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Abstract

In this paper, we investigate the problem of localizing amlarwater sensor node based
on message broadcasting from multiple surface nodes. Wehtitne-of-arrival measurements
from a DSP-based multicarrier modem, each sensor nodeiZesaitself based on the travel
time differences among multiple senders to the receiveindJsne-way message passing, such a
solution can scale to accommodate a large number of nodesiétwaork. We consider the issue
from not only the physical layer, but also at the node prdogdsyer by incorporating a tracking
solution. We present simulation results as well as prelmjirtesting results in a swimming pool

with both stationary and moving receivers.

|. INTRODUCTION

Underwater localization is a topic of great interest. Besiden-acoustic means, there
are several localization baselines based on acousticlsignd@he first is the long base line
(LBL) system, where transponders are installed at the seg #ad the underwater vehicle
interrogates the transponders for round-trip delay estomdollowed by triangulation [1].
LBL has good localization accuracy, but it requires longetioalibration. The second is the
short base line (SBL) system, where a mother-ship moves albhevenderwater vehicle.
The ship locates the vehicle using a high-frequency diwealiemitters. The third approach
is based on floating buoys [2], [3]. This system acts like aglbase line system except
that the reference points are surface buoys. There are caomamnproducts — the GPS
Intelligent Buoys (GIB) — that route signals from an underwai@de to surface buoys [2],
and using radio links the surface buoys forward all infoiorato a mother-ship, wherein
the localization is performed. The floating buoys are easiedeploy and calibrate than
LBL systems.

In this paper, we propose a new localization approach basedessage broadcasts from
multiple surface nodes, coupled with tracking algorithmsl amplemented on a physical
system to provide a complete analysis.

With the time-of-arrival measurements, the receiver campits own localization based
on the differences of the travel time among multiple sentietbe receiver. We present one
solution based on exhaustive search, and the other basdutk daaist-squares formulation
[7]. By implementing the localization algorithms in the OFDklodem prototypes devel-

oped in [4], we have carried out tests in a swimming pool. \ihihse point measurements,
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Fig. 1. An underwater sensor network with multiple surface buoys.

tracking analysis was also carried out on the pool data loédaby the modems.

Thus we consider the problem not only in terms of the physaar at the modem with
timing and detection, but further analyze analyze it in glgipoint estimate, and ultimately
combine the point estimates for a tracking implementatiorparticular we consider two
particular tracking scenarios: a largely static scenariewhich the nodes are assumed to be
tethered or freely floating with no self-propulsion methaaisd a mobile scenario in which
the object being tracked is assumed to make deliberate marseand have full control of
its motion, such as an AUV.

The advantage of the proposed localization method is tleabtbadcast messages can
serve an arbitrary number of underwater nodes once they aaege, in contrast to existing
solutions which can only serve a small number of users.

The rest of the paper is organized as follows. We presentytters overview in Section
[I. Sections IV and V contain simulation results and testiegults in a swimming pool

respectively. Conclusions are in Section VI.

Il. SYSTEM OVERVIEW

Fig. 1 depicts the considered system setup, with severdcamodes and multiple
underwater nodes. The surface nodes are equipped witHitedbelsed GPS receivers.
Relying on the interval pulse provided by the GPS device thatdcurate to within 1
microsecond GPS time, the surface nodes are well synclewm predetermined intervals,
the surface nodes sequentially broadcast their curreatitotand time.

The underwater nodes within the broadcast range will heagriggss of transmissions

and decode those messages. By comparing the reception tithehei transmission time



Fig. 2. The OFDM modem prototype with an attached GPS unit

encoded in the message, each underwater node can obtanatestiof the time-of-arrivals
(or time-of-flights) of messages from different surface emdbased on which it tries to
compute its own position. Note that the broadcast from th&ase to underwater nodes is
one-way transmission, that localization quality is indegent of the number of underwater
nodes in the network, and that there is no additional interfee involved among different
underwater nodes.
Let us focus on one receiver at position,, ., z,). Suppose that there ar€ surface

nodes, at position$z,,, y,,z,), n = 1,...,N. Let d,, denote the distance between the

receiver node and theth surface node;:

dn = \/(xr — )2+ (Yr — Yn)? + (20 — 20)% 1)

Without loss of generality, we set the first surface node atigin, i.e.,x; = y; = z; = 0,

such that

di =22 +y> + z2. (2)

The actual time of arrival i$,, = d,,/c, wherec is the sound propagation speed.

The receiver needs to provide an estimate on the time ofahtrjv In this paper, we use
real-time DSP-based OFDM modem prototypes [4], as showngnZ: which implements
the coarse synchronization algorithm developed in [5]eAftoarse synchronization, the
OFDM preamble is decoded to generate an estimate of the ehanpulse response, and
the first arrival is detected via the modified Page test as]in [6

First, the channel is observed to detect when a signal appkased on a background

noise level monitoring performed by the modem at initidi@ma. When a signal is detected,



the correlation of the signal with a sliding window of itsé&f compared to determine the
level of peak correlation in the pre-amble of the messageirscindicated by a plateau
in the correlation. Once this plateau is selected, the tifnaraval is coarsely estimated
as having been approximately halfway during this plateatioge Once coarse channel
estimation has occurred, the preamble, which entirely knowvthe receiver, is used to
estimate the instantaneous underwater channel condi@masfrom there, a more refined
estimation of the time of arrival is performed [4].

Once a node collects several timing messages, it can formgespoint estimate of
its current position. This is accomplished by way of locaiian algorithms based on the
intersection of spherical surfaces.

Let 7, denote the estimate of from the OFDM modem. It can be expressed as the sum
of the real transmission propagation, the delay in signatgssing at both transmitter and

receiver, and the estimation noisg
ty = tn + by + w,,. (3)

Multiple tests of the OFDM modem reveal that the noisg has variance on the order
of 5 — 10ms. On the other hand, the processing delay (biashas large magnitude,
which might be on the order Gf00 ms. However, tests have also shown thatis nearly
identical across modems with similar hardware operatirth Wie same software and GPS
synchronization. Thus, we will tredt, as a constani,, = b in the sequel, and present the

localization algorithms based on
fn=ta+b+w, n=1,..N. )

Since the bia$ is unknown and usually large, time-of-arrival (TOA) baseeéthods are
not suitable. Instead, we use the time-difference-ofaarffTDOA) method to cancel the

common bias ternd by forming
Aty =t, —t,, n=2,...,N. (5)
The distance differencé,; = d,, — d; is then estimated by
dpy = Ay (6)

The TDOA method also corrects for clock skew alongside thés tberm, due to the

nature of the shared GPS clock. Each recieving node will hisvewn internal clock,



which at some update peridd will have drifted by an unknown, non-linear skew factor
¢(k). Each of the surface transmitters, however, will have thraesalock skew, and due
to the periodic corrections by the gps clock, this value &hde approximately O for any

period k. Thus, each transmission time can be represented as
tp =ty +b+ok)+w,, n=1,... N. (7)

and again, by taking the difference of the time-of-arrivatimates, this common clock
skew is eliminated from the timing estimate.
Next we present the localization methods based on the etitbegsarch and least-squares

formulations.

A. Exhaustive Search

The individual time estimates, generally have correlated noise in the underwater chan-
nel. For simplicity, we assume instead that they are indégeinand identically distributed,

and pursue a maximum likelihood function.
N

min f(xra Yr, Zr) = Z(CAtAnl - (dn - dl))2- (8)
Tr,Yr,2r 2

The solution to (8) is found by exhaustive search.

In the presence of colored noise, a correlated measurenmification can be made as

follows:
min f(xm Yrs Zr) = (Ai - AC_Z)TP_I(Ai - AC_Z) (9)
TryYr,2r

where L ) )

Afgl dQ - dl

.| At ds —d

Al = -31 Ad = 3 | 1
_Afnl_ _dn - dl_

and P is amxn covariance matrix

1 1/2 1/2 ... 1/2

P 1(2 1 1(2 1(2 (10)

1/2 1/2 1/2 ... 1
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Fig. 3. Root-mean-squared (RMS) localization error as a function dftdredard deviation of the distance measurements.

B. Least Squares Solution

We use the least-squares solution from [7]. Sidge= d,,; + d;, we have
(dp1 +d1)? = 22 + 92 + 22 — 20,0, — 2UnYy — 2202, + d-, (12)

which can be simplified as

1
TnTy + YnlYp + 2p2p = 5( [:BZ + yi + 2721 — dil}) — dy1dy. 12)
Define the following matrix and vectors
) Y2 z9 _CZQI
xz zZ —CZ
H— .3 Z/.3 .3 Cove .31 (13)
YN YN ZN] —Cle
v+ s+ 2 —d
N Ty
1| 22+ 92+ 22— d?
T 3T Y3 3 31 Coa=ly . (14)
2 .
2 2 2 72 r
N T YN+ 2 — dyy
The least-squares solution can be obtained as
a=dHv+Hu, (15)

wheret stands for pseudo-inverse. Substituting the entries ioto (2) yields a quadratic
equation ford; [7]. Solving for d; and substituting the positive root back into (15) provides

the final solution for the receiver positian



[1l. TRACKING ALGORITHMS

From a single point measurement, the localization errorlmiquite large, and thus in
order to reduce the error tracking algorithms can be impidgatein order to combine the
knowledge of multiple measurements into a more accuratgigo®stimate.

In order to consider which tacking approach would be best fs€t consider the scenario
in which the node is being localized. There are two distincdes in which underwater
nodes move: either passively, with the water currents aseffoating node, or actively as
an underwater vehicle such as an AUV. Both are characterigathply by long periods
of relatively straight motion at a slowly-changing speegpically, AUV motion differs in
that at certain random intervals, it will change directimt@ding to operator instruction.
Most search patterns for AUVs are defined by spiral pathsyaebtangular search grids.
In either case, the vehicle is likely to alter its directiopway of a continuous turn; that
IS, to make a turn at a fixed angular velocity until the desinedding is achieved (or in

the case of a spiral, until the search area is exhausted).

A. Kalman Filter

In the KF, we chose to model the movement of the node as setsofete white noise
acceleration models, with a separate model for each pesditgction; that isg, y and z.
As such, the state equation for the Kalman filter at time inklex1 based on information

from time stepk becomes

Lk +1) = F(k)L(k) + v(k) (16)

with measurement

2(k+1)=Hk+1)Lk+1)+wk+1) (17)

where
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v(k) is process noisey(k) is measurement noise andis the sampling interval of the
discrete model in seconds.

The state covariance is modeled as
P(k + 1|k) = F(k)P(k|k)F (k)T + Q(k) (20)

The corresponding process noise has a covariance given as:

4 1.3

%LT 3T 0 0 0 0
%7'3 T2 0 0 0 0
0o o0 it 13 0 0
Q- oo o’ (21)
0 0 %7’3 72 0 0
0 0 0 0 i7'4 %7‘3
i 0 0 0 0 %7'3 72 |

Here, o, is a design parameter that is chosen to match the most likegl bf process
noise to be experienced by the object in question; which isalp it controls how much
the model anticipates the object to maneuver. Given thaoliject in question is likely to
be either stationary or altering its velocity at a slow, dieaate, a process noise level of
o, = 0.5m/s* was selected to best emulate this behavior. The filter waislineéd with

two-point differencing.



B. Interacting Multiple Model Filter

For the more complex motion of an active underwater node,néerdcting Multiple
Model filter (IMM) was implemented, as the expected mandangemdex of underwater
vehicles, can easily exceed the threshold for which a silgéar filter is likely to have
any benefit. To this end, the IMM was a simple two-model filigith a single, linear,
low process noiseo{, = 0.05m/s?) KF to account for the straight motion travel, and an
extended Kalman filter (EKF), configured in a coordinateaitonode [9]. This validity of
the coordinated turn assumption is dependent on the soenaguestion, though given the
previously described search patterns, it should be suffigi@ccurate [8].

The linear KF uses similar system equations as given prslipaugmented with an
additional column and row of zeros in order to accommodateaiie of the EKF’s additional
state in the IMM. The EKF in this problem uses one of two setstafe equations: the first
set is an approximation used when the predicted coordirtatadate is near Ofl(k;) ~ 0),
and the second set is used when the predicted coordinatedais is greater than some
detection threshold/Q(k)| > 0) [10].

The first set of EKF state equation modificatiofg %) ~ 0) is as follows:

(1 7000 0 —i2%(k)]
010000 —mk)
001700 L2k
Fok)=10 00100 7k (22)
000017 0
000001 0
000000 1 |

wheren and ¢ represent ther and y directions, respectively, and we denateas the

velocity component in the direction.
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When |Q(k)| > 0,

SiI} Q(k)

L 55 0 —% 0 0 fQ,l(k)-
0 cosQ(k)r 0 —sinQ(k)T 0 0 foom
0 % 1 % 0 0 fosm
Fr(k) =10 sin Q(k)T 0 cos Q(kJ)T 0 0 foum (23)
0 0 0 0 1 7 0
0 0 0 0 01 0
10 0 0 0 00 ]

where the partial derivativef, (), ... fo,ux) are found as:

[(cosQB)r)ré(k) _ sinQRINER) _ GnQERDTAK) _ (~1tcos k)i |

faam) Q(k) Q(k)2 . Q(k) Q(k)2

fa.2(k) B —(sin Q(k)1)7(k) — (cos Q(k)T)Tn(k) (24)
T | sinQk)P)TER) (1—cosQEINER) | (cosQk)T)TR(R)  (sin Qk)T)H(K)

fasm) k) - k)2 + k) T ke

| fa.am) | (cos Q(k)T)Tﬁ(k;) — (sin Q(k)T)Tﬁ(k;)

In both cases, the process noise covariance is determiribd following state equations:
P(k +1k) = Fr(k)P(k|k)F (k) + TEKFQ(k)gxe

where

12 0 0 0
T 0 0 0
0 2 0 o0
I'ekk,=|10 7 0 0 (25)
0 0 72 0
0 0 T 0
0 0 0 7
From our assumptions of AUV motion, the value of Q(k) was ciele as:
[(1.25m/s?)? 0 0 0 ]
0 (1.25m/s?)? 0 0
Q(k) = (26)
0 0 (1.25 m/&)? 0
i 0 0 0 (0.3 % /180 rad)? |
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Fig. 4. IMM-CT block diagram for a single measurement update [10]

The IMM-CT is outlined in Fig. 4. The linear KF is designed asa#&ed previously,
whereas the non-linear EKF has a different set of model sefeparameters which define
how it interprets large differences in the measurementshisncase, it is a covariance matrix
that controls the rate of change. In particular, it desarib@wv much variation occurs during
the coordinated maneuver in terms of the angular velocitgl, @ such as two directional

speed components and a angle change component.

IV. SIMULATION RESULTS

We first carry out simulation using a simple noise model toegate the TOA measure-
ments and evaluate the localization accuracy. For sintylicis assumed to be known, and
we only solve forz andy coordinates. Four transmitters are placed on a square gid w
coordinates(0, 0), (100,0), (0,100), and (100, 100). One receiver is placed at the center
between the origin and th@, 100) point, and moves at a constant ratedaf25 m/s parallel

to the x-axis.



12

(]

oo
T

-~
T

- Kalman Filter 1
-©-LS

D
T

5 10 15 20 25
Number of Measurements

(&3]

RMS Position Error (meters)
(en)

Fig. 5. Root-mean-squared (RMS) localization error as a function ofntheber of measurements acquired as the

receiver moved in a straight line

The TOAs are generated according (3) wheéres a fixed large bias, and, is i.i.d.
zero-mean white Gaussian noise with standard deviationsah. Position updates were
taken every 16 seconds.

The localization position error is shown in Fig. 5 as a fumetof range measurement
errors. We see that the LS solution has similar performascie exhaustive search. We
have also tried to change the clock bias, which has almosffect@ipon the position error,
as expected.

An additional set of simulated data compares the KalmaeifSlperformance for various
levels of measurement noise, with results given in Fig. 6.tA& measurement noise
increased, the error floor of the Kalman Filter increasesdwer, the level of improvement
over the raw measurements also increased.

A third set of simulations examined the affect of the speedhef tracked object on
the Kalman Filter's ability to estimate the object’s pasiti To test this, the same node
position and update interval were observed as in the olligicenarios, however the speed
was varied from0.125 m/s to 0.5 m/s parallel to the x-axis.

In addition to the Kalman filter, simulations for the propdd&M-CT were also run,
using the relatively challenging scenario presented in Figvith the corresponding RMS

position error given by Fig. 8.
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V. POOL TESTS

We carried out tests in a standard competitive athletic swirg pool at University of
Connecticut, Storrs, whose dimensions are perfectly kndvinese tests did not use the
GPS capabilities of the nodes, due to the limitation of theSGBceivers indoors. The
nodes were fixed to the corner locations of the pool, suchthiet locations are measured
accurately. The receiver was positioned approximatelyréndenter of the pool, as outlined
in Fig. 9. All the transducers are placed about 1 m below thfase. The pool has a depth
about3 m. Stationary tests were conducted during March 2010 andl 2pt1 while the

mobile test was conducted during December 2010.
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Fig. 9. Node deployment during March 2010 pool test. The transmitterslenoted by squares, and the receiver is

denoted by the diamond. The scattered plus signs are the estimates bduste search method.

A. Test Case 1

(Stationary test, March 2010)

During the test, not all the messages from the transmitterg wWlecoded correctly. For
this reason, we use the data set with at least three measursemvéhin one cycle of
broadcasting from the four surface nodes. The favorablenggy and the known value
of z allow an estimate based on only three surface nodes. Thédoaastimates by the
exhaustive search method are shown in Fig. 9, and those byShmethod shown in

Fig. 10. We see that the LS estimates from these data setsasedb
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Although advanced algorithms could be applied to fuse thia ffam multiple data sets,
here we simply average the location estimates from multjglia sets. As more data sets
are available, the localization accuracy improves, as showig. 11. A localization error

of about 5 m is achieved with about 10 data sets.

B. Test Case 3

(Stationary test, April 2011)
During the test, all the messages from a single node were ewidg#d correctly. For

this reason, we use the data set consisting only of tranemgs$om the remaining three
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nodes. By using the known value of we were able to reduce the minimum number of
equations needed to three.

Both the KF and IMM-CT trackers were applied to the Es estimatgth results in
Fig. 12. A localization error of below 5 m is achieved inijaland it seems that the
tracking algorithms smooth out the small sample set, bugrafio drastic improvement

over the raw measurements.

C. Test Case 3
(Mobile test, December 2010)

For the moving test in the pool, a simple straight-line maeewas carried out. All
of the previous conditions apply from the stationary poai,téncluding the use of only
three nodes for localizing purposes. There was a signifispgtade in the hardware and

software used for the second test, which resulted in a ladaction in the overall error.

VI. CONCLUSION

In this paper, we presented an underwater localizatiortisalbased on one-way message
broadcasting from multiple surface nodes. In addition tautation results, we provided
preliminary testing results in a swimming pool and in a lolade. Future work would
involve large-scale field tests, and also accommodate moipitlerwater nodes in addition

to stationary nodes.
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