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Abstract
Economists and other social scientists often face situations where they have

access to two datasets that they can use but one set of data suffers from censoring
or truncation. If the censored sample is much bigger than the uncensored sample,
it is common for researchers to use the censored sample alone and attempt to
deal with the problem of partial observation in some manner. Alternatively, they
simply use only the uncensored sample and ignore the censored one so as to avoid
biases. It is rarely the case that researchers use both datasets together, mainly
because they lack guidance about how to combine them. In this paper, we develop
a tractable semiparametric framework for combining the censored and uncensored
datasets so that the resulting estimators are consistent, asymptotically normal, and
use all information optimally. When the censored sample, which we refer to as
the master sample, is much bigger than the uncensored sample (which we call the
refreshment sample), the latter can be thought of as providing identification where
it is otherwise absent. In contrast, when the refreshment sample is large and could
typically be used alone, our methodology can be interpreted as using information
from the censored sample to increase effciency. To illustrate our results in an
empirical setting, we show how to estimate the effect of changes in compulsory
schooling laws on age at first marriage, a variable that is censored for younger
individuals. We also demonstrate how refreshment samples for this application
can be created by matching cohort information across census datasets.
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1. Introduction

In applied research, economists often face situations in which they have access to two

datasets that they can use but one set of data suffers from censoring or truncation. In some

cases, especially if the censored sample is larger, researchers use it and attempt to deal with

the problem of partial observation in some manner1. In other cases, economists simply use the

clean or uncensored sample and ignore the censored one so as to avoid biases. It is rare that

researchers utilize both datasets. Instead, they have to choose between the two mainly because

they lack guidance about how to combine them.

In this paper, we develop a methodology based on the generalized method of moments

(GMM) that allows the censored and uncensored datasets to be combined in a tractable manner

so that the resulting estimators are consistent, asymptotically normal, and use all information

optimally2. When the censored sample, henceforth referred to as the master sample, is much

bigger than the clean or the refreshment sample, one can think of the addition of the clean

sample as providing identification where it is otherwise absent. In contrast, when the datasets

are of similar sizes so the clean dataset could typically be used alone, our methodology can

be interpreted as using information from the censored sample to increase efficiency. In fact,

we show that using the refreshment sample alone leads to estimators that are asymptotically

inefficient, revealing that there is information in censored or truncated samples that can be

exploited to enable more efficient estimation. The existence of refreshment samples should not

be regarded as being an overly restrictive requirement. As we show in Section 6, they can often

be constructed by creatively matching existing datasets.

We demonstrate how efficiently combining two datasets allows standard moment based

inference with censored or truncated data to go through without imposing parametric, indepen-

dence, symmetry, quantile, or “special regressor” restrictions as done in the existing literature

and without doing any nonparametric smoothing. The biggest appeal is the simplicity of our

estimators. For instance, unlike quantile restriction models, there is no need to restrict at-

tention to applications where only scalar-valued continuously distributed random variables are

censored or truncated, or use any nonparametric smoothing procedures to estimate asymptotic

1A comprehensive survey of the econometric literature on censoring and truncation is beyond the scope of
our paper. Readers interested in this should see, e.g., Hausman and Wise (1976, 1977), Heckman (1976, 1979),
Maddala (1983), Amemiya (1984), Powell (1984, 1986a, 1986b, 1994), Chamberlain (1986), Duncan (1986),
Fernandez (1986), Horowitz (1986, 1988), Newey (1988), Newey and Powell (1990), Lee (1993a, 1993b), Honoré
and Powell (1994), Manski (1995), Buchinsky and Hahn (1998), Chen and Khan (2001), Khan and Powell
(2001), Khan and Lewbel (2003), and the many references therein.

2In a previous version of this paper, which also included efficient estimation of distribution functions, we
had shown that the results obtained here also hold for the empirical likelihood approach that is rapidly gaining
popularity in econometrics. However, in order to keep our presentation concise, we have eliminated results on
empirical likelihood and cdf estimation from this version.
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variances. Extension to the case where more than one random variable (discrete or continuous)

is censored or truncated is straightforward and the usual analogy principle that delivers stan-

dard errors for GMM works here as well. Access to the refreshment sample also means that

incompleteness of the data does not complicate identification conditions. Selection probabilities

in this paper are fully nonparametric, i.e., completely unknown and unrestricted.

Semiparametric inference with censored data thus far seems to have focused mainly

on linear regression models where only the response variable is censored or truncated. The

present work extends the literature in a significant manner to include nonlinear models and

multiple censored or truncated variables. The treatment proposed here is general enough to

handle censoring and truncation of some or all coordinates of both endogenous and exogenous

variables and the results obtained here are applicable to a large class of potentially overidentified

models which nest linear regression as a special case; e.g., the ability to handle instrumental

variables (IV) models permits semiparametric inference in Box-Cox type models using censored

or truncated data without imposing parametric or quantile restrictions. Though the idea of

combining datasets has been explored earlier3, the use of matching to facilitate efficient moment

based inference in overidentified models with censored or truncated data seems to be new to

the literature and the results in this paper cannot be found in any of the references cited here.

The paper is organized as follows. In Section 2 we set up censoring or truncation

of random vectors in a moment based framework. Section 3 models the data combination

process and Section 4 shows how censored data can be combined with a refreshment sample to

do efficient semiparametric inference; Section 5 does the same with truncated data. Section 6

contains an interesting application where refreshment samples are obtained by matching census

datasets. Section 7 concludes by addressing some topics for future research.

2. Censoring and truncation in a moment based framework

Let the triple (Z∗, f ∗, µ∗) describe the target population, i.e., the population for which

inference is to be drawn, where Z∗ is a random vector4 in Rd that denotes an observation

from the target population and f ∗ the unknown density of Z∗ w.r.t some dominating measure

µ∗ = ⊗d
i=1µ

∗
i . Since Z∗ can have discrete components, the µ∗i ’s need not all be Lebesgue

measures. Similarly, let (Z, f, µ) represent the realized population, i.e., the observed data, where

Z denotes the resulting observation and f its density w.r.t a dominating measure µ = ⊗d
i=1µi.

In this paper, f is different from f ∗ because some or all coordinates of Z∗ are censored, or,

truncated.

3See, e.g., Angrist and Kreuger (1992), Arellano and Meghir (1992), Hirano, Imbens, Ridder, and Rubin
(2001), Hu and Ridder (2003), Ridder and Moffitt (2003), Chen, Hong, and Tarozzi (2004), Chen, Hong, and
Tamer (2005), Ichimura and Martinez-Sanchis (2005), and the references therein.

4Following usual mathematical convention, “vector” means a column vector.
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The econometric models we consider can be expressed as moment conditions in the

target population5. So let Θ be a subset of Rp such that

Ef∗{g(Z∗, θ∗)} = 0 for some θ∗ ∈ Θ, (2.1)

where g is a q × 1 vector of known functions with q ≥ p and Ef∗ denotes expectation w.r.t f ∗.
Well-known examples of (2.1) include linear and nonlinear regression models and multivariate

simultaneous equations models. The class of models defined in (2.1) also contains IV models

derived from conditional moment restrictions in the target population.

2.1. Censoring. If Z∗ is fully observed, then (2.1) is easily handled; see, e.g., Newey and

McFadden (1994). But in many cases economists cannot fully observe Z∗. For instance,

variables often get censored due to administrative reasons; e.g., government agencies routinely

“top-code” income data before releasing it for public use. Similarly, studies investigating the

length of unemployment spells can terminate prematurely due to financial constraints before

all subjects have found employment. So suppose that all coordinates of Z∗ are right-censored;

i.e., instead of observing Z∗ we observe the random variable Z = (Z(1), . . . , Z(d))d×1, where

Z(i) =





Z∗(i) if Z∗(i) < c(i)

c(i) otherwise
for i = 1, . . . , d

and c = (c(1), . . . , c(d)) is a d× 1 vector of known constants6.

We allow for the possibility that some components of Z∗ may not be censored. If, say,

the ith coordinate of Z∗ is not subject to censoring, simply set c(i) = ∞; if the ith and jth

coordinates of Z∗, denoted by Z∗(i,j), are not subject to censoring, then set c(i,j) = (∞,∞);

etc.. Hence, in applications where the target variable Z∗ can be decomposed into endogenous

and exogenous parts as (Y ∗, X∗), we can handle situations where only Y ∗ is censored (pure

endogenous censoring), or only X∗ is censored (pure exogenous censoring), or only some coordi-

nates of either variables are censored7. Left censoring of, say, the ith, jth, and kth coordinates

can also be accommodated by replacing Z∗(i,j,k) with −Z∗(i,j,k) and c(i,j,k) with −c(i,j,k).

5Since economic theory attributes outcomes at the micro level to optimizing behavior on the part of firms
or individuals, moment based models arise naturally in microeconometrics as solutions to the first order con-
ditions of the stochastic optimization problems economic agents are assumed to solve. Hence, such models are
particularly important for structural estimation

6The results obtained in this paper continue to hold in a more general fixed censoring framework where the
censoring point is modelled as a random variable C with unknown distribution such that C is observed for
censored as well as uncensored observations; see, e.g., the application in Section 6.

7The term “exogenous” is, strictly speaking, an abuse of terminology since (2.1) does not involve any con-
ditioning although, as mentioned earlier, (2.1) does nest IV models based on conditional moment restrictions.
Therefore, the careful reader may want to substitute “censoring (resp. truncation) based on explanatory vari-
ables” for “exogenous censoring (resp. truncation)” whenever the latter is encountered.
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Let S∗(c) def
= Prf∗(Z

∗(1) > c(1), . . . , Z∗(d) > c(d)) denote the probability that all coordi-

nates of Z∗ are censored. Also, let δc be the Dirac measure at c, i.e., δc(A) = 1(c ∈ A), where 1
is the indicator function. To keep matters simple, we assume that µ∗ does not place any mass

at c. This assumption, which can be relaxed at the cost of greater mathematical complexity, is

weaker than requiring µ∗ to be a Lebesgue measure (the usual assumption made for censored

regression models).

If d = 1, the density of Z w.r.t the dominating measure µ = µ∗ + δc is given by

f(z) = f ∗(z)1(z < c) + S∗(c)1(z = c). (2.2)

The density of Z when it is vector valued is also straightforward to derive but requires some

additional notation. So let Z∗−(i,j,k) denote coordinates of Z∗ that remain after the ith, jth, and

kth ones have been deleted, f ∗−(i,j,k) the joint density of Z∗−(i,j,k), and f ∗i,j,k|−(i,j,k) the conditional

density of Z∗(i,j,k) given Z∗−(i,j,k). Then, letting S∗i,j,k|−(i,j,k)(c
(i,j,k)) denote the conditional prob-

ability that Z∗(i,j,k) are censored given Z∗−(i,j,k), it is easy to show that for d > 1 the density

of Z w.r.t µ = ⊗d
i=1µi, where µi = µ∗i + δ

(i)
c , is given by

f(z) = f ∗(z)1(z
elt
< c)+

d−1∑
r=1

d−r+1∑
i1=1

d−r+2∑
i2=i1+1

. . .

d∑
ir=ir−1+1

S∗i1,...,ir|−(i1,...,ir)(c
(i1,...,ir))f ∗−(i1,...,ir)(z

−(i1,...,ir))

× 1(z(i1,...,ir) = c(i1,...,ir), z−(i1,...,ir) elt
< c−(i1,...,ir)) + S∗(c)1(z = c), (2.3)

where
elt
< denotes element-by-element strict inequality, i.e., 1(z

elt
< c) =

∏d
i=1 1(z(i) < c(i)). Of

course, z = c is element-by-element equality, i.e., 1(z = c) =
∏d

i=1 1(z(i) = c(i)). The realized

density f has support (−∞, c(1)]× . . .× (−∞, c(d)] with a mass point at c.

2.2. Truncation. Sometimes censoring is so severe that the target variable is completely un-

observed outside a certain region. This phenomenon is called truncation; e.g., in many job

training programs subjects are allowed entry only if their household income falls below a cer-

tain level. If Z∗ is a truncated random variable, then instead of Z∗ we observe

Z =





Z∗ if Z∗ ∈ T

unobserved otherwise,

where T denotes a known region in Rd such that Z∗ lies in T with positive probability. In this

case, the density of Z w.r.t µ∗ is given by

f(z) =
f ∗(z)1(z ∈ T )∫

T
f ∗(z) dµ∗

. (2.4)

Note that f has support T . As before, we allow for the possibility that some coordinates of Z∗

may not be truncated: In typical applications, T will be a rectangle of the form I1 × . . .× Id,
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where the Ij’s are known fixed intervals. If, say, Z∗(i,j,k) are not truncated, then simply let

Ii = Ij = Ik = R.

2.3. Examples. We now look at some examples of censoring and truncation in a multivariate

framework. Readers who want to skip these examples for the moment can go straight to

Section 3 without any loss of continuity. The primary aim of Section 2.3 is to illustrate the

behavior of least squares estimators in linear regression models when only the master sample

is used for estimation and more than one variable is censored or truncated; examples 2.2 and

2.4 are particularly instructive. Since no refreshment sample is used in this section, n here just

denotes the master sample size.

Example 2.1 (Censored mean). Suppose we want to estimate θ∗ = Ef∗{Z∗}, the mean of the

target population. Since Z∗ is censored from above, instead of a random sample Z∗
1 , . . . , Z

∗
n from

the target density f ∗ we have the master random sample Z1, . . . , Zn from the realized density

f defined in (2.2) or (2.3). Therefore, the naive estimator
∑n

j=1 Zj/n will not consistently

estimate θ∗ because
∑n

j=1 Zj/n
p−→ Ef{Z} by the weak law of large numbers, but

Ef{Z} =




Ef∗{Z∗1(Z∗ < c)}+ cS∗(c) if d = 1

Ef∗{Z∗1(Z∗ elt
< c)}+

∑d−1
r=1 Ef∗{Z∗

[r]}+ cS∗(c) if d > 1,

where, for any function h(·), the symbol

h[r](Z
∗) =

d−r+1∑
i1=1

d−r+2∑
i2=i1+1

. . .

d∑
ir=ir−1+1

h(Z∗[i1, . . . , ir])1(Z∗(i1,...,ir) elt
> c(i1,...,ir), Z∗−(i1,...,ir) elt

< c−(i1,...,ir))

denotes h evaluated at exactly r censored coordinates and Z∗[i1, . . . , ir] stands for Z∗ with its

i1, . . . , irth coordinates replaced by c(i1), . . . , c(ir), respectively, and the remaining coordinates

unchanged; i.e., Z∗[i1, . . . , ir] = Z∗∣∣
Z∗(i1,...,ir)=c(i1,...,ir) . Hence, Ef{Z} 6= Ef∗{Z∗}. ¤

Example 2.2 (Censored linear regression). Let Y ∗ = X∗′θ∗+ε∗, where Ef∗{X∗ε∗} = 0. There-

fore, θ∗ = (Ef∗X
∗X∗′)−1(Ef∗X

∗Y ∗). Suppose both Y ∗ and X∗ are censored. Hence, instead of

observing Z∗ = (Y ∗, X∗)(p+1)×1 from the target density f ∗, we observe Z = (Y, X) from the real-

ized density f defined in (2.3). If we ignore censoring and simply regress Y on X, then θ∗ cannot

be consistently estimated by the least squares estimator θ̂M = (
∑n

j=1 XjX
′
j)
−1

∑n
j=1 XjYj. To

see this, observe that the probability limit of θ̂M is given by

(EfXX ′)−1(EfXY ) = (Ef∗{X∗X∗′1(Y ∗ < c(1), X∗ elt
< c−(1))+

d−1∑
r=1

(X∗X∗′)[r]+c−(1)c−(1)′S∗(c)})−1

× Ef∗{X∗Y ∗1(Y ∗ < c(1), X∗ elt
< c−(1)) +

d−1∑
r=1

(X∗Y ∗)[r] + c−(1)c(1)S∗(c)}, (2.5)
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where d = p + 1. Hence, plim(θ̂M) 6= θ∗.
The special case of pure endogenous censoring, called the tobit or limited dependent

variable model in the econometrics literature, is obtained by letting c−(1) = (∞, . . . ,∞) and

using the convention that 0 · ∞ = 0. Doing so, (2.5) implies that

plim(θ̂M) = θ∗ − {Ef∗X
∗X∗′}−1Ef∗{X∗(Y ∗ − c(1))1(Y ∗ > c(1))} 6= θ∗,

as is well known from tobit theory.

However, a fact that does not seem to be as widely known is that the least squares

estimator remains inconsistent even if censoring is purely exogenous8. In particular, by letting

c(1) = ∞ in (2.5), we can see that plim(θ̂M) is given by

{Ef∗ [X
∗X∗′1(X∗ elt

< c−(1)) +
d−1∑
r=1

(X∗X∗′)[r]}−1Ef∗{X∗Y ∗1(X∗ elt
< c−(1)) +

d−1∑
r=1

(X∗Y ∗)[r]} 6= θ∗.

Hence, pure exogenous censoring cannot be ignored here.

In fact, pure exogenous censoring may not be ignorable even if Ef∗{X∗ε∗} = 0 is replaced

by the stronger condition EY ∗|X∗{ε∗|X∗} = 0 w.p.1. To see this, consider the simple linear

regression model Y ∗ = θ∗(1) + X∗θ∗(2) + ε∗, where X∗ is scalar and EY ∗|X∗{ε∗|X∗} = 0 w.p.1.

Since Y ∗ and the constant regressor are not censored, c = (∞,∞, c(3))3×1. Hence, by (2.5),

plim(θ̂
(2)
M ) =

covf (Y,X)

varf (X)
=

covf∗(Y
∗, X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))

varf∗(X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))

=
covf∗(X

∗, X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))

varf∗(X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))
θ∗(2),

where the last equality follows because EY ∗|X∗{Y ∗|X∗} = θ∗(1)+X∗θ∗(2) w.p.1. Therefore, θ̂M is

inconsistent under pure exogenous censoring although ε∗ is mean independent of X∗. However,

as shown in Example 2.4, the situation changes if X∗ is truncated instead of censored. ¤

Example 2.3 (Truncated mean). Suppose we want to estimate the mean of the target popula-

tion but now Z∗ is truncated outside region T . Since Ef{Z} = Ef∗ [Z
∗1(Z∗ ∈ T )]/

∫
T

f ∗(z) dµ∗,
as in Example 2.1 the naive estimator is not consistent for Ef∗{Z∗}. ¤

Example 2.4 (Truncated linear regression). Consider the linear model of Example 2.2 but

now suppose that, instead of being censored, Z∗ is truncated outside T = T1 × T2. Since now

plim(θ̂M) = {Ef∗X
∗X∗′1(Y ∗ ∈ T1, X

∗ ∈ T2)}−1Ef∗{X∗Y ∗1(Y ∗ ∈ T1, X
∗ ∈ T2)},

θ̃ is not consistent for θ∗. Under pure endogenous truncation, i.e., T2 = Rp, we get that

plim(θ̂M) = {Ef∗X
∗X∗′1(Y ∗ ∈ T1)}−1Ef∗{X∗Y ∗1(Y ∗ ∈ T1)} 6= θ∗.

8See Rigobon and Stoker (2003) for more on this.
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Similarly, for pure exogenous truncation, T1 = R. Hence,

plim(θ̂M) = {Ef∗X
∗X∗′1(X∗ ∈ T2)}−1Ef∗{X∗Y ∗1(X∗ ∈ T2)} 6= θ∗. (2.6)

Therefore, even pure exogenous truncation is not ignorable. But, unlike Example 2.2, if the

identifying assumption Ef∗{X∗ε∗} = 0 is replaced by EY ∗|X∗{ε∗|X∗} = 0 w.p.1, then from

(2.6) it is easy to see that ignoring pure exogenous truncation does not make the least squares

estimator inconsistent. ¤

3. Data combination

We model the data combination process as follows. Let Z denote an observation from

the combined sample. Along with Z we observe a dummy variable R that indicates whether

Z comes from the refreshment or the master sample; i.e., R = 1 if Z is from the refreshment

sample and R = 0 if Z belongs to the master sample. Hence, for r ∈ {0, 1}, the conditional

density of Z|R = r is given by9

fZ|R=r(z) =





f ∗(z)1(z
elt

6= c)r + f(z)(1− r) if Z∗ is censored

f ∗(z)r + f(z)(1− r) if Z∗ is truncated,
(3.1)

where 1(z
elt

6= c) =
∏d

i=1 1(z(i) 6= c(i)) and, depending on whether Z∗ is censored or truncated,

f is given by (2.2)–(2.3) or (2.4), respectively. If Z∗ is censored, then fZ|R=r is a conditional

density w.r.t µ and has a mass point at c. On the other hand, if Z∗ is truncated, then fZ|R=r

is a conditional density w.r.t µ∗.
Assume that R

d∼ Bernoulli(K0), where K0 ∈ (0, 1) is an unknown nuisance parameter

that will be estimated along with the parameters of interest. Therefore, using (3.1), the joint

density of Z and R is given by

fe(z, r) =





K0f
∗(z)1(z

elt

6= c)r + (1−K0)f(z)(1− r) if Z∗ is censored

K0f
∗(z)r + (1−K0)f(z)(1− r) if Z∗ is truncated.

(3.2)

Henceforth, let n denote the size of the enriched sample; i.e., the master and refreshment

samples combined together. All limits are taken as n ↑ ∞. Observations (Z1, R1), . . . , (Zn, Rn)

from the enriched dataset are regarded as iid draws from fe, which is a density w.r.t µ ⊗ κ,

where κ is the counting measure on {0, 1}. In Sections 4 and 5 we show how data from this

enriched density can be used to fully recover f ∗ and estimate and test (2.1).

We end this section with a technical remark. Introducing the refreshment dummy R

allows the combined sample to be treated as a collection of iid draws from the enriched density

9Since f∗ is a density w.r.t µ∗, it is only identified up to sets of µ∗-measure zero. Thus if Z∗ is censored then

f∗(z)1(z
elt

6= c) is a µ∗-version of f∗. Hence, Ef∗{g(Z∗, θ∗)} = 0 if and only if Ef∗{g(Z∗, θ∗)1(Z∗
elt

6= c)} = 0.
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fe, which greatly simplifies the mathematical treatment (because an iid setting makes it easier

to calculate efficiency bounds, apply standard statistical arguments to prove our results, etc.)

although it makes the refreshment sample size
∑n

j=1 Rj a random variable. However, as shown

later in Sections 4 and 5, our inference about θ∗ is actually conditional on the observed value of∑n
j=1 Rj because we estimate θ∗ jointly and efficiently with K0. Therefore, our results coincide

with those obtained in a setting where the size of the refreshment sample is non-stochastic and

observations from the combined sample are regarded as being independent but not identically

distributed.

4. Inference with censored data

From (3.2), the marginal density of Z in the enriched sample is given by
∫

r∈{0,1}
fe(z, r) dκ = K0f

∗(z)1(z
elt

6= c) + (1−K0)f(z).

Hence, letting a(z, K0) = K0 + (1−K0)1(z
elt
< c), by (2.2) and (2.3) it follows that

f ∗(z)1(z
elt

6= c) =

∫

r∈{0,1}
fe(z, r)1(z

elt

6= c) dκ/a(z, K0). (4.1)

Therefore, since Ef∗{g(Z∗, θ∗)} = 0 if and only if Ef∗{g(Z∗, θ∗)1(Z∗ elt

6= c)} = 0, we can use

(4.1) to write (2.1) in terms of the enriched density as

Efe{g(Z, θ∗)1(Z
elt

6= c)/a(Z, K0)} = 0. (4.2)

However, (4.1) also implies that10

Efe{1(Z
elt

6= c)/a(Z, K0)} = 1 ⇐⇒ Efe{1(Z
elt

6= c)1(Z
elt
< c)∼ −K01(Z

elt
< c)∼} = 0, (4.3)

where (Z
elt
< c)∼ denotes the set-complement of the event (Z

elt
< c). Furthermore, since

Efe{R−K0} = 0, (4.4)

efficient estimation of θ∗ must account for this restriction as well.

10Since {1(Z
elt
< c)+1(Z

elt
< c)∼}/a(Z,K0) = 1(Z

elt
< c)+1(Z

elt
< c)∼/K0 and 1(Z

elt

6= c)1(Z
elt
< c) = 1(Z

elt
< c),

Efe{1(Z
elt

6= c)/a(Z,K0)} = 1 ⇐⇒ Efe{1(Z
elt

6= c)1(Z
elt
< c)}+ Efe{1(Z

elt

6= c)1(Z
elt
< c)∼}/K0 = 1

⇐⇒ Efe{1(Z
elt

6= c)1(Z
elt
< c)∼} = K0Efe{1(Z

elt
< c)∼}

⇐⇒ Efe{1(Z
elt

6= c)1(Z
elt
< c)∼ −K01(Z

elt
< c)∼} = 0.

Thus the equivalence in (4.3) holds.
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For notational convenience, define β∗ = (θ∗, K0)(p+1)×1 and

ρ(Z, R, β) =




g(Z, θ)1(Z
elt

6= c)/a(Z, K)

1(Z
elt

6= c)1(Z
elt
< c)∼ −K1(Z

elt
< c)∼

R−K




def
=




ρ1(Z, β)

ρ2(Z,K)

ρ3(R, K)




(q+2)×1

. (4.5)

Then, letting ρ̂(β) =
∑n

j=1 ρ(Zj, Rj, β)/n, the two-step optimal GMM estimator of β∗ is given

by β̃ = argminβ∈B ρ̂′(β)V̆ −1
ρ ρ̂(β), where B = Θ×[0, 1] and V̆ρ =

∑n
j=1 ρ(Zj, Rj, β̆)ρ′(Zj, Rj, β̆)/n

is an estimator of the optimal weighting matrix constructed using a preliminary estimator β̆.

Let ‖ · ‖ denote the Euclidean norm; i.e., ‖z‖ = (z′z)1/2. The following standard regu-

larity conditions ensure that GMM estimators are consistent and asymptotically normal.

Assumption 4.1. (i) β∗ ∈ B is the unique solution to Efe{ρ(Z, R, β)} = 0; (ii) B is com-

pact; (iii) ρ(Z,R, β) is continuous at each β ∈ B w.p.1; (iv) Efe{supβ∈B ‖ρ(Z, R, β)‖2} < ∞;

(v) Efe{ρ(Z,R, β∗)ρ′(Z,R, β∗)} is nonsingular; (vi) β∗ ∈ int(B); (vii) ρ(Z, R, β) is contin-

uously differentiable in a neighborhood N of β∗ and Efe{supβ∈N ‖∂ρ(Z,R, β)/∂β‖} < ∞;

(viii) Efe{∂ρ(Z,R, β∗)/∂β} is of full column rank.

(i)–(v) can used to prove consistency and (vi)–(viii) the asymptotic normality of GMM

estimators as in Newey and McFadden (1994). Note that since selection probabilities are

completely unrestricted in our setup, the consistency of our estimators does not depend upon

the extent to which the data are censored.

Now let D = Efe{∂ρ1(Z, β∗)/∂θ}, V1 = Efe{ρ1(Z, β∗)ρ1(Z, β∗)′}, V2 = Efe{ρ2
2(Z, K0)},

V3 = Efe{ρ2
3(R, K0)}, Σ12 = Efe{ρ1(Z, β∗)ρ2(Z, K0)}, Σ13 = Efe{ρ1(Z, β∗)ρ3(R,K0)}, and

Ω = Efe{εε′}, where ε = ρ1(Z, β∗) − Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z, K0), ρ3(R, K0)} is the residual

from the linear projection (under fe) of ρ1(Z, β∗) onto the span of 1, ρ2(Z, K0), and ρ3(R,K0).

The next result is shown in Appendix A.

Theorem 4.1. Let Assumption 4.1 hold with the moment function ρ(Z, R, β) defined in (4.5).

Then11, [
n1/2(θ̃ − θ∗)

n1/2(K̃ −K0)

]
d−→ N(0(p+1)×1,

[
(D′Ω−1D)−1 0p×1

0′p×1 K0(1−K0)

]
.

In Theorem A.1 of Appendix A we show that (D′Ω−1D)−1 is the efficiency bound for

estimating θ∗. Therefore, θ̃ is asymptotically efficient. Furthermore, Theorem 4.3 shows that

(D′Ω−1D)−1 is strictly smaller (in the positive definite sense) than the asymptotic variance of

the GMM estimator obtained by using the refreshment sample alone. Hence, efficiency gains

from combining censored and uncensored datasets do not come from the latter alone and it

makes sense to use both the master and the refreshment samples for estimating θ∗.

11We use 0k×1 to denote a k × 1 vector of zeros; 0′k×1 is its transpose.



11

There is a simpler version of (4.5) that still leads to an asymptotically efficient estimator

of θ∗; i.e., an estimator whose asymptotic variance is equal to (D′Ω−1D)−1. This is because

Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z, K0), ρ3(R, K0)} Lemma A.1

= Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z,K0)}; (4.6)

i.e., ρ3(R,K0) is redundant once ρ2(Z, K0) is controlled for, suggesting that the asymptotic

variance of the GMM estimator of θ∗ given in Theorem 4.1 is not affected if only ρ1(Z, β∗) and

ρ2(Z,K0) are used for estimation, i.e., even if we ignore the information regarding whether Z

comes from the refreshment or the master sample. Therefore, for the remainder of Section 4

we assume that θ∗ and K0 are estimated using the moment function

ρ(Z, β) =


 g(Z, θ)1(Z

elt

6= c)/a(Z,K)

1(Z
elt

6= c)1(Z
elt
< c)∼ −K1(Z

elt
< c)∼


 def

=

[
ρ1(Z, β)

ρ2(Z, K)

]

(q+1)×1

. (4.7)

This leads to the following result.

Theorem 4.2. Let Assumption 4.1 hold with the moment function ρ(Z, β) defined in (4.7) and

let β̂ = (θ̂, K̂)(p+1)×1 denote the GMM estimator of β∗ using (4.7). Then,

[
n1/2(θ̂ − θ∗)

n1/2(K̂ −K0)

]
d−→ N(0(p+1)×1,

[
(D′Ω−1D)−1 0p×1

0′p×1 K0(1−K0)/[1− F ∗(c)]

]
.

The asymptotic variance of θ̂ is still (D′Ω−1D)−1 although dropping ρ3(R, K0) increases

the asymptotic variance of K̂ as compared to K̃. This is not surprising since ρ3(R,K0) pro-

vides information about K0 and does not matter in practice since K0 is a nuisance parameter.

Since (4.6) implies that ε is just the residual from projecting ρ1(Z, β∗) onto the span of 1

and ρ2(Z, K0), it follows that Ω = V1 − Σ12Σ
′
12/V2. The asymptotic variance of θ̂ can be es-

timated by replacing D and Ω with consistent estimators D̂ = n−1
∑n

j=1 ∂ρ1(Zj, β̂)/∂θ and

Ω̂ = V̂1− Σ̂12Σ̂
′
12/V̂2, where V̂1 =

∑n
j=1 ρ1(Zj, β̂)ρ′1(Zj, β̂)/n, Σ̂12 =

∑n
j=1 ρ1(Zj, β̂)ρ2(Zj, K̂)/n,

and V̂2 =
∑n

j=1 ρ2
2(Zj, K̂)/n; equivalently, Ω̂ =

∑n
j=1 ε̂ε̂′/n, where ε̂ is the residual from re-

gressing ρ1(Z, β̂) element-by-element on a constant and ρ2(Z, K̂)12.

12For the sake of completeness, note that if β̌ is the GMM estimator of β∗ based on ρ1(Z, β∗) and ρ3(R,K0),
then it is easy to show that asymptotically n1/2(θ̌ − θ∗) and n1/2(Ǩ −K0) are jointly normal with mean zero

and variance
[

(D′Γ−1D)−1 0p×1

0′p×1 K0(1−K0)

]
, where Γ = V1 − Σ13Σ′13/V3. From Lemma A.2, (A.9), and (A.11), we

know that V2 = K0(1 −K0)[1 − F ∗(c)] and Σ13 = Σ12. Hence, since V3 = K0(1 −K0), it follows that Γ ≥ Ω.
Therefore, (D′Γ−1D)−1 ≥ (D′Ω−1D)−1 implying that asymptotically θ̂ is better than θ̌.
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To get some intuition about why transforming the moment condition works, note that

since K0
(4.3)
= Efe{1(Z

elt

6= c)1(Z
elt
< c)∼}/Efe{1(Z

elt
< c)∼}, we can decompose

Efe{ρ1(Z, β∗)} = Efe{g(Z, θ∗)|Z elt
< c}Prfe(Z

elt
< c)

+ Efe{g(Z, θ∗)|(Z
elt

6= c) ∩ (Z
elt
< c)∼}Prfe({Z

elt
< c}∼). (4.8)

Therefore, the moment function in (4.2) can be expressed as a weighted sum of the best pre-

dictors of g(Z∗, θ∗)|(Z∗ is uncensored) and g(Z∗, θ∗)|(Z∗ is censored), with the weights being

equal to the probability that Z∗ is uncensored or censored, respectively. The estimators pro-

posed in Theorem 4.2 use the enriched sample to automatically replace g(Z∗, θ∗) with its best

predictor when observations are censored and then consistently and efficiently estimate these

best predictors and selection probabilities; see Example 4.1 for a nice illustration.

Efficiently estimating θ∗ jointly with K0 ensures that θ̂ and
∑n

j=1 Rj are asymptot-

ically independent. To see this, we can use the proof of Theorem 4.2 to show that θ̂ is

asymptotically linear with influence function −(D′Ω−1D)−1D′Ω−1ε; i.e., we can show that

n1/2(θ̂ − θ∗) = n−1/2
∑n

j=1−(D′Ω−1D)−1D′Ω−1εj + op(1). But, by the Cramér-Wold device

and the central limit theorem, n1/2(θ̂− θ∗) and n−1/2
∑n

j=1(Rj−K0) are jointly asymptotically

normal. Therefore, since ε is orthogonal to ρ3(R, K0)
13, it follows that θ̂ and

∑n
j=1 Rj are

asymptotically independent. Consequently, as mentioned at the end of Section 2, inference

based on the asymptotic distribution of θ̂ is equivalent to inference based on the asymptotic

conditional distribution of θ̂ given
∑n

j=1 Rj.

Finally, let θ̂R denote the optimal GMM estimator of θ∗ obtained using only the refresh-

ment sample; i.e., θ̂R is based on the moment condition

Efe{g(Z, θ∗)|R = 1} = 0 ⇐⇒ Efe{g(Z, θ∗)R} = 0. (4.9)

The next result shows that θ̂R is asymptotically inefficient relative to θ̂. Therefore, as stressed

earlier, it makes sense to estimate θ∗ using the enriched sample.

Theorem 4.3. Let D∗ = Ef∗{∂g(Z∗, θ∗)/∂θ} and V∗ = Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)}. Then,

n1/2(θ̂R − θ∗) d−→ N(0p×1, (D
′
∗V

−1
∗ D∗)−1/K0)

and asvar(θ̂R) > asvar(θ̂), where “asvar” is shorthand for “asymptotic variance”.

The inflation factor 1/K0 in the asymptotic variance of θ̂R is not surprising since θ̂R only

makes use of a fraction of the enriched sample. In Remark A.1 after the proof of Theorem 4.3,

we show that Ω is a decreasing (in the positive definite sense) function of K0. Hence, we can

expect the finite sample performance of θ̂ to improve as the refreshment sample gets larger.

13This follows immediately from (A.8) in the proof of Lemma A.1.
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Example 4.1 (Example 2.1 contd.). Here ρ1(Z, β) = (Z − θ)1(Z
elt

6= c)/a(Z, K) and no overi-

dentifying restrictions. Hence, (θ̂, K̂) solve
∑n

j=1 ρ1(Zj, β̂) = 0 and
∑n

j=1 ρ2(Zj, K̂) = 0; i.e.,

θ̂ = n−1

n∑
j=1

Zj1(Zj

elt

6= c)

a(Zj, K̂)
and K̂ =

∑n
j=1 1(Zj

elt

6= c)1(Zj

elt
< c)∼

∑n
j=1 1(Zj

elt
< c)∼

. (4.10)

To gain further insight into θ̂, notice that for d = 1 we can express θ̂ as

θ̂ = n−1

n∑
j=1

1(Zj < c)×
∑n

j=1 Zj1(Zj < c)∑n
j=1 1(Zj < c)

+ n−1

n∑
j=1

1(Zj ≥ c)×
∑n

j=1 Zj1(Zj > c)∑n
j=1 1(Zj > c)

.

In light of (4.8), it comes as no surprise that θ̂ is a convex combination of the sample means

of uncensored and censored observations in the enriched dataset with the weights being the

fraction of uncensored and censored observations in the enriched sample. ¤

Example 4.2 (Example 2.2 contd.). Here ρ1(Z, β) = X(Y −X ′θ)1(Z
elt

6= c)/a(Z,K). Hence,

θ̂ = (
∑n

j=1 X̂jX
′
j)
−1(

∑n
j=1 X̂jYj), where X̂j = Xj1(Zj

elt

6= c)/a(Zj, K̂) and K̂ is given in (4.10);

i.e., θ̂ is the IV estimator with instruments X̂. If censoring is purely endogenous or purely

exogenous, then a(Z, K) = K + (1−K)1(Yj < c(1)) or a(Z,K) = K + (1−K)1(Xj

elt
< c−(1)),

respectively, and the expression for θ̂ simplifies accordingly. ¤

Example 4.3 (Endogenous censored regression). Let Y ∗ = X∗′θ∗ + ε∗ such that some or all

regressors are correlated with ε∗. Let W ∗ be the vector of instruments, i.e., Ef∗{W ∗ε∗} = 0.

Hence, g(Z∗, θ∗) = W ∗(Y ∗−X∗′θ∗) and ρ1(Z, β) = W (Y −X ′θ)1(Z
elt

6= c)/a(Z,K). Endogenous

tobit, where X∗ is endogenous and only Y ∗ is censored, is important for applications and follows

by letting ρ1(Z, β) = W (Y −X ′θ)1(Y 6= c(1))/a(Y, K), where a(Y, K) = K+(1−K)1(Y < c(1)).

The asymptotic distribution of θ̂ follows readily from Theorem 4.2. ¤

Example 4.4 (Simultaneous equations). Let Y ∗
1 = X∗

1
′θ∗1+ε∗1 and Y ∗

2 = X∗
2
′θ∗2+ε∗2, where ε∗1 and

ε∗2 are mean independent of X∗, the vector of instruments. Hence, Ef∗{A(X∗)
[

Y ∗1 −X∗
1
′θ∗1

Y ∗2 −X∗
2
′θ∗2

]
} = 0,

where A(X∗) is a matrix of instrumental variables and (4.7) can be used to estimate θ∗1 and

θ∗2. Although this model has been studied earlier, see, e.g., Blundell and Smith (1993), our

treatment is more general because we do not assume that ε∗1 and ε∗2 are Gaussian and allow

for the possibility that other variables besides Y ∗
1 and Y ∗

2 may also be censored. Censoring of

Y ∗ = (Y ∗
1 , Y ∗

2 ) alone implies that ρ1(Z, β) = A(X)
[

Y1−X1
′θ1

Y2−X2
′θ2

]
1(Y1 6= c(1), Y2 6= c(2))/a(Y,K),

where a(Y, K) = K + (1−K)1(Y1 < c(1), Y2 < c(2)). ¤

Example 4.5 (Auxiliary information). Sometimes we may possess information about a feature

of the target density; e.g., we may know beforehand that the mean of the target population
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is zero. In general, suppose it is known a priori that Ef∗{m(Z∗)} = 0, where m is a vector of

known functions. Moment based auxiliary information about f ∗ can be easily incorporated in

our framework by stacking g(Z∗, θ∗) and m(Z∗). These types of models, which are a special

case of (2.1), have been investigated by Imbens and Lancaster (1994), Hellerstein and Imbens

(1999), and Nevo (2003). However, Imbens and Lancaster (1994) and Hellerstein and Imbens

(1999) assume that Z∗ is fully observed. Nevo (2003) allows Z∗ to be entirely missing (due

to attrition) but not censored. He also restricts attention to the case where the parameter of

interest is just identified. In addition, he assumes that the selection probability is known up to

a finite dimensional parameter and imposes an identification condition that rules out truncated

Z∗’s as well. By contrast, we allow (2.1) to be overidentified and the selection probabilities for

censoring or truncation of Z∗ to be fully unknown. ¤

5. Inference with truncated data

We now show how enriched data can be used to efficiently estimate models where vari-

ables are truncated. So let b∗ =
∫

T
f ∗(z) dµ∗ ∈ (0, 1) denote the probability that Z∗ is observed.

Although b∗ is unknown, the refreshment sample identifies it via the moment condition

b∗ = Efe{1(Z ∈ T )|R = 1} ⇐⇒ Efe{[1(Z ∈ T )− b∗]R} = 0. (5.1)

Next, (2.4) and (3.2) imply that f ∗(z) =
∫

r∈{0,1} fe(z, r) dκ/a(z, b∗, K0), where a(z, b∗, K0) =

K0 + (1 −K0)1(z ∈ T )/b∗ and
∫

r∈{0,1} fe(z, r) dκ is the marginal density of Z in the enriched

sample. Hence, we can rewrite (2.1) in terms of the enriched density as

Efe{g(Z, θ∗)/a(Z, b∗, K0)} = 0. (5.2)

Finally, as before,

Efe{R−K0} = 0. (5.3)

To estimate β∗ = (θ∗, b∗, K0)(p+2)×1, define14

ρ(Z, R, β) =




g(Z, θ)/a(Z, b,K)

[1(Z ∈ T )− b]R

R−K


 def

=




ρ1(Z, β)

ρ2(Z, R, b)

ρ3(R, K)




(q+2)×1

. (5.4)

Since (5.1) and (5.3) just identify b∗ and K0, by (5.2) it follows that Ef∗{g(Z∗, θ∗)} = 0 if

and only if Efe{ρ(Z, R, β∗)} = 0. Hence, β∗ can be efficiently estimated by using the latter

moment condition. Using notation introduced in Section 4, the GMM estimator is given by

14Using the fact that 1(Z 6∈ T )(1 − R) = 0, it is easy to show that ρ3(R, K0)(1 − b∗) − ρ2(Z, R, b∗) =
[K0α

∗/(1−K0)]{1/a(Z, b∗,K0)−1}. Thus 1/a(Z, b∗,K0)−1 can be written as a linear combination of ρ2(Z, R, b∗)
and ρ3(R, K0). Hence, the moment condition Efe{1/a(Z, b∗,K0)} = 1 is automatically satisfied.
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β̂ = argminβ∈B ρ̂′(β)V̆ −1
ρ ρ̂(β), where now B = Θ × [0, 1] × [0, 1] and the objective function is

defined in terms of the moment function in (5.4). Since Prfe{Z ∈ T} = K0b
∗ + 1−K0,

Efe{ρ1(Z, β∗)} = b∗Efe{g(Z, θ∗)|Z ∈ T}+ (1− b∗)Efe{g(Z, θ∗)|Z 6∈ T}; (5.5)

i.e., the transformed moment function combines best predictors of g(Z∗, θ∗)|(Z∗ is not truncated)

and g(Z∗, θ∗)|(Z∗ is truncated) weighted by probabilities of the corresponding events. As in

the case of censoring, this procedure is automatically carried out in the enriched sample to

efficiently estimate the parameters of interest; see Example 5.1 for a nice illustration.

Let α∗ = K0b
∗ + 1 − K0 and v = ε + (α∗/b∗)Proj{ρ1(Z, β∗)

∣∣1, ρ2(Z,R, b∗)}, where

ε = ρ1(Z, β∗) − Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z,R, b∗), ρ3(R, K0)}. Analogous to the notation in Sec-

tion 4, define Ω = Efe{εε′}, D = Efe{∂ρ1(Z, β∗)/∂θ}, V2 = Efe{ρ2
2(Z, R, b∗)}, and Σ12 =

Efe{ρ1(Z, β∗)ρ2(Z,R, b∗)}. Letting V = Efe{vv′} and MV = V −1 − V −1D(D′V −1D)−1D′V −1,

we can then show the following result.

Theorem 5.1. Let Assumption 4.1 hold with the moment function ρ(Z, R, β) defined in (5.4).

Then, n1/2(θ̂−θ∗), n1/2(b̂−b∗), and n1/2(K̂−K0) converge jointly in distribution to a (p+2)×1

normal random vector with mean zero and variance-covariance matrix



(D′V −1D)−1 −(α∗/K0b
∗)(D′V −1D)−1D′V −1Σ12 0p×1

−(α∗/K0b
∗)Σ′

12V
−1D(D′V −1D)−1 V2/K

2
0 − (α∗/K0b

∗)2Σ′
12MV Σ12 0

0′p×1 0 K0(1−K0)


 .

Since Σ23 = Efe{ρ2(Z, R, b∗)ρ3(R,K0)} = 0 and ε is the residual from an orthogonal

projection, we have Ω = V1−Σ12Σ
′
12/V2−Σ13Σ

′
13/V3 and V = Ω + (α∗/b∗)2Σ12Σ

′
12/V2

15, where

V1 = Efe{ρ1(Z, β∗)ρ′1(Z, β)}, Σ13 = Efe{ρ1(Z, β)ρ3(R, K0)}, and V3 = Efe{ρ2
3(R, K0)}. In

Theorem B.1 of Appendix B we show that (D′V −1D)−1 and V2/K
2
0 − (α∗/K0b

∗)2Σ′
12MV Σ12

coincide with the efficiency bounds for estimating θ∗ and b∗, respectively. Therefore, θ̂ and b̂

are asymptotically efficient. Since b̂ is obtained by using the refreshment sample alone (as is

θ̂R), its asymptotic variance when q = p is given by b∗(1− b∗)/K0 because V2 = K0b
∗(1− b∗).

Hence, overidentification of θ∗ leads to a better estimator of b∗.
We can use the proof of Theorem 5.1 to show that θ̂ is asymptotically linear with influ-

ence function −(D′V −1D)−1D′V −1v. But since v is orthogonal to ρ3(R,K0)
16, an application of

the Cramér-Wold device and the central limit theorem reveals that θ̂ and
∑n

j=1 Rj are asymp-

totically independent. Therefore, as for censoring, inference using the asymptotic distribution

of θ̂ is the same as inference based on the asymptotic distribution of θ̂ given
∑n

j=1 Rj.

15The second term in V is an adjustment for the fact that b∗ is being estimated.
16By its definition, ε is orthogonal to ρ3(R, K0). Moreover, ρ2(Z,R, b∗) and ρ3(R, K0) are also orthogonal.

Therefore, since v = ε + (α∗/b∗)Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z, R, b∗)}, it follows that v is orthogonal to ρ3(R, K0).
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The next result shows that θ̂ is asymptotically better than θ̂R. Hence, even in the case

of truncation, efficiency gains do not come solely from the refreshment sample; i.e., truncated

datasets also possess information that can be exploited to increase efficiency.

Theorem 5.2. Let θ̂R denote the estimator of θ∗ obtained by using the refreshment sample

alone; i.e., θ̂R is based on the moment condition in (4.9). Then, asvar(θ̂R) > asvar(θ̂).

Example 5.1 (Example 2.3 contd.). Here ρ1(Z, β) = (Z−θ)/a(Z, b,K) and no overidentifying

restrictions. Thus β̂ solves
∑n

j=1 ρ(Zj, β̂) = 0. Hence, b̂ =
∑n

j=1 1(Zj ∈ T )Rj/
∑n

j=1 Rj is the

fraction of observations in the refreshment sample that are not truncated, K̂ =
∑n

j=1 Rj/n the

size of the refreshment sample relative to the enriched sample, and θ̂ = n−1
∑n

j=1 Zj/a(Zj, b̂, K̂)

since
∑n

j=1 1/a(Zj, b̂, K̂) = n. Using the fact that 1(Zj 6∈ T )(1−Rj) = 0, which follows by the

definition of Rj, a little algebra shows that we can express θ̂ more revealingly as

θ̂ = b̂×
∑n

j=1 Zj1(Zj ∈ T )∑n
j=1 1(Zj ∈ T )

+ (1− b̂)×
∑n

j=1 Zj1(Zj 6∈ T )Rj∑n
j=1 1(Zj 6∈ T )Rj

,

which is exactly what we would expect from (5.5). ¤

Example 5.2 (Example 2.4 contd.). Let a(Z, b, K) = K + (1 −K)1(Y ∈ T1, X ∈ T2)/b and

X̂j = Xj/a(Zj, b̂, K̂) with b̂ and K̂ as in Example 5.1. Then θ̂ = {∑n
j=1 X̂jX

′
j}−1{∑n

j=1 X̂jYj}.
For pure endogenous or exogenous truncation a(Zj, b̂, K̂) is either K̂ + (1 − K̂)1(Yj ∈ T1)/b̂

or K̂ + (1 − K̂)1(Xj ∈ T2)/b̂, respectively, and θ̂ simplifies accordingly. By Theorem 5.1,

n1/2(θ̂ − θ∗) is asymptotically normal with mean zero and variance D−1V D−1. Truncated

versions of the endogenous regression and simultaneous equations models in Examples 4.3 and

4.4 can also be estimated using our approach. ¤

6. Application

Our application studies the effects of changes in compulsory schooling laws on age at

first marriage. While the primary purpose of the application is to demonstrate the methodology

developed in this paper, this is also a topic of some substantive importance. Our data are 1%

samples from the Public Use Files of the U.S. Census of Population for the years 1960, 1970,

and 1980.

Understanding the determinants of age at first marriage is considered to be important

for several reasons. In recent years, age at first marriage has risen. Much literature suggests

that a rising age at first marriage may be socially undesirable because marriage may encourage

good behavior and outcomes. For example, Akerlof (1998) provides evidence that marriage has

a beneficial effect on male behavior, leading to a decrease in socially undesirable activities such

as alcoholism, drug abuse, and violence. Also, Korenman and Neumark (1991) find that in the

cross-section, married men earn about 11% more than observationally equivalent unmarried
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men. When they utilize panel data and estimate a fixed effects model, the marriage effect is

about 2/3rd the size of the cross-sectional estimate. Thus, it appears that there is a direct effect

of being married on male earnings. However, in other work, they find that marriage reduces

female participation and does not positively impact their wage rates (Korenman and Neumark

1992). Second, there is a great deal of concern about the effects of out-of-wedlock childbearing

on single parents and their children. If rising age at first marriage is not accompanied by

postponed childbearing, this problem becomes more severe. Relatedly, it has long been known,

see, e.g., Coale (1971), that age at first marriage is an important determinant of fertility.

However, rising age at first marriage may also have socially beneficial effects (Goldin and

Katz 2002) because it has been linked to greater opportunities for young people, especially

women, to obtain education and develop a professional career.

Theoretically, the effects of increased education on age of marriage are unclear. Koball

(1998) describes the “economic provider” hypothesis that men are less likely to marry until

they are securely employed. Because more education leads to higher earnings, it may lead

to earlier marriage through this channel. The “adult transition” hypothesis proposes that

events that delay the transition to adulthood will also delay marriage. More education will

tend to delay marriage through this channel. Empirically, there is a positive relationship

between education and age of marriage and rising education may be related to increased age

at first marriage in recent decades. However, the correlation between education and age at

first marriage may reflect the fact that young people with low ability and poor labor market

prospects choose both to marry early and to drop out of school early rather than a causal

relationship between education and age at first marriage. One way to examine this issue is

to look at the effects of changes in policy that led to increased education. In particular, we

study whether increased mandatory educational attainment (through compulsory schooling

legislation) encourages people to defer marriage. If so, these factors should be considered when

evaluating the benefits of this type of legislation.

We use variation in compulsory schooling laws across states and over time. Changes in

these laws had a significant impact on education and indeed have been used as instruments

for education in other contexts by Acemoglu and Angrist (2001), Lochner and Moretti (2004),

and Lleras-Muney (2002). Since the history of compulsory schooling laws in the U.S. is by

now well documented (see, in particular, Lleras-Muney (2001) and Goldin and Katz (2003)),

we will not describe them in great detail here. Essentially, there were five possible restrictions

on educational attendance: (i) maximum age by which a child must be enrolled, (ii) minimum

age at which a child may drop out, (iii) minimum years of schooling before dropping out, (iv)

minimum age for a work permit, and (v) minimum schooling required for a work permit. In the

years relevant to our sample, 1939 to 1958, states changed compulsory attendance laws many

times, usually upwards but sometimes downwards. Papers on the topic have used a variety of
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combinations of these restrictions as measures of compulsory schooling. We use required years

of schooling, defined as the difference between the minimum dropout age and the maximum

enrollment age following Lleras-Muney and Goldin and Katz. We follow Acemoglu and Angrist

(2001) and Lochner and Moretti (2004) in assigning compulsory attendance laws to people on

the basis of state of birth and the year when the individual was 14 years old (with the exception

that the enrollment age is assigned based on the laws in place when the individual was 7 years

old). Also, we follow them in creating four indicator variables, depending on whether years of

compulsory schooling are 8 or less, 9, 10, and 11 or more.

Our sample is composed of men and women born between 1925 and 1944. We choose

this group of cohorts for two reasons. First, many of the changes in compulsory schooling laws

were enacted between 1939 and 1958 and so had a major impact on this group. Secondly, the

question on age at first marriage is not asked in the Census prior to 1960 or after 1980 so we

are limited in terms of which cohorts we can study.

The empirical model can be written as

log(Y ∗
j ) = X∗

j
′θ∗ + ε∗j , (6.1)

where Y ∗
j denotes age at first marriage for the jth individual in the sample, X∗

j is a vector of

explanatory variables including a constant, compulsory schooling law variables, year of birth

dummies, state dummies, and a race dummy, and ε∗j an unobserved error term that is uncorre-

lated with the regressors. There are 3 included compulsory schooling law variables describing

the level of compulsory schooling: CA9 (9 years), CA10 (10 years), and CA11 (11 or 12 years).

The omitted category is 8 years or less. There are a few points to note about (6.1): First, it

contains fixed cohort effects and state effects. The cohort effects are necessary to allow for sec-

ular changes in age at first marriage that may be completely unrelated to compulsory schooling

laws. The state effects allow for the fact that variation in the timing of the law changes across

states may not have been exogenous to the marriage market (for example, states with strict

compulsory schooling laws may be states where people tend to marry late in any case).

The major problem in running this regression is that Y ∗ is censored for younger in-

dividuals because census records report age at first marriage for only those individuals who

married before the census interview took place; otherwise, they simply report the individuals

chronological age at the time of interview. Hence, for each person we can only observe

Yj =





Y ∗
j if Y ∗

j < Cj

Cj otherwise,
(6.2)

where Cj denotes chronological age at the time of interview.

There are two elements of the censoring problem: (i) people who do get married at some

point in their life but who have never been married at the time of interview, and (ii) people who
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never get married. Our goal is to address the first problem.17 The usual approach to dealing

with (i) is to restrict the sample to older men and women (e.g., Bergstrom and Schoeni (1996)

restrict the sample to persons aged 40–60). This is obviously not a satisfactory solution because

it replaces the censoring problem with a truncation problem. In contrast, our approach is to use

both young and old persons, acknowledging that age at first marriage is significantly censored

for younger women and men. As discussed above we use the 1925–1944 cohorts, and these

people are aged 16–35 in 1960, and 26–45 in 1970. Clearly, age at first marriage is censored for

many of these persons. To deal with this problem, we need a refreshment sample that is not

censored and is from the same population as our master sample (aged 16–35 in 1960 and 26–45

in 1970). We obtain this by using individuals from the same cohort: A 16 year old woman in

1960 is considered to be from the same population as a 26 year old woman in 1970, and a 36

year old in 1980. Hence, for women who were between 16–35 in 1960 and 26–45 in 1970, the

refreshment sample consists of women aged 36–55 in 1980.

For the group of people aged 36–55 in 1980 to be a suitable refreshment sample, it must

possess two characteristics. First, it must be a draw from the same population as the master

sample. We consider this to be a reasonable assumption in this case because: (a) they are

from the exact same birth cohorts as persons in the master sample; (b) we only use individuals

born in the U.S. so immigration is not a problem; (c) we do not include individuals aged more

than 55 (and these cohorts were not involved in World War 2 or Vietnam) so mortality is not

a major consideration. We report descriptive statistics for our sample in tables 1 and 2 for

women and men, respectively. Note that the percentage white, average year-of-birth, and the

proportions affected by each compulsory schooling law regime are very similar across census

samples. This is as we would expect given that we are tracking a population as they age.

On the other hand, the average values of age at first marriage differ greatly by census due to

censoring. To further corroborate that we are following samples from the same population, in

figure 1 we also present QQ plots for age at first marriage of men and women aged at least 26

that were married before they were 26 years old18. The linearity of the plots is strong evidence

that the uncensored observations in these samples indeed come from the same population.

The second characteristic of a refreshment sample is that it should not have a censoring

problem. We examine this issue in table 3. In this table, we track each birth cohort over time,

and list the percentage who have never been married. For women, we see that the proportion

never married flattens out as women reach their early 30’s and it appears that very few women

17We cannot solve the second problem as, by definition, it is impossible to construct a refreshment sample
for the group that will never marry.

18All individuals are aged at least 26 in the 1970 and 1980 samples. To compare 1960 to 1980, we restricted
the sample to the oldest 10 cohorts i.e. persons aged at least 26 in 1960 and at least 46 in 1980. This trades
off the number of cohorts included against the number of uncensored marriage ages observed.
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marry for the first time after age 35. Thus, it appears that the refreshment sample for women

is approximately free of censoring bias. Men tend to marry at later ages and so there does

appear to be some censoring in the refreshment sample for men. However, it impacts a very

small proportion of cases; it appears that about 6% of men never marry, and very few cohorts

in the refreshment sample have more than 6% of censored observations in 1980. Despite the

evidence that there may be some censoring in the 1980 sample, in estimation we treat it as a

refreshment sample that has no censored observations.

As mentioned above, we cannot address the second type of censoring (people who never

get married) using a refreshment sample approach. Instead, we have taken a few different ad

hoc approaches and verify that our results are not very sensitive to the exact method used.

The approaches we have tried are (i) impute age at first marriage as equal to current age for

never married individuals in the refreshment sample, and (ii) impute age at marriage for all

cases where individuals are not married by 35 (we have tried imputing the age to 55 and 65;

the results are displayed in Table 6). We find that our GMM estimates are reasonably robust

to the imputation method used and so in table 4 we report the results using method (i).

We report the following GMM estimates of the coefficients of the compulsory schooling

variables and the white dummy in table 4: GMM60, obtained by matching the 1960 master

sample with the 1980 refreshment sample to create the enriched dataset, and GMM70, the

GMM estimator when the 1970 and 1980 samples are matched. Estimates for men and women

are reported separately. Following the procedure described in Section 4 (see Example 4.2 for an

illustration), both estimators were based on (4.7) and implemented in the GAUSS programming

language. Since the consistency of our estimators does not depend upon the extent to which

the data are censored, we also expect GMM60 and GMM70 to give similar estimates in finite

samples even though censoring is less of a problem in 1970. This is a good check of robustness

and is borne out by the evidence summarized in table 4.

An enriched dataset has to, by definition, contain some observations that are not subject

to the censoring mechanism. Since age at first marriage is censored from above by chronological

age in this application, an enriched dataset here must contain some observations for which age

at first marriage is greater than chronological age; i.e., loosely speaking, we must have some

counterfactual observations for whom we can “look into the future” at the time of interview and

see when they first get married. To construct such an enriched dataset by matching, say, the

1960 and 1980 samples, we first create a new variable C̃j = Cj1(j ∈ 1960)+(Cj−20)1(j ∈ 1980)

that represents the chronological age of the jth individual in 1960. The enriched observations

used to construct GMM60 are then obtained by replacing Cj in (6.2) with C̃j. GMM70 is

obtained similarly by matching the 1970 and 1980 datasets.
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To contrast our GMM estimators with some competing estimators, we also report

OLS60, OLS70, TOBIT60, and TOBIT70, the OLS and tobit estimates for each year. An-

other estimator we consider is OLS80, obtained by doing least squares on just the 1980 sample.

It is consistent because the refreshment sample is not censored. Therefore, GMM70 and OLS80

both serve as consistency checks for GMM60. Incidentally, note that although age at first mar-

riage is a continuously distributed random variable, in the data it is recorded in discrete units

(years). Therefore, we cannot do censored quantile regression in this application.

First, consider the compulsory schooling estimates for women. The GMM estimates

for both 1960 and 1970 are quite similar and suggest that moving from less than 9 years of

compulsory schooling to 9 years increases log age at first marriage by about 0.01, implying

age at first marriage increases by approximately 1%. The effects for 10 years of compulsory

schooling is about 1.5%, and the effects of 11 or more is about 2%. Not surprisingly, these

effects are about the same size as one obtains using just the refreshment sample (the 1980

data) because the refreshment sample does not suffer from censoring bias. Note, however,

that the GMM estimates are more precisely estimated than the OLS estimates from 1980, as

GMM is optimally using additional information from the 1960 and 1970 samples. The gain in

efficiency is bigger for GMM70 than for GMM60, presumably because the 1970 data has less of

a censoring problem and hence is more informative19. The OLS estimates from 1960 and 1970

show signs of bias due to censoring. In particular, the 1960 estimates indicate very large effects

of the compulsory schooling laws on age at first marriage. The final two columns in table 4

report tobit estimates. The tobit estimates of the compulsory schooling laws are typically lower

than that of the GMM estimators. Also, there is a substantial difference between the tobit

estimates for 1960 and the equivalent estimates for 1970, indicating that tobit is performing

poorly in this situation.

The estimate of the white dummy for women is also in table 4. The GMM estimates

both indicate that whites tend to marry at younger ages than non-whites – the point estimates

imply the difference is about 8–9%. Once again, OLS estimates for 1960 and 1970 are very

different, suggesting that censoring bias is serious for these samples. The two tobit estimates

are again very different from the GMM estimates.

The compulsory schooling and white estimates for men are also in table 4. They differ

from the female results in that the GMM estimates only suggest significant effects of 10 years

of required schooling (9 years is marginally significant for GMM70). In contrast, the OLS

19The difference in the standard errors between OLS80 and the GMM estimators is not that big in this
application because our refreshment sample is almost the same size as the master sample. We have experimented
with reducing the refreshment sample size by taking random 10% and 20% subsamples (see table 7) and found
a much bigger gain in precision for the GMM estimators over OLS80 when the refreshment sample is smaller
in size although the resulting estimates are all much less precise than those reported in table 4.
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estimates for 60 and 70 show strong significant effects of all the laws on age of first marriage.

As in the female sample, the GMM estimates of the white coefficient imply a difference of about

8-9%. The OLS80 and tobit estimates are again very different, suggesting that censoring bias

is severe for the tobit estimates.

Cohort and state fixed effects were also included in the specification. The estimated

cohort effects show how the conditional mean of log(age at first marriage) varies by birth co-

hort. The oldest cohort (persons born in 1925) is the excluded dummy in the regression, so the

estimate for this group is normalized to zero. Rather than report the coefficients of the cohort

dummies, we plot them for women and men in figures 2 and 3, respectively. Not surprisingly,

the cohort effects for OLS60 are radically different from the rest. The cohort effects for the

rest of the estimators are quite similar to each other.

In summary, we find positive effects of the compulsory schooling laws on age at first

marriage. However, the magnitude of the effects are much smaller than would be inferred from

ignoring the censoring problem in the 1960 and 1970 data. By contrast, we find large racial

differences that are largely obscured in the censored data. Taken together, these demonstrate

the importance in this application of using an approach that takes account of censoring. The

similarity of the GMM estimates from 1960 and 1970 to each other and to the OLS estimates

from 1980 also demonstrates our theoretical result that the proposed estimators are consistent

irrespective of the extent of censoring.

7. Conclusion

We develop efficient semiparametric inference for models with unconditional moment

restrictions when the target population is subject to censoring or truncation. Instead of im-

posing parametric, independence, symmetry, quantile, or special regressor restrictions on the

distributions of the underlying random variables, we solve the identification problem created

due to the incompleteness of data by using a supplementary sample of observations that are

not subject to censoring or truncation. We show how this refreshment sample can be com-

bined with the original dataset of censored or truncated observations to efficiently correct for

the effects of partial observation so that all standard GMM based inference goes through. To

illustrate our results in an empirical setting, we show how to estimate the effect of changes

in compulsory schooling laws on age at first marriage, a variable that is censored for younger

individuals, and also demonstrate how refreshment samples in this application can be created

by matching cohort information across census datasets.

The methods developed in this paper are readily applicable in many other applied con-

texts20. For example, an important potential application is to the estimation of unemployment

20Applications where refreshment samples are relatively straightforward to construct seem to be those where
censoring or truncation can in some sense be regarded as nuisance processes, i.e., where the underlying economic
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durations and re-employment wages subsequent to job displacement. U.S. analyses of the con-

sequences of job displacement have predominantly relied on the Displaced Worker Supplement

(DWS) to the Current Population Survey (CPS). However, serious problems arise because many

individuals have not become re-employed by the time of the CPS survey so that unemployment

durations are censored and re-employment wages are truncated. By using panel data sets such

as the Panel Study of Income Dynamics (PSID), one can augment the CPS with a sample that

does not have these censoring problems (as individuals are followed for years after displace-

ment) and consistently estimate parameters of interest. We intend to examine this application

in future research. The theory developed here can be extended to handle binary response,

ordered response, and models involving interval censored or missing data as well. Research on

all these topics is also in progress and will be presented in subsequent papers.
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Appendix A. Proofs of the results in section 4

Proof of Theorem 4.1. From standard GMM theory we know that n1/2(β̃ − β∗) is asymptotically
normal with mean zero and variance (D′

ρV
−1
ρ Dρ)−1, where Dρ = Efe{∂ρ(Z, R, β∗)/∂β} and Vρ =

Efe{ρ(Z, R, β∗)ρ′(Z, R, β∗)}. Letting Σ = [ Σ12 Σ13 ] and Σ23 = Efe{ρ2(Z, K0)ρ3(R, K0)}, we can write

Vρ =
[

V1 Σ
Σ′ V−1

]
, where V−1 =

[
V2 Σ23
Σ23 V3

]
. Hence, by the partitioned inverse formula,

V −1
ρ =

[
Ω−1 −Ω−1ΣV −1

−1

−V −1
−1 Σ′Ω−1 V −1

−1 + V −1
−1 Σ′Ω−1ΣV −1

−1

]
, (A.1)

outcomes are not restricted but their measured or recorded versions are. In contrast, it seems hard, at least to
us, to non-experimentally construct refreshment samples by matching datasets in applications where censoring
or truncation are thought of as being behavioral in origin, i.e., where there are fundamental constraints that
bind economic behavior such as those in models of female labor supply or household demand for durable goods.
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where Ω = V1 − ΣV −1
−1 Σ′. Since ε is the residual from an orthogonal projection of ρ1(Z, β∗) onto the

linear span of {1, ρ2(Z, K0), ρ3(R, K0)}, it is immediate that Efe{εε′} = Ω. Furthermore, since

V−1
Lemma A.2=

[
K0(1−K0)[1− F ∗(c)] K0(1−K0)[1− F ∗(c)]
K0(1−K0)[1− F ∗(c)] K0(1−K0)

]
, (A.2)

V −1
−1 is easily obtained. Next, observe that

Dρ =




D Efe{∂ρ1(Z, β∗)/∂K}
0′p×1 −Efe{1(Z

elt
< c)∼}

0′p×1 −1


 Lemma A.3=




D −Σ12/K0(1−K0)
0′p×1 −[1− F ∗(c)]
0′p×1 −1


 . (A.3)

Therefore, using (A.1)–(A.3), straightforward matrix multiplication shows that

D′
ρV

−1
ρ Dρ =

[
D′Ω−1D 0p×1

0′p×1 1/K0(1−K0)

]
. (A.4)

The desired result follows. ¤

Proof of Theorem 4.2. Same as the proof of Theorem 4.1, the only difference being that since
estimation here is based on the moment function ρ(Z, β) defined in (4.7), we now have

Dρ =

[
D −Σ12/K0(1−K0)

0′p×1 −[1− F ∗(c)]

]
and Vρ =

[
V1 Σ12

Σ′12 K0(1−K0)[1− F ∗(c)]

]
.

Therefore,

D′
ρV

−1
ρ Dρ =

[
D′Ω−1D 0p×1

0′p×1 [1− F ∗(c)]/K0(1−K0)

]

and the desired result follows. ¤

Proof of Theorem 4.3. Since θ̂R is the optimal GMM estimator based on Efe{g(Z, θ∗)R} = 0, we
know that n1/2(θ̂R−θ∗) is asymptotically normal with mean zero and variance (D′

RV −1
R DR)−1, where

DR = Efe{∂g(Z, θ∗)R/∂θ} and VR = Efe{g(Z, θ∗)g′(Z, θ∗)R}. But,

DR = Efe{∂g(Z, θ∗)R/∂θ} = K0Efe{∂g(Z, θ∗)/∂θ|R = 1} (3.1)
= K0Ef∗{∂g(Z∗, θ∗)/∂θ} = K0D∗.

Similarly, we can show that VR = K0V∗. Hence, (D′
RV −1

R DR)−1 = (D′∗V −1∗ D∗)−1/K0. Next, observe
that D∗ = D by (4.1) and the fact that µ∗({c}) = 0. Hence, to prove asvar(θ̂R) > asvar(θ̂) it suffices
to show that V∗/K0 > Ω; i.e., V∗/K0 − Ω is positive definite. So, by (4.1), µ∗({c}) = 0, and the fact

{1(Z
elt
< c) + 1(Z

elt
< c)∼}/a(Z, K0) = 1(Z

elt
< c) + 1(Z

elt
< c)∼/K0, (A.5)

we can write V1 as

V1 = Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗
elt
< c)}+ Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗

elt
< c)∼}/K0. (A.6)
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Hence, we have that

Ω = V1 − Σ12Σ′12/V2

= V∗/K0 − [(1/K0 − 1)Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗
elt
< c)}+ Σ12Σ′12/V2]. (A.7)

Therefore, V∗/K0 > Ω since K0 ∈ (0, 1). The desired result follows. ¤

Remark A.1. For notational convenience, define ∆1 = varf∗{g(Z∗, θ∗)|(Z∗ elt
< c)∼} and

∆2 = Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗
elt
< c)}

+ Ef∗{g(Z∗, θ∗)1(Z∗
elt
< c)∼}Ef∗{g′(Z∗, θ∗)1(Z∗

elt
< c)∼}/(1− F ∗(c)).

Then, using (A.6), (A.10), Lemma A.2(ii), and Lemma A.3(ii), a little algebra shows that

Ω = V1 − Σ12Σ′12/V2 = [(1− F ∗(c))/K0]∆1 + ∆2.

Therefore, since ∆1 and ∆2 do not depend upon K0, it follows that Ω is a decreasing (in the positive
definite sense) function of K0. Furthermore, by (A.10) and Lemma A.2(ii), we can write (A.7) as

V∗/K0 − Ω = [(1−K0)/K0]∆2.

Since K0 7→ (1−K0)/K0 is monotonically decreasing on (0, 1), the gap V∗/K0−Ω is also a decreasing
function of K0. ¤

Lemma A.1. Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z,K0), ρ3(R, K0)} = Proj{ρ1(Z, β∗)

∣∣1, ρ2(Z,K0)}.

Proof of Lemma A.1. To prove this result, it suffices to show that

Efe{[ρ1(Z, β∗)− Proj{ρ1(Z, β∗)|1, ρ2(Z,K0)}]ρ3(R,K0)} = 0. (A.8)

But Proj{ρ1(Z, β∗)|1, ρ2(Z, K0)} = Σ12ρ2(Z, K0)/V2. Hence, by Lemma A.2, we have that (A.8) holds
if and only if Σ13 = Σ12. Now, by (3.1),

Σ13 = K0Efe{ρ1(Z, β∗)|R = 1} = K0Ef∗{ρ1(Z∗, β∗)}.
Moreover, since µ∗({c}) = 0,

Ef∗{ρ1(Z∗, β∗)} = Ef∗{g(Z∗, θ∗)[1(Z∗
elt
< c) + 1(Z∗

elt
< c)∼]/a(Z∗,K0)}.

Hence, using (A.5), we obtain that

Σ13 = −(1−K0)Ef∗{g(Z∗, θ∗)1(Z∗
elt
< c)}. (A.9)

Next, observe that

Σ12 = (1−K0)Efe{g(Z, θ∗)1(Z
elt
6= c)1(Z

elt
< c)∼/a(Z, K0)}

= (1−K0)Ef∗{g(Z∗, θ∗)1(Z∗
elt
< c)∼} (A.10)

= −(1−K0)Ef∗{g(Z∗, θ∗)1(Z∗
elt
< c)}, (A.11)
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where the second equality follows by (4.1) and the assumption that µ∗({c}) = 0. Therefore, the
desired result follows by (A.9) and (A.11). ¤

Lemma A.2. (i) Σ23 = K0(1−K0)[1− F ∗(c)] and (ii) V2 = K0(1−K0)[1− F ∗(c)].

Proof of Lemma A.2. Note that

Σ23 = Efe{ρ2(Z,K0)R} = K0Efe{ρ2(Z,K0)|R = 1} (3.1)
= K0Ef∗{ρ2(Z∗,K0)}.

Hence, (i) follows since

Ef∗{ρ2(Z∗,K0)} = (1−K0)Ef∗{1(Z∗
elt
< c)∼} = (1−K0)[1− F ∗(c)].

To show (ii), observe that

Efe{ρ2
2(Z,K0)} = Efe{1(Z

elt
6= c)1(Z

elt
< c)∼}+ K2

0Efe{1(Z
elt
< c)∼} − 2K0Efe{1(Z

elt
6= c)1(Z

elt
< c)∼}.

But using (4.1) and the assumption that µ∗({c}) = 0, it is easy to show that

Efe{1(Z
elt
6= c)1(Z

elt
< c)∼} = K0[1− F ∗(c)].

Therefore, (ii) follows by Lemma A.3(ii). ¤

Lemma A.3. (i) Efe{∂ρ1(Z, β∗)/∂K} = −Σ12/K0(1−K0) and (ii) Efe{1(Z
elt
< c)∼} = 1− F ∗(c).

Proof of Lemma A.3. First, note that

∂ρ1(Z, β∗)/∂K = −g(Z, θ∗)1(Z
elt
6= c)1(Z

elt
< c)∼/a2(Z,K0)

= −g(Z, θ∗)1(Z
elt
6= c)1(Z

elt
< c)∼/[a(Z, K0)K0],

where the second equality is due to (A.5). Hence, by (4.1) and µ∗({c}) = 0,

Efe{∂ρ1(Z, β∗)/∂K} = Ef∗{g(Z∗, θ∗)1(Z∗
elt
< c)}/K0.

Therefore, (i) follows by (A.11). Next, since 1(Z
elt
< c) = 1(Z

elt
6= c)1(Z

elt
< c),

Efe{1(Z
elt
< c)∼} = 1− Efe{1(Z

elt
< c)} = 1− Efe{1(Z

elt
6= c)1(Z

elt
< c)}

(4.1)
= 1− Ef∗{1(Z∗

elt
6= c)1(Z∗

elt
< c)a(Z∗,K0)} = 1− F ∗(c)

since µ∗({c}) = 0 by assumption. ¤
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A.1. Efficiency bounds under censoring. We use the methodology of Severini and Tripathi (2001)
to calculate the efficiency bounds. Begin by writing the enriched density of Z and R as fe(z, r) =
φ2

0(z, r). This ensures that φ0 lies in L2(z, r), the set of real-valued functions on Rd × {0, 1} square-
integrable with respect to µ ⊗ κ. Now, suppose that we want to calculate the efficiency bound for
estimating η(φ0), a pathwise differentiable functional of φ0 (see Severini and Tripathi (2001) for
technical definitions and details). We proceed as follows. Let t 7→ φt be a curve from an interval
containing zero into the unit ball of L2(z, r) such that φt|t=0 = φ0. Since the observed loglikelihood
for t in this submodel is log φ2

t (z, r), the Fisher information for a single observation is given by
iF = 4

∫
Rd×{0,1} φ̇2(z, r) dµ dκ, where φ̇ denotes the tangent vector to φt at t = 0; i.e., φ̇ is an element

of the tangent space T = {φ̇ ∈ L2(z, r) :
∫
Rd×{0,1} φ0(z, r)φ̇(z, r) dµ dκ = 0}. Note that iF is induced

by the Fisher inner-product 〈φ̇1, φ̇2〉F = 4
∫
Rd×{0,1} φ̇1(z, r)φ̇2(z, r) dµ dκ. Thus iF = ‖φ̇‖2

F, where ‖·‖F

denotes the norm generated by the Fisher inner-product.

Since (2.1) is equivalent to Efe{g(Z, θ∗)1(Z
elt
6= c)/a(Z, K0)} = 0, we have to use the additional

information in (4.2) when calculating the efficiency bound for estimating η(φ0). So let t 7→ (θt,Kt)
denote a curve passing through (θ∗,K0) at t = 0 such that for all t in a neighborhood of zero

∫

Rd×{0,1}
g(z, θt)1(z

elt
6= c)φ2

t (z, r)/a(z, Kt) dµ dκ = 0, (A.12)

where, by (4.3) and (4.4), Kt is defined via the moment conditions
∫

Rd×{0,1}
(1(z

elt
6= c)1(z

elt
< c)∼ −Kt1(z

elt
< c)∼)φ2

t (z, r) dµ dκ = 0,

∫

Rd×{0,1}
(r −Kt)φ2

t (z, r) dµ dκ = 0.

(A.13)

By (A.12), the tangent vectors φ̇, θ̇, and K̇ must satisfy

Dθ̇ + 2
∫

Rd×{0,1}
ρ1(z, β∗)φ0(z, r)φ̇(z, r) dµ dκ + Efe{∂ρ1(Z, β∗)/∂K}K̇ = 0 (A.14)

and from (A.13) we know that K̇ solves
[
−[1− F ∗(c)]

−1

]
K̇ + 2

∫

Rd×{0,1}
ρ−1(z, r,K0)φ0(z, r)φ̇(z, r) dµ dκ = 0, (A.15)

where ρ−1(z, r,K0) = (ρ2(z, K0), ρ3(r,K0))2×1. Therefore, stacking (A.14) and (A.15), we have that

Dρβ̇ + 2
∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ = 0, (A.16)

where Dρ is given by (A.3) and β̇ = (θ̇, K̇)(p+1)×1.
Now let W be a (q + 2)× (q + 2) symmetric positive-definite non-stochastic matrix. Premul-

tiplying (A.16) by (D′
ρWDρ)−1D′

ρW and solving for β̇, we obtain that

β̇ = −2(D′
ρWDρ)−1D′

ρW

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ. (A.17)
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Finally, substituting (A.17) in (A.16), we get that

(I(q+2)×(q+2) −Dρ(D′
ρWDρ)−1D′

ρW )
∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ = 0. (A.18)

Since x 7→ Dρ(D′
ρWDρ)−1D′

ρWx is an orthogonal projection onto the column space of Dρ using the
weighted inner product 〈x1, x2〉 = x′1Wx2, it follows that (A.18) is satisfied by only those tangent
vectors φ̇ for which

∫
Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ lies in the column space of Dρ.

Let TW denote the set of tangent vectors that satisfy (A.18). The efficiency bound for estimat-
ing η(φ0) is given by infW∈W ‖∇η‖2

W , where W is the set of (q+2)×(q+2) symmetric positive-definite
matrices, ‖∇η‖W = sup{φ̇∈TW :φ̇ 6=0} |∇η(φ̇)|, and ∇η denotes the pathwise derivative of η. To calculate
the bound, we first employ a guess-and-verify strategy to find, for any W ∈ W, a φ∗W ∈ T satisfying

∇η(φ̇) = 〈φ̇, φ∗W 〉F for all φ̇ ∈ TW . (A.19)

Next, we pick a W ∗ ∈ W so that
∫
Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ∗W ∗(z, r) dµ dκ lies in the column space of

Dρ. This means that φ∗W ∗ ∈ TW ∗ and we can use this fact to show that ‖∇η‖W ∗ = ‖φ∗W ∗‖F
21. Since

W ∗ is determined uniquely up to scale, see, e.g., the proof of Theorem A.1, the efficiency bound for
estimating η(φ0) is therefore given by ‖φ∗W ∗‖2

F.
We use this procedure to obtain the efficiency bound for estimating θ∗ in Theorem A.1. Com-

paring it with the asymptotic variance in Theorem 4.2 reveals that θ̂ is asymptotically efficient.

Theorem A.1. The efficiency bound for estimating θ∗ is given by (D′Ω−1D)−1.

Proof of Theorem A.1. Let ξ ∈ Rp be arbitrary. To obtain the efficiency bound for estimating
η(φ0) = ξ′θ∗, the tangent vectors φ̇ and θ̇ must satisfy ∇η(φ̇) = ζ ′β̇, where ζ = (ξ, 0)(p+1)×1. Hence,
by (A.17), for any W ∈ W we have that

∇η(φ̇) = −2ζ ′(D′
ρWDρ)−1D′

ρW

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ.

By (A.19), we have to find a φ∗W ∈ T such that
∫

Rd×{0,1}
{φ∗W (z, r) + 0.5ζ ′(D′

ρWDρ)−1D′
ρWρ(z, r, β∗)φ0(z, r)}φ̇(z, r) dµ dκ = 0 (A.20)

for all φ̇ ∈ TW . We claim that

φ∗W (z, r) = −0.5ζ ′(D′
ρWDρ)−1D′

ρWρ(z, r, β∗)φ0(z, r).

It is easily verified that φ∗W ∈ T and satisfies (A.20) for all φ̇ ∈ TW . Hence, we only have to determine
W ∗ such that

∫
Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ∗W ∗(z, r) dµ dκ lies in the column space of Dρ. But since
∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ∗W (z, r) dµ dκ = −0.5VρWDρ(D′

ρWDρ)−1ζ,

21By (A.19), ∇η(φ̇) = 〈φ̇, φ∗W∗〉F for all φ̇ ∈ TW∗ . Hence, ‖∇η‖W∗ ≤ ‖φ∗W∗‖F by Cauchy-Schwarz. But since
φ∗W∗ ∈ TW∗ , we also have ‖φ∗W∗‖2F = ∇η(φ∗W∗) ≤ ‖∇η‖W∗ ‖φ∗W∗‖F; i.e., ‖∇η‖W∗ ≥ ‖φ∗W∗‖F.
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it follows that
∫
Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ∗W ∗(z, r) dµ dκ lies in the column space of Dρ if and only if

VρW
∗ ∝ Iq×q. Hence,

φ∗W ∗(z, r) = −0.5ζ ′(D′
ρV

−1
ρ Dρ)−1D′

ρV
−1
ρ ρ(z, r, β∗)φ0(z, r)

and the efficiency bound for estimating ξ′θ∗ is given by

4
∫

Rd×{0,1}
{φ∗W ∗(z, r)}2 dµ dκ = ζ ′(D′

ρV
−1
ρ Dρ)−1ζ

(A.4)
= ξ′(D′Ω−1D)−1ξ.

The desired result follows since ξ was arbitrary. ¤

Appendix B. Proofs of the results in section 5

The proofs below are very similar to those in Appendix A.

Proof of Theorem 5.1. As in the proof of Theorem 4.1, n1/2(β̂−β∗) is asymptotically normal with
mean zero and variance (D′

ρV
−1
ρ Dρ)−1, where

Dρ
Lemma B.1=




D (1−K0)Σ12/b∗2 Σ12/K0b
∗

0′p×1 −K0 0
0′p×1 0 −1


 (B.1)

V −1
ρ =

[
Ω−1 −Ω−1ΣV −1

−1

−V −1
−1 Σ′Ω−1 V −1

−1 + V −1
−1 Σ′Ω−1ΣV −1

−1

]
and V−1 =

[
V2 0
0 V3

]
.

Hence, letting γ = (K2
0/V2) + (α∗K0/V2b

∗)2Σ′12Ω
−1Σ12,

D′
ρV

−1
ρ Dρ =




D′Ω−1D (α∗K0/V2b
∗)D′Ω−1Σ12 0p×1

(α∗K0/V2b
∗)Σ′12Ω

−1D γ 0
0′p×1 0 1/V3


 .

Now, since V = Ω + (α∗/b∗)2Σ12Σ′12/V2, by the Sherman-Morrison formula

Ω−1 = [V − Σ12Σ′12

V2(b∗/α∗)2
]−1 = V −1 +

V −1Σ12Σ′12V
−1

V2(b∗/α∗)2 − Σ′12V
−1Σ12

.

Therefore, applying the partitioned inverse formula, it can be verified that (D′
ρV

−1
ρ Dρ)−1 equals




(D′V −1D)−1 −(α∗/K0b
∗)(D′V −1D)−1D′V −1Σ12 0p×1

−(α∗/K0b
∗)Σ′12V

−1D(D′V −1D)−1 V2/K2
0 − (α∗/K0b

∗)2Σ′12MV Σ12 0
0′p×1 0 K0(1−K0)


 . (B.2)

The desired result follows. ¤

Proof of Theorem 5.2. As in the proof of Theorem 4.3, we show that V∗/K0 > V . Now, using
Lemma B.2, a little algebra shows that V = V1 + (1−K0)(α∗/K0b

∗3)Σ12Σ′12. But since

V1 = Efe{g(Z, θ∗)g′(Z, θ∗)[1(Z ∈ T ) + 1(Z 6∈ T )]/a2(Z, b∗,K0)}
= V∗/K0 − (1−K0)Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ ∈ T )}/K0α

∗,
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we obtain that V = V∗/K0 − (1−K0)∆/K0, where

∆ = Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ ∈ T )}/α∗ − (α∗/b∗3)Σ12Σ′12.

Next, a little simplification reveals that Σ12 = (b∗/α∗)Ef∗{g(Z, θ∗)1(Z ∈ T )}. Hence,

α∗b∗∆ = b∗Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ ∈ T )} − Ef∗{g(Z∗, θ∗)1(Z∗ ∈ T )}Ef∗{g′(Z∗, θ∗)1(Z∗ ∈ T )}
= b∗2varf∗{g(Z∗, θ∗)|Z∗ ∈ T}.

Therefore, ∆ = (b∗/α∗)varf∗{g(Z∗, θ∗)|Z∗ ∈ T} and we have

V = V∗/K0 − [(1−K0)b∗/K0α
∗]varf∗{g(Z∗, θ∗)|Z∗ ∈ T}. (B.3)

Hence, assuming varf∗{g(Z∗, θ∗)|Z∗ ∈ T} is positive definite, the desired result follows. ¤

Remark B.1. From (B.3) we know that V = [V∗−((1−K0)b∗/α∗)varf∗{g(Z∗, θ∗)|Z∗ ∈ T}]/K0. But
K0 7→ 1/K0 is a decreasing function of K0 and, upon recalling the definition of α∗, it is easily seen
that K0 7→ −(1−K0)b∗/α∗ is increasing in K0. Since V∗ and varf∗{g(Z∗, θ∗)|Z∗ ∈ T} do not depend
upon K0, it follows that V is the product of a decreasing function of K0 with an increasing function
of K0. Hence, V may not be monotonically decreasing in K0. However, since K0 7→ (1−K0)b∗/K0α

∗

is a decreasing function of K0, the gap V∗/K0 − V is monotonically decreasing in K0. ¤

Lemma B.1. (i) Efe{∂ρ1(Z, β∗)/∂b} = (1−K0)Σ12/b∗2 and (ii) Efe{∂ρ1(Z, β∗)/∂K} = Σ12/K0b
∗.

Proof of Lemma B.1. First, note that

Efe{∂ρ1(Z, β∗)/∂b} = [(1−K0)/b∗2]Efe{g(Z, θ∗)1(Z ∈ T )/a2(Z, b∗,K0)}.

But Efe{g(Z, θ∗)1(Z ∈ T )/a2(Z, b∗,K0)} can be decomposed as

Efe{g(Z, θ∗)[1(Z ∈ T )− b∗]/a2(Z, b∗,K0)}+ b∗Efe{g(Z, θ∗)/a2(Z, b∗,K0)}.

Furthermore, it is easily seen that

Σ12 = K0Efe{g(Z, θ∗)[1(Z ∈ T )− b∗]/a2(Z, b∗,K0)}
Σ13 = K0Efe{g(Z, θ∗)/a2(Z, b∗,K0)}.

Therefore, (i) follows by Lemma B.2. The proof of (ii) is very similar and is, hence, omitted. ¤

Lemma B.2. (1−K0)Σ12 + b∗Σ13 = 0.

Proof of Lemma B.2. Since (1−K0)ρ2(Z, R, b∗)/b∗ = {a(Z, b∗,K0)−1}R and Efe{g(Z, θ∗)R} = 0,

(1−K0)Σ12/b∗ = Efe{g(Z, θ∗)R} − Efe{g(Z, θ∗)R/a(Z, b∗,K0)} = −Σ13.

The desired result follows. ¤

Theorem B.1. The efficiency bounds for estimating θ∗ and b∗ are given by (D′V −1D)−1 and V2/K2
0−

(α∗/K0b
∗)2Σ′12MV Σ12, respectively.
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Proof of Theorem B.1. Following the procedure described earlier in Section A.1, we can show that
analogous versions of (A.17) and (A.18) hold with β̇ = (θ̇, ḃ, K̇)(p+2)×1 and Dρ given by (B.1). Now
let ξ1 ∈ Rp and ξ2 ∈ R be arbitrary. Define ζ = (ξ1, ξ2, 0)(p+2)×1. Then, as in Theorem A.1 we can
show that the efficiency bound for estimating η(φ0) = ξ′1θ

∗+ξ2b
∗ = ζ ′β∗ is given by ζ ′(D′

ρV
−1
ρ Dρ)−1ζ.

The desired result follows by (B.2) and the fact that ξ1 and ξ2 are arbitrary. ¤
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Appendix C. Tables and Figures

Table 1. Descriptive statistics for women by year

Mean Std. Dev. Min Max

1960 (220730 observations)
Birth Cohort 1934.62 5.98 1925 1944
Age 25.38 5.98 16 35
Age at First Marriage 19.68 3.59 14 35
Never Married 0.29 0.45 0 1
White 0.88 0.32 0 1
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1970 (216036 observations)
Birth Cohort 1934.69 5.94 1925 1944
Age 35.31 5.94 26 45
Age at First Marriage 21.23 5.19 14 45
Never Married 0.07 0.25 0 1
White 0.88 0.32 0 1
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1980 (223903 observations)
Birth Cohort 1934.73 5.95 1925 1944
Age 45.28 5.95 36 55
Age at First Marriage 22.07 7.01 12 55
Never Married 0.05 0.22 0 1
White 0.88 0.33 0 1
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1
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Table 2. Descriptive statistics for men by year

Mean Std. Dev. Min Max

1960 (213184 observations)
Birth Cohort 1934.69 6.00 1925 1944
Age 25.31 6.00 16 35
Age at First Marriage 21.36 3.95 14 35
Never Married 0.42 0.49 0 1
White 0.89 0.31 0 1
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1970 (207129 observations)
Birth Cohort 1934.71 5.94 1925 1944
Age 35.29 5.94 26 45
Age at First Marriage 23.82 5.26 14 45
Never Married 0.10 0.30 0 1
White 0.90 0.30 0 1
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1980 (212244 observations)
Birth Cohort 1934.80 5.93 1925 1944
Age 45.20 5.93 36 55
Age at First Marriage 24.95 7.26 12 55
Never Married 0.07 0.25 0 1
White 0.89 0.31 0 1
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1
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Table 3. Proportion censored by cohort and year

age in % of women censored % of men censored
1960 1960 1970 1980 1960 1970 1980
16 94 13 7 99 20 9
17 88 11 6 98 17 8
18 75 10 6 95 15 8
19 59 9 6 87 13 8
20 46 8 6 75 12 7
21 34 7 5 62 10 7
22 25 7 5 50 10 6
23 19 7 5 40 9 6
24 15 6 5 32 8 7
25 13 6 5 27 9 6
26 11 5 5 22 8 6
27 9 6 4 19 7 6
28 9 5 5 16 7 5
29 9 5 5 15 7 6
30 8 5 4 13 7 6
31 7 5 4 12 7 6
32 6 5 4 11 7 6
33 6 5 5 11 7 6
34 6 5 4 10 7 6
35 6 5 5 9 6 6
36 6 5 4 8 6 6
37 6 6 5 8 6 6
38 5 5 5 8 6 6
39 6 5 5 8 6 6
40 6 6 5 7 6 6
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Table 4. Effects of compulsory schooling laws and race on

log(age at first marriage). Also included in the specification, but not reported

in this table, are a constant, year-of-birth indicators, and state dummies.

Women OLS60 OLS70 OLS80 GMM60 GMM70 TOBIT60 TOBIT70
9 Years Schooling Reqd. .0157∗

(.0016)
.0080∗
(.0022)

.0096∗
(.0025)

.0102∗
(.0024)

.0094∗
(.0022)

.0029
(.0018)

.0077∗
(.0021)

10 Years Schooling Reqd. .0232∗
(.0021)

.0112∗
(.0030)

.0146∗
(.0035)

.0150∗
(.0034)

.0129∗
(.0031)

.0075∗
(.0026)

.0103∗
(.0031)

11+ Years Schooling Reqd. .0456∗
(.0038)

.0317∗
(.0052)

.0184∗
(.0061)

.0188∗
(.0060)

.0223∗
(.0053)

.0157∗
(.0049)

.0299∗
(.0057)

White −.0261∗
(.0012)

−.0476∗
(.0018)

−.0827∗
(.0021)

−.0927∗
(.0020)

−.0808∗
(.0019)

−.0393∗
(.0014)

−.0534∗
(.0016)

Men OLS60 OLS70 OLS80 GMM60 GMM70 TOBIT60 TOBIT70
9 Years Schooling Reqd. .0114∗

(.0015)
.0073∗
(.0022)

.0031
(.0026)

.0046
(.0024)

.0061∗
(.0023)

−.0028
(.0019)

.0062∗
(.0022)

10 Years Schooling Reqd. .0205∗
(.0019)

.0120∗
(.0029)

.0130∗
(.0035)

.0131∗
(.0033)

.0137∗
(.0031)

.0052
(.0029)

.0109∗
(.0031)

11+ Years Schooling Reqd. .0359∗
(.0035)

.0152∗
(.0053)

.0049
(.0063)

.0028
(.0060)

.0070
(.0056)

.0055
(.0053)

.0121∗
(.0057)

White −.0156∗
(.0011)

−.0444∗
(.0018)

−.0792∗
(.0021)

−.0826∗
(.0020)

−.0792∗
(.0019)

−.0301∗
(.0016)

−.0515∗
(.0017)

Standard errors in parentheses. An asterisk denotes that effect is significant at the 5% level.

Table 5. K̂ for the female and male subsamples.

GMM60 GMM70
Women 0.4491 0.4964
Men 0.4646 0.4903
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Table 6. Robustness check: Effects of compulsory schooling laws and race on

log(age at first marriage) when age at first marriage for unmarried individuals in

the refreshment sample is imputed to be 55 or 65 years.

55 years 65 years
Women OLS80 GMM60 GMM70 OLS80 GMM60 GMM70
9 Years Schooling Reqd. .0102∗

(.0027)
.0109∗
(.0027)

.0100∗
(.0024)

.0108∗
(.0030)

.0116∗
(.0029)

.0106∗
(.0027)

10 Years Schooling Reqd. .0134∗
(.0039)

.0139∗
(.0039)

.0116∗
(.0035)

.0140∗
(.0042)

.0147∗
(.0043)

.0123∗
(.0040)

11+ Years Schooling Reqd. .0140∗
(.0067)

.0141∗
(.0067)

.0176∗
(.0060)

.0144∗
(.0072)

.0145∗
(.0073)

.0179∗
(.0066)

White −.0978∗
(.0024)

−.1095∗
(.0024)

−.0965∗
(.0022)

−.1077∗
(.0027)

−.1205∗
(.0029)

−.1068∗
(.0025)

Men OLS80 GMM60 GMM70 OLS80 GMM60 GMM70
9 Years Schooling Reqd. .0018

(.0028)
.0032
(.0027)

.0048
(.0025)

.0019
(.0030)

.0035
(.0030)

.0050
((.0028)

10 Years Schooling Reqd. .0110∗
(.0039)

.0109∗
(.0038)

.0114∗
(.0036)

.0116∗
(.0043)

.0117∗
(.0043)

.0119∗
(.0041)

11+ Years Schooling Reqd. −.0017
(.0070)

−.0044
(.0068)

.0001
(.0064)

−.0025
(.0077)

−.0055
(.0076)

−.0009
(.0072)

White −.0935∗
(.0025)

−.0977∗
(.0024)

−.0944∗
(.0023)

−.1036∗
(.0028)

−.1083∗
(.0027)

−.1051∗
(.0026)

Standard errors in parentheses. An asterisk denotes that effect is significant at the 5% level.
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Table 7. Robustness check: Effects of compulsory schooling laws and race on

log(age at first marriage) using 10% or 20% subsamples of the refreshment sample.

10% 20%
Women OLS80 GMM60 GMM70 OLS80 GMM60 GMM70
9 Years Schooling Reqd. .0111

(.0082)
.0164∗
(.0069)

.0125∗
(.0058)

.0130∗
(.0058)

.0132∗
(.0050)

.0101∗
(.0043)

10 Years Schooling Reqd. .0060
(.0110)

.0118
(.0097)

.0107
(.0082)

.0118
(.0078)

.0139∗
(.0070)

.0100
(.0061)

11+ Years Schooling Reqd. −.0037
(.0193)

.0026
(.0171)

.0111
(.0139)

.0084
(.0139)

.0071
(.0127)

.0112
(.0108)

White −.0983∗
(.0067)

−.1046∗
(.0057)

−.0843∗
(.0048)

−.0913∗
(.0047)

−.0998∗
(.0041)

−.0829∗
(.0036)

Men OLS80 GMM60 GMM70 OLS80 GMM60 GMM70
9 Years Schooling Reqd. .0123

(.0080)
.0138∗
(.0067)

.0120∗
(.0058)

.0081
(.0057)

.0114∗
(.0048)

.0122∗
(.0043)

10 Years Schooling Reqd. .0133
(.0109)

.0121
(.0095)

.0111
(.0080)

.0167∗
(.0077)

.0178∗
(.0068)

.0176∗
(.0060)

11+ Years Schooling Reqd. .0052
(.0199)

−.0059
(.0170)

−.0043
(.0145)

.0007
(.0143)

−.0019
(.0125)

.0010
(.0110)

White −.0696∗
(.0067)

−.0675∗
(.0056)

−.0648∗
(.0050)

−.0697∗
(.0047)

−.0737∗
(.0041)

−.0687∗
(.0037)

Standard errors in parentheses. An asterisk denotes that effect is significant at the 5% level.
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Figure 1. QQ plots of age at first marriage for individuals aged at least 26 that

are uncensored; i.e., those who married before age 26.
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Figure 2. Cohort effects for women.
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Figure 3. Cohort effects for men.
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