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Abstract
Variations of the Gale-Shapley algorithm have been used andstudied exten-

sively in real world markets. Examples include matching medical residents with
residency programs, the kidney exchange program and matching college students
with on-campus housing. The performance of the Gale-Shapley marriage match-
ing algorithm (1962) has been studied extensively in the special case of men’s and
women’s preferences random. We drop the assumption that women’s preferences
are random and show thatE

n
/n lnn → 1, whereE

n
is the expected number of

proposals made when the men-propose Gale-Shapley algorithm is used to match
n men withn women. This establishes in spirit a conjecture of Donald Knuth
(1976, 1997) of thirty years standing. Under the same assumptions, we also es-
tablish bounds on the expected ranking by a woman of her assigned mate. Bounds
on men’s rankings of their assigned mates follow directly from the conjecture.

Journal of Economic Literature Classification: C78, D63, D70
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1. Introduction.

One basic line of research in the field of two-sided matching problems is concerned

with the performance of the Gale-Shapley algorithm (1962). In particular, when the Gale-

Shapley algorithm is used to match n men with n women, how many proposals will be

made and what will an individual’s ranking of his or her assigned mate be? This pa-

per addresses these questions in the context of men’s preferences random and women’s

preferences arbitrary. That case is important as a transitional case halfway between the

well-studied case in which all preferences are random and the more general setting of men’s

and women’s preferences arbitrary.

Before we address these questions about proposals and rankings in the transitional

case, we need to describe the marriage matching problem and the Gale-Shapley algorithm.

Given n men, n women and for each individual a preference ranking of the n members of

the opposite sex, the problem is to find a stable matching into n couples, each consisting

of a man and a woman. A matching is stable if there do not exist a man and a woman

such that each prefers the other to his assigned mate. We will call the n ranking order

lists of each group (men or women) a preference profile.

As shown by Gale and Shapley (1962), the Gale-Shapley algorithm always produces

a stable matching. We will actually work with the McVitie-Wilson version (1971) of the

Gale-Shapley algorithm which produces a stable matching in n rounds. In round 1 the

first man proposes to his most preferred woman. She tentatively accepts and round 1 ends.

In round i > 1, the ith man proposes to his most preferred woman. If she has not been

proposed to before, she tentatively accepts and round i ends. Otherwise she tentatively

accepts man i if she prefers him to her current match, or rejects him otherwise. Then

the unmatched man, either man i or the man he displaced, proposes to his most preferred

woman among those who have not yet rejected him. Round i continues in this manner

until some woman receives her first proposal. The n tentative matches that exist after

round n make up the final matching. The McVitie-Wilson algorithm makes exactly the

same proposals as the Gale-Shapley algorithm, and yields the same stable matching. It is

easier to work with for our purposes since the proposals are made sequentially rather than
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in large batches.

In all that follows we will be discussing the number of proposals made and men’s and

women’s rankings of their mates when the men-propose Gale-Shapley algorithm is used to

match n men with n women. Wilson (1972) proved the following:

Proposition 1. (Wilson, 1972) For any profile of women’s preferences, if men’s prefer-

ences are generated randomly, then the expected number of proposals is bounded above

by n(1 + 1
2 + . . . + 1

n ).

The main result of this paper, Proposition 3 stated below, concerns a lower bound for

the expected number of proposals when men’s preferences are random and women’s pref-

erences arbitrary, but first we review some results proven under the stronger hypotheses of

random preferences for both men and women. Knuth (1997) describes the following result,

which establishes a lower bound for the expected number of proposals when preferences

are random, as the most important result in his book on marriage matching.

Proposition 2. (Knuth, 1997) If both men’s and women’s preferences are random, then

the expected number of proposals is bounded below by n(1 + 1
2 + . . . + 1

n ) − K ln4 n for

some constant K.

Under the hypotheses of Proposition 2, Pittel (1989) strengthened the conclusion of Propo-

sition 2, showing that as n increases the number of proposals divided by n ln n rapidly

approaches, in probability, 1.

But what can be said about the performance of the Gale-Shapley algorithm when

the assumption that preferences are random is dropped? In particular what can be said,

beyond the conclusion of Proposition 1, in the transitional case presented in the hypotheses

of Proposition 1–men’s preferences random, women’s arbitrary? This case is of interest

because it is a step towards the more realistic scenario in which men’s preferences as

well as women’s would be expected to exhibit some degree of positive correlation. It is

probably due to Knuth’s recognition of the importance of this transitional case that the

following conjecture is the only conjecture placed in the body of the text in his book.
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It also appears in the problem section. It combines a Proposition 2-like conclusion with

the weaker hypotheses of Proposition 1–men’s preferences random, women’s preferences

arbitrary and fixed.

Conjecture. (Knuth, 1997) For any profile of women’s preferences, if men’s preferences

are random, then the expected number of proposals is bounded below by

(n + 1)(1 + 1
2 + . . . + 1

n ) − n.

Knuth’s conjecture can be motivated as follows. If women’s preferences are identical and

men’s random, Knuth (1997) proved that the expected number of proposals is (n + 1)(1 +
1
2 + . . . + 1

n ) − n. Any profile of women’s preferences other than preferences identical is

less highly correlated. Then one would expect the matching algorithm to produce more

exchanges of men accomplished by more proposals. That said, the conjecture is perhaps

overly optimistic in form. If true, it would constitute a best possible result, since it posits a

lower bound that holds for all n and is attainable when women’s preferences are identical.

In contrast, Knuth’s own result (Proposition 2 above), although proven under stronger

hypotheses than those of the conjecture, does not establish an attainable lower bound, or

even a specific bound since K is unspecified.

The following proposition establishes Knuth’s conjecture in spirit, in that it implies

that, for any ε > 0, the product of 1− ε and the conjectured lower bound is in fact a lower

bound, for sufficiently large n.

Proposition 3. If for each n > 0 Pn is a given preference profile for n women and En is

the expected number of proposals when n men with random preferences are matched with

n women with the given preference profile Pn, then

En/((n + 1)(1 + 1
2 + . . . + 1

n ) − n) → 1

and equivalently

En/n ln n → 1

Now let Rn be the expected sum of the men’s rankings of their mates under the

scenario governing Proposition 3. Since the number of proposals a man makes is equal to
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his ranking of his assigned mate, we have the following.

Corollary. Rn/n ln n → 1.

We also establish attainable bounds on the expected ranking by an arbitrary man of

his assigned mate.

Proposition 4. If n men with random preferences are matched with n women with arbi-

trary preferences, the expected ranking by a man of his assigned mate is bounded above

by n+1
2 and below by 1, and these bounds are attainable.

In addition to the theoretical results of Propositions 1, 3 and 4 above, there is another

study of marriage matching with non-random lists using computer simulations due to

Caldarelli and Copocci (2001), who introduce correlation into preference profiles, then

run the Gale-Shapley algorithm. They find that preferred men tend to be matched with

preferred women, and that there is less difference in satisfaction between proposers and

proposees than when lists are random.

For an overview of the matching mechanism literature, see Roth and Sotomayer (1990).

Most papers in the two-sided matching literature focus on problems in more complex real-

world markets, for example Roth, Sönmez and Ünver (2004) and Chen and Sömnez (2002);

or on strategic considerations, that is, strategic reporting of preferences, for example, Roth

and Vande Vate (1991) and Demange, Gale and Sotomayor (1987).

The paper is organized as follows. Section 2 contains preliminaries. Propositions 3

and 4 are proven in Section 3. Section 4 establishes bounds on the expected rankings by

women of their assigned mates. Section 5 contains concluding remarks.

2. Preliminaries.

In the introduction, the description of the marriage matching problem, the definition

of stable matching, the description of the McVitie-Wilson version of the Gale-Shapley

algorithm and the statement of the results required little or no notation. For Sections 3

and 4 we require the following.
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In the marriage matching problem, men in the set M = {m1,m2, . . . mn} are to

be matched with women in W = {w1, w2, . . . , wn}. Each individual has an ordered list

of preferences over the n members of the opposite sex. A matching of M with W is a

function µ: M ∪W → M ∪W such that µ(M) ⊆ W , µ(W ) ⊆ M and for m ∈ M , w ∈ W ,

µ(m) = w if and only if µ(w) = m. For m ∈ M and w ∈ W , rw(m) is the rank of m by

w, which takes on values from 1, for w’s most preferred man, to n for her least preferred

man.

A random variable Xn is a function from the set MP of men’s preferences profiles to

the nonnegative reals, Xn: MP → �+. The expected value of a random variable is

E(Xn) =
∑

t∈MP

Prob(t)Xn(t) =
( ∑
t∈MP

Xn(t)
)
/(n!)n,

reflecting the assumption in this paper that men’s preferences are random, that is, chosen

from MP with the uniform probability distribution. In Section 1, En, the expected number

of proposals and Rn, the expected sum of men’s rankings of their mates, are examples of

expected values of random variables. Also, E(Xn:Xn > a) is the expected value of Xn

given that Xn > a; and the probability of the event Xn = a will be written Prob(Xn = a).

If (an) is a real valued sequence then

lim sup an = lim
n→+∞ LUB{an, an+1, . . .} and lim inf an = lim

n→+∞ GLB{an, an+1, . . .}

where LUB is the least upper bound and GLB is the greatest lower bound. If lim sup an =

lim inf an, then limn→+∞an exists and is equal to lim sup an.

3. Proofs of Propositions 3 and 4.

Proof of Proposition 3.

Recall the hypotheses of Proposition 3: for each n > 0 Pn is a given preference

profile of n women and En is the expected number of proposals when n men with random

preferences are matched by the McVitie-Wilson version of the Gale-Shapley algorithm to

n women with the given preference profile Pn.

Proposition 1 implies lim supEn/((n+1)(1+ 1
2 + . . .+ 1

n )−n) ≤ 1, so that it remains

to show lim inf En/((n + 1)(1 + 1
2 + . . . + 1

n )−n) ≥ 1 or equivalently lim inf En/n ln n ≥ 1.
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For the remainder of the proof we consider a run of the McVitie-Wilson algorithm in which

the hypotheses of Proposition 3 hold, the men propose in random order and the women

are numbered in the order in which they receive their first proposals. It will help to think

of a woman receiving a number when she receives her first proposal.

We need the following simple lemma, whose statement and proof are closely related

to the statement of Proposition 1 and its proof by Wilson (1972).

Lemma 1. The expected number of proposals made to wj during the first L rounds

satisfies

E(#proposals to wj) ≤
{

0 if 1 ≤ L < j
1 + 1

n−j + 1
n−j−1 + . . . + 1

n−L+1 if j ≤ L ≤ n

In the special cases L = j, 1 + 1
n−j + 1

n−j−1 + . . . + 1
n−j+1 is to be read as 1.

Proof. The conclusion holds for L ≤ j, since the jth round ends when wj receives her

first proposal. Assume men have no memory, so that men choose their next proposal by

drawing numbered balls from an urn with replacement. This assumption can only increase

the number of proposals to wj in the first L rounds. Under this assumption, the expected

number of proposals to wj in round l, j + 1 ≤ l ≤ L, is at least

∑+∞
i=1 i

(
1

(n−l+2)

)i(n−l+1
n−l+2

)

= (n − l + 1)
(∑+∞

s=1
1

(n−l+2)s

)(∑+∞
i=1

1
(n−l+2)i

)
which, summing geometric series, is

(n − l + 1)
(

1
n−l+1

)(
1

n−l+1

)
= 1

n−l+1

Summing over rounds j + 1 to L completes the proof.

The following lemma says that the expected value of the multiplicative inverse of a

random variable that takes on two positive values is greater than or equal to the multi-

plicative inverse of the expected value of the random variable.
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Lemma 2. If x > 0, p, q, a, b ≥ 0 and p + q = 1, then p
(

1
x+a

)
+ q

(
1

x+b

) ≥ 1
x+pa+qb

Proof.

p
x+a + q

x+b − 1
x+pa+qb

simplifies to pq(a−b)2

(x+a)(x+b)(x+pa+qb) ≥ 0.

Now we can begin to build a lower bound for the expected number of proposals.

Lemma 3. The expected number of proposals made to wj , 1 ≤ j ≤ n − 1, during all n

rounds satisfies

E(# proposals to wj) ≥
n∑

k=j+1

1
n − k + 2 + 1

n−j + 1
n−j−1 + . . . + 1

n−k+2

Proof. Fix j, 1 ≤ j ≤ n− 1. For k > j, define short round k to begin when round k begins

and to end when either

1) round k ends (that is, when an unmatched woman is proposed to)

or

2) a woman who is matched with a man who has proposed to wj is proposed to (one

such woman is wj).

Suppose exactly r men have proposed to wj before round k. Then 1 ≤ r ≤ k − 1 and

E(# proposals to wj in round k) ≥

E(# proposals to wj in short round k) ≥ 1
n−k+1+r (1)

Inequality (1) holds since the man who starts round k is as likely to–and any man displaced

without ending short round k is at least as likely to–propose to wj as to any of the other

n − k + r women who would end short round k.

For each r, let pr be the probability that exactly r men have proposed to wj before

round k begins. Then the following inequalities hold by (1), Lemma 2 applied repeatedly

8



and Lemma 1 with L = k − 1, respectively.

E(# proposals to wj in round k) ≥
k−1∑
r=1

pr × 1
n − k + 1 + r

≥ 1/(n − k + 1 +
∑k−1

r=1 pr r)

≥ 1
n − k + 2 + 1

n−j + 1
n−j−1 + . . . + 1

n−k+2

Summing over rounds j + 1 to n completes the proof.

We can now prove Proposition 3. Summing the inequalities in the conclusion of Lemma

3 over w1, w2, . . . , wn−1, the expected number of proposals En satisfies

En ≥
n−1∑
j=1

n∑
k=j+1

1
n − k + 2 + 1

n−j + 1
n−j−1 + . . . + 1

n−k+2

On the graph of y = 1/x, a comparison of the sum 1
n−j + 1

n−j−1 + . . . + 1
n−k+2 and

the integral
∫ n

1
dx
x yields

En ≥
n−1∑
j=1

n∑
k=j+1

1
n − k + 2 + lnn

On the graph of y = 1/x, a comparison of the sum
∑n

k=j+1
1

n−k+2+ln n and the integral∫ n−j+2+ln n

2+ln n
dx
x yields

En ≥ ∑n−1
j=1 (ln(n − j + 2 + lnn) − ln(2 + ln n))

≥ ∑n−1
j=1 ln(n − j + 2) − (n − 1) ln(2 + lnn)

=
∑n+1

j=3 ln j − (n − 1) ln(2 + ln n)

Furthermore, limn→+∞
(n−1) ln(2+ln n)

n ln n = 0 by L’Hopital’s rule, and a comparison on the

graph of y = ln x of the sum
∑n+1

j=3 ln j and the integral
∫ n+1

2
ln x dx yields

∑n+1
j=3 ln j

n ln n
≥

∫ n+1

2
ln x dx

n ln n
=

(x ln x − x)|n+1
2

n ln n
=

(n + 1) ln(n + 1) − n+1− 2 ln 2 + 2
n ln n

→ 1.

Therefore lim inf En

n ln n ≥ 1, which completes the proof of Proposition 3.
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Proof of Proposition 4.

Clearly E(rm(µ(m)) ≥ 1. Also, rm(µ(m)) = 1 if m is the first choice of every woman,

since m’s first proposal will be accepted. Thus, 1 is an attainable upper bound.

To show that E(rm(µ(m)) ≤ (n + 1)/2, consider first the McVitie-Wilson version of

the women-propose Gale-Shapley algorithm. Since men’s preferences are random, m’s first

proposal will be from a woman whose expected rank by m is (n+1)/2. In the men-propose

Gale-Shapley matching, m does no worse than his first proposal in the women-propose

Gale-Shapely algorithm. Therefore E(rm(µ(m)) ≤ (n + 1)/2.

Now suppose women’s preferences are identical and m is the last choice of every

woman. The sum of women’s expected rankings of their assigned mates is n(n + 1)/2 for

any matching algorithm, since for every matching regardless of men’s preferences, some

woman is matched with the first ranked man, some woman is matched with the second-

ranked man, etc. Since for every men’s preferences profile each woman does at least as well

in the women-propose matching as in the men-propose matching and for both matchings

the expected sum of women’s rankings of their assigned mates is n(n + 1)/2, each woman

does exactly as well. Therefore in every instance the women-propose matching and the

men-propose matching are identical. Also, in the women-propose Gale-Shapley matching,

m’s expected ranking of his assigned mate is (n + 1)/2, since his first proposal is the last

proposal made. Therefore also in the men-propose matching E(rm(µ(m)) = (n + 1)/2.

The upper bound of Proposition 4 is attainable.

4. Women’s Rankings of their Assigned Mates.

In this section, as above, the men-propose Gale-Shapley algorithm is used to match n

men with n women. Then we have

Proposition 5. For any women’s preference profile, if w ∈ W and men’s preferences are

random, then

E(rw(µ(w)) ≤ n + 1
2

Proof: Fix a women’s preference profile and w ∈ W and assume men’s preferences are

random. By relabeling the men we assume rw(mi) = i for 1 ≤ i ≤ n. For k ∈ {1, 2, . . . , n−
1}
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E(rw(µ(w)): rw(µ(w)) > k−1) = pkk+(1−pk)E(rw(µ(w)): rw(µ(w)) > k) (2)

where pk is the probability that mk proposes to w during a run of the Gale-Shapley

algorithm, given that m1,m2, . . . ,mk−1 do not.

During a run of the Gale-Shapley algorithm, mk must propose to some woman other

than µ(m1), µ(m2), . . . , µ(mk−1). Under the assumption rw(µ(w)) > k − 1, none of these

k− 1 women is w. Therefore under the assumption rw(µ(w)) > k− 1, the event that mk’s

first proposal to a woman other than µ(m1), µ(m2), . . . , µ(mk−1) is to w has probability
1

n−(k−1) . It follows that pk ≥ 1
n−k+1 , so that if A > k, then

pkk + (1 − pk)A ≤
( 1

n − k + 1

)
k +

( n − k

n − k + 1

)
A (3)

By (2) and (3) with A = E(rw(µ(w)): rw(µ(w)) > k), for k = {1, 2, . . . , n − 1},

E(rw(µ(w)): rw(µ(w)) > k−1) ≤
(

1
n−k+1

)
k+

(
n−k

n−k+1

)
E(rw(µ(w)): rw(µ(w)) > k) (4)

Applying (4) successively with k = 1, 2, . . . , n − 1,

E(rw(µ(w))) = E(rw(µ(w)): rw(µ(w)) > 0)

≤ 1
n + n−1

n E(rw(µ(w)): rw(µ(w)) > 1)

≤ 1
n + n−1

n

(
2

n−1 + n−2
n−1E(rw(µ(w)): rw(µ(w)) > 2)

)

= 1
n + 2

n + n−2
n E(rw(µ(w)): rw(µ(w)) > 2)

≤ 1
n + 2

n + 3
n + n−3

n E(rw(µ(w)): rw(µ(w)) > 3)

.

.

.

≤ 1
n + 2

n + 3
n + . . . + n−1

n + 1
nE(rw(µ(w)): rw(µ(w)) > n − 1)

= 1
n + 2

n + 3
n + . . . + n−1

n + n
n

= 1
n

(
n(n+1)

2

)
= n+1

2 .

The following corollary is immediate.
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Corollary to Proposition 5. Under the hypotheses of Proposition 5, the expected sum

of women’s rankings of their assigned mates is less than or equal to n(n+1)
2 .

Notice that when women’s preferences are identical, the men-propose Gale-Shapley

algorithm (in fact any matching) matches one woman with the first ranked man, one

woman with the second ranked man, etc. Then the sum of women’s rankings of their

mates is 1+2+ . . .+n = n(n+1)
2 . Therefore the upper bound of the corollary is attainable.

The assumption that women’s preferences are identical allows us to invoke symmetry and

conclude E(rw(µ(w)) = n+1
2 for every w ∈ W . In other words the upper bound of

Proposition 5 is not only attainable but attainable by all n women simultaneously.

Finally, we establish a lower bound for a woman’s expected ranking of her assigned

mate under the men-propose Gale-Shapley algorithm.

Proposition 6. For any women’s preference profile, if w ∈ W and men’s preferences are

random, then

E(rw(µ(w)) ≥
(n + 1

n

)(1
2

+
1
3

+ . . . +
1

n + 1

)

Proof. Fix women’s preferences, w ∈ W and assume men’s preferences are random. Relabel

the men so that rw(mi) = n− i + 1 for 1 ≤ i ≤ n− 1 and run the McVitie-Wilson version

of the Gale-Shapley algorithm with mi beginning round i.

For 1 ≤ k ≤ n,

Prob(rw(µ(w)) ≥ n − k + 1) ≥ k
n(n−k+1) (5)

since 1) rw(µ(w)) ≥ n−k+1 if w is proposed to in the first k rounds and w is not proposed

to in the last n − k rounds; 2) k
n is the probability that w is proposed to in the first k

rounds; 3) the probability that w is not proposed to in the last n − k rounds is greater

than or equal to 1
n−k+1 . (Notice that the word “if ” in 1) cannot in general be replaced

by “if and only if,” and that the words “greater than or equal to” in 3) cannot in general

be replaced by “equal to,” since during the last n − k rounds there may be times when a

man who has proposed to w in the first k rounds is proposing.)
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Then E(rw(µ(w))) =
∑n

k=1 k Prob(rw(µ(w)) = k) =
∑n

k=1 Prob(rw(µ(w)) ≥ k)

=
∑n

k=1 Prob(rw(µ(w)) ≥ n − k + 1) so that by (5), E(rw(µ(w))) ≥ ∑n
k=1

k
n(n−k+1)

= 1
n

∑n
k=1

n−k+1
k = 1

n (
∑n

k=1
n+1

k − ∑n
k=1

k
k ) =

(
n+1

n

)(
1
2 + 1

3 + . . . + 1
n+1

)
.

Consider the preference profile in which rw(mi) = n − i + 1 for all i and rw′(mi) =

i for all i, all w′ ∈ W − {w}. For this example, the argument justifying (5) yields

Prob(rw(µ(w)) ≥ n − k + 1) = k
n(n−k+1) , since the “if ” in 1) can be replaced by “if

and only if” and “greater than or equal to” in 3) can be replaced by “equal to”. Therefore

E(rw(µ(w)) =
(

n+1
n

)(
1
2 + 1

3 + . . . + 1
n+1

)
. In other words, the lower bound of Proposition

6 is attained by w if the other women’s preferences are exactly the reverse of hers.

The situation here is not like the situation surrounding Propositions 4 and 5, in that

for the following corollary to Proposition 6, it does not seem likely that the lower bound

is attainable.

Corollary to Proposition 6. Under the hypotheses of Proposition 5, the expected sum

of women’s rankings of their mates is greater than or equal to (n + 1)
(

1
2 + 1

3 + . . . + 1
n+1

)
.

5. Concluding Remarks.

For the men-propose Gale-Shapley algorithm with men’s preferences random and

women’s arbitrary, we have established attainable upper and lower bounds for the ex-

pected ranking by a man of his assigned mate; for the expected sum of men’s rankings of

their assigned mates; and for the expected ranking by a woman of her assigned mate. We

have also established an attainable upper bound for the expected sum of women’s rankings

of their mates. The question of an attainable lower bound remains open.
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