Optimally Combining Censored and Uncensored Datasets

Paul J. Devereux
UCLA

Gautam Tripathi
Univ.of Connecticut

Follow this and additional works at: http://digitalcommons.uconn.edu/econ_wpapers

Recommended Citation
http://digitalcommons.uconn.edu/econ_wpapers/200630
Optimally Combining Censored and Uncensored Datasets

Paul J. Devereux
UCLA

Gautam Tripathi
University of Connecticut

Working Paper 2005-10R

December 2005
Abstract

Economists and other social scientists often face situations where they have access to two datasets that they can use but one set of data suffers from censoring or truncation. If the censored sample is much bigger than the uncensored sample, it is common for researchers to use the censored sample alone and attempt to deal with the problem of partial observation in some manner. Alternatively, they simply use only the uncensored sample and ignore the censored one so as to avoid biases. It is rarely the case that researchers use both datasets together, mainly because they lack guidance about how to combine them. In this paper, we develop a tractable semiparametric framework for combining the censored and uncensored datasets so that the resulting estimators are consistent, asymptotically normal, and use all information optimally. When the censored sample, which we refer to as the master sample, is much bigger than the uncensored sample (which we call the refreshment sample), the latter can be thought of as providing identification where it is otherwise absent. In contrast, when the refreshment sample is large and could typically be used alone, our methodology can be interpreted as using information from the censored sample to increase efficiency. To illustrate our results in an empirical setting, we show how to estimate the effect of changes in compulsory schooling laws on age at first marriage, a variable that is censored for younger individuals. We also demonstrate how refreshment samples for this application can be created by matching cohort information across census datasets.

Journal of Economic Literature Classification: C14, C24, C34, C51

Keywords: Censoring, Empirical Likelihood, GMM, Refreshment samples, Truncation

An earlier version of this paper was titled “Combining datasets to overcome selection caused by censoring and truncation in moment based models”. We thank Don Andrews, Moshe Buchinsky, Ken Couch, Graham Elliott, Jin Hahn, Phil Haile, Jim Heckman, Yuichi Kitamura, Arthur Lewbel, Taisuke Otsu, Geert Ridder, Yixiao Sun, Allan Timmermann, Hal White, and participants at several seminars for helpful suggestions and conversations. Financial support from the NSF (Devereux) and the University of Connecticut graduate school (Tripathi) is also gratefully acknowledged.
1. Introduction

In applied research, economists often face situations in which they have access to two datasets that they can use but one set of data suffers from censoring or truncation. In some cases, especially if the censored sample is larger, researchers use it and attempt to deal with the problem of partial observation in some manner. In other cases, economists simply use the clean or uncensored sample and ignore the censored one so as to avoid biases. It is rare that researchers utilize both datasets. Instead, they have to choose between the two mainly because they lack guidance about how to combine them.

In this paper, we develop a methodology based on the generalized method of moments (GMM) that allows the censored and uncensored datasets to be combined in a tractable manner so that the resulting estimators are consistent, asymptotically normal, and use all information optimally. When the censored sample, henceforth referred to as the master sample, is much bigger than the clean or the refreshment sample, one can think of the addition of the clean sample as providing identification where it is otherwise absent. In contrast, when the datasets are of similar sizes so the clean dataset could typically be used alone, our methodology can be interpreted as using information from the censored sample to increase efficiency. In fact, we show that using the refreshment sample alone leads to estimators that are asymptotically inefficient, revealing that there is information in censored or truncated samples that can be exploited to enable more efficient estimation. The existence of refreshment samples should not be regarded as being an overly restrictive requirement. As we show in Section 6, they can often be constructed by creatively matching existing datasets.

We demonstrate how efficiently combining two datasets allows standard moment based inference with censored or truncated data to go through without imposing parametric, independence, symmetry, quantile, or “special regressor” restrictions as done in the existing literature and without doing any nonparametric smoothing. The biggest appeal is the simplicity of our estimators. For instance, unlike quantile restriction models, there is no need to restrict attention to applications where only scalar-valued continuously distributed random variables are censored or truncated, or use any nonparametric smoothing procedures to estimate asymptotic

2In a previous version of this paper, which also included efficient estimation of distribution functions, we had shown that the results obtained here also hold for the empirical likelihood approach that is rapidly gaining popularity in econometrics. However, in order to keep our presentation concise, we have eliminated results on empirical likelihood and cdf estimation from this version.
variances. Extension to the case where more than one random variable (discrete or continuous) is censored or truncated is straightforward and the usual analogy principle that delivers standard errors for GMM works here as well. Access to the refreshment sample also means that incompleteness of the data does not complicate identification conditions. Selection probabilities in this paper are fully nonparametric, i.e., completely unknown and unrestricted.

Semiparametric inference with censored data thus far seems to have focused mainly on linear regression models where only the response variable is censored or truncated. The present work extends the literature in a significant manner to include nonlinear models and multiple censored or truncated variables. The treatment proposed here is general enough to handle censoring and truncation of some or all coordinates of both endogenous and exogenous variables and the results obtained here are applicable to a large class of potentially overidentified models which nest linear regression as a special case; e.g., the ability to handle instrumental variables (IV) models permits semiparametric inference in Box-Cox type models using censored or truncated data without imposing parametric or quantile restrictions. Though the idea of combining datasets has been explored earlier, the use of matching to facilitate efficient moment based inference in overidentified models with censored or truncated data seems to be new to the literature and the results in this paper cannot be found in any of the references cited here.

The paper is organized as follows. In Section 2 we set up censoring or truncation of random vectors in a moment based framework. Section 3 models the data combination process and Section 4 shows how censored data can be combined with a refreshment sample to do efficient semiparametric inference; Section 5 does the same with truncated data. Section 6 contains an interesting application where refreshment samples are obtained by matching census datasets. Section 7 concludes by addressing some topics for future research.

2. CENSORING AND TRUNCATION IN A MOMENT BASED FRAMEWORK

Let the triple \((Z^*, f^*, \mu^*)\) describe the target population, i.e., the population for which inference is to be drawn, where \(Z^*\) is a random vector in \(\mathbb{R}^d\) that denotes an observation from the target population and \(f^*\) the unknown density of \(Z^*\) w.r.t some dominating measure \(\mu^* = \otimes_{i=1}^d \mu_i^*\). Since \(Z^*\) can have discrete components, the \(\mu_i^*\)'s need not all be Lebesgue measures. Similarly, let \((Z, f, \mu)\) represent the realized population, i.e., the observed data, where \(Z\) denotes the resulting observation and \(f\) its density w.r.t a dominating measure \(\mu = \otimes_{i=1}^d \mu_i\). In this paper, \(f\) is different from \(f^*\) because some or all coordinates of \(Z^*\) are censored, or, truncated.

\(^4\)Following usual mathematical convention, “vector” means a column vector.
The econometric models we consider can be expressed as moment conditions in the target population\(^5\). So let \(\Theta\) be a subset of \(\mathbb{R}^p\) such that
\[
\mathbb{E}_{f^*}\{g(Z^*, \theta^*)\} = 0 \quad \text{for some } \theta^* \in \Theta,
\]
where \(g\) is a \(q \times 1\) vector of known functions with \(q \geq p\) and \(\mathbb{E}_{f^*}\) denotes expectation w.r.t \(f^*\). Well-known examples of (2.1) include linear and nonlinear regression models and multivariate simultaneous equations models. The class of models defined in (2.1) also contains IV models derived from conditional moment restrictions in the target population.

2.1. Censoring. If \(Z^*\) is fully observed, then (2.1) is easily handled; see, e.g., Newey and McFadden (1994). But in many cases economists cannot fully observe \(Z^*\). For instance, variables often get censored due to administrative reasons; e.g., government agencies routinely “top-code” income data before releasing it for public use. Similarly, studies investigating the length of unemployment spells can terminate prematurely due to financial constraints before all subjects have found employment. So suppose that all coordinates of \(Z^*\) are right-censored; i.e., instead of observing \(Z^*\) we observe the random variable \(Z = (Z^{(1)}, \ldots, Z^{(d)})_{d \times 1}\), where
\[
Z^{(i)} = \begin{cases}
Z^{*(i)} & \text{if } Z^{*(i)} < c^{(i)} \\
\infty & \text{otherwise}
\end{cases} \quad \text{for } i = 1, \ldots, d
\]
and \(c = (c^{(1)}, \ldots, c^{(d)})\) is a \(d \times 1\) vector of known constants\(^6\).

We allow for the possibility that some components of \(Z^*\) may not be censored. If, say, the \(i\)th coordinate of \(Z^*\) is not subject to censoring, simply set \(c^{(i)} = \infty\); if the \(i\)th and \(j\)th coordinates of \(Z^*\), denoted by \(Z^{*(i,j)}\), are not subject to censoring, then set \(c^{(i,j)} = (\infty, \infty)\); etc.. Hence, in applications where the target variable \(Z^*\) can be decomposed into endogenous and exogenous parts as \((Y^*, X^*)\), we can handle situations where only \(Y^*\) is censored (pure endogenous censoring), or only \(X^*\) is censored (pure exogenous censoring), or only some coordinates of either variables are censored\(^7\). Left censoring of, say, the \(i\)th, \(j\)th, and \(k\)th coordinates can also be accommodated by replacing \(Z^{*(i,j,k)}\) with \(-Z^{*(i,j,k)}\) and \(c^{(i,j,k)}\) with \(-c^{(i,j,k)}\).

\(^5\)Since economic theory attributes outcomes at the micro level to optimizing behavior on the part of firms or individuals, moment based models arise naturally in microeconometrics as solutions to the first order conditions of the stochastic optimization problems economic agents are assumed to solve. Hence, such models are particularly important for structural estimation.

\(^6\)The results obtained in this paper continue to hold in a more general fixed censoring framework where the censoring point is modelled as a random variable \(C\) with unknown distribution such that \(C\) is observed for censored as well as uncensored observations; see, e.g., the application in Section 6.

\(^7\)The term “exogenous” is, strictly speaking, an abuse of terminology since (2.1) does not involve any conditioning although, as mentioned earlier, (2.1) does nest IV models based on conditional moment restrictions. Therefore, the careful reader may want to substitute “ censoring (resp. truncation) based on explanatory variables” for “exogenous censoring (resp. truncation)” whenever the latter is encountered.
Let $S^*(c) \equiv \Pr_{f^*}(Z^{*(1)} > c^{(1)}, \ldots, Z^{*(d)} > c^{(d)})$ denote the probability that all coordinates of Z^* are censored. Also, let δ_c be the Dirac measure at c, i.e., $\delta_c(A) = 1(c \in A)$, where 1 is the indicator function. To keep matters simple, we assume that μ^* does not place any mass at c. This assumption, which can be relaxed at the cost of greater mathematical complexity, is weaker than requiring μ^* to be a Lebesgue measure (the usual assumption made for censored regression models).

If $d = 1$, the density of Z w.r.t the dominating measure $\mu = \mu^* + \delta_c$ is given by

$$f(z) = f^*(z)1(z < c) + S^*(c)1(z = c). \quad (2.2)$$

The density of Z when it is vector valued is also straightforward to derive but requires some additional notation. So let $Z^{*-{(i,j,k)}}$ denote coordinates of Z^* that remain after the ith, jth, and kth ones have been deleted, $f^{*-{(i,j,k)}}_*(z)$ the joint density of $Z^{*-{(i,j,k)}}$, and $f^{*-{(i,j,k)}}_{(i,j,k)}(z)$ the conditional density of $Z^{*-{(i,j,k)}}$ given $Z^{*(i,j,k)}$. Then, letting $S^*_{(i,j,k)}$ denote the conditional probability that $Z^{*(i,j,k)}$ are censored given $Z^{*-(i,j,k)}$, it is easy to show that for $d > 1$ the density of Z w.r.t $\mu = \otimes_{i=1}^d \mu_i$, where $\mu_i = \mu^*_i + \delta^{(i)}_c$, is given by

$$f(z) = f^*(z)1(z < c) + \sum_{r=1}^{d-1} \sum_{i_1=1}^{d-r+1} \sum_{i_2=i_1+1}^{d-r} \cdots \sum_{i_r=i_{r-1}+1}^d S^*_{(i_1,\ldots,i_r)|-(i_1,\ldots,i_r)}(z^{(i_1,\ldots,i_r)}) f^{*-(i_1,\ldots,i_r)}_{-(i_1,\ldots,i_r)}(z^{-(i_1,\ldots,i_r)}) \times 1(z^{(i_1,\ldots,i_r)} = c^{(i_1,\ldots,i_r)}, z^{-(i_1,\ldots,i_r)} < c^{-(i_1,\ldots,i_r)}) + S^*(c)1(z = c), \quad (2.3)$$

where $<$ denotes element-by-element strict inequality, i.e., $1(z < c) = \prod_{i=1}^d 1(z^{(i)} < c^{(i)})$. Of course, $z = c$ is element-by-element equality, i.e., $1(z = c) = \prod_{i=1}^d 1(z^{(i)} = c^{(i)})$. The realized density f has support $(-\infty, c^{(1)}) \times \ldots \times (-\infty, c^{(d)})$ with a mass point at c.

2.2. Truncation. Sometimes censoring is so severe that the target variable is completely unobserved outside a certain region. This phenomenon is called truncation; e.g., in many job training programs subjects are allowed entry only if their household income falls below a certain level. If Z^* is a truncated random variable, then instead of Z^* we observe

$$Z = \begin{cases} Z^* & \text{if } Z^* \in T \\ \text{unobserved} & \text{otherwise,} \end{cases}$$

where T denotes a known region in \mathbb{R}^d such that Z^* lies in T with positive probability. In this case, the density of Z w.r.t μ^* is given by

$$f(z) = \frac{f^*(z)1(z \in T)}{\int_T f^*(z) \, d\mu^*}. \quad (2.4)$$

Note that f has support T. As before, we allow for the possibility that some coordinates of Z^* may not be truncated: In typical applications, T will be a rectangle of the form $I_1 \times \ldots \times I_d$.

where the I_j’s are known fixed intervals. If, say, $Z^{*(i,j,k)}$ are not truncated, then simply let $I_i = I_j = I_k = \mathbb{R}$.

2.3. Examples. We now look at some examples of censoring and truncation in a multivariate framework. Readers who want to skip these examples for the moment can go straight to Section 2.4 without any loss of continuity. The primary aim of Section 2.3 is to illustrate the behavior of least squares estimators in linear regression models when only the master sample is used for estimation and more than one variable is censored or truncated; examples 2.2 and 2.4 are particularly instructive. Since no refreshment sample is used in this section, n here just denotes the master sample size.

Example 2.1 (Censored mean). Suppose we want to estimate $\theta^* = \mathbb{E}_f \{Z^*\}$, the mean of the target population. Since Z^* is censored from above, instead of a random sample Z_1^*, \ldots, Z_n^* from the target density f^* we have the master random sample Z_1, \ldots, Z_n from the realized density f defined in (2.2) or (2.3). Therefore, the naive estimator $\sum_{j=1}^n Z_j/n \mathbb{P}_f \{Z\}$ by the weak law of large numbers, but

$$
\mathbb{E}_f \{Z\} = \begin{cases}
\mathbb{E}_f \{Z^* 1 \{Z^* < c\}\} + cS^*(c) & \text{if } d = 1 \\
\mathbb{E}_f \{Z^* 1 \{Z^* < c\}\} + \sum_{r=1}^{d-1} \mathbb{E}_f \{Z^{*}_{[r]}\} + cS^*(c) & \text{if } d > 1,
\end{cases}
$$

where, for any function $h(\cdot)$, the symbol

$$
h_{[r]}(Z^*) = \sum_{i_1=1}^{d-r+1} \sum_{i_2=i_1+1}^{d-r+2} \ldots \sum_{i_r=ir-1+1}^d h(Z^*[i_1, \ldots, i_r]) 1 \{Z^*_{[r]}(i_1, \ldots, i_r) > c(i_1, \ldots, i_r)\}
$$

denotes h evaluated at exactly r censored coordinates and $Z^*[i_1, \ldots, i_r]$ stands for Z^* with its i_1, \ldots, i_rth coordinates replaced by $c(i_1), \ldots, c(i_r)$, respectively, and the remaining coordinates unchanged; i.e., $Z^*[i_1, \ldots, i_r] = Z^*[Z^*_{[r]}(i_1, \ldots, i_r) = c(i_1, \ldots, i_r)]$. Hence, $\mathbb{E}_f \{Z\} \neq \mathbb{E}_f \{Z^*\}$. □

Example 2.2 (Censored linear regression). Let $Y^* = X^* \theta^* + \varepsilon^*$, where $\mathbb{E}_f \{X^* \varepsilon^*\} = 0$. Therefore, $\theta^* = (\mathbb{E}_f X^*X^{*'})^{-1}(\mathbb{E}_f X^*Y^*)$. Suppose both Y^* and X^* are censored. Hence, instead of observing $Z^* = (Y^*, X^*)_{(p+1)\times 1}$ from the target density f^*, we observe $Z = (Y, X)$ from the realized density f defined in (2.3). If we ignore censoring and simply regress Y on X, then θ^* cannot be consistently estimated by the least squares estimator $\hat{\theta}_M = (\sum_{j=1}^n X_jX_j')^{-1} \sum_{j=1}^n X_jY_j$. To see this, observe that the probability limit of $\hat{\theta}_M$ is given by

$$
(\mathbb{E}_f XX')^{-1}(\mathbb{E}_f XY) = (\mathbb{E}_f \{X^*X^{*'} 1 \{Y^* < c^{(1)}\}, X^* < c^{(-1)}\} + \sum_{r=1}^{d-1} (X^*X^{*'})_{[r]} + c^{-1}c^{(-1)}S^*(c))^{-1}
\times \mathbb{E}_f \{X^*Y^* 1 \{Y^* < c^{(1)}\}, X^* < c^{(-1)}\} + \sum_{r=1}^{d-1} (X^*Y^*)_{[r]} + c^{-1}c^{(1)}S^*(c),
$$

(2.5)
where \(d = p + 1 \). Hence, \(\text{plim}(\hat{\theta}_M) \neq \theta^* \).

The special case of pure endogenous censoring, called the tobit or limited dependent variable model in the econometrics literature, is obtained by letting \(c^{-1} = (\infty, \ldots, \infty) \) and using the convention that \(0 \cdot \infty = 0 \). Doing so, (2.5) implies that

\[
\text{plim}(\hat{\theta}_M) = \theta^* - \{E_{f^*} X^* X'^*\}^{-1}E_{f^*}\{X^*(Y^* - c^{(1)}) 1(Y^* > c^{(1)})\} \neq \theta^*,
\]

as is well known from tobit theory.

However, a fact that does not seem to be as widely known is that the least squares estimator remains inconsistent even if censoring is purely exogenous\(^8\). In particular, by letting \(c^{(1)} = \infty \) in (2.5), we can see that \(\text{plim}(\hat{\theta}_M) \) is given by

\[
\{E_{f^*} [X^* X'^* 1(X^* \text{ elt})] - \sum_{r=1}^{d-1} (X^* X'^*)_{[r]}\}^{-1}E_{f^*}\{X^* Y^* 1(X^* < c^{(1)}) + \sum_{r=1}^{d-1} (X^* Y^*)_{[r]}\} \neq \theta^*.
\]

Hence, pure exogenous censoring cannot be ignored here.

In fact, pure exogenous censoring may not be ignorable even if \(E_{f^*}\{X^* \varepsilon^*\} = 0 \) is replaced by the stronger condition \(E_{Y^*|X^*}\{\varepsilon^*|X^*\} = 0 \) w.p.1. To see this, consider the simple linear regression model \(Y^* = \theta^{(1)} + X^*\theta^{(2)} + \varepsilon^* \), where \(X^* \) is scalar and \(E_{Y^*|X^*}\{\varepsilon^*|X^*\} = 0 \) w.p.1. Since \(Y^* \) and the constant regressor are not censored, \(c = (\infty, \infty, c^{(3)})_{3 \times 1} \). Hence, by (2.5),

\[
\text{plim}(\hat{\theta}^{(2)}_M) = \frac{\text{cov}_{f^*}(Y, X)}{\text{var}_{f^*}(X)} = \frac{\text{cov}_{f^*}(Y^*, X^* 1(X^* < c^{(3)})) + c^{(3)} 1(X^* > c^{(3)})}{\text{var}_{f^*}(X^* 1(X^* < c^{(3)})) + c^{(3)} 1(X^* > c^{(3)})} \theta^{(2)},
\]

where the last equality follows because \(E_{Y^*|X^*}\{Y^*|X^*\} = \theta^{(1)} + X^*\theta^{(2)} \) w.p.1. Therefore, \(\hat{\theta}_M \) is inconsistent under pure exogenous censoring although \(\varepsilon^* \) is mean independent of \(X^* \). However, as shown in Example 2.4 the situation changes if \(X^* \) is truncated instead of censored.

Example 2.3 (Truncated mean). Suppose we want to estimate the mean of the target population but now \(Z^* \) is truncated outside region \(T \). Since \(E_f\{Z\} = E_{f^*}|Z^* 1(Z^* \in T)|/ \int_T f^*(z) d\mu^* \), as in Example 2.1 the naive estimator is not consistent for \(E_{f^*}\{Z^*\} \).

Example 2.4 (Truncated linear regression). Consider the linear model of Example 2.2 but now suppose that, instead of being censored, \(Z^* \) is truncated outside \(T = T_1 \times T_2 \). Since now

\[
\text{plim}(\hat{\theta}_M) = \{E_{f^*} X^* X'^* 1(Y^* \in T_1, X^* \in T_2)\}^{-1}E_{f^*}\{X^* Y^* 1(Y^* \in T_1, X^* \in T_2)\},
\]

\(\hat{\theta} \) is not consistent for \(\theta^* \). Under pure endogenous truncation, i.e., \(T_2 = \mathbb{R}^p \), we get that

\[
\text{plim}(\hat{\theta}_M) = \{E_{f^*} X^* X'^* 1(Y^* \in T_1)\}^{-1}E_{f^*}\{X^* Y^* 1(Y^* \in T_1)\} \neq \theta^*.
\]

\(^8\)See Rigobon and Stoker (2003) for more on this.
Similarly, for pure exogenous truncation, \(T_1 = \mathbb{R} \). Hence,

\[
\text{plim}(\hat{\theta}_M) = \left\{ \mathbb{E}_{f^*}X^*X^*1(X^* \in T_2) \right\}^{-1}\mathbb{E}_{f^*}\left\{X^*Y^*1(X^* \in T_2) \right\} \neq \theta^*.
\]

(2.6)

Therefore, even pure exogenous truncation is not ignorable. But, unlike Example 2.2, if the identifying assumption \(\mathbb{E}_{f^*}\{X^* \varepsilon^* \} = 0 \) is replaced by \(\mathbb{E}_{Y^*|X^*}\{\varepsilon^*|X^* \} = 0 \) w.p.1, then from (2.6) it is easy to see that ignoring pure exogenous truncation does not make the least squares estimator inconsistent.

\[\square\]

3. DATA COMBINATION

We model the data combination process as follows. Let \(Z \) denote an observation from the combined sample. Along with \(Z \) we observe a dummy variable \(R \) that indicates whether \(Z \) comes from the refreshment or the master sample; i.e., \(R = 1 \) if \(Z \) is from the refreshment sample and \(R = 0 \) if \(Z \) belongs to the master sample. Hence, for \(r \in \{0,1\} \), the conditional density of \(Z|R = r \) is given by\(^9\)

\[
f_{Z|R=r}(z) = \begin{cases}
 f^*(z)1(z \neq c)r + f(z)(1-r) & \text{if } Z^* \text{ is censored} \\
 f^*(z)r + f(z)(1-r) & \text{if } Z^* \text{ is truncated},
\end{cases}
\]

(3.1)

where \(1(z \neq c) = \prod_{i=1}^{d}1(z^{(i)} \neq c^{(i)}) \) and, depending on whether \(Z^* \) is censored or truncated, \(f \) is given by (2.2)–(2.3) or (2.4), respectively. If \(Z^* \) is censored, then \(f_{Z|R=r} \) is a conditional density w.r.t \(\mu \) and has a mass point at \(c \). On the other hand, if \(Z^* \) is truncated, then \(f_{Z|R=r} \) is a conditional density w.r.t \(\mu^* \).

Assume that \(R \overset{i.d.}\sim \text{Bernoulli}(K_0) \), where \(K_0 \in (0,1) \) is an unknown nuisance parameter that will be estimated along with the parameters of interest. Therefore, using (3.1), the joint density of \(Z \) and \(R \) is given by

\[
f_{e}(z,r) = \begin{cases}
 K_0f^*(z)1(z \neq c)r + (1-K_0)f(z)(1-r) & \text{if } Z^* \text{ is censored} \\
 K_0f^*(z)r + (1-K_0)f(z)(1-r) & \text{if } Z^* \text{ is truncated}.
\end{cases}
\]

(3.2)

Henceforth, let \(n \) denote the size of the enriched sample; i.e., the master and refreshment samples combined together. All limits are taken as \(n \uparrow \infty \). Observations \((Z_1, R_1), \ldots, (Z_n, R_n) \) from the enriched dataset are regarded as iid draws from \(f_e \), which is a density w.r.t \(\mu \otimes \kappa \), where \(\kappa \) is the counting measure on \(\{0,1\} \). In Sections 4 and 5 we show how data from this enriched density can be used to fully recover \(f^* \) and estimate and test (2.1).

We end this section with a technical remark. Introducing the refreshment dummy \(R \) allows the combined sample to be treated as a collection of iid draws from the enriched density

\[\text{plim}(\hat{\theta}_M) = \left\{ \mathbb{E}_{f^*}X^*X^*1(X^* \in T_2) \right\}^{-1}\mathbb{E}_{f^*}\left\{X^*Y^*1(X^* \in T_2) \right\} \neq \theta^*.
\]

(2.6)

\[\square\]

\(\text{plim}(\hat{\theta}_M) = \left\{ \mathbb{E}_{f^*}X^*X^*1(X^* \in T_2) \right\}^{-1}\mathbb{E}_{f^*}\left\{X^*Y^*1(X^* \in T_2) \right\} \neq \theta^*.
\]

(2.6)

\[\square\]
Thus the equivalence in \(\sum_1^n \) although it makes the refreshment sample size to calculate efficiency bounds, apply standard statistical arguments to prove our results, etc. although it makes the refreshment sample size \(\sum_{j=1}^n R_j \) a random variable. However, as shown later in Sections 4 and 5, our inference about \(\theta^* \) is actually conditional on the observed value of \(\sum_{j=1}^n R_j \) because we estimate \(\theta^* \) jointly and efficiently with \(K_0 \). Therefore, our results coincide with those obtained in a setting where the size of the refreshment sample is non-stochastic and observations from the combined sample are regarded as being independent but not identically distributed.

4. Inference with Censored Data

From (3.2), the marginal density of \(Z \) in the enriched sample is given by

\[
\int_{r \in \{0,1\}} f_e(z,r) \, dk = K_0 f^*(z) \mathbb{1}(z \neq c) + (1 - K_0) f(z).
\]

Hence, letting \(a(z,K_0) = K_0 + (1 - K_0) \mathbb{1}(z < c) \), by (2.2) and (2.3) it follows that

\[
f^*(z) \mathbb{1}(z \neq c) = \int_{r \in \{0,1\}} f_e(z,r) \mathbb{1}(z \neq c) \, dk / a(z,K_0).
\]

Therefore, since \(\mathbb{E}_{f^*} \{g(Z^*,\theta^*)\} = 0 \) if and only if \(\mathbb{E}_{f^*} \{g(Z^*,\theta^*) \mathbb{1}(Z^* \neq c)\} = 0 \), we can use (4.1) to write (2.1) in terms of the enriched density as

\[
\mathbb{E}_{f_e} \{g(Z,\theta^*) \mathbb{1}(Z \neq c) / a(Z,K_0)\} = 0.
\]

However, (4.1) also implies that\(^{10}\)

\[
\mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) / a(Z,K_0)\} = 1 \iff \mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) \mathbb{1}(Z < c) - K_0 \mathbb{1}(Z \neq c) \mathbb{1}(Z < c) \} = 0,
\]

where \((Z < c) \) denotes the set-complement of the event \((Z < c) \). Furthermore, since

\[
\mathbb{E}_{f_e} \{R - K_0\} = 0,
\]

efficient estimation of \(\theta^* \) must account for this restriction as well.

\(^{10}\)Since \(\{\mathbb{1}(Z < c) + \mathbb{1}(Z = c)\} / a(Z,K_0) = \mathbb{1}(Z < c) + \mathbb{1}(Z = c) / K_0 \) and \(\mathbb{1}(Z \neq c) \mathbb{1}(Z < c) = \mathbb{1}(Z < c) \),

\[
\mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) / a(Z,K_0)\} = 1 \iff \mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) \mathbb{1}(Z < c)\} + \mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) \mathbb{1}(Z = c)\} / K_0 = 1
\]

\[
\iff \mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) \mathbb{1}(Z < c)\} = K_0 \mathbb{E}_{f_e} \{\mathbb{1}(Z < c)\}
\]

\[
\iff \mathbb{E}_{f_e} \{\mathbb{1}(Z \neq c) \mathbb{1}(Z < c) - K_0 \mathbb{1}(Z < c)\} = 0.
\]

Thus the equivalence in (4.3) holds.
For notational convenience, define $\beta^* = (\theta^*, K_0)_{(p+1)\times 1}$ and

$$
\rho(Z, R, \beta) = \begin{bmatrix} \frac{g(Z, \theta)1(Z \neq c)/a(Z, K)}{1(Z \neq c)1(Z < c) - K1(Z < c)} \\
R - K \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} \rho_1(Z, \beta) \\
\rho_2(Z, K) \\
\rho_3(R, K) \end{bmatrix}_{(q+2)\times 1}.
$$

Then, letting $\hat{\rho}(\beta) = \sum_{j=1}^n \rho(Z_j, R_j, \beta)/n$, the two-step optimal GMM estimator of β^* is given by $\hat{\beta} = \arg\min_{\beta \in \mathcal{B}} \hat{\rho}'(\beta)\hat{V}_p^{-1}\hat{\rho}(\beta)$, where $\mathcal{B} = \Theta \times [0, 1]$ and $\hat{V}_p = \sum_{j=1}^n \rho(Z_j, R_j, \hat{\beta})\rho'(Z_j, R_j, \hat{\beta})/n$ is an estimator of the optimal weighting matrix constructed using a preliminary estimator $\hat{\beta}$.

Let $\| \cdot \|$ denote the Euclidean norm; i.e., $\| z \| = (z'z)^{1/2}$. The following standard regularity conditions ensure that GMM estimators are consistent and asymptotically normal.

Assumption 4.1. (i) $\beta^* \in \mathcal{B}$ is the unique solution to $\mathbb{E}_{\mathcal{F}_k}\{\rho(Z, R, \beta)\} = 0$; (ii) \mathcal{B} is compact; (iii) $\rho(Z, R, \beta)$ is continuous at each $\beta \in \mathcal{B}$ w.p.1; (iv) $\mathbb{E}_{\mathcal{F}_k}\{\sup_{\beta \in \mathcal{B}} \| \rho(Z, R, \beta) \|^2 \} < \infty$; (v) $\mathbb{E}_{\mathcal{F}_k}\{\rho(Z, R, \beta^*)\rho'(Z, R, \beta^*)\}$ is nonsingular; (vi) $\beta^* \in \text{int}(\mathcal{B})$; (vii) $\rho(Z, R, \beta)$ is continuously differentiable in a neighborhood \mathcal{N} of β^* and $\mathbb{E}_{\mathcal{F}_k}\{\sup_{\beta \in \mathcal{N}} \| \partial \rho(Z, R, \beta)/\partial \beta \| \} < \infty$; (viii) $\mathbb{E}_{\mathcal{F}_k}\{\partial \rho(Z, R, \beta^*)/\partial \beta \}$ is of full column rank.

(i)–(v) can be used to prove consistency and (vi)–(viii) the asymptotic normality of GMM estimators as in Newey and McFadden (1994). Note that since selection probabilities are completely unrestricted in our setup, the consistency of our estimators does not depend upon the extent to which the data are censored.

Now let $D = \mathbb{E}_{\mathcal{F}_k}\{\partial \rho_1(Z, \beta^*)/\partial \theta \}$, $V_1 = \mathbb{E}_{\mathcal{F}_k}\{\rho_1(Z, \beta^*)\rho_1(Z, \beta^*)' \}$, $V_2 = \mathbb{E}_{\mathcal{F}_k}\{\rho_2(Z, K_0) \}$, $V_3 = \mathbb{E}_{\mathcal{F}_k}\{\rho_3^2(R, K_0) \}$, $\Sigma_{12} = \mathbb{E}_{\mathcal{F}_k}\{\rho_1(Z, \beta^*)\rho_2(Z, K_0) \}$, $\Sigma_{13} = \mathbb{E}_{\mathcal{F}_k}\{\rho_1(Z, \beta^*)\rho_3(R, K_0) \}$, and $\Omega = \mathbb{E}_{\mathcal{F}_k}\{\varepsilon \varepsilon' \}$, where $\varepsilon = \rho_1(Z, \beta^*) - \text{Proj}\{\rho_1(Z, \beta^*)\}1, \rho_2(Z, K_0)$$, \rho_3(R, K_0)$ is the residual from the linear projection (under f_c) of $\rho_1(Z, \beta^*)$ onto the span of 1, $\rho_2(Z, K_0)$, and $\rho_3(R, K_0)$. The next result is shown in Appendix [A].

Theorem 4.1. Let Assumption 4.1 hold with the moment function $\rho(Z, R, \beta)$ defined in (4.5). Then,d

$$
\frac{n^{1/2}(\hat{\theta} - \theta^*)}{n^{1/2}(K - K_0)} \xrightarrow{d} \mathcal{N}(0_{(p+1)\times 1}, \begin{bmatrix} (D'\Omega^{-1}D)^{-1} & 0_{p \times 1} \\ 0_{p \times 1} & K_0(1 - K_0) \end{bmatrix}^\prime).
$$

In Theorem [A,1] of Appendix [A] we show that $(D'\Omega^{-1}D)^{-1}$ is the efficiency bound for estimating θ^*. Therefore, $\hat{\theta}$ is asymptotically efficient. Furthermore, Theorem 4.3 shows that $(D'\Omega^{-1}D)^{-1}$ is strictly smaller (in the positive definite sense) than the asymptotic variance of the GMM estimator obtained by using the refreshment sample alone. Hence, efficiency gains from combining censored and uncensored datasets do not come from the latter alone and it makes sense to use both the master and the refreshment samples for estimating θ^*.

\footnote{We use $0_{k \times 1}$ to denote a $k \times 1$ vector of zeros; $0_{k \times 1}'$ is its transpose.}
There is a simpler version of (4.5) that still leads to an asymptotically efficient estimator of \(\theta^* \); i.e., an estimator whose asymptotic variance is equal to \((D'\Omega^{-1}D)^{-1}\). This is because

\[
\text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, K_0)\} = \text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, K_0)\}; \quad (4.6)
\]

i.e., \(\rho_3(R, K_0) \) is redundant once \(\rho_2(Z, K_0) \) is controlled for, suggesting that the asymptotic variance of the GMM estimator of \(\theta^* \) given in Theorem 4.1 is not affected if only \(\rho_1(Z, \beta^*) \) and \(\rho_2(Z, K_0) \) are used for estimation, i.e., even if we ignore the information regarding whether \(Z \) comes from the refreshment or the master sample. Therefore, for the remainder of Section 4 we assume that \(\theta^* \) and \(K_0 \) are estimated using the moment function

\[
\rho(Z, \beta) = \left[\begin{array}{c} g(Z, \theta)1(Z \neq c)/a(Z, K) \\ 1(Z \neq c)1(Z < c) - K1(Z < c) \end{array} \right] \xrightarrow{\text{def}} \left[\begin{array}{c} \rho_1(Z, \beta) \\ \rho_2(Z, K) \end{array} \right]_{(q+1) \times 1}. \quad (4.7)
\]

This leads to the following result.

Theorem 4.2. Let Assumption 4.1 hold with the moment function \(\rho(Z, \beta) \) defined in (4.7) and let \(\hat{\beta} = (\hat{\theta}, \hat{K})_{(p+1) \times 1} \) denote the GMM estimator of \(\beta^* \) using (4.7). Then,

\[
\begin{bmatrix} n^{1/2}(\hat{\theta} - \theta^*) \\ n^{1/2}(\hat{K} - K_0) \end{bmatrix} \xrightarrow{\text{d}} \mathcal{N}(0_{(p+1) \times 1}, \begin{bmatrix} (D'\Omega^{-1}D)^{-1} & 0_{p \times 1} \\ 0_{p \times 1} & K_0(1 - K_0)/[1 - F^*(c)] \end{bmatrix}).
\]

The asymptotic variance of \(\hat{\theta} \) is still \((D'\Omega^{-1}D)^{-1}\) although dropping \(\rho_3(R, K_0) \) increases the asymptotic variance of \(\hat{K} \) as compared to \(\hat{K} \). This is not surprising since \(\rho_3(R, K_0) \) provides information about \(K_0 \) and does not matter in practice since \(\hat{K} \) is a nuisance parameter. Since (4.6) implies that \(\hat{\varepsilon} \) is just the residual from projecting \(\rho_1(Z, \beta^*) \) onto the span of 1 and \(\rho_2(Z, K_0) \), it follows that \(\Omega = V_1 - \Sigma_{12}'\Sigma_{12}/V_2 \). The asymptotic variance of \(\hat{\theta} \) can be estimated by replacing \(D \) and \(\Omega \) with consistent estimators \(\hat{D} = n^{-1}\sum_{j=1}^n \partial \rho_1(Z_j, \hat{\beta})/\partial \theta \) and \(\hat{\Omega} = \hat{V}_1 - \hat{\Sigma}_{12}'\hat{\Sigma}_{12}/\hat{V}_2 \), where \(\hat{V}_1 = \sum_{j=1}^n \rho_1(Z_j, \hat{\beta})\rho_1(Z_j, \hat{\beta})/n \), \(\hat{\Sigma}_{12} = \sum_{j=1}^n \rho_1(Z_j, \hat{\beta})\rho_2(Z_j, \hat{K})/n \), and \(\hat{V}_2 = \sum_{j=1}^n \rho_2(Z_j, \hat{K})/n \); equivalently, \(\hat{\Omega} = \sum_{j=1}^n \hat{\varepsilon}\hat{\varepsilon}'/n \), where \(\hat{\varepsilon} \) is the residual from regressing \(\rho_1(Z, \hat{\beta}) \) element-by-element on a constant and \(\rho_2(Z, \hat{K})\).
To get some intuition about why transforming the moment condition works, note that since $K_0 \overset{\text{(A.3)}}{=} \mathbb{E}_{f_0} \{ 1 (Z \neq c) 1 (Z < c)^\sim \} / \mathbb{E}_{f_0} \{ 1 (Z < c)^\sim \}$, we can decompose

$$
\mathbb{E}_{f_0} \{ p_1(Z, \beta^*) \} = \mathbb{E}_{f_0} \{ g(Z, \theta^*) | Z < c \} \Pr_{f_0}(Z < c) \\
+ \mathbb{E}_{f_0} \{ g(Z, \theta^*) | (Z < c)^\sim \cap (Z < c)^\sim \} \Pr_{f_0}(\{Z < c\}^\sim).
$$

(4.8)

Therefore, the moment function in (4.2) can be expressed as a weighted sum of the best predictors of $g(Z^*, \theta^*)|(Z^* \text{ is uncensored})$ and $g(Z^*, \theta^*)|(Z^* \text{ is censored})$, with the weights being equal to the probability that Z^* is uncensored or censored, respectively. The estimators proposed in Theorem 4.2 use the enriched sample to automatically replace $g(Z^*, \theta^*)$ with its best predictor when observations are censored and then consistently and efficiently estimate these best predictors and selection probabilities; see Example 4.1 for a nice illustration.

Efficiently estimating θ^* jointly with K_0 ensures that $\hat{\theta}$ and $\sum_{j=1}^n R_j$ are asymptotically independent. To see this, we can use the proof of Theorem 4.2 to show that $\hat{\theta}$ is asymptotically linear with influence function $-(D' \Omega^{-1} D)^{-1} D' \Omega^{-1} \varepsilon_j$; i.e., we can show that $n^{1/2}(\hat{\theta} - \theta^*) = n^{-1/2} \sum_{j=1}^n -(D' \Omega^{-1} D)^{-1} D' \Omega^{-1} \varepsilon_j + o_p(1)$. But, by the Cramér-Wold device and the central limit theorem, $n^{1/2}(\hat{\theta} - \theta^*)$ and $n^{-1/2} \sum_{j=1}^n (R_j - K_0)$ are jointly asymptotically normal. Therefore, since ε is orthogonal to $\rho_3(R, K_0)$, it follows that $\hat{\theta}$ and $\sum_{j=1}^n R_j$ are asymptotically independent. Consequently, as mentioned at the end of Section 2, inference based on the asymptotic distribution of $\hat{\theta}$ is equivalent to inference based on the asymptotic conditional distribution of $\hat{\theta}$ given $\sum_{j=1}^n R_j$.

Finally, let $\tilde{\theta}_R$ denote the optimal GMM estimator of θ^* obtained using only the refreshment sample; i.e., $\tilde{\theta}_R$ is based on the moment condition

$$
\mathbb{E}_{f_0} \{ g(Z, \theta^*) | R = 1 \} = 0 \iff \mathbb{E}_{f_0} \{ g(Z, \theta^*) R \} = 0.
$$

(4.9)

The next result shows that $\tilde{\theta}_R$ is asymptotically inefficient relative to $\hat{\theta}$. Therefore, as stressed earlier, it makes sense to estimate θ^* using the enriched sample.

Theorem 4.3. Let $D_\epsilon = \mathbb{E}_f \{ \partial g(Z^*, \theta^*) / \partial \theta \}$ and $V_\epsilon = \mathbb{E}_f \{ g(Z^*, \theta^*) g'(Z^*, \theta^*) \}$. Then,

$$
n^{1/2}(\hat{\theta}_R - \theta^*) \overset{d}{\to} N(0_{p \times 1}, (D_\epsilon' V_\epsilon^{-1} D_\epsilon)^{-1}/K_0)
$$

and $\text{asvar}(\tilde{\theta}_R) > \text{asvar}(\hat{\theta})$, where “asvar” is shorthand for “asymptotic variance”.

The inflation factor $1/K_0$ in the asymptotic variance of $\tilde{\theta}_R$ is not surprising since $\tilde{\theta}_R$ only makes use of a fraction of the enriched sample. In Remark A.1 after the proof of Theorem 4.3 we show that Ω is a decreasing (in the positive definite sense) function of K_0. Hence, we can expect the finite sample performance of $\hat{\theta}$ to improve as the refreshment sample gets larger.

13This follows immediately from (A.8) in the proof of Lemma A.1.
Example 4.1 (Example 2.1 contd.). Here \(\rho_{1}(Z, \beta) = (Z - \theta)\mathbb{1}(Z \neq c)/a(Z, K) \) and no overidentifying restrictions. Hence, \((\hat{\theta}, \hat{K})\) solve \(\sum_{j=1}^{n} \rho_{1}(Z_{j}, \hat{\beta}) = 0 \) and \(\sum_{j=1}^{n} \rho_{2}(Z_{j}, \hat{K}) = 0\); i.e.,

\[
\hat{\theta} = n^{-1} \sum_{j=1}^{n} \frac{Z_{j}\mathbb{1}(Z_{j} \neq c)}{a(Z_{j}, \hat{K})} \quad \text{and} \quad \hat{K} = \sum_{j=1}^{n} \frac{\mathbb{1}(Z_{j} \neq c)\mathbb{1}(Z_{j} < c)^{\sim}}{\mathbb{1}(Z_{j} < c)^{\sim}}.
\] (4.10)

To gain further insight into \(\hat{\theta}\), notice that for \(d = 1\) we can express \(\hat{\theta}\) as

\[
\hat{\theta} = n^{-1} \sum_{j=1}^{n} \mathbb{1}(Z_{j} < c) \times \frac{\sum_{j=1}^{n} Z_{j}\mathbb{1}(Z_{j} < c)}{\sum_{j=1}^{n} \mathbb{1}(Z_{j} < c)} + n^{-1} \sum_{j=1}^{n} \mathbb{1}(Z_{j} \geq c) \times \frac{\sum_{j=1}^{n} Z_{j}\mathbb{1}(Z_{j} > c)}{\sum_{j=1}^{n} \mathbb{1}(Z_{j} > c)}.
\]

In light of (4.8), it comes as no surprise that \(\hat{\theta}\) is a convex combination of the sample means of uncensored and censored observations in the enriched dataset with the weights being the fraction of uncensored and censored observations in the enriched sample.

Example 4.2 (Example 2.2 contd.). Here \(\rho_{1}(Z, \beta) = X(Y - X'\theta)\mathbb{1}(Z \neq c)/a(Z, K)\). Hence, \(\hat{\theta} = (\sum_{j=1}^{n} X_{j}X_{j}')^{-1}(\sum_{j=1}^{n} X_{j}Y_{j})\), where \(X_{j} = X_{j}\mathbb{1}(Z_{j} \neq c)/a(Z_{j}, \hat{K})\) and \(\hat{K}\) is given in (4.10); i.e., \(\hat{\theta}\) is the IV estimator with instruments \(X\). If censoring is purely endogenous or purely exogenous, then \(a(Z, K) = K + (1 - K)\mathbb{1}(Y_{j} < c^{(1)})\) or \(a(Z, K) = K + (1 - K)\mathbb{1}(X_{j} \neq c^{(1)})\), respectively, and the expression for \(\hat{\theta}\) simplifies accordingly.

Example 4.3 (Endogenous censored regression). Let \(Y^{*} = X^{*}\theta^{*} + \varepsilon^{*}\) such that some or all regressors are correlated with \(\varepsilon^{*}\). Let \(W^{*}\) be the vector of instruments, i.e., \(\mathbb{E}_{f}\{W^{*}\varepsilon^{*}\} = 0\). Hence, \(g(Z^{*}, \theta^{*}) = W^{*}(Y^{*} - X^{*}\theta^{*})\) and \(\rho_{1}(Z, \beta) = W(Y - X'\theta)\mathbb{1}(Z \neq c)/a(Z, K)\). Endogenous tobit, where \(X^{*}\) is endogenous and only \(Y^{*}\) is censored, is important for applications and follows by letting \(\rho_{1}(Z, \beta) = W(Y - X'\theta)\mathbb{1}(Y \neq c^{(1)})/a(Y, K)\), where \(a(Y, K) = K + (1 - K)\mathbb{1}(Y < c^{(1)})\). The asymptotic distribution of \(\hat{\theta}\) follows readily from Theorem 4.2.

Example 4.4 (Simultaneous equations). Let \(Y_{1}^{*} = X_{1}^{*}\theta_{1}^{*} + \varepsilon_{1}^{*}\) and \(Y_{2}^{*} = X_{2}^{*}\theta_{2}^{*} + \varepsilon_{2}^{*}\), where \(\varepsilon_{1}^{*}\) and \(\varepsilon_{2}^{*}\) are mean independent of \(X^{*}\), the vector of instruments. Hence, \(\mathbb{E}_{f}\{A(X^{*})\begin{bmatrix} Y_{1}^{*} - X_{1}^{*}\theta_{1}^{*} \\ Y_{2}^{*} - X_{2}^{*}\theta_{2}^{*} \end{bmatrix}\} = 0\), where \(A(X^{*})\) is a matrix of instrumental variables and (4.7) can be used to estimate \(\theta_{1}^{*}\) and \(\theta_{2}^{*}\). Although this model has been studied earlier, see, e.g., Blundell and Smith (1993), our treatment is more general because we do not assume that \(\varepsilon_{1}^{*}\) and \(\varepsilon_{2}^{*}\) are Gaussian and allow for the possibility that other variables besides \(Y_{1}^{*}\) and \(Y_{2}^{*}\) may also be censored. Censoring of \(Y^{*} = (Y_{1}^{*}, Y_{2}^{*})\) alone implies that \(\rho_{1}(Z, \beta) = A(X)\begin{bmatrix} Y_{1}^{*} - X_{1}^{*}\theta_{1}^{*} \\ Y_{2}^{*} - X_{2}^{*}\theta_{2}^{*} \end{bmatrix}\mathbb{1}(Y_{1} \neq c^{(1)}, Y_{2} \neq c^{(2)})/a(Y, K)\), where \(a(Y, K) = K + (1 - K)\mathbb{1}(Y_{1} < c^{(1)}, Y_{2} < c^{(2)})\).

Example 4.5 (Auxiliary information). Sometimes we may possess information about a feature of the target density; e.g., we may know beforehand that the mean of the target population
is zero. In general, suppose it is known a priori that $E_{f^*}\{m(Z^*)\} = 0$, where m is a vector of known functions. Moment based auxiliary information about f^* can be easily incorporated in our framework by stacking $g(Z^*, \theta^*)$ and $m(Z^*)$. These types of models, which are a special case of (2.1), have been investigated by Imbens and Lancaster (1994), Hellerstein and Imbens (1999), and Nevo (2003). However, Imbens and Lancaster (1994) and Hellerstein and Imbens (1999) assume that Z^* is fully observed. Nevo (2003) allows Z^* to be entirely missing (due to attrition) but not censored. He also restricts attention to the case where the parameter of interest is just identified. In addition, he assumes that the selection probability is known up to a finite dimensional parameter and imposes an identification condition that rules out truncated Z^*'s as well. By contrast, we allow (2.1) to be overidentified and the selection probabilities for censoring or truncation of Z^* to be fully unknown.

5. INFERENCE WITH TRUNCATED DATA

We now show how enriched data can be used to efficiently estimate models where variables are truncated. So let $b^* = \int_T f^*(z) d\mu^* \in (0, 1)$ denote the probability that Z^* is observed. Although b^* is unknown, the refreshment sample identifies it via the moment condition

$$b^* = E_{f^*}\{1(Z \in T)|R = 1\} \iff E_{f^*}\{[1(Z \in T) - b^*]R\} = 0. \quad (5.1)$$

Next, (2.4) and (3.2) imply that $f^*(z) = \int_{r \in \{0,1\}} f_r(z, r) d\kappa/a(z, b^*, K_0)$, where $a(z, b^*, K_0) = K_0 + (1 - K_0)1(z \in T)/b^*$ and $\int_{r \in \{0,1\}} f_r(z, r) d\kappa$ is the marginal density of Z in the enriched sample. Hence, we can rewrite (2.1) in terms of the enriched density as

$$E_{f^*}\{g(Z, \theta^*)/a(Z, b^*, K_0)\} = 0. \quad (5.2)$$

Finally, as before,

$$E_{f^*}\{R - K_0\} = 0. \quad (5.3)$$

To estimate $\beta^* = (\theta^*, b^*, K_0)_{(p+2)\times 1}$, define\(^{14}\)

$$\rho(Z, R, \beta) = \begin{bmatrix} g(Z, \theta)/a(Z, b, K) \\ [1(Z \in T) - b]R \end{bmatrix} \overset{\text{def}}{=} \begin{bmatrix} \rho_1(Z, \beta) \\ \rho_2(Z, R, b) \\ \rho_3(R, K) \end{bmatrix}_{(q+2)\times 1}. \quad (5.4)$$

Since (5.1) and (5.3) just identify b^* and K_0, by (5.2) it follows that $E_{f^*}\{g(Z^*, \theta^*)\} = 0$ if and only if $E_{f^*}\{\rho(Z, R, \beta^*)\} = 0$. Hence, β^* can be efficiently estimated by using the latter moment condition. Using notation introduced in Section 4, the GMM estimator is given by

\(^{14}\)Using the fact that $1(Z \not\in T)(1 - R) = 0$, it is easy to show that $\rho_3(R, K_0)(1 - b^*) - \rho_2(Z, R, b^*) = [K_0 \alpha^*/(1 - K_0)]/[1/a(Z, b^*, K_0) - 1]$. Thus $1/a(Z, b^*, K_0) - 1$ can be written as a linear combination of $\rho_2(Z, R, b^*)$ and $\rho_3(R, K_0)$. Hence, the moment condition $E_{f^*}\{1/a(Z, b^*, K_0)\} = 1$ is automatically satisfied.
\[
\hat{\beta} = \arg\min_{\beta \in \mathcal{B}} \hat{p}(\beta)\hat{V}_p^{-1}\hat{p}(\beta), \text{ where now } \mathcal{B} = \Theta \times [0, 1] \times [0, 1] \text{ and the objective function is defined in terms of the moment function in } (5.4). \text{ Since } \Pr_{\hat{f}}\{Z \in T\} = K_0b^* + 1 - K_0, \\
\mathbb{E}_f\{\rho_1(Z, \beta^*)\} = b^*\mathbb{E}_f\{g(Z, \theta^*)|Z \in T\} + (1 - b^*)\mathbb{E}_f\{g(Z, \theta^*)|Z \not\in T\}; \quad (5.5)
\]
i.e., the transformed moment function combines best predictors of \(g(Z^*, \theta^*)|Z^* \text{ is not truncated}\) and \(g(Z^*, \theta^*)|Z^* \text{ is truncated}\) weighted by probabilities of the corresponding events. As in the case of censoring, this procedure is automatically carried out in the enriched sample to efficiently estimate the parameters of interest; see Example 5.1 for a nice illustration.

Let \(\alpha^* = K_0b^* + 1 - K_0\) and \(v = \varepsilon + (\alpha^*/b^*)\text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, R, b^*)\}, \text{ where } \varepsilon = \rho_1(Z, \beta^*) - \text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, R, b^*), \rho_3(R, K_0)\}. \text{ Analogous to the notation in Section 4, define } \Omega = \mathbb{E}_f\{\varepsilon\varepsilon'\}, \ D = \mathbb{E}_f\{\partial \rho_1(Z, \beta^*)/\partial \theta\}, \ V_2 = \mathbb{E}_f\{\rho_2^2(Z, R, b^*)\}, \text{ and } \Sigma_{12} = \mathbb{E}_f\{\rho_1(Z, \beta^*)\rho_2(Z, R, b^*)\}. \text{ Letting } V = \mathbb{E}_f\{vv'\} \text{ and } M_V = V^{-1} - V^{-1}D(D'V^{-1}D)^{-1}D'V^{-1}, \text{ we can then show the following result.}

Theorem 5.1. Let Assumption 4.1 hold with the moment function \(\rho(Z, R, \beta)\) defined in (5.4). Then, \(n^{1/2}(\hat{\theta} - \theta^*)\), \(n^{1/2}(\hat{b} - b^*)\), and \(n^{1/2}(\hat{K} - K_0)\) converge jointly in distribution to a \((p+2) \times 1\) normal random vector with mean zero and variance-covariance matrix

\[
\begin{bmatrix}
(D'V^{-1}D)^{-1} & -(\alpha^*/K_0b^*)'(D'V^{-1}D)^{-1}D'V^{-1}\Sigma_{12} & 0_{p \times 1} \\
-(\alpha^*/K_0b^*)\Sigma_{12}'V^{-1}D(D'V^{-1}D)^{-1} & V_2/K_0^2 - (\alpha^*/K_0b^*)^2\Sigma_{12}'M_V\Sigma_{12} & 0 \\
0_{p \times 1} & 0 & K_0(1 - K_0)
\end{bmatrix}
\]

Since \(\Sigma_{23} = \mathbb{E}_f\{\rho_2(Z, R, b^*)\rho_3(R, K_0)\} = 0\) and \(\varepsilon\) is the residual from an orthogonal projection, we have \(\Omega = V_1 - \Sigma_{12}\Sigma_{12}'V_2 - \Sigma_{13}\Sigma_{13}'V_3\) and \(V = \Omega + (\alpha^*/b^*)^2\Sigma_{12}\Sigma_{12}'V_3\), where \(V_1 = \mathbb{E}_f\{\rho_1(Z, \beta^*)\rho_1(Z, \beta)\}, \Sigma_{13} = \mathbb{E}_f\{\rho_1(Z, \beta)\rho_3(R, K_0)\}, \text{ and } V_3 = \mathbb{E}_f\{\rho_3^2(R, K_0)\}. \) In Theorem B.1 of Appendix B we show that \((D'V^{-1}D)^{-1}\) and \(V_2/K_0 - (\alpha^*/K_0b^*)^2\Sigma_{12}'M_V\Sigma_{12}\) coincide with the efficiency bounds for estimating \(\theta^*\) and \(b^*\), respectively. Therefore, \(\hat{\theta}\) and \(\hat{b}\) are asymptotically efficient. Since \(\hat{b}\) is obtained by using the refreshment sample alone (as is \(\hat{\theta}_R\)), its asymptotic variance when \(q = p\) is given by \(b^*(1 - b^*)/K_0\) because \(V_2 = K_0b^*(1 - b^*)\). Hence, overidentification of \(\theta^*\) leads to a better estimator of \(b^*\).

We can use the proof of Theorem 5.1 to show that \(\hat{\theta}\) is asymptotically linear with influence function \(-D'V^{-1}D^{-1}D'V^{-1}V\). But since \(v\) is orthogonal to \(\rho_3(R, K_0)\), an application of the Cramér-Wold device and the central limit theorem reveals that \(\hat{\theta}\) and \(\sum_{j=1}^n R_j\) are asymptotically independent. Therefore, as for censoring, inference using the asymptotic distribution of \(\hat{\theta}\) is the same as inference based on the asymptotic distribution of \(\hat{\theta}\) given \(\sum_{j=1}^n R_j\).
The next result shows that \(\hat{\theta} \) is asymptotically better than \(\hat{\theta}_R \). Hence, even in the case of truncation, efficiency gains do not come solely from the refreshment sample; i.e., truncated datasets also possess information that can be exploited to increase efficiency.

Theorem 5.2. Let \(\hat{\theta}_R \) denote the estimator of \(\theta^* \) obtained by using the refreshment sample alone; i.e., \(\hat{\theta}_R \) is based on the moment condition in (4.9). Then, \(\text{asvar}(\hat{\theta}_R) > \text{asvar}(\hat{\theta}) \).

Example 5.1 (Example 2.3 contd.). Here \(\rho_1(Z, \hat{\beta}) = (Z - \theta)/a(Z, b, K) \) and no overidentifying restrictions. Thus \(\hat{\beta} \) solves \(\sum_{j=1}^n \rho(Z_j, \hat{\beta}) = 0 \). Hence, \(\hat{b} = \sum_{j=1}^n \mathbb{I}(Z_j \in T) R_j / \sum_{j=1}^n R_j \) is the fraction of observations in the refreshment sample that are not truncated, \(\hat{K} = \sum_{j=1}^n R_j / n \) the size of the refreshment sample relative to the enriched sample, and \(\hat{\theta} = n^{-1} \sum_{j=1}^n Z_j / \rho_a(Z_j, \hat{b}, \hat{K}) \) since \(\sum_{j=1}^n 1/a(Z_j, \hat{b}, \hat{K}) = n \). Using the fact that \(\mathbb{I}(Z_j \notin T)(1 - R_j) = 0 \), which follows by the definition of \(R_j \), a little algebra shows that we can express \(\hat{\theta} \) more revealingly as

\[
\hat{\theta} = \hat{b} \times \frac{\sum_{j=1}^n Z_j \mathbb{I}(Z_j \in T)}{\sum_{j=1}^n \mathbb{I}(Z_j \in T)} + (1 - \hat{b}) \times \frac{\sum_{j=1}^n Z_j \mathbb{I}(Z_j \notin T) R_j}{\sum_{j=1}^n \mathbb{I}(Z_j \notin T) R_j},
\]

which is exactly what we would expect from (5.5).

Example 5.2 (Example 2.4 contd.). Let \(a(Z, b, K) = K + (1 - K)\mathbb{I}(Y_j \in T_1, X_j \in T_2)/b \) and \(\hat{X}_j = X_j / a(Z_j, \hat{b}, \hat{K}) \) with \(\hat{b} \) and \(\hat{K} \) as in Example 5.1. Then \(\hat{\theta} = \{\sum_{j=1}^n \hat{X}_j X'_j\}^{-1}\{\sum_{j=1}^n \hat{X}_j Y_j\} \). For pure endogenous or exogenous truncation \(a(Z_j, \hat{b}, \hat{K}) \) is either \(\hat{K} + (1 - \hat{K})\mathbb{I}(Y_j \in T_1)/\hat{b} \) or \(\hat{K} + (1 - \hat{K})\mathbb{I}(X_j \in T_2)/\hat{b} \), respectively, and \(\hat{\theta} \) simplifies accordingly. By Theorem 5.1, \(n^{1/2}(\hat{\theta} - \theta^*) \) is asymptotically normal with mean zero and variance \(D^{-1} V D^{-1} \). Truncated versions of the endogenous regression and simultaneous equations models in Examples 4.3 and 4.4 can also be estimated using our approach.

6. **APPLICATION**

Our application studies the effects of changes in compulsory schooling laws on age at first marriage. While the primary purpose of the application is to demonstrate the methodology developed in this paper, this is also a topic of some substantive importance. Our data are 1% samples from the Public Use Files of the U.S. Census of Population for the years 1960, 1970, and 1980.

Understanding the determinants of age at first marriage is considered to be important for several reasons. In recent years, age at first marriage has risen. Much literature suggests that a rising age at first marriage may be socially undesirable because marriage may encourage good behavior and outcomes. For example, Akerlof (1998) provides evidence that marriage has a beneficial effect on male behavior, leading to a decrease in socially undesirable activities such as alcoholism, drug abuse, and violence. Also, Korenman and Neumark (1991) find that in the cross-section, married men earn about 11% more than observationally equivalent unmarried
men. When they utilize panel data and estimate a fixed effects model, the marriage effect is about 2/3rd the size of the cross-sectional estimate. Thus, it appears that there is a direct effect of being married on male earnings. However, in other work, they find that marriage reduces female participation and does not positively impact their wage rates (Korenman and Neumark 1992). Second, there is a great deal of concern about the effects of out-of-wedlock childbearing on single parents and their children. If rising age at first marriage is not accompanied by postponed childbearing, this problem becomes more severe. Relatedly, it has long been known, see, e.g., Coale (1971), that age at first marriage is an important determinant of fertility. However, rising age at first marriage may also have socially beneficial effects (Goldin and Katz 2002) because it has been linked to greater opportunities for young people, especially women, to obtain education and develop a professional career.

Theoretically, the effects of increased education on age of marriage are unclear. Koball (1998) describes the “economic provider” hypothesis that men are less likely to marry until they are securely employed. Because more education leads to higher earnings, it may lead to earlier marriage through this channel. The “adult transition” hypothesis proposes that events that delay the transition to adulthood will also delay marriage. More education will tend to delay marriage through this channel. Empirically, there is a positive relationship between education and age of marriage and rising education may be related to increased age at first marriage in recent decades. However, the correlation between education and age at first marriage may reflect the fact that young people with low ability and poor labor market prospects choose both to marry early and to drop out of school early rather than a causal relationship between education and age at first marriage. One way to examine this issue is to look at the effects of changes in policy that led to increased education. In particular, we study whether increased mandatory educational attainment (through compulsory schooling legislation) encourages people to defer marriage. If so, these factors should be considered when evaluating the benefits of this type of legislation.

We use variation in compulsory schooling laws across states and over time. Changes in these laws had a significant impact on education and indeed have been used as instruments for education in other contexts by Acemoglu and Angrist (2001), Lochner and Moretti (2004), and Lleras-Muney (2002). Since the history of compulsory schooling laws in the U.S. is by now well documented (see, in particular, Lleras-Muney (2001) and Goldin and Katz (2003)), we will not describe them in great detail here. Essentially, there were five possible restrictions on educational attendance: (i) maximum age by which a child must be enrolled, (ii) minimum age at which a child may drop out, (iii) minimum years of schooling before dropping out, (iv) minimum age for a work permit, and (v) minimum schooling required for a work permit. In the years relevant to our sample, 1939 to 1958, states changed compulsory attendance laws many times, usually upwards but sometimes downwards. Papers on the topic have used a variety of
combinations of these restrictions as measures of compulsory schooling. We use required years of schooling, defined as the difference between the minimum dropout age and the maximum enrollment age following Lleras-Muney and Goldin and Katz. We follow Acemoglu and Angrist (2001) and Lochner and Moretti (2004) in assigning compulsory attendance laws to people on the basis of state of birth and the year when the individual was 14 years old (with the exception that the enrollment age is assigned based on the laws in place when the individual was 7 years old). Also, we follow them in creating four indicator variables, depending on whether years of compulsory schooling are 8 or less, 9, 10, and 11 or more.

Our sample is composed of men and women born between 1925 and 1944. We choose this group of cohorts for two reasons. First, many of the changes in compulsory schooling laws were enacted between 1939 and 1958 and so had a major impact on this group. Secondly, the question on age at first marriage is not asked in the Census prior to 1960 or after 1980 so we are limited in terms of which cohorts we can study.

The empirical model can be written as

\[
\log(Y_j^*) = X_j^{*\prime} \theta^* + \varepsilon_j^*,
\]

where \(Y_j^*\) denotes age at first marriage for the \(j\)th individual in the sample, \(X_j^*\) is a vector of explanatory variables including a constant, compulsory schooling law variables, year of birth dummies, state dummies, and a race dummy, and \(\varepsilon_j^*\) an unobserved error term that is uncorrelated with the regressors. There are 3 included compulsory schooling law variables describing the level of compulsory schooling: CA9 (9 years), CA10 (10 years), and CA11 (11 or 12 years). The omitted category is 8 years or less. There are a few points to note about (6.1): First, it contains fixed cohort effects and state effects. The cohort effects are necessary to allow for secular changes in age at first marriage that may be completely unrelated to compulsory schooling laws. The state effects allow for the fact that variation in the timing of the law changes across states may not have been exogenous to the marriage market (for example, states with strict compulsory schooling laws may be states where people tend to marry late in any case).

The major problem in running this regression is that \(Y^*\) is censored for younger individuals because census records report age at first marriage for only those individuals who married before the census interview took place; otherwise, they simply report the individuals chronological age at the time of interview. Hence, for each person we can only observe

\[
Y_j = \begin{cases}
Y_j^* & \text{if } Y_j^* < C_j \\
C_j & \text{otherwise,}
\end{cases}
\]

where \(C_j\) denotes chronological age at the time of interview.

There are two elements of the censoring problem: (i) people who do get married at some point in their life but who have never been married at the time of interview, and (ii) people who
never get married. Our goal is to address the first problem. The usual approach to dealing with (i) is to restrict the sample to older men and women (e.g., Bergstrom and Schoeni (1996) restrict the sample to persons aged 40–60). This is obviously not a satisfactory solution because it replaces the censoring problem with a truncation problem. In contrast, our approach is to use both young and old persons, acknowledging that age at first marriage is significantly censored for younger women and men. As discussed above we use the 1925–1944 cohorts, and these people are aged 16–35 in 1960, and 26–45 in 1970. Clearly, age at first marriage is censored for many of these persons. To deal with this problem, we need a refreshment sample that is not censored and is from the same population as our master sample (aged 16–35 in 1960 and 26–45 in 1970). We obtain this by using individuals from the same cohort: A 16 year old woman in 1960 is considered to be from the same population as a 26 year old woman in 1970, and a 36 year old in 1980. Hence, for women who were between 16–35 in 1960 and 26–45 in 1970, the refreshment sample consists of women aged 36–55 in 1980.

For the group of people aged 36–55 in 1980 to be a suitable refreshment sample, it must possess two characteristics. First, it must be a draw from the same population as the master sample. We consider this to be a reasonable assumption in this case because: (a) they are from the exact same birth cohorts as persons in the master sample; (b) we only use individuals born in the U.S. so immigration is not a problem; (c) we do not include individuals aged more than 55 (and these cohorts were not involved in World War 2 or Vietnam) so mortality is not a major consideration. We report descriptive statistics for our sample in tables 1 and 2 for women and men, respectively. Note that the percentage white, average year-of-birth, and the proportions affected by each compulsory schooling law regime are very similar across census samples. This is as we would expect given that we are tracking a population as they age. On the other hand, the average values of age at first marriage differ greatly by census due to censoring. To further corroborate that we are following samples from the same population, in figure 1 we also present QQ plots for age at first marriage of men and women aged at least 26 that were married before they were 26 years old. The linearity of the plots is strong evidence that the uncensored observations in these samples indeed come from the same population.

The second characteristic of a refreshment sample is that it should not have a censoring problem. We examine this issue in table 3. In this table, we track each birth cohort over time, and list the percentage who have never been married. For women, we see that the proportion never married flattens out as women reach their early 30’s and it appears that very few women

17 We cannot solve the second problem as, by definition, it is impossible to construct a refreshment sample for the group that will never marry.

18 All individuals are aged at least 26 in the 1970 and 1980 samples. To compare 1960 to 1980, we restricted the sample to the oldest 10 cohorts i.e. persons aged at least 26 in 1960 and at least 46 in 1980. This trades off the number of cohorts included against the number of uncensored marriage ages observed.
marry for the first time after age 35. Thus, it appears that the refreshment sample for women is approximately free of censoring bias. Men tend to marry at later ages and so there does appear to be some censoring in the refreshment sample for men. However, it impacts a very small proportion of cases; it appears that about 6% of men never marry, and very few cohorts in the refreshment sample have more than 6% of censored observations in 1980. Despite the evidence that there may be some censoring in the 1980 sample, in estimation we treat it as a refreshment sample that has no censored observations.

As mentioned above, we cannot address the second type of censoring (people who never get married) using a refreshment sample approach. Instead, we have taken a few different ad hoc approaches and verify that our results are not very sensitive to the exact method used. The approaches we have tried are (i) impute age at first marriage as equal to current age for never married individuals in the refreshment sample, and (ii) impute age at marriage for all cases where individuals are not married by 35 (we have tried imputing the age to 55 and 65; the results are displayed in Table 6). We find that our GMM estimates are reasonably robust to the imputation method used and so in Table 4 we report the results using method (i).

We report the following GMM estimates of the coefficients of the compulsory schooling variables and the white dummy in Table 4: GMM60, obtained by matching the 1960 master sample with the 1980 refreshment sample to create the enriched dataset, and GMM70, the GMM estimator when the 1970 and 1980 samples are matched. Estimates for men and women are reported separately. Following the procedure described in Section 4 (see Example 4.2 for an illustration), both estimators were based on (4.7) and implemented in the GAUSS programming language. Since the consistency of our estimators does not depend upon the extent to which the data are censored, we also expect GMM60 and GMM70 to give similar estimates in finite samples even though censoring is less of a problem in 1970. This is a good check of robustness and is borne out by the evidence summarized in Table 4.

An enriched dataset has to, by definition, contain some observations that are not subject to the censoring mechanism. Since age at first marriage is censored from above by chronological age in this application, an enriched dataset here must contain some observations for which age at first marriage is greater than chronological age; i.e., loosely speaking, we must have some counterfactual observations for whom we can “look into the future” at the time of interview and see when they first get married. To construct such an enriched dataset by matching, say, the 1960 and 1980 samples, we first create a new variable \(\tilde{C}_j = C_j\mathbb{1}(j \in 1960) + (C_j - 20)\mathbb{1}(j \in 1980) \) that represents the chronological age of the \(j \)th individual in 1960. The enriched observations used to construct GMM60 are then obtained by replacing \(C_j \) in (6.2) with \(\tilde{C}_j \). GMM70 is obtained similarly by matching the 1970 and 1980 datasets.
To contrast our GMM estimators with some competing estimators, we also report OLS60, OLS70, TOBIT60, and TOBIT70, the OLS and tobit estimates for each year. Another estimator we consider is OLS80, obtained by doing least squares on just the 1980 sample. It is consistent because the refreshment sample is not censored. Therefore, GMM70 and OLS80 both serve as consistency checks for GMM60. Incidentally, note that although age at first marriage is a continuously distributed random variable, in the data it is recorded in discrete units (years). Therefore, we cannot do censored quantile regression in this application.

First, consider the compulsory schooling estimates for women. The GMM estimates for both 1960 and 1970 are quite similar and suggest that moving from less than 9 years of compulsory schooling to 9 years increases log age at first marriage by about 0.01, implying age at first marriage increases by approximately 1%. The effects for 10 years of compulsory schooling is about 1.5%, and the effects of 11 or more is about 2%. Not surprisingly, these effects are about the same size as one obtains using just the refreshment sample (the 1980 data) because the refreshment sample does not suffer from censoring bias. Note, however, that the GMM estimates are more precisely estimated than the OLS estimates from 1980, as GMM is optimally using additional information from the 1960 and 1970 samples. The gain in efficiency is bigger for GMM70 than for GMM60, presumably because the 1970 data has less of a censoring problem and hence is more informative. The OLS estimates from 1960 and 1970 show signs of bias due to censoring. In particular, the 1960 estimates indicate very large effects of the compulsory schooling laws on age at first marriage. The final two columns in table 4 report tobit estimates. The tobit estimates of the compulsory schooling laws are typically lower than that of the GMM estimators. Also, there is a substantial difference between the tobit estimates for 1960 and the equivalent estimates for 1970, indicating that tobit is performing poorly in this situation.

The estimate of the white dummy for women is also in table 4. The GMM estimates both indicate that whites tend to marry at younger ages than non-whites – the point estimates imply the difference is about 8–9%. Once again, OLS estimates for 1960 and 1970 are very different, suggesting that censoring bias is serious for these samples. The two tobit estimates are again very different from the GMM estimates.

The compulsory schooling and white estimates for men are also in table 4. They differ from the female results in that the GMM estimates only suggest significant effects of 10 years of required schooling (9 years is marginally significant for GMM70). In contrast, the OLS estimates...
estimates for 60 and 70 show strong significant effects of all the laws on age of first marriage. As in the female sample, the GMM estimates of the white coefficient imply a difference of about 8-9%. The OLS80 and tobit estimates are again very different, suggesting that censoring bias is severe for the tobit estimates.

Cohort and state fixed effects were also included in the specification. The estimated cohort effects show how the conditional mean of \(\log(\text{age at first marriage}) \) varies by birth cohort. The oldest cohort (persons born in 1925) is the excluded dummy in the regression, so the estimate for this group is normalized to zero. Rather than report the coefficients of the cohort dummies, we plot them for women and men in figures 2 and 3, respectively. Not surprisingly, the cohort effects for OLS60 are radically different from the rest. The cohort effects for the rest of the estimators are quite similar to each other.

In summary, we find positive effects of the compulsory schooling laws on age at first marriage. However, the magnitude of the effects are much smaller than would be inferred from ignoring the censoring problem in the 1960 and 1970 data. By contrast, we find large racial differences that are largely obscured in the censored data. Taken together, these demonstrate the importance in this application of using an approach that takes account of censoring. The similarity of the GMM estimates from 1960 and 1970 to each other and to the OLS estimates from 1980 also demonstrates our theoretical result that the proposed estimators are consistent irrespective of the extent of censoring.

7. Conclusion

We develop efficient semiparametric inference for models with unconditional moment restrictions when the target population is subject to censoring or truncation. Instead of imposing parametric, independence, symmetry, quantile, or special regressor restrictions on the distributions of the underlying random variables, we solve the identification problem created due to the incompleteness of data by using a supplementary sample of observations that are not subject to censoring or truncation. We show how this refreshment sample can be combined with the original dataset of censored or truncated observations to efficiently correct for the effects of partial observation so that all standard GMM based inference goes through. To illustrate our results in an empirical setting, we show how to estimate the effect of changes in compulsory schooling laws on age at first marriage, a variable that is censored for younger individuals, and also demonstrate how refreshment samples in this application can be created by matching cohort information across census datasets.

The methods developed in this paper are readily applicable in many other applied contexts. Applications where refreshment samples are relatively straightforward to construct seem to be those where censoring or truncation can in some sense be regarded as nuisance processes, i.e., where the underlying economic
durations and re-employment wages subsequent to job displacement. U.S. analyses of the con-
sequences of job displacement have predominantly relied on the Displaced Worker Supplement
(DWS) to the Current Population Survey (CPS). However, serious problems arise because many
individuals have not become re-employed by the time of the CPS survey so that unemployment
durations are censored and re-employment wages are truncated. By using panel data sets such
as the Panel Study of Income Dynamics (PSID), one can augment the CPS with a sample that
does not have these censoring problems (as individuals are followed for years after displace-
ment) and consistently estimate parameters of interest. We intend to examine this application
in future research. The theory developed here can be extended to handle binary response,
ordered response, and models involving interval censored or missing data as well. Research on
all these topics is also in progress and will be presented in subsequent papers.

Acknowledgements

We thank Don Andrews, Moshe Buchinsky, Ken Couch, Graham Elliott, Jin Hahn, Phil
Haile, Bruce Hansen, Jim Heckman, Yuichi Kitamura, Roger Klein, Arthur Lewbel, Taisuke
Otsu, Jack Porter, Giuseppe Ragusa, Geert Ridder, Yixiao Sun, Norm Swanson, Allan Tim-
mermann, Hal White, and participants at the 9th world congress of the econometric society and
other university seminars for helpful suggestions and conversations. Financial support from the
NSF (Devereux) and the University of Connecticut graduate school (Tripathi) is gratefully ac-
nowledged. An earlier version of this paper was circulated under the title “Combining datasets
to overcome selection caused by censoring and truncation in moment based models”.

Appendix A. Proofs of the results in section 4

Proof of Theorem 4.1. From standard GMM theory we know that \(n^{1/2}(\hat{\beta} - \beta^*) \) is asymptotically
normal with mean zero and variance \((D_\rho' V_{\rho}^{-1} D_\rho)^{-1} \), where \(D_\rho = \mathbb{E}_{f_2} \{ \partial \rho(Z, R, \beta^*) / \partial \beta \} \) and \(V_{\rho} = \mathbb{E}_{f_2} \{ \rho(Z, R, \beta^*) \rho'(Z, R, \beta^*) \} \). Letting \(\Sigma = [\Sigma_{12} \Sigma_{13}] \) and \(\Sigma_{23} = \mathbb{E}_{f_2} \{ \rho_2(Z, K_0) \rho_3(R, K_0) \} \), we can write
\[
V_{\rho}^{-1} = \begin{bmatrix} \Omega^{-1} & -\Omega^{-1} \Sigma V_{-1}^{-1} \\ -\Sigma' \Omega^{-1} & V_{-1}^{-1} + \Sigma' \Omega^{-1} \Sigma V_{-1}^{-1} \end{bmatrix},
\] (A.1)
where $\Omega = V_1 - \Sigma V_1^{-1} \Sigma'$. Since ε is the residual from an orthogonal projection of $\rho_1(Z, \beta^*)$ onto the linear span of $\{1, \rho_2(Z, K_0), \rho_3(R, K_0)\}$, it is immediate that $\mathbb{E}_{f_\cdot}\{\varepsilon\varepsilon'\} = \Omega$. Furthermore, since

$$V_{-1} \overset{\text{Lemma A.2}}{=} \begin{bmatrix} K_0(1 - K_0)[1 - F^*(c)] & K_0(1 - K_0)[1 - F^*(c)] \\ K_0(1 - K_0)[1 - F^*(c)] & K_0(1 - K_0) \end{bmatrix}, \quad (A.2)$$

V_{-1}^{-1} is easily obtained. Next, observe that

$$D_\rho = \begin{bmatrix} D & \mathbb{E}_{f_\cdot}\{\partial \rho_1(Z, \beta^*)/\partial K\} \\ 0_{p \times 1}^\top & -\mathbb{E}_{f_\cdot}\{1(Z < c)\} \end{bmatrix} \overset{\text{Lemma A.3}}{=} \begin{bmatrix} D & -\Sigma_{12}/K_0(1 - K_0) \\ 0_{p \times 1}^\top & -1 \end{bmatrix}. \quad (A.3)$$

Therefore, using (A.1)–(A.3), straightforward matrix multiplication shows that

$$D_\rho^\top V_{\rho}^{-1} D_\rho = \begin{bmatrix} D \Omega^{-1} D & 0_{p \times 1} \\ 0_{p \times 1}^\top & 1/K_0(1 - K_0) \end{bmatrix}. \quad (A.4)$$

The desired result follows. \qed

Proof of Theorem 4.2 Same as the proof of Theorem 4.1, the only difference being that since estimation here is based on the moment function $\rho(Z, \beta)$ defined in (4.7), we now have

$$D_\rho = \begin{bmatrix} D & -\Sigma_{12}/K_0(1 - K_0) \\ 0_{p \times 1}^\top & -[1 - F^*(c)] \end{bmatrix} \quad \text{and} \quad V_{\rho} = \begin{bmatrix} V_1 & \Sigma_{12} \\ \Sigma_{12} & K_0(1 - K_0)[1 - F^*(c)] \end{bmatrix}. \quad (A.1)$$

Therefore,

$$D_\rho^\top V_{\rho}^{-1} D_\rho = \begin{bmatrix} D \Omega^{-1} D & 0_{p \times 1} \\ 0_{p \times 1}^\top & [1 - F^*(c)]/K_0(1 - K_0) \end{bmatrix}$$

and the desired result follows. \qed

Proof of Theorem 4.3 Since $\hat{\theta}_R$ is the optimal GMM estimator based on $\mathbb{E}_{f_\cdot}\{g(Z, \theta^*) R\} = 0$, we know that $n^{1/2}(\hat{\theta}_R - \theta^*)$ is asymptotically normal with mean zero and variance $(D_\rho^\top V_{\rho}^{-1} D_\rho)^{-1}$, where $D_\rho = \mathbb{E}_{f_\cdot}\{\partial g(Z, \theta^*)/\partial \theta\}$ and $V_{\rho} = \mathbb{E}_{f_\cdot}\{g(Z, \theta^*) g'(Z, \theta^*) R\}$. But,

$$D_\rho = \mathbb{E}_{f_\cdot}\{\partial g(Z, \theta^*)/\partial \theta\} = K_0 \mathbb{E}_{f_\cdot}\{\partial g(Z, \theta^*)/\partial \theta\} = K_0 D_\ast. \quad (A.1)$$

Similarly, we can show that $V_{\rho} = K_0 V_\ast$. Hence, $(D_\rho^\top V_{\rho}^{-1} D_\rho)^{-1} = (D_\ast V_\ast^{-1} D_\ast)^{-1}/K_0$. Next, observe that $D_\ast = D$ by (4.1) and the fact that $\mu^\ast(\{c\}) = 0$. Hence, to prove $\text{asvar}^\ast(\hat{\theta}_R) > \text{asvar}(\hat{\theta})$ it suffices to show that $V_{\ast}/K_0 > \Omega$; i.e., $V_{\ast}/K_0 - \Omega$ is positive definite. So, by (4.1), $\mu^\ast(\{c\}) = 0$, and the fact

$$\{1(Z < c) + 1(Z < c'c')\}/a(Z, K_0) = 1(Z < c) + 1(Z < c')/K_0,$n

we can write

$$V_{\ast} = \mathbb{E}_{f_\cdot}\{g(Z^\ast, \theta^*) g'(Z^\ast, \theta^*) 1(Z^\ast < c)\} + \mathbb{E}_{f_\cdot}\{g(Z^\ast, \theta^*) g'(Z^\ast, \theta^*) 1(Z^\ast < c')\}/K_0. \quad (A.5)$$

we can write V_{\ast} as

$$V_{\ast} = \mathbb{E}_{f_\cdot}\{g(Z^\ast, \theta^*) g'(Z^\ast, \theta^*) 1(Z^\ast < c)\} + \mathbb{E}_{f_\cdot}\{g(Z^\ast, \theta^*) g'(Z^\ast, \theta^*) 1(Z^\ast < c')\}/K_0. \quad (A.6)$$
Hence, we have that
\[\Omega = V_1 - \Sigma_{12}\Sigma_{12}'/V_2 \]
\[= V_* - K_0 - [(1/K_0 - 1)E_{f^*}\{g(Z^*, \theta^*)g'(Z^*, \theta^*)1(Z^* \leq c)\} + \Sigma_{12}\Sigma_{12}'/V_2]. \quad (A.7) \]

Therefore, $V_*/K_0 > \Omega$ since $K_0 \in (0, 1)$. The desired result follows.

Remark A.1. For notational convenience, define $\Delta_1 = \text{var}_{f^*}\{g(Z^*, \theta^*)|Z^* \leq c\}$ and
\[
\Delta_2 = E_{f^*}\{g(Z^*, \theta^*)g'(Z^*, \theta^*)1(Z^* < c)\}
+ E_{f^*}\{g(Z^*, \theta^*)1(Z^* \leq c)\}E_{f^*}\{g'(Z^*, \theta^*)1(Z^* \leq c)\}/(1 - F^*(c)).
\]
Then, using (A.6), (A.10), Lemma A.2(ii), and Lemma A.3(ii), a little algebra shows that
\[\Omega = V_1 - \Sigma_{12}\Sigma_{12}'/V_2 = [(1 - F^*(c))/K_0]\Delta_1 + \Delta_2. \]
Therefore, since Δ_1 and Δ_2 do not depend upon K_0, it follows that Ω is a decreasing (in the positive definite sense) function of K_0. Furthermore, by (A.10) and Lemma A.2(ii), we can write (A.7) as
\[V_*/K_0 - \Omega = [(1 - K_0)/K_0]\Delta_2. \]
Since $K_0 \rightarrow (1 - K_0)/K_0$ is monotonically decreasing on $(0, 1)$, the gap $V_*/K_0 - \Omega$ is also a decreasing function of K_0. \hfill \Box

Lemma A.1. $\text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, K_0), \rho_3(R, K_0)\} = \text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, K_0)\}$.

Proof of Lemma A.1 To prove this result, it suffices to show that
\[E_{f_{\beta^*}}\{[\rho_1(Z, \beta^*) - \text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, K_0)\}]\rho_3(R, K_0)\} = 0. \quad (A.8) \]
But $\text{Proj}\{\rho_1(Z, \beta^*)|1, \rho_2(Z, K_0)\} = \Sigma_{12}\rho_2(Z, K_0)/V_2$. Hence, by Lemma A.2, we have that (A.8) holds if and only if $\Sigma_{13} = \Sigma_{12}$. Now, by (3.1),
\[\Sigma_{13} = K_0E_{f_{\beta^*}}\{\rho_1(Z, \beta^*)|R = 1\} = K_0E_{f^*}\{\rho_1(Z^*, \beta^*)\}. \]
Moreover, since $\mu^*\{\{c\}\} = 0$,
\[E_{f^*}\{\rho_1(Z^*, \beta^*)\} = E_{f^*}\{g(Z^*, \theta^*)1(Z^* \leq c) + 1(Z^* < c)\}/a(Z^*, K_0). \]
Hence, using (A.5), we obtain that
\[\Sigma_{13} = -(1 - K_0)E_{f^*}\{g(Z^*, \theta^*)1(Z^* \leq c)\}. \quad (A.9) \]
Next, observe that
\[\Sigma_{12} = (1 - K_0)E_{f_{\beta^*}}\{g(Z, \theta^*)1(Z \neq c)1(Z < c)\}/a(Z, K_0) \]
\[= (1 - K_0)E_{f^*}\{g(Z^*, \theta^*)1(Z^* \leq c)\} \quad (A.10) \]
\[= -(1 - K_0)E_{f^*}\{g(Z^*, \theta^*)1(Z^* < c)\}. \quad (A.11) \]
where the second equality follows by (4.1) and the assumption that \(\mu^*(\{c\}) = 0 \). Therefore, the desired result follows by (A.9) and (A.11). \(\square \)

Lemma A.2. (i) \(\Sigma_{23} = K_0(1 - K_0)[1 - F^*(c)] \) and (ii) \(V_2 = K_0(1 - K_0)[1 - F^*(c)] \).

Proof of Lemma A.2. Note that

\[
\Sigma_{23} = E_{f_*} \{ \rho_2(Z, K_0)R \} = K_0 E_{f_*} \{ \rho_2(Z, K_0)|R = 1 \} \overset{(A.1)}{=} K_0 E_{f_*} \{ \rho_2(Z^*, K_0) \}.
\]

Hence, (i) follows since

\[
E_{f_*} \{ \rho_2(Z^*, K_0) \} = (1 - K_0) E_{f_*} \{ 1(Z^* < c) \} = (1 - K_0)[1 - F^*(c)].
\]

To show (ii), observe that

\[
E_{f_*} \{ \rho_2(Z, K_0) \} = E_{f_*} \{ 1(Z \neq c) 1(Z < c) \} + K_0 E_{f_*} \{ 1(Z < c) \} - 2K_0 E_{f_*} \{ 1(Z \neq c) 1(Z < c) \}.
\]

But using (4.1) and the assumption that \(\mu^*(\{c\}) = 0 \), it is easy to show that

\[
E_{f_*} \{ 1(Z \neq c) 1(Z < c) \} = K_0[1 - F^*(c)].
\]

Therefore, (ii) follows by Lemma A.3(ii). \(\square \)

Lemma A.3. (i) \(E_{f_*} \{ \partial p_1(Z, \beta^*)/\partial K \} = -\Sigma_{12}/K_0(1 - K_0) \) and (ii) \(E_{f_*} \{ 1(Z < c) \} = 1 - F^*(c) \).

Proof of Lemma A.3. First, note that

\[
\partial p_1(Z, \beta^*)/\partial K = -g(Z, \theta^*) 1(Z \neq c) 1(Z < c) / a^2(Z, K_0)
\]

\[
= -g(Z, \theta^*) 1(Z \neq c) 1(Z < c) / [a(Z, K_0)K_0],
\]

where the second equality is due to (A.5). Hence, by (4.1) and \(\mu^*(\{c\}) = 0 \),

\[
E_{f_*} \{ \partial p_1(Z, \beta^*)/\partial K \} = E_{f_*} \{ g(Z^*, \theta^*) 1(Z^* < c) \} / K_0.
\]

Therefore, (i) follows by (A.11). Next, since \(1(Z^* < c) = 1(Z \neq c) 1(Z < c) \),

\[
E_{f_*} \{ 1(Z^* < c) \} = 1 - E_{f_*} \{ 1(Z < c) \} = 1 - E_{f_*} \{ 1(Z \neq c) 1(Z < c) \}
\]

\(\overset{(A.1)}{=} 1 - E_{f_*} \{ 1(Z^* \neq c) 1(Z^* < c) a(Z^*, K_0) \} = 1 - F^*(c)
\]

since \(\mu^*(\{c\}) = 0 \) by assumption. \(\square \)
A.1. Efficiency bounds under censoring. We use the methodology of Severini and Tripathi (2001) to calculate the efficiency bounds. Begin by writing the enriched density of Z and R as \(f_e(z, r) = \phi_0(z, r) \). This ensures that ϕ_0 lies in $L_2(z, r)$, the set of real-valued functions on $\mathbb{R}^d \times \{0, 1\}$ square-integrable with respect to $\mu \otimes \kappa$. Now, suppose that we want to calculate the efficiency bound for estimating $\eta(\phi_0)$, a pathwise differentiable functional of ϕ_0 (see Severini and Tripathi (2001) for technical definitions and details). We proceed as follows. Let $t \mapsto \phi_t$ be a curve from an interval containing zero into the unit ball of $L_2(z, r)$ such that $\phi_t|_{t=0} = \phi_0$. Since the observed loglikelihood for t in this submodel is log $\phi_t^2(z, r)$, the Fisher information for a single observation is given by \(i_\mathcal{F} = 4 \int_{\mathbb{R}^d \times \{0, 1\}} \phi^2(z, r) \, d\mu \, d\kappa \), where ϕ denotes the tangent vector to ϕ_t at $t = 0$; i.e., ϕ is an element of the tangent space $\mathcal{T} = \{ \dot{\phi} \in L_2(z, r) : \int_{\mathbb{R}^d \times \{0, 1\}} \phi_0(z, r) \dot{\phi}(z, r) \, d\mu \, d\kappa = 0 \}$. Note that $i_\mathcal{F}$ is induced by the Fisher inner-product $\langle \dot{\phi}_1, \dot{\phi}_2 \rangle_\mathcal{F} = 4 \int_{\mathbb{R}^d \times \{0, 1\}} \dot{\phi}_1(z, r) \dot{\phi}_2(z, r) \, d\mu \, d\kappa$. Thus $i_\mathcal{F} = \| \dot{\phi} \|_\mathcal{F}^2$, where $\| \cdot \|_\mathcal{F}$ denotes the norm generated by the Fisher inner-product.

Since (2.1) is equivalent to \(\mathbb{E}_f \{ g(Z, \theta^*) \mathbb{I}(Z \neq c)/a(Z, K_0) \} = 0 \), we have to use the additional information in (3.2) when calculating the efficiency bound for estimating $\eta(\phi_0)$. So let $t \mapsto (\theta_t, K_t)$ denote a curve passing through (θ^*, K_0) at $t = 0$ such that for all t in a neighborhood of zero

\[
\int_{\mathbb{R}^d \times \{0, 1\}} g(z, \theta_t) \mathbb{I}(z \neq c) \phi_t^2(z, r)/a(z, K_t) \, d\mu \, d\kappa = 0,
\]
(A.12)

where, by (3.3) and (4.4), K_t is defined via the moment conditions

\[
\int_{\mathbb{R}^d \times \{0, 1\}} (\mathbb{I}(z \neq c) \mathbb{I}(z < c) - K_t \mathbb{I}(z < c)c) \phi_t^2(z, r) \, d\mu \, d\kappa = 0,
\]
(A.13)

By (A.12), the tangent vectors $\dot{\phi}$, $\dot{\theta}$, and \dot{K} must satisfy

\[
D\dot{\theta} + 2 \int_{\mathbb{R}^d \times \{0, 1\}} \rho_1(z, \beta^*) \phi_0(z, r) \dot{\phi}(z, r) \, d\mu \, d\kappa + \mathbb{E}_f \{ \partial \rho_1(Z, \beta^*)/\partial K \} \dot{K} = 0
\]
(A.14)

and from (A.13) we know that \dot{K} solves

\[
\begin{bmatrix}
-1 - F^x(c)
\end{bmatrix} \dot{K} + 2 \int_{\mathbb{R}^d \times \{0, 1\}} \rho_{-1}(z, r, K_0) \phi_0(z, r) \dot{\phi}(z, r) \, d\mu \, d\kappa = 0,
\]
(A.15)

where $\rho_{-1}(z, r, K_0) = (\rho_2(z, K_0), \rho_3(r, K_0))_{2 \times 1}$. Therefore, stacking (A.14) and (A.15), we have that

\[
D\dot{\beta} + 2 \int_{\mathbb{R}^d \times \{0, 1\}} \rho(z, r, \beta^*) \phi_0(z, r) \dot{\phi}(z, r) \, d\mu \, d\kappa = 0,
\]
(A.16)

where $D\dot{\beta}$ is given by (A.3) and $\dot{\beta} = (\dot{\theta}, \dot{K})_{(p+1) \times 1}$.

Now let W be a $(q + 2) \times (q + 2)$ symmetric positive-definite non-stochastic matrix. Premultiplying (A.16) by $(D_\rho^T W D_\rho)^{-1} D_\rho^T W$ and solving for $\dot{\beta}$, we obtain that

\[
\dot{\beta} = -2(D_\rho^T W D_\rho)^{-1} D_\rho^T W \int_{\mathbb{R}^d \times \{0, 1\}} \rho(z, r, \beta^*) \phi_0(z, r) \dot{\phi}(z, r) \, d\mu \, d\kappa.
\]
(A.17)
Finally, substituting (A.17) in (A.16), we get that

\[
(I_{(q+2) \times (q+2)} - D_\rho(D'_\rho WD_\rho)^{-1}D'_W) \int_{\mathbb{R}^d \times \{0,1\}} \rho(z, r, \beta^*) \phi_0(z, r) \phi(z, r) \, d\mu \, d\kappa = 0. \tag{A.18}
\]

Since \(x \mapsto D_\rho(D'_\rho WD_\rho)^{-1}D'_W x \) is an orthogonal projection onto the column space of \(D_\rho \) using the weighted inner product \(\langle x_1, x_2 \rangle = x'_1 W x_2 \), it follows that (A.18) is satisfied by only those tangent vectors \(\dot{\phi} \) for which \(\int_{\mathbb{R}^d \times \{0,1\}} \rho(z, r, \beta^*) \phi_0(z, r) \phi(z, r) \, d\mu \, d\kappa \) lies in the column space of \(D_\rho \).

Let \(\mathcal{I}_W \) denote the set of tangent vectors that satisfy (A.18). The efficiency bound for estimating \(\eta(\phi_0) \) is given by \(\inf_{W \in \mathcal{W}} \| \nabla \eta \|_W^2 \), where \(\mathcal{W} \) is the set of \((q+2) \times (q+2) \) symmetric positive-definite matrices, \(\| \nabla \eta \|_W = \sup_{\dot{\phi} \in \mathcal{I}_W, \phi \neq 0} | \nabla \eta(\dot{\phi}) | \), and \(\nabla \eta \) denotes the pathwise derivative of \(\eta \). To calculate the bound, we first employ a guess-and-verify strategy to find, for any \(W \in \mathcal{W} \), a \(\dot{\phi}_W^* \in \mathcal{I} \) satisfying

\[
\nabla \eta(\dot{\phi}) = \langle \dot{\phi}, \dot{\phi}_W^* \rangle_T \quad \text{for all } \dot{\phi} \in \mathcal{I}_W. \tag{A.19}
\]

Next, we pick a \(W^* \in \mathcal{W} \) so that \(\int_{\mathbb{R}^d \times \{0,1\}} \rho(z, r, \beta^*) \phi_0(z, r) \dot{\phi}_W^*(z, r) \, d\mu \, d\kappa \) lies in the column space of \(D_\rho \). This means that \(\dot{\phi}_W^* \in \mathcal{I}_{W^*} \) and we can use this fact to show that \(\| \nabla \eta \|_{W^*} = \| \dot{\phi}_W^* \|_{\mathcal{I}_{W^*}} \). Since \(W^* \) is determined uniquely up to scale, see, e.g., the proof of Theorem [A.1], the efficiency bound for estimating \(\eta(\phi_0) \) is therefore given by \(\| \dot{\phi}_W^* \|_{\mathcal{I}_{W^*}} \).

We use this procedure to obtain the efficiency bound for estimating \(\theta^* \) in Theorem [A.1]. Comparing it with the asymptotic variance in Theorem [A.2] reveals that \(\hat{\theta} \) is asymptotically efficient.

Theorem A.1. The efficiency bound for estimating \(\theta^* \) is given by \((D'\Omega^{-1}D)^{-1} \).

Proof of Theorem A.1. Let \(\xi \in \mathbb{R}^p \) be arbitrary. To obtain the efficiency bound for estimating \(\eta(\phi_0) = \xi' \theta^* \), the tangent vectors \(\dot{\phi} \) and \(\hat{\theta} \) must satisfy \(\nabla \eta(\dot{\phi}) = \xi' \beta \), where \(\zeta = (\xi, 0)_{(p+1) \times 1} \). Hence, by (A.17), for any \(W \in \mathcal{W} \) we have that

\[
\nabla \eta(\dot{\phi}) = -2\xi'(D'_\rho WD_\rho)^{-1}D'_W \int_{\mathbb{R}^d \times \{0,1\}} \rho(z, r, \beta^*) \phi_0(z, r) \phi(z, r) \, d\mu \, d\kappa. \nonumber
\]

By (A.19), we have to find a \(\phi_W^* \in \mathcal{I} \) such that

\[
\int_{\mathbb{R}^d \times \{0,1\}} \{ \phi_W^*(z, r) + 0.5\zeta'(D'_\rho WD_\rho)^{-1}D'_W \rho(z, r, \beta^*) \phi_0(z, r) \} \phi(z, r) \, d\mu \, d\kappa = 0 \tag{A.20}
\]

for all \(\dot{\phi} \in \mathcal{I}_W \). We claim that

\[
\phi_W^*(z, r) = -0.5\zeta'(D'_\rho WD_\rho)^{-1}D'_W \rho(z, r, \beta^*) \phi_0(z, r). \nonumber
\]

It is easily verified that \(\phi_W^* \in \mathcal{I} \) and satisfies (A.20) for all \(\dot{\phi} \in \mathcal{I}_W \). Hence, we only have to determine \(W^* \) such that \(\int_{\mathbb{R}^d \times \{0,1\}} \rho(z, r, \beta^*) \phi_0(z, r) \phi_W^*(z, r) \, d\mu \, d\kappa \) lies in the column space of \(D_\rho \). But since

\[
\int_{\mathbb{R}^d \times \{0,1\}} \rho(z, r, \beta^*) \phi_0(z, r) \phi_W^*(z, r) \, d\mu \, d\kappa = -0.5V_\rho WD_\rho(D'_\rho WD_\rho)^{-1} \zeta, \nonumber
\]

\(\text{By (A.19), } \nabla \eta(\dot{\phi}) = \langle \dot{\phi}, \dot{\phi}_W^* \rangle_T \text{ for all } \dot{\phi} \in \mathcal{I}_{W^*}. \text{ Hence, } \| \nabla \eta \|_{W^*} \leq \| \dot{\phi}_W^* \|_T \text{ by Cauchy-Schwarz. But since } \phi_W^* \in \mathcal{I}_{W^*}, \text{ we also have } \| \phi_W^* \|_T = \nabla \eta(\dot{\phi}_W^*) \leq \| \nabla \eta \|_{W^*} \| \phi_W^* \|_T; \text{ i.e., } \| \nabla \eta \|_{W^*} \geq \| \phi_W^* \|_T. \)
it follows that \(\int_{\mathbb{R}_+} \rho(z, r, \beta^*) \phi_0(z, r) \phi_{W^*}(z, r) \, d\mu \, dr \, d\kappa \) lies in the column space of \(D_\rho \) if and only if \(V_\rho W^* \propto I_{q \times q} \). Hence,

\[
\phi_{W^*}(z, r) = -0.5 \zeta'(D'_\rho V^{-1}_\rho D_\rho)^{-1}D'_\rho V^{-1}_\rho \rho(z, r, \beta^*) \phi_0(z, r)
\]

and the efficiency bound for estimating \(\xi' \theta^* \) is given by

\[
4 \int_{\mathbb{R}_+} \{ \phi_{W^*}(z, r) \}^2 \, d\mu \, dr \, d\kappa = \zeta'(D'_\rho V^{-1}_\rho D_\rho)^{-1} \zeta \overset{\Delta}{=} \xi' \xi \Omega^{-1} \Omega^{-1} \xi.
\]

The desired result follows since \(\xi \) was arbitrary.

\[\square \]

APPENDIX B. PROOFS OF THE RESULTS IN SECTION 5

The proofs below are very similar to those in Appendix A.

Proof of Theorem 5.1 As in the proof of Theorem 4.1, \(n^{1/2} (\tilde{\beta} - \beta^*) \) is asymptotically normal with mean zero and variance \((D'_\rho V^{-1}_\rho D_\rho)^{-1} \), where

\[
D'_\rho V^{-1}_\rho D_\rho = \begin{bmatrix} D (1 - K_0) \Sigma_{12}/b^* \Sigma_{12}/K_0 b^* \\ 0_{p \times 1} \end{bmatrix}.
\]

Hence, letting \(\gamma = (K_0^2 / V_2) + (\alpha^* K_0 / V_2 b^*)^2 \Sigma_{12}' \Omega^{-1} \Sigma_{12} \),

\[
D'_\rho V^{-1}_\rho D_\rho = \begin{bmatrix} D' \Omega^{-1} D & (\alpha^* K_0 / V_2 b^*) \Sigma_{12}' \Omega^{-1} \Sigma_{12} \\ 0_{p \times 1} \end{bmatrix}.
\]

Now, since \(V = \Omega + (\alpha^*/b^*)^2 \Sigma_{12}' \Sigma_{12} / V_2 \), by the Sherman-Morrison formula

\[
\Omega^{-1} = [V - \Sigma_{12}' \Sigma_{12} / V_2 (b^*/\alpha^*)^2]^{-1} = V^{-1} + V^{-1} \Sigma_{12}' \Sigma_{12} V^{-1} / V_2 (b^*/\alpha^*)^2 - \Sigma_{12}' \Sigma_{12} V^{-1} \Sigma_{12}
\]

Therefore, applying the partitioned inverse formula, it can be verified that \((D'_\rho V^{-1}_\rho D_\rho)^{-1} \) equals

\[
\begin{bmatrix}
(D' \Omega^{-1} D)^{-1} & -\alpha^*/K_0 b^*) (D' \Omega^{-1} D)^{-1} D' \Omega^{-1} \Sigma_{12} \\
0_{p \times 1} & V_2 / K_0 - (\alpha^*/K_0 b^*)^2 \Sigma_{12}' M V \Sigma_{12}
\end{bmatrix}.
\]

The desired result follows.

\[\square \]

Proof of Theorem 5.2 As in the proof of Theorem 4.3, we show that \(V_*/K_0 > V \). Now, using Lemma B.2 a little algebra shows that \(V = V_1 + (1 - K_0)(\alpha^*/K_0 b^3) \Sigma_{12}' \Sigma_{12} \). But since

\[
V_1 = \mathbb{E}_{f_\gamma} \{ g(Z, \theta^*) g'(Z, \theta^*) \mathbb{1}(Z \in T) + \mathbb{1}(Z \notin T) / \alpha^2(Z, b^*, K_0) \}
\]

\[
= V_*/K_0 - (1 - K_0) \mathbb{E}_{f_\gamma} \{ g(Z^*, \theta^*) g'(Z^*, \theta^*) \mathbb{1}(Z^* \in T) \}/K_0 \alpha^*,
\]

we have

\[
\mathbb{E}_{f_\gamma} \{ g(Z, \theta^*) g'(Z, \theta^*) \mathbb{1}(Z \in T) + \mathbb{1}(Z \notin T) / \alpha^2(Z, b^*, K_0) \}
\]

\[
= V_*/K_0 - (1 - K_0) \mathbb{E}_{f_\gamma} \{ g(Z^*, \theta^*) g'(Z^*, \theta^*) \mathbb{1}(Z^* \in T) \}/K_0 \alpha^*,
\]

which completes the proof.
we obtain that $V = V_*/K_0 - (1 - K_0)\Delta/K_0$, where
\[
\Delta = \mathbb{E}_f \{g(Z^*, \theta^*)g'(Z^*, \theta^*)1(Z^* \in T)\}/\alpha^* - (\alpha^*/b^*)\Sigma_{12}\Sigma_{12}.''
\]

Next, a little simplification reveals that $\Sigma_{12} = (b^*/\alpha^*)\mathbb{E}_f \{g(Z, \theta^*)1(Z \in T)\}$. Hence,
\[
\alpha^*b^*\Delta = b^*\mathbb{E}_f \{g(Z^*, \theta^*)g'(Z^*, \theta^*)1(Z^* \in T)\} - \mathbb{E}_f \{g(Z^*, \theta^*)1(Z^* \in T)\} \mathbb{E}_f \{g'(Z^*, \theta^*)1(Z^* \in T)\}
\]
\[
= b^*\text{var}_f \{g(Z^*, \theta^*)|Z^* \in T\}.
\]

Therefore, $\Delta = (b^*/\alpha^*)\text{var}_f \{g(Z^*, \theta^*)|Z^* \in T\}$ and we have
\[
V = V_*/K_0 - [(1 - K_0)b^*/K_0\alpha^*]\text{var}_f \{g(Z^*, \theta^*)|Z^* \in T\}.
\] (B.3)

Hence, assuming $\text{var}_f \{g(Z^*, \theta^*)|Z^* \in T\}$ is positive definite, the desired result follows.

Remark B.1. From (B.3) we know that $V = [V_* - ((1 - K_0)b^*/\alpha^*)\text{var}_f \{g(Z^*, \theta^*)|Z^* \in T\}])/K_0$. But $K_0 \mapsto 1/K_0$ is a decreasing function of K_0 and, upon recalling the definition of α^*, it is easily seen that $K_0 \mapsto -(1 - K_0)b^*/\alpha^*$ is increasing in K_0. Since V_* and $\text{var}_f \{g(Z^*, \theta^*)|Z^* \in T\}$ do not depend upon K_0, it follows that V is the product of a decreasing function of K_0 with an increasing function of K_0. Hence, V may not be monotonically decreasing in K_0. However, since $K_0 \mapsto (1 - K_0)b^*/K_0\alpha^*$ is a decreasing function of K_0, the gap $V_* / K_0 - V$ is monotonically decreasing in K_0.

Lemma B.1. (i) $\mathbb{E}_{\mathcal{L}} \{\partial \rho_1(Z, \beta^*)/\partial b\} = (1 - K_0)\Sigma_{12}/b^* \Sigma_{12}$ and (ii) $\mathbb{E}_{\mathcal{L}} \{\partial \rho_1(Z, \beta^*)/\partial \theta\} = \Sigma_{12}/K_0 b^*$.

Proof of Lemma B.1. First, note that
\[
\mathbb{E}_{\mathcal{L}} \{\partial \rho_1(Z, \beta^*)/\partial b\} = [(1 - K_0)/b^*] \mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)1(Z \in T)/a^2(Z, b^*, K_0)\}.
\]

But $\mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)1(Z \in T)/a^2(Z, b^*, K_0)\}$ can be decomposed as
\[
\mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)1(Z \in T)\}/a^2(Z, b^*, K_0) + b^* \mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)/a^2(Z, b^*, K_0)\}.
\]

Furthermore, it is easily seen that
\[
\Sigma_{12} = K_0 \mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)1(Z \in T) - b^*/a^2(Z, b^*, K_0)\}
\]
\[
\Sigma_{13} = K_0 \mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)/a^2(Z, b^*, K_0)\}.
\]

Therefore, (i) follows by Lemma B.2. The proof of (ii) is very similar and is, hence, omitted.

Lemma B.2. $(1 - K_0)\Sigma_{12} + b^*\Sigma_{13} = 0$.

Proof of Lemma B.2. Since $(1 - K_0)\rho_2(Z, R, b^*)/b^* = \{a(Z, b^*, K_0) - 1\} R$ and $\mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)R\} = 0$,
\[
(1 - K_0)\Sigma_{12}/b^* = \mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)R\} - \mathbb{E}_{\mathcal{L}} \{g(Z, \theta^*)R/a(Z, b^*, K_0)\} = -\Sigma_{13}.
\]

The desired result follows.

Theorem B.1. The efficiency bounds for estimating θ^* and b^* are given by $(D'V^{-1}D)^{-1}$ and $V_2/K_0^2 - (\alpha^*/K_0 b^*)^2 \Sigma_{12} M V \Sigma_{12}$, respectively.
Proof of Theorem [B.1] Following the procedure described earlier in Section [A.1], we can show that analogous versions of (A.17) and (A.18) hold with $\dot{\beta} = (\dot{\theta}, \dot{b}, \dot{K})_{(p+2) \times 1}$ and D_ρ given by (B.1). Now let $\xi_1 \in \mathbb{R}^p$ and $\xi_2 \in \mathbb{R}$ be arbitrary. Define $\zeta = (\xi_1, \xi_2, 0)_{(p+2) \times 1}$. Then, as in Theorem [A.1] we can show that the efficiency bound for estimating $\eta(\phi_0) = \xi_1^T \theta^* + \xi_2 b^* = \zeta^* / \beta^*$ is given by $\zeta^* (D_\rho', V_\rho^{-1} D_\rho)^{-1} \zeta$. The desired result follows by (B.2) and the fact that ξ_1 and ξ_2 are arbitrary. \Box
Appendix C. Tables and Figures

Table 1. Descriptive statistics for women by year

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth Cohort</td>
<td></td>
<td></td>
<td>1925</td>
<td>1944</td>
</tr>
<tr>
<td>1960 (220730 observations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>25.38</td>
<td>5.98</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Age at First Marriage</td>
<td>19.68</td>
<td>3.59</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>Never Married</td>
<td>0.29</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>0.88</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≤ 8 Years of Schooling Required</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9 Years of Schooling Required</td>
<td>0.66</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10 Years of Schooling Required</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥ 11 Years of Schooling Required</td>
<td>0.07</td>
<td>0.26</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**1970 (216036 observations)				
Age	35.31	5.94	26	45
Age at First Marriage	21.23	5.19	14	45
Never Married	0.07	0.25	0	1
White	0.88	0.32	0	1
≤ 8 Years of Schooling Required	0.19	0.39	0	1
9 Years of Schooling Required	0.66	0.47	0	1
10 Years of Schooling Required	0.08	0.27	0	1
≥ 11 Years of Schooling Required	0.07	0.26	0	1

**1980 (223903 observations)				
Age	45.28	5.95	36	55
Age at First Marriage	22.07	7.01	12	55
Never Married	0.05	0.22	0	1
White	0.88	0.33	0	1
≤ 8 Years of Schooling Required	0.19	0.39	0	1
9 Years of Schooling Required	0.66	0.47	0	1
10 Years of Schooling Required	0.08	0.27	0	1
≥ 11 Years of Schooling Required	0.07	0.26	0	1
Table 2. Descriptive statistics for men by year

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 (213184 observations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth Cohort</td>
<td>1934.69</td>
<td>6.00</td>
<td>1925</td>
<td>1944</td>
</tr>
<tr>
<td>Age</td>
<td>25.31</td>
<td>6.00</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Age at First Marriage</td>
<td>21.36</td>
<td>3.95</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>Never Married</td>
<td>0.42</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>0.89</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≤ 8 Years of Schooling Required</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9 Years of Schooling Required</td>
<td>0.66</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10 Years of Schooling Required</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥ 11 Years of Schooling Required</td>
<td>0.07</td>
<td>0.26</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1970 (207129 observations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth Cohort</td>
<td>1934.71</td>
<td>5.94</td>
<td>1925</td>
<td>1944</td>
</tr>
<tr>
<td>Age</td>
<td>35.29</td>
<td>5.94</td>
<td>26</td>
<td>45</td>
</tr>
<tr>
<td>Age at First Marriage</td>
<td>23.82</td>
<td>5.26</td>
<td>14</td>
<td>45</td>
</tr>
<tr>
<td>Never Married</td>
<td>0.10</td>
<td>0.30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>0.90</td>
<td>0.30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≤ 8 Years of Schooling Required</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9 Years of Schooling Required</td>
<td>0.66</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10 Years of Schooling Required</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥ 11 Years of Schooling Required</td>
<td>0.07</td>
<td>0.26</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1980 (212244 observations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth Cohort</td>
<td>1934.80</td>
<td>5.93</td>
<td>1925</td>
<td>1944</td>
</tr>
<tr>
<td>Age</td>
<td>45.20</td>
<td>5.93</td>
<td>36</td>
<td>55</td>
</tr>
<tr>
<td>Age at First Marriage</td>
<td>24.95</td>
<td>7.26</td>
<td>12</td>
<td>55</td>
</tr>
<tr>
<td>Never Married</td>
<td>0.07</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>0.89</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≤ 8 Years of Schooling Required</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9 Years of Schooling Required</td>
<td>0.66</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10 Years of Schooling Required</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥ 11 Years of Schooling Required</td>
<td>0.07</td>
<td>0.26</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3. Proportion censored by cohort and year

<table>
<thead>
<tr>
<th>age in years</th>
<th>% of women censored</th>
<th>% of men censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>94 13 7</td>
<td>99 20 9</td>
</tr>
<tr>
<td>17</td>
<td>88 11 6</td>
<td>98 17 8</td>
</tr>
<tr>
<td>18</td>
<td>75 10 6</td>
<td>95 15 8</td>
</tr>
<tr>
<td>19</td>
<td>59 9 6</td>
<td>87 13 8</td>
</tr>
<tr>
<td>20</td>
<td>46 8 6</td>
<td>75 12 7</td>
</tr>
<tr>
<td>21</td>
<td>34 7 5</td>
<td>62 10 7</td>
</tr>
<tr>
<td>22</td>
<td>25 7 5</td>
<td>50 10 6</td>
</tr>
<tr>
<td>23</td>
<td>19 7 5</td>
<td>40 9 6</td>
</tr>
<tr>
<td>24</td>
<td>15 6 5</td>
<td>32 8 7</td>
</tr>
<tr>
<td>25</td>
<td>13 6 5</td>
<td>27 9 6</td>
</tr>
<tr>
<td>26</td>
<td>11 5 5</td>
<td>22 8 6</td>
</tr>
<tr>
<td>27</td>
<td>9 6 4</td>
<td>19 7 6</td>
</tr>
<tr>
<td>28</td>
<td>9 5 5</td>
<td>16 7 5</td>
</tr>
<tr>
<td>29</td>
<td>9 5 5</td>
<td>15 7 6</td>
</tr>
<tr>
<td>30</td>
<td>8 5 4</td>
<td>13 7 6</td>
</tr>
<tr>
<td>31</td>
<td>7 5 4</td>
<td>12 7 6</td>
</tr>
<tr>
<td>32</td>
<td>6 5 4</td>
<td>11 7 6</td>
</tr>
<tr>
<td>33</td>
<td>6 5 5</td>
<td>11 7 6</td>
</tr>
<tr>
<td>34</td>
<td>6 5 4</td>
<td>10 7 6</td>
</tr>
<tr>
<td>35</td>
<td>6 5 5</td>
<td>9 6 6</td>
</tr>
<tr>
<td>36</td>
<td>6 5 4</td>
<td>8 6 6</td>
</tr>
<tr>
<td>37</td>
<td>6 6 5</td>
<td>8 6 6</td>
</tr>
<tr>
<td>38</td>
<td>5 5 5</td>
<td>8 6 6</td>
</tr>
<tr>
<td>39</td>
<td>6 5 5</td>
<td>8 6 6</td>
</tr>
<tr>
<td>40</td>
<td>6 6 5</td>
<td>7 6 6</td>
</tr>
</tbody>
</table>
Table 4. Effects of compulsory schooling laws and race on log(age at first marriage). Also included in the specification, but not reported in this table, are a constant, year-of-birth indicators, and state dummies.

<table>
<thead>
<tr>
<th></th>
<th>OLS60</th>
<th>OLS70</th>
<th>OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
<th>TOBIT60</th>
<th>TOBIT70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Years Schooling Req'd.</td>
<td>.0157*</td>
<td>.0080*</td>
<td>.0096*</td>
<td>.0102*</td>
<td>.0094*</td>
<td>.0029</td>
<td>.0077*</td>
</tr>
<tr>
<td></td>
<td>(.0016)</td>
<td>(.0022)</td>
<td>(.0025)</td>
<td>(.0024)</td>
<td>(.0022)</td>
<td>(.0018)</td>
<td>(.0021)</td>
</tr>
<tr>
<td>10 Years Schooling Req'd.</td>
<td>.0232*</td>
<td>.0112*</td>
<td>.0146*</td>
<td>.0150*</td>
<td>.0129*</td>
<td>.0075*</td>
<td>.0103*</td>
</tr>
<tr>
<td></td>
<td>(.0021)</td>
<td>(.0030)</td>
<td>(.0035)</td>
<td>(.0034)</td>
<td>(.0031)</td>
<td>(.0026)</td>
<td>(.0031)</td>
</tr>
<tr>
<td>11+ Years Schooling Req'd.</td>
<td>.0456*</td>
<td>.0317*</td>
<td>.0184*</td>
<td>.0188*</td>
<td>.0223*</td>
<td>.0157*</td>
<td>.0299*</td>
</tr>
<tr>
<td></td>
<td>(.0038)</td>
<td>(.0052)</td>
<td>(.0061)</td>
<td>(.0060)</td>
<td>(.0053)</td>
<td>(.0049)</td>
<td>(.0057)</td>
</tr>
<tr>
<td>White</td>
<td>−.0261*</td>
<td>−.0476*</td>
<td>−.0827*</td>
<td>−.0927*</td>
<td>−.0808*</td>
<td>−.0393*</td>
<td>−.0534*</td>
</tr>
<tr>
<td></td>
<td>(.0012)</td>
<td>(.0018)</td>
<td>(.0021)</td>
<td>(.0020)</td>
<td>(.0019)</td>
<td>(.0014)</td>
<td>(.0016)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Years Schooling Req'd.</td>
<td>.0114*</td>
<td>.0073*</td>
<td>.0031</td>
<td>.0046</td>
<td>.0061*</td>
<td>−.0028</td>
<td>.0062*</td>
</tr>
<tr>
<td></td>
<td>(.0015)</td>
<td>(.0022)</td>
<td>(.0026)</td>
<td>(.0024)</td>
<td>(.0021)</td>
<td>(.0019)</td>
<td>(.0022)</td>
</tr>
<tr>
<td>10 Years Schooling Req'd.</td>
<td>.0205*</td>
<td>.0120*</td>
<td>.0130*</td>
<td>.0131*</td>
<td>.0137*</td>
<td>.0052</td>
<td>.0109*</td>
</tr>
<tr>
<td></td>
<td>(.0019)</td>
<td>(.0029)</td>
<td>(.0033)</td>
<td>(.0033)</td>
<td>(.0031)</td>
<td>(.0029)</td>
<td>(.0031)</td>
</tr>
<tr>
<td>11+ Years Schooling Req'd.</td>
<td>.0359*</td>
<td>.0152*</td>
<td>.0049</td>
<td>.0028</td>
<td>.0070</td>
<td>.0055</td>
<td>.0121*</td>
</tr>
<tr>
<td></td>
<td>(.0035)</td>
<td>(.0053)</td>
<td>(.0063)</td>
<td>(.0060)</td>
<td>(.0056)</td>
<td>(.0053)</td>
<td>(.0057)</td>
</tr>
<tr>
<td>White</td>
<td>−.0156*</td>
<td>−.0444*</td>
<td>−.0792*</td>
<td>−.0826*</td>
<td>−.0792*</td>
<td>−.0301*</td>
<td>−.0515*</td>
</tr>
<tr>
<td></td>
<td>(.0011)</td>
<td>(.0018)</td>
<td>(.0021)</td>
<td>(.0020)</td>
<td>(.0019)</td>
<td>(.0016)</td>
<td>(.0017)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. An asterisk denotes that effect is significant at the 5% level.

Table 5. \hat{K} for the female and male subsamples.

<table>
<thead>
<tr>
<th></th>
<th>GMM60</th>
<th>GMM70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4491</td>
<td>0.4964</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4646</td>
<td>0.4903</td>
</tr>
</tbody>
</table>
Table 6. Robustness check: Effects of compulsory schooling laws and race on log(age at first marriage) when age at first marriage for unmarried individuals in the refreshment sample is imputed to be 55 or 65 years.

<table>
<thead>
<tr>
<th></th>
<th>OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
<th>OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Years Schooling Reqd.</td>
<td>0.0102*</td>
<td>0.0109*</td>
<td>0.0100*</td>
<td>0.0108*</td>
<td>0.0116*</td>
<td>0.0106*</td>
</tr>
<tr>
<td></td>
<td>(0.0027)</td>
<td>(0.0027)</td>
<td>(0.0024)</td>
<td>(0.0030)</td>
<td>(0.0029)</td>
<td>(0.0027)</td>
</tr>
<tr>
<td>10 Years Schooling Reqd.</td>
<td>0.0134*</td>
<td>0.0139*</td>
<td>0.0116*</td>
<td>0.0140*</td>
<td>0.0147*</td>
<td>0.0123*</td>
</tr>
<tr>
<td></td>
<td>(0.0039)</td>
<td>(0.0039)</td>
<td>(0.0035)</td>
<td>(0.0042)</td>
<td>(0.0043)</td>
<td>(0.0040)</td>
</tr>
<tr>
<td>11+ Years Schooling Reqd.</td>
<td>0.0140*</td>
<td>0.0141*</td>
<td>0.0176*</td>
<td>0.0144*</td>
<td>0.0145*</td>
<td>0.0179*</td>
</tr>
<tr>
<td></td>
<td>(0.0067)</td>
<td>(0.0067)</td>
<td>(0.0060)</td>
<td>(0.0072)</td>
<td>(0.0073)</td>
<td>(0.0066)</td>
</tr>
<tr>
<td>White</td>
<td>-0.0978*</td>
<td>-0.1095*</td>
<td>-0.0965*</td>
<td>-1.077*</td>
<td>-1.205*</td>
<td>-1.068*</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0024)</td>
<td>(0.0022)</td>
<td>(0.0027)</td>
<td>(0.0029)</td>
<td>(0.0025)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
<th>OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Years Schooling Reqd.</td>
<td>0.0018</td>
<td>0.0032</td>
<td>0.0048</td>
<td>0.0019</td>
<td>0.0035</td>
<td>0.0050</td>
</tr>
<tr>
<td></td>
<td>(0.0026)</td>
<td>(0.0027)</td>
<td>(0.0025)</td>
<td>(0.0030)</td>
<td>(0.0030)</td>
<td>(0.0028)</td>
</tr>
<tr>
<td>10 Years Schooling Reqd.</td>
<td>0.0110*</td>
<td>0.0109*</td>
<td>0.0114*</td>
<td>0.0116*</td>
<td>0.0117*</td>
<td>0.0119*</td>
</tr>
<tr>
<td></td>
<td>(0.0039)</td>
<td>(0.0038)</td>
<td>(0.0036)</td>
<td>(0.0043)</td>
<td>(0.0043)</td>
<td>(0.0041)</td>
</tr>
<tr>
<td>11+ Years Schooling Reqd.</td>
<td>-0.0017</td>
<td>-0.0044</td>
<td>0.0001</td>
<td>-0.0025</td>
<td>-0.0055</td>
<td>-0.0009</td>
</tr>
<tr>
<td></td>
<td>(0.0070)</td>
<td>(0.0068)</td>
<td>(0.0064)</td>
<td>(0.0077)</td>
<td>(0.0076)</td>
<td>(0.0072)</td>
</tr>
<tr>
<td>White</td>
<td>-0.0935*</td>
<td>-0.0977*</td>
<td>-0.0944*</td>
<td>-1.036*</td>
<td>-1.083*</td>
<td>-1.051*</td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.0024)</td>
<td>(0.0023)</td>
<td>(0.0028)</td>
<td>(0.0027)</td>
<td>(0.0026)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. An asterisk denotes that effect is significant at the 5% level.
Table 7. Robustness check: Effects of compulsory schooling laws and race on log(age at first marriage) using 10% or 20% subsamples of the refreshment sample.

<table>
<thead>
<tr>
<th></th>
<th>Women OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
<th>Men OLS80</th>
<th>GMM60</th>
<th>GMM70</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10%</td>
<td></td>
<td></td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Years Schooling Reqd.</td>
<td>.0111 (.0082)</td>
<td>.0164* (.0069)</td>
<td>.0125* (.0058)</td>
<td>.0130* (.0058)</td>
<td>.0132* (.0050)</td>
<td>.0101* (.0043)</td>
</tr>
<tr>
<td>10 Years Schooling Reqd.</td>
<td>.0060 (.0110)</td>
<td>.0118 (.0097)</td>
<td>.0107 (.0082)</td>
<td>.0118 (.0078)</td>
<td>.0139* (.0070)</td>
<td>.0100 (.0061)</td>
</tr>
<tr>
<td>11+ Years Schooling Reqd.</td>
<td>−.0037 (.0193)</td>
<td>.0026 (.0171)</td>
<td>−.0111 (.0139)</td>
<td>.0084 (.0139)</td>
<td>.0071 (.0127)</td>
<td>.0112 (.0108)</td>
</tr>
<tr>
<td>White</td>
<td>−.0983* (.0067)</td>
<td>−.1046* (.0057)</td>
<td>−.0843* (.0048)</td>
<td>−.0913* (.0047)</td>
<td>−.0998* (.0044)</td>
<td>−.0829* (.0036)</td>
</tr>
<tr>
<td></td>
<td>OLS80</td>
<td>GMM60</td>
<td>GMM70</td>
<td>OLS80</td>
<td>GMM60</td>
<td>GMM70</td>
</tr>
<tr>
<td>9 Years Schooling Reqd.</td>
<td>.0123 (.0080)</td>
<td>.0138* (.0067)</td>
<td>.0120* (.0058)</td>
<td>.0081 (.0057)</td>
<td>.0114* (.0048)</td>
<td>.0122* (.0043)</td>
</tr>
<tr>
<td>10 Years Schooling Reqd.</td>
<td>.0133 (.0109)</td>
<td>.0121 (.0095)</td>
<td>.0111 (.0080)</td>
<td>.0167* (.0077)</td>
<td>.0178* (.0068)</td>
<td>.0176* (.0060)</td>
</tr>
<tr>
<td>11+ Years Schooling Reqd.</td>
<td>.0052 (.0199)</td>
<td>−.0059 (.0170)</td>
<td>−.0043 (.0145)</td>
<td>.0007 (.0143)</td>
<td>−.0019 (.0125)</td>
<td>.0010 (.0110)</td>
</tr>
<tr>
<td>White</td>
<td>−.0696* (.0067)</td>
<td>−.0675* (.0056)</td>
<td>−.0648* (.0050)</td>
<td>−.0697* (.0047)</td>
<td>−.0737* (.0044)</td>
<td>−.0687* (.0037)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. An asterisk denotes that effect is significant at the 5% level.
Figure 1. QQ plots of age at first marriage for individuals aged at least 26 that are uncensored; i.e., those who married before age 26.
Cohort effects for women.

Figure 2.
Figure 3. Cohort effects for men.
References

DEPARTMENT OF ECONOMICS, UNIVERSITY COLLEGE DUBLIN, DUBLIN, IRELAND.

E-mail address: devereux@ucd.ie
URL: www.ucd.ie/economic/staff.htm

DEPARTMENT OF ECONOMICS, UNIVERSITY OF CONNECTICUT, STORRS, CT-06269, USA.

E-mail address: gautam.tripathi@uconn.edu
URL: web.uconn.edu/tripathi