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Abstract

In this paper, we investigate the problem of localizing an underwater sensor node based

on message broadcasting from multiple surface nodes. With the time-of-arrival measurements

from a DSP-based multicarrier modem, each sensor node localizes itself based on the travel

time differences among multiple senders to the receiver. Using one-way message passing, such a

solution can scale to accommodate a large number of nodes in anetwork. We consider the issue

from not only the physical layer, but also at the node processing layer by incorporating a tracking

solution. We present simulation results as well as preliminary testing results in a swimming pool

with both stationary and moving receivers.

I. I NTRODUCTION

Underwater localization is a topic of great interest. Besides non-acoustic means, there

are several localization baselines based on acoustic signaling. The first is the long base line

(LBL) system, where transponders are installed at the sea floor, and the underwater vehicle

interrogates the transponders for round-trip delay estimation followed by triangulation [1].

LBL has good localization accuracy, but it requires long-time calibration. The second is the

short base line (SBL) system, where a mother-ship moves abovethe underwater vehicle.

The ship locates the vehicle using a high-frequency directional emitters. The third approach

is based on floating buoys [2], [3]. This system acts like a long base line system except

that the reference points are surface buoys. There are commercial products – the GPS

Intelligent Buoys (GIB) – that route signals from an underwater node to surface buoys [2],

and using radio links the surface buoys forward all information to a mother-ship, wherein

the localization is performed. The floating buoys are easierto deploy and calibrate than

LBL systems.

In this paper, we propose a new localization approach based on message broadcasts from

multiple surface nodes, coupled with tracking algorithms and implemented on a physical

system to provide a complete analysis.

With the time-of-arrival measurements, the receiver computes its own localization based

on the differences of the travel time among multiple sendersto the receiver. We present one

solution based on exhaustive search, and the other based on the least-squares formulation

[7]. By implementing the localization algorithms in the OFDMmodem prototypes devel-

oped in [4], we have carried out tests in a swimming pool. Withthese point measurements,
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Fig. 1. An underwater sensor network with multiple surface buoys.

tracking analysis was also carried out on the pool data obtained by the modems.

Thus we consider the problem not only in terms of the physicallayer at the modem with

timing and detection, but further analyze analyze it in a single point estimate, and ultimately

combine the point estimates for a tracking implementation.In particular we consider two

particular tracking scenarios: a largely static scenario in which the nodes are assumed to be

tethered or freely floating with no self-propulsion methods, and a mobile scenario in which

the object being tracked is assumed to make deliberate maneuvers and have full control of

its motion, such as an AUV.

The advantage of the proposed localization method is that the broadcast messages can

serve an arbitrary number of underwater nodes once they are in range, in contrast to existing

solutions which can only serve a small number of users.

The rest of the paper is organized as follows. We present the system overview in Section

II. Sections IV and V contain simulation results and testingresults in a swimming pool

respectively. Conclusions are in Section VI.

II. SYSTEM OVERVIEW

Fig. 1 depicts the considered system setup, with several surface nodes and multiple

underwater nodes. The surface nodes are equipped with satellite-based GPS receivers.

Relying on the interval pulse provided by the GPS device that is accurate to within 1

microsecond GPS time, the surface nodes are well synchronized. At predetermined intervals,

the surface nodes sequentially broadcast their current location and time.

The underwater nodes within the broadcast range will hear a series of transmissions

and decode those messages. By comparing the reception time with the transmission time



3

GPS

dTransducer

Battery

DSP board

Fig. 2. The OFDM modem prototype with an attached GPS unit

encoded in the message, each underwater node can obtain estimates of the time-of-arrivals

(or time-of-flights) of messages from different surface nodes, based on which it tries to

compute its own position. Note that the broadcast from the surface to underwater nodes is

one-way transmission, that localization quality is independent of the number of underwater

nodes in the network, and that there is no additional interference involved among different

underwater nodes.

Let us focus on one receiver at position(xr, yr, zr). Suppose that there areN surface

nodes, at positions(xn, yn, zn), n = 1, . . . , N . Let dn denote the distance between the

receiver node and thenth surface node:

dn =
√

(xr − xn)2 + (yr − yn)2 + (zr − zn)2. (1)

Without loss of generality, we set the first surface node at the origin, i.e.,x1 = y1 = z1 = 0,

such that

d21 = x2
r + y2r + z2r . (2)

The actual time of arrival istn = dn/c, wherec is the sound propagation speed.

The receiver needs to provide an estimate on the time of arrival tn. In this paper, we use

real-time DSP-based OFDM modem prototypes [4], as shown in Fig. 2, which implements

the coarse synchronization algorithm developed in [5]. After coarse synchronization, the

OFDM preamble is decoded to generate an estimate of the channel impulse response, and

the first arrival is detected via the modified Page test as in [6].

First, the channel is observed to detect when a signal appears, based on a background

noise level monitoring performed by the modem at initialization. When a signal is detected,
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the correlation of the signal with a sliding window of itselfis compared to determine the

level of peak correlation in the pre-amble of the message occurs, indicated by a plateau

in the correlation. Once this plateau is selected, the time of arrival is coarsely estimated

as having been approximately halfway during this plateau period. Once coarse channel

estimation has occurred, the preamble, which entirely known to the receiver, is used to

estimate the instantaneous underwater channel conditions, and from there, a more refined

estimation of the time of arrival is performed [4].

Once a node collects several timing messages, it can form a single point estimate of

its current position. This is accomplished by way of localization algorithms based on the

intersection of spherical surfaces.

Let t̂n denote the estimate oftn from the OFDM modem. It can be expressed as the sum

of the real transmission propagation, the delay in signal processing at both transmitter and

receiver, and the estimation noisewn

t̂n = tn + bn + wn. (3)

Multiple tests of the OFDM modem reveal that the noisewn has variance on the order

of 5 − 10ms. On the other hand, the processing delay (bias)bn has large magnitude,

which might be on the order of500ms. However, tests have also shown thatbn is nearly

identical across modems with similar hardware operating with the same software and GPS

synchronization. Thus, we will treatbn as a constantbn = b in the sequel, and present the

localization algorithms based on

t̂n = tn + b+ wn, n = 1, . . . , N. (4)

Since the biasb is unknown and usually large, time-of-arrival (TOA) based methods are

not suitable. Instead, we use the time-difference-of-arrival (TDOA) method to cancel the

common bias termb by forming

∆t̂n1 = t̂n − t̂1, n = 2, . . . , N. (5)

The distance differencedn1 = dn − d1 is then estimated by

d̂n1 = c∆t̂n1. (6)

The TDOA method also corrects for clock skew alongside this bias term, due to the

nature of the shared GPS clock. Each recieving node will haveits own internal clock,
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which at some update periodk will have drifted by an unknown, non-linear skew factor

φ(k). Each of the surface transmitters, however, will have the same clock skew, and due

to the periodic corrections by the gps clock, this value should be approximately 0 for any

periodk. Thus, each transmission time can be represented as

t̂n = tn + b+ φ(k) + wn, n = 1, . . . , N. (7)

and again, by taking the difference of the time-of-arrival estimates, this common clock

skew is eliminated from the timing estimate.

Next we present the localization methods based on the exhaustive search and least-squares

formulations.

A. Exhaustive Search

The individual time estimateŝtn generally have correlated noise in the underwater chan-

nel. For simplicity, we assume instead that they are independent and identically distributed,

and pursue a maximum likelihood function.

min
xr,yr ,zr

f(xr, yr, zr) =
N
∑

n=2

(c∆t̂n1 − (dn − d1))
2. (8)

The solution to (8) is found by exhaustive search.

In the presence of colored noise, a correlated measurement modification can be made as

follows:

min
xr,yr,zr

f(xr, yr, zr) = (∆t̂−∆d)TP−1(∆t̂−∆d). (9)

where

∆t̂ =















∆t̂21

∆t̂31
...

∆t̂n1















∆d =















d2 − d1

d3 − d1
...

dn − d1















and P is annxn covariance matrix

P =















1 1/2 1/2 . . . 1/2

1/2 1 1/2 . . . 1/2
...

...
... . . .

...

1/2 1/2 1/2 . . . 1















(10)
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Fig. 3. Root-mean-squared (RMS) localization error as a function of thestandard deviation of the distance measurements.

B. Least Squares Solution

We use the least-squares solution from [7]. Sincedn = dn1 + d1, we have

(dn1 + d1)
2 = x2

n + y2n + z2n − 2xnxr − 2ynyr − 2znzr + d21, (11)

which can be simplified as

xnxr + ynyr + znzr =
1

2
(
[

x2
n + y2n + z2n − d2n1

]

)− dn1d1. (12)

Define the following matrix and vectors

H =















x2 y2 z2

x3 y3 z3
...

...
...

xN yN zN















, v =















−d̂21

−d̂31
...

−d̂N1















(13)

u =
1

2















x2
2 + y22 + z22 − d̂221

x2
3 + y23 + z23 − d̂231

...

x2
N + y2N + z2N − d̂2N1















, a =











xr

yr

zr











. (14)

The least-squares solution can be obtained as

â = d1H
†v +H†u, (15)

where† stands for pseudo-inverse. Substituting the entries ofâ into (2) yields a quadratic

equation ford1 [7]. Solving ford1 and substituting the positive root back into (15) provides

the final solution for the receiver positiona.
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III. T RACKING ALGORITHMS

From a single point measurement, the localization error canbe quite large, and thus in

order to reduce the error tracking algorithms can be implemented in order to combine the

knowledge of multiple measurements into a more accurate position estimate.

In order to consider which tacking approach would be best is to first consider the scenario

in which the node is being localized. There are two distinct modes in which underwater

nodes move: either passively, with the water currents as a free-floating node, or actively as

an underwater vehicle such as an AUV. Both are characterized primarily by long periods

of relatively straight motion at a slowly-changing speed. Typically, AUV motion differs in

that at certain random intervals, it will change direction according to operator instruction.

Most search patterns for AUVs are defined by spiral paths, or by rectangular search grids.

In either case, the vehicle is likely to alter its direction by way of a continuous turn; that

is, to make a turn at a fixed angular velocity until the desiredheading is achieved (or in

the case of a spiral, until the search area is exhausted).

A. Kalman Filter

In the KF, we chose to model the movement of the node as set of discrete white noise

acceleration models, with a separate model for each possible direction; that is,x, y andz.

As such, the state equation for the Kalman filter at time indexk+ 1 based on information

from time stepk becomes

L(k + 1) = F(k)L(k) + v(k) (16)

with measurement

z(k + 1) = H(k + 1)L(k + 1) + w(k + 1) (17)

where
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F =



























1 τ 0 0 0 0

0 1 0 0 0 0

0 0 1 τ 0 0

0 0 0 1 0 0

0 0 0 0 1 τ

0 0 0 0 0 1



























(18)

H =











1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0











(19)

v(k) is process noise,w(k) is measurement noise andτ is the sampling interval of the

discrete model in seconds.

The state covariance is modeled as

P(k + 1|k) = F(k)P(k|k)F(k)T +Q(k) (20)

The corresponding process noise has a covariance given as:

Q =



























1
4
τ 4 1

2
τ 3 0 0 0 0

1
2
τ 3 τ 2 0 0 0 0

0 0 1
4
τ 4 1

2
τ 3 0 0

0 0 1
2
τ 3 τ 2 0 0

0 0 0 0 1
4
τ 4 1

2
τ 3

0 0 0 0 1
2
τ 3 τ 2



























σ2
v (21)

Here,σv is a design parameter that is chosen to match the most likely level of process

noise to be experienced by the object in question; which is tosay it controls how much

the model anticipates the object to maneuver. Given that theobject in question is likely to

be either stationary or altering its velocity at a slow, steady rate, a process noise level of

σv = 0.5m/s2 was selected to best emulate this behavior. The filter was initialized with

two-point differencing.
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B. Interacting Multiple Model Filter

For the more complex motion of an active underwater node, an Interacting Multiple

Model filter (IMM) was implemented, as the expected maneuvering index of underwater

vehicles, can easily exceed the threshold for which a singlelinear filter is likely to have

any benefit. To this end, the IMM was a simple two-model filter,with a single, linear,

low process noise (σv = 0.05m/s2) KF to account for the straight motion travel, and an

extended Kalman filter (EKF), configured in a coordinated-turn mode [9]. This validity of

the coordinated turn assumption is dependent on the scenario in question, though given the

previously described search patterns, it should be sufficiently accurate [8].

The linear KF uses similar system equations as given previously, augmented with an

additional column and row of zeros in order to accommodate the use of the EKF’s additional

state in the IMM. The EKF in this problem uses one of two sets ofstate equations: the first

set is an approximation used when the predicted coordinatedturn rate is near 0 (̂Ω(k) ≈ 0),

and the second set is used when the predicted coordinated turn rate is greater than some

detection threshold (|Ω̂(k)| > 0) [10].

The first set of EKF state equation modifications (Ω̂(k) ≈ 0) is as follows:

FL(k) =

































1 τ 0 0 0 0 −1
2
τ 2 ˆ̇η(k)

0 1 0 0 0 0 −τ ˆ̇η(k)

0 0 1 τ 0 0 1
2
τ 2 ˆ̇ξ(k)

0 0 0 1 0 0 τ ˆ̇ξ(k)

0 0 0 0 1 τ 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

































(22)

whereη and ξ represent thex and y directions, respectively, and we denoteη̇ as the

velocity component in theη direction.
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When |Ω̂(k)| > 0,

FL(k) =

































1 sin Ω̂(k)

Ω̂(k)
τ 0 −1−cos Ω̂(k)τ

Ω̂(k)
0 0 fΩ,1(k)

0 cos Ω̂(k)τ 0 − sin Ω̂(k)τ 0 0 fΩ,2(k)

0 1−cos Ω̂(k)τ

Ω̂(k)
1 sin Ω̂(k)τ

Ω̂(k)
0 0 fΩ,3(k)

0 sin Ω̂(k)τ 0 cos Ω̂(k)τ 0 0 fΩ,4(k)

0 0 0 0 1 τ 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

































(23)

where the partial derivativesfΩ,1(k), ...fΩ,4(k) are found as:














fΩ,1(k)

fΩ,2(k)

fΩ,3(k)

fΩ,4(k)















=

















(cos Ω̂(k)τ)τ
ˆ̇
ξ(k)

Ω̂(k)
− (sin Ω̂(k)τ)

ˆ̇
ξ(k)

Ω̂(k)2
− (sin Ω̂(k)τ)τ ˆ̇η(k)

Ω̂(k)
− (−1+cos Ω̂(k)τ)ˆ̇η(k)

Ω̂(k)2

−(sin Ω̂(k)τ)τ ˆ̇ξ(k)− (cos Ω̂(k)τ)τ ˆ̇η(k)

(sin Ω̂(k)τ)τ
ˆ̇
ξ(k)

Ω̂(k)
− (1−cos Ω̂(k)τ)

ˆ̇
ξ(k)

Ω̂(k)2
+ (cos Ω̂(k)τ)τ ˆ̇η(k)

Ω̂(k)
− (sin Ω̂(k)τ)ˆ̇η(k)

Ω̂(k)2

(cos Ω̂(k)τ)τ ˆ̇ξ(k)− (sin Ω̂(k)τ)τ ˆ̇η(k)

















(24)

In both cases, the process noise covariance is determined inthe following state equations:

P(k + 1|k) = FL(k)P(k|k)FL(k)
′ + ΓEKFQ(k)Γ′

EKF

where

ΓEKF =

































1
2
τ 2 0 0 0

τ 0 0 0

0 1
2
τ 2 0 0

0 τ 0 0

0 0 1
2
τ 2 0

0 0 τ 0

0 0 0 τ

































(25)

From our assumptions of AUV motion, the value of Q(k) was selected as:

Q(k) =















(1.25m/s2)2 0 0 0

0 (1.25m/s2)2 0 0

0 0 (1.25m/s2)2 0

0 0 0 (0.3 ∗ π/180 rad)2















(26)
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L̂1(k−1|k−1),P 1(k−1|k−1) L̂2(k−1|k−1),P 2(k−1|k−1)
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Filter M1 Filter M2z(k) z(k)

Mode probability

update and

mixing probability

calculation

State estimate

and covariance

combination

Λ1(k)

Λ2(k)

µ(k|k) µ(k)

L̂1(k|k), P 1(k|k)

L̂2(k|k), P 2(k|k)

µ(k)

L̂(k|k) P (k|k)

Fig. 4. IMM-CT block diagram for a single measurement update [10]

The IMM-CT is outlined in Fig. 4. The linear KF is designed as described previously,

whereas the non-linear EKF has a different set of model selection parameters which define

how it interprets large differences in the measurements. Inthis case, it is a covariance matrix

that controls the rate of change. In particular, it describes how much variation occurs during

the coordinated maneuver in terms of the angular velocity, and as such as two directional

speed components and a angle change component.

IV. SIMULATION RESULTS

We first carry out simulation using a simple noise model to generate the TOA measure-

ments and evaluate the localization accuracy. For simplicity, z is assumed to be known, and

we only solve forx andy coordinates. Four transmitters are placed on a square grid with

coordinates(0, 0), (100, 0), (0, 100), and (100, 100). One receiver is placed at the center

between the origin and the(0, 100) point, and moves at a constant rate of0.125m/s parallel

to the x-axis.
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Fig. 5. Root-mean-squared (RMS) localization error as a function of thenumber of measurements acquired as the

receiver moved in a straight line

The TOAs are generated according (3) whereb is a fixed large bias, andwn is i.i.d.

zero-mean white Gaussian noise with standard deviation of7.5m. Position updates were

taken every 16 seconds.

The localization position error is shown in Fig. 5 as a function of range measurement

errors. We see that the LS solution has similar performance as the exhaustive search. We

have also tried to change the clock bias, which has almost no effect upon the position error,

as expected.

An additional set of simulated data compares the Kalman Filter’s performance for various

levels of measurement noise, with results given in Fig. 6. Asthe measurement noise

increased, the error floor of the Kalman Filter increased, however, the level of improvement

over the raw measurements also increased.

A third set of simulations examined the affect of the speed ofthe tracked object on

the Kalman Filter’s ability to estimate the object’s position. To test this, the same node

position and update interval were observed as in the original scenarios, however the speed

was varied from0.125m/s to0.5m/s parallel to the x-axis.

In addition to the Kalman filter, simulations for the proposed IMM-CT were also run,

using the relatively challenging scenario presented in Fig. 7, with the corresponding RMS

position error given by Fig. 8.
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Fig. 7. Simulation path for the IMM-CT, with distances in meters.

V. POOL TESTS

We carried out tests in a standard competitive athletic swimming pool at University of

Connecticut, Storrs, whose dimensions are perfectly known.These tests did not use the

GPS capabilities of the nodes, due to the limitation of the GPS receivers indoors. The

nodes were fixed to the corner locations of the pool, such thattheir locations are measured

accurately. The receiver was positioned approximately in the center of the pool, as outlined

in Fig. 9. All the transducers are placed about 1 m below the surface. The pool has a depth

about3m. Stationary tests were conducted during March 2010 and April 2011 while the

mobile test was conducted during December 2010.
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Fig. 9. Node deployment during March 2010 pool test. The transmitters are denoted by squares, and the receiver is

denoted by the diamond. The scattered plus signs are the estimates by the exhaustive search method.

A. Test Case 1

(Stationary test, March 2010)

During the test, not all the messages from the transmitters were decoded correctly. For

this reason, we use the data set with at least three measurements within one cycle of

broadcasting from the four surface nodes. The favorable geometry and the known value

of z allow an estimate based on only three surface nodes. The location estimates by the

exhaustive search method are shown in Fig. 9, and those by theLS method shown in

Fig. 10. We see that the LS estimates from these data sets are biased.
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Fig. 10. Node deployment during March 2010 pool test. The transmittersare denoted by squares, and the receiver is

denoted by the diamond. The scattered plus signs are the estimates by the least-squares method.
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Fig. 11. Localization error during March 2010 pool test.

Although advanced algorithms could be applied to fuse the data from multiple data sets,

here we simply average the location estimates from multipledata sets. As more data sets

are available, the localization accuracy improves, as shown in Fig. 11. A localization error

of about 5 m is achieved with about 10 data sets.

B. Test Case 3

(Stationary test, April 2011)

During the test, all the messages from a single node were not decoded correctly. For

this reason, we use the data set consisting only of transmissions from the remaining three
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Fig. 12. Localization error during April 2011 pool test.

nodes. By using the known value ofz, we were able to reduce the minimum number of

equations needed to three.

Both the KF and IMM-CT trackers were applied to the Es estimates, with results in

Fig. 12. A localization error of below 5 m is achieved initially, and it seems that the

tracking algorithms smooth out the small sample set, but offer no drastic improvement

over the raw measurements.

C. Test Case 3

(Mobile test, December 2010)

For the moving test in the pool, a simple straight-line maneuver was carried out. All

of the previous conditions apply from the stationary pool test, including the use of only

three nodes for localizing purposes. There was a significantupgrade in the hardware and

software used for the second test, which resulted in a large reduction in the overall error.

VI. CONCLUSION

In this paper, we presented an underwater localization solution based on one-way message

broadcasting from multiple surface nodes. In addition to simulation results, we provided

preliminary testing results in a swimming pool and in a locallake. Future work would

involve large-scale field tests, and also accommodate mobile underwater nodes in addition

to stationary nodes.
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