fiber distribution. The large variation

in both fiber-type distribution and fiber size within each skeletal group, as noted

by Warner (1984) and Shaughnessy (1989), and the small number of subjects

studied, may explain the above cited contradictory results.

Extrapolating the results of studies correlating morphological and

biomechanicai characteristics, subjects with short mandibles, acute gonial angles,

short facial heights, and flat mandibular planes would seem to have the most
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efficient muscle configurations (Ringqvist, 1973; Haskell et al, 1986; Proffit et al,

1989). Therefore, such muscles would need to contract less to produce a given

amount of bite force or to perform a certain task.

Although the results of these various studies were statistically significant,

large individual variations not explained by biomechanical analysis were present.

Since bite forces are the result of the combined contraction of several muscles,

studies using bite force capability to describe muscle function are limited; they

cannot discern the individual characteristics of each of the various muscles

involved in generating that force. In order to evaluate the contribution of

individual muscles to oral function, many studies have directly measured the

electromyographic characteristics of masticatory muscles and compared them

with morphological features.

2.1.2. Muscle activity and craniofacial morphology.

The most powerful tool to quantitatively and qualitatively evaluate muscle

function is electromyograghy. This section will review the principles of EMG,

findings correlating EMG activity with craniofacial morphology and the limitations

of this technique.

2.1.2.1. Basic principles of electromyography.
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EMG is an electrical analog of muscle contraction which can be used to

quantitatively evaluate muscle contraction. EMG measures the electrical potential

between two electrodes placed in or near a muscle. These potentials are

generated by the depolarization of the muscle fiber membrane, and are

proportional to the contractile strength of the sampled motor units. The shapes

and amplitudes of the recorded signal are dependent on the characteristics of the

original depolarizations, the distance of the active fibers from the electrode site,

and the impedance characteristics of the intervening tissue (Basmajian et al,

1985). EMG activity can be recorded from either intramuscular or surface

electrodes which detect the action potentials associated with surrounding motor

units. Each type of these electrodes has certain advantages and disadvantages.

Intramuscular electrodes are able to record a more specific and localized

signal since they can be placed directly into the desired muscle. The ability to

record from deep muscles, inaccessible by surface electrodes, can be

accomplished. On the other hand, the range of such recordings is usually limited

to muscle fibers in close proximity to the fine wire tip of the electrode. However,

this limitation may be varied by changing the length of the insulated tip and

controlling the distance between the two recording electrodes.

Surface electrodes may be preferable to record action potentials from

superficial muscles; the signals obtained from these electrodes are considered to
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and dental as well as cephalometric characteristics were examined. At maximal

biting, he found increased masseter activity in patients with mandibular

prognathism and decreased masseter activity in patients with obtuse gonial angle

and steep mandibular plane. Acute gonial angle was also associated with higher

anterior temporalis activity during maximal biting. During function, the results

were less clear; patients exhibiting a prognathic maxilla showed a significantly

higher masseter activity during swallowing.

Ingerval et al in 1974, recorded muscle activity in 52 children aged 9-11

years with normal occlusion in order to determine variations due to facial

morphology alone. Muscle activity was recorded with bipolar electrodes; surface

electrodes were used for the masseter and the orbicularis oris muscles and

hooked wire electrodes were used for the temporalis muscle. Craniofacial

morphology was evaluated by cephalometric analysis and dental cast

measurements. The clearest correlations between muscle activity and facial

morphology were found during chewing and maximal bite. During these functions

the amplitudes in the temporal and masseter muscles were larger for children with

short lower facial height and a flat mandibular plane.

In 1984, Lowe and Takada examined muscle activity in 18 class I, 25 class

II division 1, and 12 class II division 2 patients using canonical correlations of

integrated surface EMG with a reduced morphology index based on statistically
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determined dependent cephalometric measurements. Muscle activities were

compared at rest, intercuspation, clenching, swallowing and maximum jaw

opening. The only statistically significant finding was that higher resting level

masseter activity was exhibited by patients with short mandibles and steep

occlusal planes.

Finn and coworkers in 1984, tried to identify with EMG investigations

possible differences in muscle activity between presurgical groups of long faced

open-bite and short-faced patients, and normal controls. They used needle

electrodes to record the EMG activity at different bite forces (10, 15, 20 Kg.) for

the deep masseter and the temporalis muscles. The results showed that the

short-faced group had the highest EMG activity during molar bites. They also

tended to have higher EMG activity during incisor bites, but there was more

variability. They explained these results by differences in fiber morphology

between the two groups: since short-faced individuals have muscle fiber atrophy,

and since the force a muscle fiber can generate is proportional to the fiber

cross-sectional area, short-faced patients must recruit more muscle fibers to

produce the same bite force as long-faced subjects. This is reflected in the

higher EMG activity of the muscles in short-faced subjects.

Ahlgren et al in 1985, measured EMG activity (with bipolar intramuscular

electrodes) of the anterior, middle, and posterior temporalis muscles in 10
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subjects with normal occlusion. They correlated the results with cephalometric

measurements. At rest, the posterior temporalis muscle showed the greatest

activity and during clenching, EMG activity increased in all the components of the

muscle; however, no one division showed a clear dominance. Patients with steep

mandibular planes exhibited higher overall muscle activity. This finding was in

contradiction with the results of previous studies.

Most of these investigations showed large intersubject variability which

cannot be explained by morphological differences or biomechanical parameters

alone. The inability of these studies to demonstrate strong correlations between

muscle function and facial morphology may have been due to three factors" (I)

poor experimental design; (2) neural control pattern variability; (3)individual

differences in the physiologic properties of the muscles. The use of absolute

EMG values to assess the relationship between facial morphology and muscle

function made comparison and reproducibility of the experimental results

extremely difficult. Many investigators have interpreted EMG data beyond the

limitations of the technique.

2.1.2.3. Limitations of EMG.

The validity of the results regarding quantitative evaluation of absolute

muscle activity levels by EMG recordings is questionable. Ralston in 1961
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showed that peak-to-peak amplitude comparisons of raw EMG signals is

inaccurate because of the wave form complexity of the recorded action potentials.

As shown by Siegler et al (1985), EMG signal processing, which may include

filtering of background noise, rectification, smoothing or averaging, and

integration, has been used to quantify muscle contraction over time. However,

signal processing does not validate the quantitative comparison of EMG results.

Since the magnitude of the recorded signal is dependent on the distance from the

generated signal, and on the characteristics of the intervening tissues, amplitudes

will inherently vary in the same muscle in different individuals and between

muscles of the same individual. Many studies have not considered the

contribution of this error; some, like the one conducted by lngerval et al (1974),

have even compared action potentials recorded from muscles using two different

types of electrodes.

Poor reproducibility of quantitative EMG measurements has been

discussed by several authors, Garnick (1975), showed that even small

displacements of the recording electrodes may generate differences in observed

quantitative values. The duplication of original conditions is difficult to perform if

the electrodes need to be removed and replaced. Changes in skin impedance

characteristics may also contribute to the large variability of the results obtained

between experimental trials (Angelone et al, 1960).
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Difficulty in reproducing quantitative EMG measurements is further

complicated when considering functional activities. Many investigators have

examined muscle activity at rest, and during mastication and swallowing. These

functions are extremely difficult to control. Even simple movements such as

clenching or close-open activation may vary in amplitude and firing rate from

subject to subject, or even for the same subject at different times. Manns et al

(1977), showed that degree of jaw opening and velocity of contraction have

significant effects on recorded EMG magnitudes and patterns.

Garnick (1975), demonstrated that the use of absolute EMG measurements

to assess muscle activity and the inadequate control of function lead to unreliable

and non-reproducible data. Therefore, methods have been developed to

minimize the variability problem using the relationship between bite force and

EMG activity.

2.1.3. EMG/Force function characteristics and craniofacial morphology.

2.1.3.1. Reproducibility of EMG-Force function characteristics.

As early as 1952, investigators have tried to find a quantitative relationship

between electrical muscular activity and mechanical muscle tension.

Subsequently, a number of studies (Inman et al, 1952; Lippold, 1952) have shown
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that a linear relationship exists between the amplitude of the surface EMG signal

and isometric tension. The slope of the EMG-tension curve (EMG versus

isometric tension plots) represents the average muscle activity increment exhibited

per unit of force generated over the range of forces produced. This would

indicate that the slope of an EMG-force function curve is more reliable and

therefore more reproducible than absolute EMG measurements because it is

independent of the thickness or other signal-dampening characteristics between

the muscle fibers and the recording electrodes.

Manns et al in 1977, studied the EMG-force function characteristics at

different degrees of muscular elongation for the masseter and temporalis muscles.

They also showed a linear relationship and observed a link between the

steepness of the slope and the amount of elongation. Small elongations (0.5

mm.) were associated with the steeper curves, as opposed to large elongation

which were associated with flatter curves (at small and medium elongations, the

lower force ranges seem to be regulated by the number of motor units recruited

while in the higher force ranges, the increment is mainly due to an increased

frequency discharge of the motor units).

Van Eijden et al in 1989, reported in their results that for all muscles

(anterior and posterior temporalis, masseter, and digastric) and bite force

directions, EMG increased linearly with bite force between 50 N and maximal
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voluntary force. They suggested that for each bite force direction, the muscles

with the largest mechanical advantages may be more active than the ones with

smaller mechanical advantages. In a study done in 1990 on jaw muscle activity

in relation to the direction and point of application of bite force, Van Eijden (1990)

found that for all bite directions, more muscle contraction was required for

production of a constant bite force at the anterior region compared to the

posterior region. Therefore, the point of application of bite force in the moment

arm does have an influence on muscle function. He also showed that, on

average, the activities of the right and left side muscles did not differ in a bilateral

vertical bite. Moreover, in a unilateral vertical bite, there were no significant

right-left differences.

In 1991, Lindauer et al confirmed the validity of the use of the EMG-force

function curves as the most reliable single measurement of the relative

contribution of a muscle toward bite force generation. Their results showed that

the slope of these curves is a highly reproducible, quantitative, and functionally

relevant measurement by which to assess muscle function. Like Manns et al, they

reported a dramatic change of the slope characteristics of EMG-function curves

with degree of jaw opening (Lindauer et al, 1991, 1993); therefore, they

recommended to control this variable as much as possible in studies examining

the mechanisms of masticatory muscle function.
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2.1.3.2. Correlations between EMG-Force function characteristics and

craniofacial morphology.

The wide range of EMG values recorded as a function of isometric bite

force found in previous studies suggests that substantial variation in muscle

function patterns exists among individuals. Lindauer et al (1989) hypothesized

from this finding that variability in muscle function characteristics could be

explained by differences in craniofacial morphology. Their study showed a trend

toward lower muscle activity changes as a function of bite force in subjects with

long mandibles, flat mandibular planes, acute goniai angles and short lower facial

heights. This result is in contradiction with previous studies which reported that

these types of subjects exhibited the greatest masticatory muscle activity during

function; this contradiction was attributed to the lack of function control and the

unreliability of the experimental model in the earlier experiments. In Lindauer’s

study, anatomic and cephalometric measurements demonstrated from a

biomechanical point of view that these subjects would have the most efficient

muscle orientations for generating bite force. Therefore, it seems logical that in

order to produce a certain amount of force, the masticatory muscles in these

subjects would need to contract less. It has been shown that these same types

of subjects are also able to generate the greatest bite forces (Proffit et al, 1983).

On the other hand, although Lindauer et al. (1989) showed a trend, they
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could not demonstrate any statistically significant relationship between EMG-force

function characteristics and morphological features; for 2 subjects out of 14, the

muscle function data did not conform to predictions based on biomechanical

models. They explained the results for these 2 subjects by possible synergistic

muscle contractions. For instance, the synergistic contraction of the temporalis

muscle to aid a biomechanically unfavorably positioned masseter muscle may

decrease the need for that muscle to contract, and may therefore dampen the

effects of morphological characteristics on muscle function. According to these

authors, this would represent an adaptation of the neural control system for oral

function in order to minimize the disadvantageous effects of unfavorable

biomechanical situations.

Other parameters correlated with muscle function, for example, the

cross-sectional area of the masticatory muscles (Sasaki et ai, 1989) as well as

their physiological properties may vary considerably among individuals. Thus, if

most of these previous studies failed in trying to correlate craniofaciai morphology

and muscle function at a statistically significant level, it is probably because they

were dealing with too many parameters comparing different individuals. For these

reasons, it can be beneficial to study the effects of the alteration of the jaw

geometry on muscle function i.e. the influence of orthognathic surgery on the

EMG-force function characteristics, where each individual subject serves as his

or her own control.



19

Most of the studies which utilized EMG/force function curves to assess and

compare muscle function among individuals used normalized values for both

EMG activity and maximum bite force values or used raw values for a given bite

force. On the other hand, if the maximum bite force values are extremely different

from one subject to another, or even worse, for the same subject at two different

time intervals due to the effects of a particular treatment, it is not valid to compare

the EMG/force curves with force values expressed as percentage. For instance,

if a subject is able to generate twice as much bite force after a treatment X with

the same muscle contraction, the slopes of the EMG/force curves will be the same

if normalized bite force values are used, but will be very different if raw bite force

values are used. Therefore, one can compare slope variations only if the raw

maximum bite force values are comparable.

2.2. RELATIONSHIP BETWEEN ORTHOGNATHIC SURGERY AND

MUSCLE FUNCTION.

The relationship between form and function is well documented; but if form

is changed by surgery does function adapt and change? Moss in 1985 brought

up the question, "is the cause of relapse in some of the surgical cases the

consequence of a failure of the soft tissue to adapt to the new form, resulting in

a remodeling of the hard tissues and tooth position?" From a physiologic

perspective, the concept of adaptation refers to the structural and functional
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changes that maintain or enhance functional capabilities in a changing

environment. Adaptive change within the muscles and skeletal components of the

craniofacial complex are governed by the principles of homeorrhesis, or a

constancy of the process by which development comes about, and homeostasis,

or the tendency for the system to remain constant. At any one point of time, the

stomatognathic system is in a balanced, homeostatic condition. A common

consequence of orthognathic surgery is an abrupt and often dramatic change in

the length of the muscles and associated soft tissues, and a change of the

moment arm of the mandible. Therefore, the short-term and long-term results of

orthognathic surgery may depend directly on the process of adaptation and the

principles of homeostasis and homeorrhesis as they relate to the ability of the

musculo-skeletal structures to achieve a new homeostatic, balanced relation.

2.2.1. Mode of postoperative fixation" its significance on muscle

adaptation.

This section will review the literature regarding the influence of the type of

post-operative fixation in term of muscle adaptation as well as the interactive

effects of mandibular advancement and vertical midface changes on muscle

function.

Maxillomandibular fixation (MMF), also called intermaxillary fixation (IMF),
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used to be the only technique employed to allow osseous healing to take place

post-surgically. This type of fixation consisting of immobilization of the mandible

for usually 6 to 8 weeks was accepted as a benign technique in terms of its

effects on the masticatory muscles. However, with the advent of alternate

techniques of post-operative immobilization of the skeletal segments, such as

rigid internal fixation, MMF has been examined more critically.

Mayo et al in 1988, evaluated the histochemical characteristics of masseter

and temporalis muscles after 5 weeks of MMF (following surgery) in Macaca

mulatta. They found that these muscles showed a significant atrophy after the

period of immobilization. This atrophy (major decreases in mean cross-sectional

fiber area) occurred in both type I-slow twitch and type II-fast twitch fibers

indicating that overall recruitment of the muscle and not just of one fiber type of

motor unit was affected during fixation.

Some investigators believed that the use of rigid internal fixation during

surgery would prevent the severe atrophy of the masticatory muscles that have

been demonstrated when mandibular fixation was used (Ellis, 1988; Buckley et

ai, 1989). In order to test this hypothesis, Ellis et al (1988), compared stimulated

molar bite force after mandibular advancement in two groups of adult Rhesus

monkeys, using MMF in one group and rigid internal fixation without MMF in the

other. The results showed that maximum bite force was significantly decreased
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in both groups at 6 weeks after the surgery; however, the animals who had rigid

fixation alone had significantly greater bite force at 6 weeks post-surgically than

the animals who had MMF. However, at the ninth postoperative week, there was

no longer any significant difference between the two groups, indicating that the

animals in the MMF group recovered after the MMF had been removed (at 6

weeks).

From a review of these studies, it is clear that when a muscle is

immobilized, atrophic changes will occur. Moreover, previous studies found that

immobilizing a shortened muscle causes more severe changes than

immobilization alone (Jokl et al, 1983). This finding indicates that one should

strive to maintain the preoperative position of the proximal segment when

performing the sagittal ramus osteotomy. Any upward and forward proximal

segment rotation after mandibular osteotomy will shorten the masticatory muscles;

their immobilization during the period of MMF may cause more extensive

irreversible changes within the muscle fibers, leading possibly to some permanent

loss of bite force capability. The use of rigid fixation has the advantage of

allowing the operator to control accurately the position of the proximal segment

and to secure it there reliably. Additionally, when the mandible is allowed to

function throughout the period of osseous healing, less myoatrophy will occur.

Rigid internal fixation permits the initiation of physiotherapy earlier than when

MMF is used, this can lead to a more rapid regain of bulk and strength, and
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should be manifested clinically as a smaller reduction in bite force capability.

Many studies have shown that when using MMF, most of the relapse

occurred within 6 to 8 weeks following surgery during the period of fixation, and

little is seen thereafter. The muscular and soft tissue forces seem to be sufficient

to reposition the skeletal segments into their stable positions, since the osteotomy

sites are in the process of active remodeling and healing, and do not obtain

sufficient antagonist strength to overcome the muscular forces. This finding

suggests that once the proximal and the distal segments have become sufficiently

healed, relapse ceased. This brings up the question’ if the skeletal segments were

solidly secured to one another at the time of the surgery, would relapse be

prevented?

During the past decade, clinicians tried to find a way of holding the distal

segments in their postoperative position until the bones had healed and the soft

tissues (suprahyoid complex for mandibular advancement and masticatory

muscles for vertical changes) had adapted to lengthening. Shendel and Epker

(1980), found a direct correlation between the use of skeletal suspension wire

fixation and postoperative stability. Another method to hold the skeletal structures

until the muscles and soft tissues have adapted is to use internal rigid fixation at

the time of the surgery. Reitzig and Schoorl in 1983, demonstrated that if the

bony segments are stabilized in tight contact, primary bone healing takes place
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into the osteotomy sites. They compared rigid and semi-rigid fixation in an animal

model in which small gaps (0.75 mm.) were created bilaterally in the mandible.

At 6 weeks after surgery, the rigidly fixed sides showed no visible external callus

and the semirigidly fixed sides showed large visible external callus. The use of

rigid fixation has been shown to provide the necessary interfragmentary rigidity

to overcome the forces of the musculature complex (Kirkpatrick et al, 1987; Ellis

et al, 1988; Satrom et al, 1991). Therefore, with the use of rigid internal fixation,

more muscular than skeletal adaptation will take place in order to reestablish after

surgery a new biological equilibrium of the stomatognathic system.

2.2.2. Interactive effects of mandibular advancement and setback and

muscle function.

2.2.2.1. Mandibular advancement.

The advancement of the mandible is the most common orthognathic

surgical procedure performed on the U.S. population (high prevalence of class

II malocclusion) and historically considered one of the least stable.

2.2.2.1.1. Effects of the muscles on the stability of mandibular

advancement.
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Surgical procedures that lengthen the muscles and soft tissues beyond

their normal physiologic rest position may significantly increase both active and

passive muscle tension and thus, place undue stress on repositioned osseous

segments. For this reason, surgeons nowadays prefer to use the bilateral sagittal

split osteotomy to advance the mandible in most of the cases, in order to not alter

masticatory muscle length. Nevertheless, this procedure generates elongation of

the suprahyoid complex and, according to many clinicians, tension produced by

the stretched suprahyoid muscles and associate tissues is one of the primary

causes of relapse after mandibular advancement.

Ellis and Carlson (1983), tested this hypothesis in performing mandibular

advancement in 10 Rhesus monkeys with and without suprahyoid myotomy in 5

of each. Lateral cephalometric radiographs with the aid of presurgically implanted

bone markers showed a significant amount of relapse in the group without the

myotomy during the first 6 weeks, when compared with the myotomy group who

showed no relapse.

In contrast, Wessberg and coworkers, in a 1982 analysis of 16 patients

from a multicenter sample, found no significant differences between a human

control and a myotomy group. Differences between these two studies might be

attributed to differences between animal models and humans.
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A later study (Carlson et al, 1987) demonstrated that the suprahyoid

complex, itself, is elongated with mandibular surgery. Using radio-opaque

markers implanted in the suprahyeid muscles in Rhesus monkeys, they found that

both short term changes and long term adaptations to lengthening of the

suprahyoid complex as a result of mandibular advancement occurred primarily

within the connective tissues comprising the muscle-tendon and muscle-bone

interfaces. However, in 1988 Reynolds et al found that, in contrast to smaller

advancements where the adaptive changes occurred at these interfaces, with

larger advancements, changes also occurred in the bellies of the muscles. These

adaptive changes consist of new sarcomeres incorporated at these interfaces as

well as geometric rearrangements of fibers within the muscle (Mc Namara et al,

1978).

Nevertheless, although many studies demonstrated that the musculature

does play a significant role regarding the amount of post-operative relapse,

instability after mandibular advancement is multifactorial" mode of fixation, surgical

technique, magnitude of advancement, and condylar displacement can lead to

relapse as various investigators have shown (Lake et al, 1981; Will et al, 1984; Will

et al, 1989).

Rigid internal fixation has decreased the amount of horizontal relapse

(Satrom et al, 1991 ). However, with large advancements, there is no question that
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the ability of the soft tissues to adapt can be exceeded (Van Sickels et al, 1988).

The current fear is that instead of seeing relapse only of the distal skeletal

segment, as one did in the past, we will see relapse of the entire mandible with

large advancements. The temporomandibular joint may be the site of the

posterior translation, distalizing or causing resorption of the condyles (Barer et al,

1987).

In the planning of orthognathic surgical procedures, every effort should be

made to maximize adaptations within the soft tissue components of the

craniofacial region so as to minimize adaptations occurring in the skeletal

structures of the face. It is obvious that beside the use of internal rigid fixation,

muscle detachment and reattachment are procedures that can be employed to

reestablish functional and skeletal balance in the postsurgical individual, thereby

minimizing the amount of relapse. However, one must weigh the advantages of

increased stability with the dangers of morbidity. Excessive detachment of the

musculature obviously has an effect upon the vascular and nervous supply to the

craniofacial complex (McNamara et al, 1978; Bell et al, 1980).

2.2.2.1.2. Effects of mandibular advancement on muscle function.

Dechow and coworkers in 1986, evaluated the extent to which postsurgical

masticatory function can be predicted from a model of craniofacial biomechanics
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in a group of 63 experimental animals. Maximal stimulated bite force was

measured in the molar region in a group of normal Rhesus monkeys and in a

group that had undergone surgical advancement of the mandible at least one

year prior to bite force measurement. The results demonstrated that, on the

average, the operated monkeys had a long term loss in bite force relative to the

control animals. These results can be understood in mechanical terms as a result

of an increase in the length of the moment arm while the lengths of the

masticatory muscles remain constant. However, these results indicated a greater

and more variable change in bite force than would be predicted on the basis of

biomechanical considerations. The surgical procedure used in this study might

have had an influence; the detachment and reattachment of the masseter muscle

from the ramus of the mandible to expose the bone for subsequent osteotomy

may have resulted in muscle fiber destruction or partial denervation. Decrease

in bite force then might result from a combination of a decrease in mechanical

advantage and iatrogenic damage of the masseter muscle.

Given the change in the mechanical advantage of the masticatory muscles

following mandibular advancement, we would expect that these muscles are

required to contract more to maintain a masticatory force similar to the presurgical

one. It has been well documented that such added loads on muscle result in

muscle fiber hypertrophy (Dons et al, 1979).
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Proffit et al in a study done in 1989, investigated the effect of surgery on

occlusal force. Regarding the mandibular osteotomy, advancement on the

average produced a small negative change in the mechanical advantage of the

temporalis but a small positive change in the masseter muscle. However, they

did not find a correlation between the amount of advancement and the change

in mechanical advantage of the temporalis or masseter muscles. According to

them, occlusal force is considerably affected by orthognathic surgery but the

direction of the change seems to be unpredictable. It does not appear to be

related to the change in jaw morphology. However, the technique of the surgical

procedure and the mode of fixation were not described in this study; they might

have a direct influence on the results obtained.

2.2.2.2. Mandibular setback.

The setback of the mandible is considered as a more stable surgical

procedure than mandibular advancement. A number of surgeons, however, have

reported some degree of relapse after this procedure. The etiology of relapse,

whether wires or screws are used, is thought to be multifactorial" tongue pressure

after reduction of tongue space (Simpson, 1974; Moss, 1984), lack of control of

the condylar position into the fossa during fixation of the proximal segment

(Leonard et al, 1985; Szilagyi et al, 1987), and altered activity and failure of the

masticatory muscles to adapt to the repositioned segments (Peppersack et al,
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1978; Moss, 1984; Michiwaki et al, 1989), are the most common factors

described. The next section will focus on the two last factors cited.

2.2.2.2.1. Effects of the muscles on the stability of mandibular setback.

Kobayashi et al (1986) evaluated the amount of horizontal and vertical

relapse in a sample of 44 patients who underwent a sagittal ramus osteotomy for

correction of prognathism. Their results indicated that the magnitude of horizontal

relapse was proportional to the amount of setback of the mandible. Furthermore,

they found that the tendency for relapse was also increased when lateral shift of

the mandible occurred at surgery. According to them, the unbalanced tension of

the musculature and surrounding soft tissues was the principal factor which

affected the stability of the surgical procedure. But, these results are not

surprising since they used circumferential wire and MMF methods; the muscles

and soft tissues did not apparently adapt in length to the new jaw position.

Most of the studies evaluating the stability of the mandibular setback

procedure using only wire fixation and MMF reported a significant amount of

vertical relapse. The counterclockwise rotation of the proximal segment as well

as the clockwise rotation of the distal segment occurring after surgery were

leading to an increased mandibular plane steepness and anterior facial height.

(Ridell et al, 1971 Ingervall, 1979; Proffit et al, 1991). Kobayashi et al (1986) did
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not show such a significant degree of vertical relapse due to the use of a chin cap

for 6 months after the surgery. However, the inferior movement of the symphysis

was noticed later when this orthopedic appliance was discontinued. Therefore,

the chin cap using only intermittent forces was not efficient enough to induce

muscle adaptation in non growing subjects.

Komori et al (1989) found that the degree of inadvertent anteroposterior

rotation of the proximal segment at surgery rather than the extent and pattern of

surgical repositioning of the distal segment was significantly correlated with the

degree of relapse. If the position of the proximal segment is not controlled during

the procedure, the pterygomasseteric sling will tend to reposition the condyle in

its preoperative location (Michiwaki et al, 1989). Therefore, they recommended

the proximal segment be preserved in its exact presurgical anatomic position

using an instrument ensuring an accurate control during the procedure.

When rigid internal fixation (RIF) is used to secure the proximal to the

distal segment after setback of the mandible, the stability of the vertical dimension

has been showed to be superior than when intraosseous wire technique were

used (Proffit et al, 1991). This method of fixation allows to overcome the tension

of the masticatory muscles and soft tissues on the proximal segment.

Nevertheless, studies found that patients who underwent a bilateral sagittal
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split osteotomy (BSSO) with the use of RIF for correction of prognathism showed

a significant degree of horizontal relapse (Franco et al, 1989; Proffit et al, 1991).

According to Franco et al (1989), the amount of relapse was proportional to the

degree the mandible was set back and due to the change in the spatial

arrangement of the muscles and the connective tissue components. Proffit et al

(1991 ) interpreted their results by giving two possible explanations for the forward

movement of the chin postsurgically: the first reason, according to them, is the

muscular pull which repositions the mandible forward and the second one is the

retroposition of the condyles into the fossa during the surgery. If the condyles are

pushed too far posteriorly for patient comfort, forward repositioning of the

mandible (mainly caused by the contraction of the lateral pterygoid muscle) will

be expected postsurgically. This forceful posterior seating of the condyles before

applying fixation may be an indication for mandibular advancement to prevent

relapse, but should be avoided for mandibular setback.

The results indicated by these different studies show that the stability of the

mandibular setback procedure can be highly improved by counteracting the

muscular forces by using RIF as a method of fixation associated with an accurate

control of the condylar position into the glenoid fossa in order to preserve its

preoperative anatomic location.

2.2.2.2.2. Effects of mandibular mandibular setback on muscle function.







35

inadequate control of function have been shown to lead to unreliable and non

reproducible data (Garnick, 1975; Manns et al, 1977). In addition, the use of

intracutaneous electrodes by itself is not a reproducible and a reliable method to

assess the function of the whole muscle. The control of the electrodes position

is so critical that it does not allow comparisons between individuals and for the

same individual at different time registrations. Furthermore, when they evaluated

the muscle activity during maximal bite, the bite force was not recorded. It would

have been more appropriate to compare the muscle activity in function of the bite

force produced, to permit normalization of the data and comparison between the

subjects and at the different periods (Lindauer et al, 1991).

2.2.3. Interactive effects of vertical midfacial changes on muscle function.

Orthognathic surgical procedures designed to reposition the entire maxilla

or any of its components may result in stretching or shortening of the muscle

fibers, altering the direction of the muscle action, and changing the mechanical

advantage of the muscles.

2.2.3.1. Vertical midfacial reduction.

Vertical midfacial reduction produces an autorotation of the mandible by

which the elevator muscles may become shortened. Because the muscles are
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not lengthened, one would not expect either active or passive distracting forces

on the repositioned maxilla from the mandibular musculature. Therefore, it is not

surprising that superior repositioning of the maxilla by LeFort osteotomy is

probably the most stable orthognathic surgical procedure (Proffit et al, 1987).

However, with the autorotation of the mandible, the biomechanics of the jaw may

be altered.

Throckmorton and coworkers (1984) demonstrated in a two-dimensional

biomechanical model, that superior repositioning of the maxilla should improve

the mechanical advantage of the mandibular elevator musculature. They defined

the mechanical advantage of a muscle in terms of the perpendicular distance

from condyle to muscle over the. perpendicular distance from condyle to load.

Indeed, the major effect of raising the maxilla is to decrease the distance between

the point of bite and the condyle. They showed that since the insertions of the

masseter and temporalis muscles are closer to the condyle than the molars, the

amount of movement of these points during autorotation is less than the

movement at the molars. Thus, the moment arms of the muscle are less affected

by the rotation than is the moment arm for bite load. They demonstrated that the

impaction of the maxilla resulted in an increased mechanical advantage for the

temporalis muscle, while the mechanical advantage of the masseter muscle

stayed the same" the moment arm for the masseter muscle decreased at

approximately the same rate as that of the bite force. The reverse is true when
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the maxilla is repositioned inferiorly.

Theoretically, long-faced individuals who have undergone correction of

vertical maxillary excess should, therefore, be better able to produce occlusal

forces given a constant muscular activity. Unfortunately, clinical investigations

have not been able to corroborate these hypotheses. Johnston and coworkers

(1984), evaluated a small sample of individuals with vertical maxillary excess using

EMG and bite force measured before and after superior repositioning of the

maxilla. Half the subjects had substantial decreases in EMG activity for a given

bite force, and half had increases; only one patient reached the values predicted

by the biomechanical model.

Proffit and colleagues in 1989, measured bite force before and at various

intervals after superior repositioning of the maxilla in 9 patients. They found great

variability in occlusal force after surgery. Further, the calculated change in

mechanical advantage of the masseter and temporalis muscles using

Throckmorton’s model was very small postoperatively. No patient showed a

change in mechanical advantage greater than 10%. Once again, although bite

force was affected by this surgical procedure, the magnitude and direction of the

changes were unpredictable.

The high variability obtained in these studies could be explained by many
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parameters that were not taken into account: the patients differed in the extent of

deformity, age, and body weight. Further, it was not possible to quantify the

effects of postoperative immobilization of the mandible by MMF. Additionally,

maxilla impaction was often associated with mandibular surgery. Another

possible reason for the observed variability in bite force could be alterations in the

size or fiber distribution of the masticatory muscles. However, in 1989 Boyd et

al, in a study of 2 patients with vertical maxillary excess on whom preoperative

and postoperative biopsies were analyzed, have shown that the histochemical

characteristics of the superficial masseter muscle undergoes minimal change in

fiber distribution or fiber size after superior repositioning of the maxilla. Of note

was the lack of any changes in the muscles, such as fiber atrophy or pathologic

changes that might adversely affect function. They concluded that autorotation

of the mandible resulting from maxillary surgery had no clinically significant effect

on the fiber composition of the elevator muscles.

Because the data regarding the functional consequences of superior

repositioning of the maxilla are highly variable, the only conclusion drawn from

these studies is that patients probably will not be any worse functionally as a

result of this surgery, and some may be improved.

2.2.3.2. Vertical midfacial augmentation.
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Vertical midfacial augmentation produces an autorotation of the mandible

(in the clockwise direction) which should decrease the mechanical advantage of

the masticatory muscles according to Throckmorton’s (1984) biomechanical

model.

This autorotation may also stretch the mandibular elevators and create

increased stress on the inferiorly repositioned maxilla and the interpositional bone

graft. Clinical investigations have reported that vertical midfacial augmentation is

an extremely unstable procedure, with relapse rates of zero to hundred percent

(Bell et al, 1981; Quejada et al, 1987). This high relapse tendency may be due

to a lack of adaptation of the masticatory muscles to the new jaw geometry.

Studies using bite opening appliances (McNamara et al, 1978; Yellich et

al, 1981; Carlson et al, 1983) showed that the stretched mandibular elevator

muscles cause marked anterior and superior displacement of the maxilla and

severe dental intrusion in adult monkeys even when no surgery has been

performed on the maxilla. Further proof of the role of the masticatory muscles in

relapse was the finding that myotomy of the pterygomasseteric sling reduces the

amount of maxillary displacement. However, Faulkner and coworkers (1978)

showed that the lengthening of muscles by the introduction of a bite opening

appliance resulted in an adaptation of fiber length by addition of new sarcomeres.



40

The main reason which can explain the great amount of instability of this

surgical procedure is that most of the previous clinical investigations did not use

rigid internal fixation to secure the skeletal segments together; indeed, when the

skeletal segments are not rigidly secured, the masticatory muscles stretched

beyond their resting length, tending to move the maxilla back to its original

position until the healing process was achieved. Therefore, more skeletal than

muscular adaptation occurs to reestablish homeostatic conditions.

Ellis and colleagues (1989), designed an experimental investigation on 18

adult female monkeys to test the following hypotheses" (1) preadaptation of the

mandibular elevator muscles to an increased length by the use of a bite opening

splint will help to reduce relapse tendencies post-operatively; (2) myotomy of the

elevator muscles will help to reduce relapse-tendencies, and (3) more stable

means of fixation will help to counter the forces of the elevator muscles on the

interpositional bone graft and thereby reduce relapse tendencies. The results

demonstrated that the mandibular elevator muscles do play a significant role in

relapse after inferior repositioning of the maxilla. They showed that a combination

of rigid fixation along with myotomy and preadaptation of the elevator muscles

improve stability. However, a combination of these methods may not be

necessary in the clinical setting. Indeed, animal studies differ from clinical studies

in many points. First, patient compliance is always a significant factor in

determining surgical success; the monkeys could not be taught to avoid
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development of occlusal forces in the postoperative period. Second, the amount

of midfacial augmentation must be taken into consideration" in the clinical setting,

it is unusual to augment the midface the degree to which the animals were

downgrafted. Further, patients with vertical midface deficiency usually have an

increase in the interocclusal freeway space into which the maxilla can be

repositioned.

2.3. SUMMARY.

Taking into account the findings of the studies which examined the

relationship between craniofacial morphological characteristics and bite force

ability, long face individuals with a long mandible, an obtuse gonial angle, and a

steep mandibular plane, present a less efficient muscle configuration to produce

bite force.

Conversely, individuals with a short facial vertical dimension, a short

mandible, an acute gonial angle, and a flat mandibular plane have the most

efficient craniofacial characteristics and are able to generate very high bite force

levels (Ringqvist, 1973; Throckmorton, 1980, 1985; Proffit, 1983; Haskell et al,

1986). Individuals with large muscle cross-section, anteriorly located and

perpendicularly oriented muscles would also be able to produce higher bite

forces (Koolstra et al, 1988a; Sasaki et al, 1989; Van Spronsen et al, 1992).
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Therefore, one can expect that changes in these different craniofacial

parameters as a result of surgery (mandibular advancement, mandibular setback,

facial height reduction, facial height augmentation) would produce predictable

changes in bite force and EMG levels. Unfortunately, none of the clinical studies

reviewed showed a consistent change in bite force or EMG activity for a given

surgical procedure.

The reason of this lack of correlation between structural skeletal changes

and masticatory muscle function may be due to different factors" (1) measurement

of muscle mechanical advantage, relying on skeletal radiographic landmarks

extremely difficult to identify, assumes that muscle orientation and location are

always the same for a particular facial type; (2) difficulty in standardizing function;

(3) failure to control degree of jaw opening; (4) use of non customized bite blocks

to record maximum bite force; (5) failure to control local EMG electrode

conditions; (6) variations in the direction of the bite force; (7) lack of homogeneity

of the samples regarding surgical technique; (8) complex neurophysiologic

adaptations that may occur after surgery and compensate for the structural

changes in jaw geometry.

The functional changes of the masticatory muscles can be studied in two

ways" (1) by comparing bite force ability, and (2) by comparing muscle

contraction characteristics before and after surgery. Comparisons can be made
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for both absolute and relative changes in bite force presurgically versus

postsurgically, using quantitative force measurements. Muscle contraction effects

can be determined by comparing the absolute maximum EMG values and the

slopes of the EMG/Force function curves pre and postsurgically.

There are, however, some inherent limitations in this type of investigation"

First, for maximum bite force measurements, the fear of biting hard and the

soreness of the maxillo-mandibular complex may lead to an inaccurate recording

of the true physiologic maximum, especially immediately postsurgically; second,

due to the difficulty of controlling local conditions, the comparison of absolute

EMG values may not be a reliable method to assess changes in muscle

contraction. However, if the changes observed are considerable and consistent

for a given surgical procedure, this method can be utilized at least to estimate the

relationship between structural changes and muscle function. Finally, the

comparison of the slopes of the EMG/Force function curves can only be made if

the bite force levels are comparable among patients and for the same patient at

the different recording times.



3. OBJECTIVES AND HYPOTHESES.

The overall objective of this study was to determine the effects of surgically

changing mandibular length and facial vertical dimension on maximum voluntary

bite force and on the functional characteristics of the masseter and anterior

temporalis muscles in different orthodontic patient populations. These effects

were measured six weeks and six months postsurgically.

The specific aims of this study were to"

(1) Measure and compare the maximum voluntary bite force

generated at the molar and incisor areas during isometric

contraction before orthognathic surgery (TO), and at six weeks (TI),

and at six months (T2) postsurgically.

(2) Compare the functional characteristics (absolute EMG

activity and slopes of EMG/Force function curves) of the masseter

and anterior temporalis muscles during isometric contraction at (TO),

and at (T1), and (T2).

(3) Verify the structural changes brought about by surgery by

comparing the cephalometric measurements at (TO), immediately

after surgery (T1), and at (T2), and relate those to changes in

44
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maximum voluntary bite force and masseter and anterior temporalis

muscle function.

The following hypotheses were tested"

(1) There is a relationship between presurgical facial type and

maximum bite force and EMG levels.

(2) Absolute maximum bite force levels change postsurgically,

at both the molar and incisor regions. The direction and extent of

these changes are linked to a given surgical movement.

(3) The contribution of the masseter and temporalis muscles

to the generation of bite force changes postsurgically, and that

these directions and extent of these changes can be predicted by

post-surgical changes in craniofacial morphology.



4. MATERIALS AND METHODS.

4.1. SUBJECTS.

The subject sample consisted of fifteen patients who had undergone

orthognathic surgery at the University of Connecticut Health Center (UCHC).

These patients were studied immediately before surgery (TO), and at 6 weeks (T1)

and 6 months (T2), postsurgically. All subjects had undergone presurgical and

postsurgical phases of orthodontic treatment at UCHC in order to optimize

"functional" and aesthetic outcomes. For every subject, their orthodontic

appliance was present throughout the study period to eliminate the introduction

of another variable to the study. Decisions concerning diagnosis and type of

surgery to be performed were made jointly by the orthodontics and oral surgery

attending staff. The surgical movements (horizontal and/or vertical directions) had

to be more than three millimeters. The patients were older than eighteen years

of age, and did not show any signs of potential growth. Patients who had

congenital craniofacial syndromes, traumatic injuries or previous orthognathic

surgery were excluded from this study.

4.2. SURGICAL PROCEDURES.

Patients who were candidates for a bilateral sagittal split osteotomy (BSSO)

46
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with or without a LeFort osteotomy (LFIO) were selected for this study.

The choice of the surgical procedures was made in order to evaluate the

influence of lengthening the moment arm on the masseter and temporalis

muscles, and to study the effects of shortening or lengthening these muscles on

muscle function.

A BSSO was performed to advance or setback the mandible (Figs. la &

lb). Changes in the anterior facial height (AFH) were achieved by either altering

the mandibular plane angulation with a BSSO (Figs. 2a & 2b), repositioning the

maxilla with a downgraft LFIO (Fig. 3a) or a LFIO impaction (Fig; 3b), or a

combination of both BSSO and LFIO.

Model surgery and a surgical occlusal splint made in acrylic were used for

every patient in order to permit optimal control during the surgical procedure.

The splint was removed approximately at six weeks postsurgically. The bony

segments in all these procedures were secured by internal rigid fixation and the

intermaxillary fixation (IMF) period following surgery was minimum or nonexistent.



48

a. Mandibular advancement.

b. Mandibular setback.

Fig. 1. Variations of the mandibular length with a
bilateral sagittal split osteotomy (BSSO).
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a. AFH augmentation by clockwise rotation
of the mandibular distal segment.

b. AFH reduction by counterclockwise rotation
of the mandibular distal segment.

Fig. 2. Variations of the anterior facial height
(AFH) by altering mandibular plane angulation with a BSSO.
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el AFH augmentation by a downgraft LeFo osteotomy
(Clockwise autorotation of the mandible).

be AFH reduction by a LeFort osteotomy impaction
(Counterclockwise autorotation of the mandible).

Fig. 3. Variations of the AFH with LeFort osteotomies.
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4.3. DATA RECORDING AND ANALYSIS PROCEDURES.

4.3.1. Force measurements.

Force measurements for each subject were obtained using a force

transducer system (Kistler, 5400) that included a miniature quartz transducer (6.0

mm. diameter and height) imbedded in a specially constructed bite block at both

the molar and incisor regions, producing a 12 mm. jaw opening (Figs. 4a & 4b).

in this system, the force applied to the transducer acts on a quartz element

through two face plates. The longitudinal force effects on the two face plates

induce a proportional electrostatic charge in the quartz element. A charge

amplifier serves as both a power source and conditioning amplifier for the quartz

element and outputs a force-proportional dc voltage that is recorded on a

separate channel of the instrumentation tape recorder.

The bite blocks were made with a material from the polyester family (TAK,

Hydroplastic) that has the property to be softened in hot water (165 F); after

manipulation during the plastic period, the material becomes unbreakable after

five minutes or instantly when placed in cold water. This material, which has been

tested for safety, does not need any mixing or polymerizing and can be directly

placed in the patient’s mouth at the plastic stage.
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12mm.

a. Posterior customized bite block with force transducer.

12mm. I

b. Anterior customized bite block with force transducer.

Fig. 4. Force measurement device.
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The bite blocks were constructed for the molar region (unilaterally) and the

incisor region at one unique jaw opening of 6 mm. measured at the mesio-buccal

cusp of the first maxillary molar. Therefore, the mandibular plane angulation

remained the same for measurements at both the molar and incisor bites. The

interposition of the force transducer between the two separate components of the

bite block (each one for the maxillary and mandibular arches respectively)

produced a total disocclusion of 12 mm. at the molar area. The fabrication of two

separate parts independent to each other facilitate the measurement of absolute

maximum bite forces.

Each site was lined with a layer of soft_ wa. in order to protect the brackets

and arch wires during the construction of the bite blocks. A solid gauge made

out the same material was first fabricated and placed at the contralateral side in

order to achieve an 8 mm. disocclusion measured with a bow divider at the

mesio-buccal cusp of the first maxillary molar. Then, the two components

(separated by a rectangular piece of wax 1 mm. in height), were placed during

their plastic stage between the maxilla and the mandible, and the patient was

asked to bite until reaching the gauge placed at the contralateral side. At this

stage, the material (which was still transparent) permitted the identification and the

marking of the maxillary first molar as well as the maxillary and mandibular

midlines on the bite blocks. Then, before the material was totally set, the

rectangular piece of wax was removed. At this time, the force transducer was
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inserted between the superior and inferior components of the bite block at the

previously marked molar area and maxillary midline for the posterior and anterior

bite blocks, respectively. After confirming that the subject was not deviating his

mandible forward or laterally, he was asked to bite very gently on the force

transducer in order to create a slight groove on the bite blocks (0.5 mm. deep for

each component). This groove permitted the patient to hold the force transducer

at the exact same location and to keep the same mandibular position during the

experiment. The superior and inferior parts were then taken out, placed in cold

water, and reintroduced into the mouth to verify their fit.

4.3.2. Electromyography.

All recordings for both the superficial masseter and anterior temporalis

muscles were made using commercially available bipolar surface electrodes

(Sensormedic Miniature) that were attached to the skin using double sided

adhesive tape. Placement for both muscles was aided by palpation. Based on

current practice, superficial masseter location is determined as an area midway

along a line connecting the inferior border of the zygomatic arch at the

zygomaticotemporal suture to the gonial angle. The anterior temporalis site was

determined by having the subject clench and retrude the mandible. Electrical

impedance at sites of electrode contact was reduced by light abrasion and

application of a saline gel. Lateral photographs were taken of the electrode sites



55

for purposes of documenting and replicating locations for subsequent recordings.

The raw EMG signals were led from the electrodes by insulated wires to two

differential input amplifiers (CWE, 831) where they were amplified using a gain of

1000. The signals were band pass filtered between 2-2000 Hz to remove

movement artifacts and high frequency noise. The data signals for each muscle

were then stored on a digital audio tape cassette recorder (TEAC, RD-111T).

Figure 5 shows a schematic representation of the recording system.

4.3.3. Data acquisition and processing.

The EMG activity and bite forces were recorded at ten different levels

ranging from the maximum voluntary bite force (MVBF) to ten percent of this value

in ten percent decrements. Each level of force was visually controlled and

monitored on the oscilloscope by the investigator. After this step, all data

processing was performed on an IBM PS/2, Model 70 microcomputer, using a

commercially available data acquisition and analysis hardware and software

system (Crisal PC, Version 2.5). The EMG signals and the dc force signal were

played back through the data recorder through an analog-to-digital converter at

a sampling rate of 2 Khz. The data, in 2 second sample sizes, were

demultiplexed and stored as raw data files. Each raw data file was then digitally

high-pass filtered at 2 Hz to remove any dc offset voltages.
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Fig. 5. Data acquisition and processing.
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The power density spectrum and RMS power level for each 2 second

sample was then calculated with the results stored in a separate analysis file. The

power density spectrum was readily displayed on the monitor and plotted on

graphics printer. The RMS and Total power values were output in numerical form.

4.3.4. Determination of Changes in Skeletal Structure.

Standard lateral cephalometric radiographs were taken at UCHC at (TO),

immediately after surgery and (T2), to measure the structural changes achieved

by the surgical procedures, as well as the stabilit of those changes. These

radiographs were traced, superimposed on the anterior cranial base, and

analyzed by the same individual. Sixteen skeletal and dental landmarks (Fig. 6)

were used in order to measure eighteen linear (Fig. 7) and nine angular (Fig. 8)

measurements from an X-Y coordinate system (Table 1). For the lateral

cephalometric radiograph taken immediately after surgery, the mandible was first

traced separately and autorotated closed around an arbitrary axis located 5 mm.

above Articulare until reaching posterior occlusal contact in order to compensate

for the presence of the surgical occlusal splint.

A biomechanical model was not used in this study because of the

difficulties encountered by others investigators to define precisely and reliably the

mechanical advantage of the muscles and moment arms.
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Fig. 6. Cephalometric landmarks.
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Fig. 7. Linear measurements.
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Fig. 8. Angular measurements.
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Table 1. Cephalometric measurements.
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The cephalometric data permitted us to determine the following

parameters: (1) presurgical mandibular morphology and facial height; (2) surgical

changes of the mandibular length, anterior and posterior facial height, and

mandibular plane angle; (3) extent of the surgical movement; (4) surgery on

mandible, maxilla, or both. These different parameters allowed to group the

subjects in different categories.

4.3.5. Data analysis.

4.3.5.1. Subject classification.

The fifteen patients were grouped in different categories according to their

presurgical morphological type and, the direction of the surgical movements. The

limited number of subjects did not permit classification according to the extent of

surgical movement. Since the cephalometric analysis revealed only insignificant

changes in posterior facial height, only anterior facial height and mandibular

characteristics were used to identify the groups. The patients were divided into

four presurgical morphological types: (1) retrognathic mandible (9 observations),

(2) prognathic mandible (5 observations), (3) short anterior facial height (2

observations), and (4)long anterior facial height ( 10 observations). The same

subjects were also divided into six surgical categories: (1) mandibular

advancement (10 observations), (2) mandibular setback (4 observations), (3)
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anterior facial height reduction (9 observations), (4) anterior facial height

augmentation (5 observations), (5) mandibular plane angle reduction (10

observations), and (6) mandibular plane angle augmentation (3 observations).

4.3.5.2. Bite force.

The distribution of patient showing" (1) an increase of maximum voluntary

bite force (MVBF), (2) a decrease of MVBF, and (3) no change of MVBF,

postsurgically, was compared to the expectation of no change if surgery was not

performed. These frequencies were tested for significance with a non parametric

analysis (Fisher’s Exact Test).

Absolute values of MVBF for both molar and incisor were compared at (TO),

(T1) and (T2). The differences between (TO), (T1), and (T2) were expressed as

a percentage of the bite force at (TO) for each individual group in order to

normalize the data. The relationship between molar and incisor bite forces was

studied by comparing the ratio of molar bite force/incisor bite force at (TO), (T1),

and (T2). All these differences were tested for significance within each group with

a t-test, and between the groups with an analysis of variance (General Linear

Models procedure, SAS).
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4.3.5.3. EMG/Force Function curves.

For each subject for whom the maximum voluntary bite force values were

comparable (less than 10% different) at (TO), (T1) and (T2), plots of bite.force

versus EMG (RMS power) were constructed for each muscle for the molar and/or

incisor bites. Linear regression analysis was used to construct EMG-force

function curves that were compared in term of slope variations at (TO), (T1) and

(T2). Procedures outlined by Lothar Sachs (1984) were employed to determine

whether differences between the presurgical and postsurgical slopes were

statistically significant.

4.3.5.4. Electromyographic activity.

Raw maximum EMG activity values of the temporalis and masseter muscles

for molar and incisor bites were compared at (TO), (T1), and (T2). Differences

from (T1) to (TO), and (T2) to (TO) were expressed as a percentage of the

presurgical EMG activity for each group. Ratios of temporalis / masseter muscle

activity for both molar and incisor were compared to evaluate the changes in the

contribution of each muscle to the bite force; t-tests were used to determine if the

changes of these variables were statistically significant within groups, and a

univariate analysis of variance was used for between-group comparisons.



5. RESULTS.

The short-term results at 6 weeks postsurgically were inconsistent and

probably erroneous because of the patient’s fear of biting hard due to relative

soreness of the jaws. In most of the subjects, the maximum voluntary bite force

recorded at 6 weeks was very low and probably did not reflect a true physiologic

maximum but more a psychological limitation in order to avoid pain. For this

reason, we disregarded the results obtained at 6 weeks and examined only the

presurgical and the 6 months postsurgical comparisons.

5.1. BITE FORCE.

5.1.1. Relationship between presurgical craniofacial morphology and

maximum bite force.

The short and long anterior facial height groups showed statistically

significant differences for both molar and incisor bite force presurgically (Figs. 9a

& 9b). The molar and incisor bite forces were much greater for the short anterior

facial height subjects (SAFH) than for the long anterior.facial height ones (LAFH).

Mean maximum bite force levels were 23.8 kg for (SAFH) and 8.5 kg for (LAFH)

at the molar and 9.8 kg and 3.3 kg at the incisor, respectively.

65
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incisor bites.
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Maximum bite forces decreased in the following order: (1) long anterior

facial height (LAFH), (2) retrognathic mandible (RM), (3) prognathic mandible

(PM), and (4) short anterior facial height (SAFH) (Figs. 10a & 10b). However, no

statistically significant differences were found between the RM and the PM groups.

The ratio of the molar bite force /incisor bite force was approximately equal

to 3.0 for the four groups. The molar bite force levels were therefore about three

times greater than the incisorones.

5.1.2. Postsurgical changes in maximum bite force.

The results in this section are described according to the two different ways

that were used to group the subjects" (1) presurgical skeletal morphology, and

(2), surgical procedures.

5.1.2.1. Postsurgical changes in maximum bite force based on presurgical

skeletal morphology.

A non parametric analysis (Fisher’s Exact Test) was used first to determine

the distribution of patients who showed" (1) an increase of MVBF, (2) a decrease

of MVBF, and (3) no change of MVBF, postsurgically, in comparison to the

expectation of no changes if surgery was not performed. The results expressed
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as frequencies are displayed in Table 2. For the SAFH group, 2 out of 2 subjects

showed a decrease in molar MVBF (-20% to -48.6%); 1 showed a decrease in

incisor MVBF (-25%) and 1 showed no significant change. For the LAFH group,

8 out of 10 showed an increase in molar MVBF (+ 17% to +567%) and 2 showed

a decrease (-66.7% to -71.4%); for incisor MVBF, 5 out of 10 exhibited an increase

(+50% to +350%), 2 showed a decrease (-33.3% to -50%), and 3 showed no

change. For the RM group, 6 out of 9 had an increase in molar MVBF (+33% to

+567%), and 3 had a decrease (-20% to -71.4%); for incisor MVBF, 5 out of 9

showed an increase (+50% to 316.7%), 3 showed a decrease (-25% to -50%),

and 1 showed no change. For the PM group, 3 out of 5 had an increase in molar

MVBF (+17% to +78.6%), and 2 had a decrease (-17% to -66.7%); for incisor

MVBF, 2 out of 5 showed an. increase (+92% to +350%), and 3 showed no

change.

This analysis revealed that orthognathic surgery produced a highly

statistically significant change in the number of patients whose mean bite force

either increased or decreased after surgery for the LAFH and RM groups

(P<.003). This change was positive, especially for molar bites. The range of

MVBF increase, expressed as a percentage of the presurgical MVBF, was

extremely wide, going from approximately + 20% to + 600% for molar bites, and

+ 50% to + 350% for incisor bites.
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SAFH (n = 2)

Molar MVBF

Incisor MVBF

(+) (-)

2

(=)

LAFH (n = 1 O)

Molar MVBF

Incisor MVBF

(+)

8

(-) (=)

RM (n = 9)

Molar MVBF

Incisor MVBF

(+)

6

5

(-)

3

(=)

PM (n = 5)

Molar MVBF

Incisor MVBF

(+) (-) (=)

3 2

Table 2. Postsurgical changes of maximum voluntary bite force (MVBF).
Frequency distribution for groups based on presurgical facial morphology. (+)"
increase of MVBF; (-)" decrease of MVBF; (=)" no change of MVBF.
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The SAFH group showed a negative change in the mean molar MVBF

(34.3% decrease from original MVBF) and the LAFH and RM groups showed an

increase of 81.9% and 126.1%, respectively. The PM group showed only a

relative small increase (13.8%) (Fig. 11). For incisor forces, the SAFH group

showed a decrease of 15.8% in MVBF; the RM, PM, LAFH groups showed

comparable increases of 76.1%, 82.7%, and 87.1% respectively, from their original

incisor MVBF (Fig. 11). The ratio of molar MVBF/incisor MVBF decreased for the

PM and SAFH groups. It increased for the RM group and stayed stable for the

LAFH group. However, none of these changes was statistically significant,

probably because of either the small N (for example, SAFH, N=2), or the large

within-group standard deviation.

5.1.2.2. Postsurgical changes in maximum bite force based on surgical

procedures.

The distribution of patients showing either an increase, a decrease, or no

change in MVBF, closely followed the one obtained by grouping the subjects

according to their presurgical craniofacial morphology with some exceptions. The

results expressed as frequencies are given in Table 3. Out of the 9 subjects who

had an anterior facial height reduction (AFHR), 7 showed an increase in molar

MVBF (+ 17% to +567%), and only 2 showed a decrease (-17% to -66.7%); for

incisor MVBF, 5 out of the 9 had an increase (+50% to +317%), 1 exhibited a
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Fig. 11. Mean postsurgical changes in molar and incisor MVBF for the
groups based on presurgical morphology (SAFH, LAFH, RM, PM).
(Changes are expressed as percentage of the presurgical MVBF values).
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AFHA (n = 5)

Molar MVBF

Incisor MVBF

2

(=)

AFHR (n = 9)

Molar MVBF

Incisor MVBF

(+) (-) (=)

7 2

5 1 3

MA (n = 10)

Molar MVBF

Incisor MVBF

(-) (=)

MSB (n = 4)

Molar MVBF

Incisor MVBF

(+)

3

2

(-) (=)

MPAA (n = 3)

Molar MVBF

Incisor MVBF

MPAR (n = 10)

Molar MVBF

Incisor MVBF

(+) (-) (=)

(-)

3

2

Table 3. Postsurgical changes of maximum voluntary bite force (MVBF).
Frequency distribution for groups based on surgical procedures. (AFHA)" anterior
facial height augmentation; (AFHR)" anterior facial height reduction; (MA)"
mandibular advancement; (MSB)" mandibular setback; (MPAA)" mandibular plane
angle augmentation; (MPAR)" mandibular plane angle reduction; (+)" increase of
MVBF; (-)" decrease of MVBF; (=)" no change of MVBF.
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decrease (-50%), and 3 had no change. For the group who had a reduction of

their mandibular plane angle (MPAR), 7 out of 10 showed an increase in MVBF

(+ 17% to +567%), and 3 had a decrease (-17% to -71.4%); for incisor bites, 5 out

of 10 exhibited an increase (+50% to +350%), 2 showed a decrease (-33.3% to

50%), and 3 had no change. One can note that the mandibular plane angle

reduction (MPAR) group has a similar distribution to the anterior facial height

reduction (AFHR) group; this result is consistent since most of the long anterior

facial height subjects had a reduction of the mandibular plane angle via a BSSO

in order to decrease their anterior facial height. Out of the 10 subjects who had

a mandibular advancement (MA), 6 exhibited an increase in molar MVBF (+ 17%

to 433.3%), and 4 showed a decrease (-17% to -71.4%); for incisor bites, 5 had

an increase (+50% to +317%), 3 had a decrease (-25% to -50%), and 2 had no

change. Out of the 4 patients who had a mandibular setback (MSB), 3 showed

an increase in molar MVBF (+57% to +567%), and 1 showed a decrease (66.7%);

for incisor bites, 2 had an increase (+50% to +350%), and 2 had no change.

However, for the subjects who had an anterior facial height augmentation (AFHA)

as well as the ones who had an augmentation of their mandibular plane angle

(MPAA), the distribution did not match the one observed for the short face

subjects (SAFH)" for the 5 subjects who had an AFHA and the 3 who underwent

a MPAA, the change in molar or incisor MVBF went in either direction.

For molar biting, all the groups showed an increase in the mean MVBF
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after surgery (Fig. 12). The MSB group showed a very large increase (158.9% of

the presurgical MVBF); the MA, AFHA, and AFHR groups showed an increase in

MVBF of 56.8%, 74.4%, and 88.4% respectively. For incisor biting, all the groups

showed more than a 50% increase in MVBF after surgery (Fig. 12). The MVBF

augmentation was more homogenous among the groups for incisor bites than for

molar bites. The ratio molar MVBF/incisor MVBF decreased for the MA, AFHA,

and MPAA groups. It greatly increased for the MSB group (3.6 -> 5.4), and

slightly for the AFHR and MPAR groups (Fig. 13). Again, however, none of these

differences was statistically significant.

5.2. EMG ACTIVITY

5.2.1. Relationship between presurgical craniofacial morphology (SAFH,

LAFH, PM, RM) and presurgical maximum EMG activity.

The presurgical maximum EMG.activity during molar bites was statistically

significantly different (p<.02) for the SAFH and LAFH groups (Fig. 14).

The temporalis muscle seemed to contribute more than the masseter

muscle to the generation of MVBF for the RM and LAFH groups for molar bites

(Fig. 15a.). Conversely, the masseter muscle seemed to contribute more than the

temporalis muscle for the SAFH group for incisor bites (Fig. 15b.).
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Fig. 14. Differences in presurgical maximum EMG activity during molar
bites for SAFH and LAFH groups. (p<.02).
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Fig. 15. Contribution of temporalis muscle vs. masseter muscle
to MVBF generation.



77

5.2.2. Postsurgical changes of EMG activity.

Based on presurgical morphology, the SAFH group showed a decrease in

the mean maximum EMG activity levels for the masseter muscle for both molar

(-72.7%) (p<.032) and incisor (-42.7%) bites, and for the temporalis muscle only

for incisor bites (-12.6%). The other groups showed a general increase in

maximum EMG activity. The contribution of the temporalis muscle to the

generation of MVBF tended to increase relative to the contribution of the masseter

muscle for molar bites for the SAFH group (Fig. 16).

Based on surgical procedures, a decrease in maximal EMG activity levels

was reported for the MPAA group for the masseter muscle for molar bites.

Otherwise, a general increase in maximal EMG activity levels was noted. The

contribution of the temporalis muscle to MVBF seemed to increase relative to the

contribution of the masseter muscle, especially for molar bites for the MPAA

group (Fig. 17). The only exception was for the AFHA group, where the

temporalis muscle’s contribution to MVBF reduced slightly for both molar and

incisor bites.

Although these trends were consistent for the different groups, the

differences were not statistically significant except for the SAFH group for the

masseter muscle at molar bites. Again, as with the comparisons for the other
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Fig. 16. Differences in the contribution of temporalis muscle vs.
masseter muscle to molar MVBF between TO and T2. SAFH group.
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Fig. 17. Differences in the contribution of temporalis muscle vs.
masseter muscle to molar MVBF between TO and T2. MPAA group.
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groups, the N was small (for example, MPAA, N=3) and the standard deviations

were large.

5.3. EMG/FORCE FUNCTION CURVES.

A regression analysis of the slopes of the EMG/Force function curves was

performed for each of the four subjects who had comparable MVBF at TO and T2

(+/- 10% difference). However, these four subjects had comparable bite force

levels between TO and T2 for the incisor bites only. Three of the four subjects

(RS, RE, and SB) belonged to the same presurgical craniofacial morphology

groups (LAFH, PM) and underwent the same type of surgical procedures (AFHR,

MPAR, MSB). One of the four subjects (BH) had the opposite presurgical facial

type (SAFH, RM), and the opposite surgical movements (AFHA, MPAA, MA).

Three out of the four subjects (RE, SB, and BH) showed highly statistically

significant differences in the slope of the EMG/Force curves for both temporalis

and masseter muscles between TO and T2 (p<.001) (Figs. 18, 19, and 20). One

subject (RS) tended to show a change in the slopes for the masseter muscle but

did not show statistically significant differences for either temporalis or masseter

muscles between TO and T2 (Fig. 21).

For the masseter muscle, the slope was statistically significantly decreased
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postsurgically for subjects RE, SB, and BH, and tended to be reduced for subject

RS, meaning that the average increase in EMG activity per unit of force over the

range of bite forces studied decreased as a result of surgery. The contribution

of the masseter muscle to bite force production was therefore statistically

significantly decreased for high force levels after surgery for subjects RE, SB, BH,

and tended to be reduced also for subject RS.

For the temporalis muscle, subjects RE and BH showed a statistically

significant decrease in the steepness of the slope after surgery; thus, they had

lower increases in EMG activity with force, meaning that the contribution of the

temporalis muscle to bite force was decreased postsurgically for high force levels.

Conversely, subject SB showed a significantly steeper temporalis slope after

surgery, showing a greater increase in EMG activity with force and an increase

in the muscle’s contribution to bite force at high force levels. Subject RS showed

no change in the contribution of the temporalis muscle to bite force.

These results showed that orthognathic surgery significantly affected the

way in which a muscle contributes to the generation of bite force, but the way in

which it does so is unpredictable. This suggests that the adaptive response to

structural change is individual.



6. DISCUSSION.

The purpose of this investigation was to examine: (1) the relationship

between presurgical facial type and maximum voluntary bite force and EMG

activity, (2) postsurgical changes in maximum voluntary bite force, (3) postsurgical

variations in the contribution of the masseter and anterior temporalis muscles to

the generation of bite force, and (4) the relationship of these changes to surgical

movements and presurgical craniofacial morphology.,

6.1. Relationship between presurgical facial type and maximum bite force

and EMG activity levels.

The differences found in presurgicai maximum voluntary bite force (MVBF)

and maximum EMG activity levels between the short and long face groups were

consistent with the findings of other investigations (Ringqvist, 1973; Throckmorton

et al, 1984; Haskell et al, 1986; Proffit et al, 1986; Van Eijden et al, 1991). These

findings confirm that, as predicted, short face individuals can produce greater

levels of bite forces than long face individuals. This can be explained by the fact

that short face individuals have a flatter mandibular and lower occlusal plane than

long face individuals, so that the direction of the bite force increases the

mechanical advantage of muscles (Van Eijden, 1971). The more anteriorly

positioned.masseter muscle in short face individuals might also increase the
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mechanical advantage of the muscle (Koolstra at al, 1988).

However, while we found statistically significant higher molar and incisor

bite force levels and molar EMG activity in the short face group compared to the

long face one, we did not find significant differences between the retrognathic and

prognathic mandible groups. Further, the prognathic mandible group tended to

have higher MVBF than the retrognathic mandible one. This can be explained by

the fact that biomechanical variations are not the only factors involved in

masticatory muscle function; other parameters such as muscle cross-sectional

area and orientation, and individual neural control pattern have also been

suggested to play an important role (Sasaki eta!, !989; Van Spronsen et al, 1992;

Koolstra et al, 1988a; Lindauer et al, 1991 ).

For the four presurgical groups we found that the molar bite force levels

were about three time greater than the incisor ones. This is consistent with the

current biomechanical models of the jaw because for molar bites the point of

force application is closer to the fulcrum (condyle) than it is for incisor bites. The

bite force moment arm is therefore reduced and the mechanical advantage of the

muscles is increased (Throckmorton et al, 1984; Proffit et al, 1989).

6.2. Postsurgical changes in maximum voluntary bite force.
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The positive change in MVBF observed for the long face subjects who had

a surgical reduction of their anterior facial height could have been predicted from

a biomechanical point of view. Throckmorton et al (1984) demonstrated in a two-

dimensional model that the effect of maxillary impaction is to decrease the

distance between the point of force application and the condyle. But they only

found an increased mechanical advantage for the temporalis muscle; the

mechanical advantage of the masseter muscle remained the same. Proffit et al

(1989) measured MVBF in 9 subjects after a LeFort maxillary impaction. They

found that the postoperative change in the mechanical advantage of the masseter

and temporalis muscle was very small, and that the direction of the change in

MVBF was unpredictable. However, in our sample, the long face subjects

underwent a counterclockwise rotation of the distal segment of the mandible by

a BSSO to reduce the vertical dimension; this type of surgical movement changed

the direction of the bite force considerably; Van Eijden et al (1991) showed that

the length of the bite force moment arm decreased by approximately 20% when

its direction changed from ten degrees anteriorly to ten degrees posteriorly. This

might explain why our results differ from the ones found in previous clinical

investigations (Johnston et al, 1984; Proffit et al, 1989) which used only a LeFort

maxillary impaction to decrease the vertical dimension.

Unexpectedly, our retrognathic patients who had a mandibular

advancement also showed a positive change in MVBF. This suggests that
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biomechanical considerations alone are unable to explain variations in MVBF

(Dechow et al, 1986; Proffit et al, 1989). Physiologic properties of muscles and

muscle fibers may vary postsurgically in a very individual way. Another factor

may also be that there were no statistically significant differences between the

MVBF of the retrognathic and prognathic mandible groups.

The biomechanical differences described by Throckmorton et al. (1984)

may not be as important as the consideration of the direction of the bite force

(Van Eijden et al, 1991)’ mandibular plane as well as lower occlusal plane angle

differences commonly associated with differences in anterior facial height might

have more influence on MVBF outcome than antero-posterior dimension. This is

probably why the mean molar and incisor MVBF changes from TO to T2

expressed as a percentage of the original force showed a general increase for all

groups except for the short face subjects who had an augmentation of the vertical

dimension. These MVBF variations were much higher than the ones described

by previous investigations. This might be due to" (1) an optimal control of jaw

opening and antero-posterior position by the use of customized bite blocks; (2)

a more accurate recording of true MVBF; (3) the utilization of normalized values

from the original MVBF of each group. However, we also found a high standard

variation within the groups which makes prediction of the magnitude of the MVBF

changes difficult to determine on an individual basis.
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Orthognathic surgery seems to produce differential effects on molar and

incisor bites as shown by the changes in molar MVBF/incisor MVBF ratio’ it

considerably increased for the subjects who had a mandibular setback and an

anterior facial height reduction and decreased for the ones who had a mandibular

advancement or an anterior facial height augmentation. This finding can be

explained biomechanically by the fact that changes in facial height were achieved

by a variation of the mandibular plane which produces a more dramatic effect on

the molar bite force direction than the incisor one.

6.3. Postsurgical variations in the contribution of the masseter and anterior

temporalis muscles.

6.3.1. Maximum EMG activity levels.

Surgery tended to produce an increase in maximum EMG activity levels for

all groups except the short face subjects; the EMG activity increase is in

agreement with Astrand’s (1974) and Ingervali’s (1979) findings. However, these

results should be interpreted with caution given the extremely high standard

deviation found within the different groups.

The results regarding the individual contributions of the temporalis muscle

and masseter muscle to generate bite force are also predictable. For the short
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face subjects and those who underwent an augmentation of the mandibular plane

angle via a BSSO, the contribution of the temporalis muscle to MVBF production

increased relative to the masseter muscle’s contribution for molar bites

postsurgically. This pattern has also been described previously in long face

individuals (Moiler, 1966; Lindauer et al, 1990).

6.3.2. Slopes of the EMG/Force function curves.

The results of this study showed that orthognathic surgery had a

statistically significant effect on the contribution of the anterior temporalis and

masseter muscles to bite force generation for three out of four subjects studied.

The average increase in EMG activity with bite force for the masseter was

decreased at high force levels postsurgically for all four subjects, with the

decrease statistically significant for three. These results might be explained by

the fact that the masseter muscle was either more efficient postsurgically or that

other muscles changed their contributions. However, even though these muscles

all changed their contribution patterns, they did not do so in a predictable fashion.

From a biomechanical point of view, we might expect that the temporalis

muscle contribution to bite force should increase as part of the adaptive process.

However, only one subject showed a significant increase in the temporalis muscle
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postsurgical slope, two subjects showed a significant decrease, and one showed

no change. This result is in agreement with the findings of Lindauer et al (1989)

who did not find consistent associations between masseter and temporalis muscle

activity tradeoffs as a function of force. Other muscles such as the lateral and

medial pterygoid muscles not examined in our study, may increase their

contribution to bite force at high force levels as a compensatory mechanism.

These possible complex trade-offs among the different muscles may explain why

subject BH showed a decrease in the slope of both temporalis and masseter

muscles. According to the surgical movements that he underwent (mandibular

advancement, anterior facial height augmentation) and to his presurgical facial

type (retrognathic mandible associated with a short anterior facial height), we

could have expected an opposite result. On the other hand, the decrease in the

masseter slope observed in SB, RE, and RS who had the same type of surgery

(mandibular setback and anterior facial height reduction) and belonged to the

same presurgical groups (prognathic mandible with long anterior facial height)

could have been predicted from a biomechanicai point of view: the

counterclockwise rotation of the mandibular distal segment changed the direction

of the bite force in a favorable way, increasing the muscle mechanical advantage

(Van Eijden, 1991). For these subjects, the decrease in the slope may be due to

an improvement of the physiological properties of the masseter muscle, showing

less activity increments at high force level than they did presurgically. However,

for one of these subjects (SB), a significant increase in temporalis slope at high
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force level was observed, suggesting a potential compensation in order to

produce the same bite force. However, the direction of the changes in the slopes

could not be predicted from the type of surgery, even though three subjects who

had similar surgical procedures showed the same direction of changes in the

slopes for the masseter muscle. In contrast, the fourth subject whose change

was also significant had the opposite surgical procedure. Thus, whether a

patient’s adaptation to a new structural environment is determined by

biomechanical properties or neuromotor strategies, is probably determined, itself

by the individual patient.

6.4. Grouping factors.

Another factor to consider is the method used to classify the patients into

different categories. It is obvious that such a categorization is artificial and might

be misleading; our small sample size did not allow us to group the subjects

according to a single surgical movement. For example, we could not isolate the

influence of mandibular setback alone on bite force and muscle function because

this procedure was associated in most cases with corresponding changes in

anterior facial height. On the other hand, the use of combined surgical

movements is nowadays common in order to correct complex maxillo-mandibular

deformities; the overlap of the different categories then may not be a problem but,

on the contrary, be useful to better understand the effects of "real world" surgical
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procedures.

The size of our sample also did not permit us to evaluate the extent of the

surgical change; therefore, borderline subjects who may have had a relatively

small change in either direction were in the same group as patients who had

more severe facial deformities. Since the variations in maximum voluntary bite

force and EMG activity from TO to T2 were expressed as a percentage of the

presurgical values of each group, the results could be biased. For example, of

the five subjects who underwent an anterior facial height augmentation (AFHA),

two only had more than 5.0 mm. increase, and the presurgical bite force and

EMG activity levels were significantly different for these two subjects compared

to the other three. This resulted in an increase in the range of bite force and

EMG values, magnifying the postsurgical changes. This was one of the reasons

why we also categorized the subjects according to their presurgical facial type in

order to increase the chances to find significant differences and to see the

influence of the original condition on bite force and muscle function.



7. SUMMARY AND CONCLUSIONS.

This study showed that there was a statistically significant relationship

between anterior facial height and presurgical maximum voluntary bite force

(MVBF) for both molar and incisor bites, and maximum EMG activity levels for

molar bites. For all groups, the presurgical molar MVBF was three times greater

than the incisor MVBF.

The surgical procedures produced statistically significant positive changes

in MVBF for the long face subjects who had a reduction of their anterior facial

height and the retrognathic patients who underwent a mandibular advancement.

A negative change in molar MVBF was observed for the short face subjects who

had an augmentation of their anterior facial height. The mean molar and incisor

MVBF changes from TO to T2 expressed as a percentage of the presurgical MVBF

showed a general increase for all groups except the short face subjects.

However, the variation observed within groups was high. Surgery seemed to

have a differential effect on molar and incisor bite forces" the ratio of molar

MVBF/incisor MVBF decreased for the subjects who had a mandibular

advancement or an augmentation of their anterior facial height. For the most part,

it increased for the patients who had a mandibular setback with a reduction of

their anterior facial height.
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Surgery tended to produce an increase in maximum EMG activity levels for

all groups except the short face subjects, who showed decreased EMG activity

levels postsurgically (statistically significant result only for the SAFH group for the

masseter muscle at molar bites). Again, the variation from the mean values within

the groups was high.

A change in the contribution of the masticatory muscles to bite force was

observed for the short face subjects as well as for the subjects who underwent

a clockwise rotation of the mandibular distal segment: the contribution of the

temporalis muscle to the generation of (MVBF) increased relative to the masseter

muscle’s for molar bites.

The steepness of the slopes of the EMG/Force function curves for the

temporalis and masseter muscles were statistically significantly different

postsurgically for 3 out of 4 subjects who had comparable MVBF at TO and T2,

suggesting a physiologic adaptation to their new jaw geometry. At high force

levels, the masseter muscle contributed significantly less to produce the same bite

force postsurgically, suggesting that either it was more efficient or that the

contribution of other muscles contributions changed. However, the contribution

of the temporalis muscle at high force levels increased significantly for only one

subject, was reduced for two subjects and unchanged for one. These changes

in muscle contraction patterns could not be explained by biomechanically-derived
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parameters alone. Apparently, individual neuromuscular variations in response

to orthognathic surgery makes a prediction of change in the relative contributions

of the temporalis and masseter muscles difficult to determine.

Based on the results of this study, several conclusions can be drawn"

(1) A statistically significant relationship exists between facial

morphology and the ability to generate bite force.

(2) Orthognathic surgery significantly affects a patient’s

ability to generate bite forces, with apparent differential effects on

molar and incisor force levels.

(3) Orthognathic surgery significantly affects the relative

contributions of the anterior temporalis and masseter muscles in

generating bite forces.

(4) The direction and extent of changes in bite forces and

the way in which the muscles contribute to those changes cannot

be predicted on the basis of biomechanical factors alone.

This study revealed the importance of both biomechanical and

neuromuscular parameters on bite force ability and muscle contraction. The
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biomechanical parameter which seemed to be the most reliable predictor was the

change in bite force direction associated with changes in anterior facial height.

However, the changes observed could not always be fully explained by

changes in jaw geometry alone. A very individual adaptive process of the

neuromuscular system seems to take place after orthognathic surgery, making it

difficult to predict specific changes in function as a response to any given surgical

procedure.
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