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CHAPTER I - INTRODUCTION 

BACKGROUND 

Mechanotransduction in Orthodontics 

Orthodontic tooth movement is ultimately dependent on the underlying cellular 

and molecular responses to an applied force. As early as the nascent beginnings of 

orthodontic research in the early twentieth century, investigators described the bone 

remodeling process in terms of resorptive osteoclast activity and appositional osteoblast 

activity. Orthodontic luminaries such as Angle, Sandset and Oppeneim advanced the 

concept that at the tissue and cellular level, orthodontic tooth movement involves a 

differential response to tensile and compressive forces within the periodontiurn and 

alveolar bone complex [I]. It has been well documented that both soft and mineralized 

paradental tissues respond to external mechanical stimuli, with bone resorption occurring 

at sites of pressure and formation in areas of tension [2-51. This characteristic, therefore, 

forms the biological basis of orthodontics. While this macro-level understanding of the 

bone remodeling process has been generally accepted, a well-defined picture of the 

molecular biology governing orthodontic tooth movement remains obscure. As such, 

numerous investigations have sought to elucidate the process of transduction of 

mechanical stimuli, e.g. orthodontic force, into a cellular biological event 

(mechanotransduction). 

Past studies have documented that orthodontic treatment can alter the native 

pattern of alveolar bone remodeling, which when unperturbed maintains a homeostatic 

state. Turnover of the alveolar bone surrounding orthodonticaly-treated teeth is not 

balanced in the short-term, but instead is characterized by periods of activation, 



resorption, reversal and formation of new bone [5]. An increase of bone formation rate 

during orthodontic tooth movement can be attributed to an escalation in proliferation rate 

and the number of active osteoblasts on bone surface [5, 61. Strong evidence 

demonstrates that large numbers of osteoclasts are recruited to the resorptive front during 

tooth movement [7, 81. Complex interactions between osteoclasts and osteoblasts 

involve numerous biologic players, including systemic hormones, cytokines and growth 

factors. Precise details regarding the development and maturation of osteoclasts 

(osteoclastogenesis) in areas of orthodontic tooth movement, however, have yet to be 

h l ly  delineated. 

Osteoclastogenesis has been shown to be regulated primarily by the cytokines 

RANKL (Receptor Activator of Nuclear Factor Kappa B Ligand) and M-CSF 

(macrophage colony-stimulating factor) [9]. Cytokines are low-molecular weight 

proteins (mw < 25 kDa) produced by cells that regulate or modify the action of cells in an 

autocrine (acting on the cell of origin) or paracrine (acting on adjacent cells) manner [I]. 

RANKL is produced by osteoblast precursors and binds to the RANK receptor on 

osteoclast progenitors in order to activate them for further differentiation. This coupling 

can be competitively inhibited by OPG (osteoprotegerin), which binds to RANKL on an 

osteoblast precursor, thereby preventing the R A N K L M N K  activation and mediating the 

resorptive process [lo]. In order for an osteoclast progenitor to differentiate into a mature 

osteoclast, the osteoclast progenitor must directly contact an activated RANKL- 

expressing osteoblast [ l  1, 121. Research by Kanzaki et al. demonstrated that cells within 

the periodontal ligament (PDL), when subjected to a continuous compressive force, can 

generate osteoclastogenesis-supporting activity [l  1 , 131. In human studies, RANKL 



expression in the crevicular fluid has been shown to increase 28-fold during orthodontic 

treatment compared to controls [14]. PDL cells are a heterogeneous population of cells 

predominantly comprised of fibroblasts characterized by high alkaline phosphatase 

activity [15]. To this day it is unknown which specific cell type is responsible for 

producing RANKL within the PDL. Shiotoni suggested that RANKL may be produced 

by osteoblasts/stromal cells in the periodontal tissues [16]. 

Tooth Movement Models 

Beginning with the seminal works of Oppenheim and Sandset, several animal 

models have been designed to study tissue responses to mechanical loading during 

orthodontic tooth movement. Primate, dog and cat models have been reported in 

pioneering histological studies using light microscopy [2, 31 and electron microscopy [2, 

171. Among the first to champion the use of the rat model due to increased levels of 

experimental control over other animal models, Waldo developed his eponymous 

technique utilizing an orthodontic elastic placed interproximally between rat molars in 

1954. Today, rats are the most commonly used animal models, accounting for over half 

of all orthodontic tooth movement animal studies [18]. Compared with most other 

animals, rats offer a relatively low-cost, high-throughput model that facilitates 

histological preparation and has many commercially available antibodies for molecular 

techniques [18]. Rat models have enabled a diverse scope of orthodontic research, 

ranging from measuring proliferation rates of periodontal cells under load to assessing the 

effects of prostaglandins, bisphosphonates and leukotrienes on tooth movement. Like 

any animal model, the rat model is not without its drawbacks due to anatomical and 

physiologic differences with humans, including denser alveolar bone and less osteoid 



tissue than humans [4, 181. Moreover, Ren et al.'s systematic review of rat model studies 

over the past twenty years found that the vast majority of the experimental models 

utilized poorly designed force systems that lacked control over force levels and constancy 

over the duration of tooth movement. 

Cell culture models are an alternative to in vivo studies that can afford an 

investigator more control over variables such as force magnitude and load deflection, 

thereby circumventing the force system limitations that Ren noted. However, limited 

culture time has been one of the major criticisms of in vitro culture models - tooth slice 

cultures have demonstrated successful results for up to several hours [19] to two weeks 

[20]. Unpublished reports of a mouse mandible culture model by Bibko et al. show 

tissue viability and cellular response to orthodontic force up to 12 hours in culture [21]. 

Furthermore, cultures of primary cell populations are not homogeneous, and in cases of 

cloned immortalized or transformed osteoblast lines, cells may be examined at different 

stages of differentiation. A major concern with any bone culture is that the cells may 

express an incomplete or altered osteoblast phenotype in a culture condition [22]. 

While the rat remains the predominant in vivo animal model in orthodontic 

research, advances in molecular biology techniques and recombinant DNA technology 

have ushered in a promising pool of transgenic animal models. The development of 

multiple genetically manipulated mice has been particularly promising and facilitates the 

study of genes and proteins that are involved in orthodontic tooth movement. Pavlin et 

al. were among the first researchers in the bone field to utilize transgenic mice in their 

studies of bone-specific and hormone-dependent regulation of type I collagen (Collal) 

gene expression. One of the significant outcomes of these studies was the evidence that 



the full expression of an osteoblast phenotype requires a native bone environment, and 

that regulation of osteoblastic genes in cell culture condition is different than that in an 

intact animal [22]. To date, many applications of transgenic mice have been tested in 

bone biology. In orthodontics, transgenic mice are beginning to be used to study the 

mechanical response in bone and the remodeling of the dento-alveolar complex subjected 

to mechanical stress [22]. 

The Transgenic Mouse Model 

In 2000, Pavlin et al. developed and characterized a mouse model that allows for 

a controlled, reproducible tooth movement and an assessment of histomorphometric and 

genetic responses of periodontal tissues as a function of duration of treatment. Hence, 

this model is a useful tool for applying transgenic technology to the research of 

mechanotransduction pathways in bone during orthodontic treatment [22]. The study 

used an orthodontic coil spring with a low force/deflection rate, producing an average 

force of 10-12 g. This affords for precision and control over the delivery of a low level 

of force that does not degrade rapidly over time. The spring was bonded between the 

maxillary incisors and the first molar; the force system resulted in a predictable tipping 

movement of the molar with the center of rotation at the root apices. Histological 

response during tooth movement was consistent with optimal tissue changes for initiation 

of bone turnover reported in other animal models [ 5 ] .  Histomorphometric study revealed 

14 and 39% increase in the number of osteoblasts on the alveolar bone surface in tension 

sites between 48 hours and 12 days of treatment, respectively. 

Since the advent of Pavlin's characterized model, the transgenic mouse model has 

been utilized by numerous investigators to examine the roles of key mediators in bone 



remodeling under mechanical stresses. In 2006, Yoshimatsu et al. modified Pavlin's 

protocol, using a 0.1 mm stainless-steel ligature wire to ligate a NiTi coil spring between 

the maxillary molars and incisors [23]. The group, however, did not independently test 

the loadldeflection rate of the spring, but rather assumed that the manufacturer's reported 

log of force was correct. In the study, the authors identified osteoclasts histologically 

using tartrate-resistant acid phosphatase (TRAP) staining. They found the number of 

TRAP-positive osteoclasts on the pressure side of the mechanically stressed periodontal 

ligament significantly increased in a time-dependent manner from day 0 to day 6 of 

treatment. 

Keles et al. investigated the relative efficacy of pamidronate vs. osteoprotegerin 

(OPG) in inhibiting bone resorption and tooth movement in transgenic mice [24]. Rather 

than a coil spring, the study design utilized a Y-shaped spring appliance to constrict the 

maxillary first molars palatally. Results demonstrated that osteoclast influx to 

compression sites initiated on day three of treatment, was maximal on day four, and 

persisted to day twelve of force application. In 2006, Fujihara et al. used the mouse 

transgenic model to analyze the molecular responses and expression of osteopontin 

(OPN), a bone matrix glycoprotein, in response to an orthodontic force [25]. 

Osteopontin has been shown by the same author to act as a chemoattractant of osteoclasts 

during bone remodeling caused by mechanical stress. Using OPN knockout mice and 

transgenic mice carrying green fluorescent protein (GFP), they showed two key findings: 

1. Bone remodeling in response to mechanical stress was suppressed in OPN knockout 

mice. 2. The 5.5 kilobase (kb) upstream region of the OPN gene is responsible for the 

OPN gene expression in osteocytes on pressure force application [25]. 



Molecular Biology Techniques in Tooth Movement Models 

The molecular techniques of in situ hybridization to detect gene expression in 

tissue sections and immunohistochemistry to identifj specific proteins and cell types in 

tissue sections have revolutionized tooth movement studies [I]. Both techniques have 

been applied to transgenic mouse models. In situ hybridization is a method of localizing 

and detecting specific mRNA sequences in morphologically preserved tissue sections or 

cell preparations by hybridizing the complementary strand of a nucleotide probe to the 

sequence of interest [26]. Pavlin et a1 in 2000 utilized single-stranded RNA probes for in 

situ hybridization of alkaline phosphatase (ALP), which is an early marker of osteoblast 

phenotype that is mechanically upregulated in both osteoblast precursors migrating 

toward the bone surface and in mature osteoblasts [27]. The results of the in situ 

hybridization experiments demonstrated a cell-specific enhancement of ALP and 

collagen I gene by a mechanical osteoinductive signal. However, the authors noted these 

findings do not per se exclude the possibility that the hybridization signal could have 

been present because of the recruitment, proliferation and accumulation of a larger 

number of mature osteoblasts in the area adjacent to the bone surface [27]. 

In 2003, Gluhak-Heinrich et al. employed Pavlin's transgenic model and utilized 

immunohistochemistry to detect levels of dentin matrix protein (DMP-I), a glycoprotein 

which is highly expressed in osteocytes compared to osteoblasts and which may directly 

modulate mineralization within the osteocyte canalicular and lacuna walls, as suggested 

in DMPl knockout models [28, 291. Using in situ hybridization to assess DMPl mRNA 

expression, the authors concluded that loading of alveolar bone produced a steady and 

significant increase in DMP-1 gene expression in osteocytes on both the resorption and 



formation sides of the bone [28]. In contrast, immunohistochemistry analysis of DMP-1 

protein showed a transient decrease in immunoreactivity after three days of loading on 

both the formation side and resorption side when compared to contralateral controls. 

However, by seven days of loading, there was a significant increase in DMP-1 protein 

immunoreactivity on both sides. The immunohistochemistry result could have been 

related to the availability of the protein to the antibody and may not accurately reflect the 

true levels of DNIP1 -producing osteocytes and osteoblasts [28]. Consequently, even 

when examining the same tissue specimens, one can see that in situ hybridization and 

immunohistochemistry can yield conflicting results. Although this technology has 

greatly simplified tooth movement research, one should not forget that the mRNA 

message is not always translated into protein, and the presence of a protein does not 

necessarily mean that it is biologically active [I]. 

The results of these two studies highlight the potential shortcomings of these 

molecular techniques when relied upon alone. While in situ hybridization is undoubtedly 

a very powerful technique, for the average laboratory it is expensive to undertake, is time 

consuming, and requires detailed molecular biological knowledge of subcloning, in vitro 

transcription and bacterial expression. The probes most often used (RNA or cDNA) are 

not generally available commercially and are often obtained on an ad hoc basis, 

laboriously prepared on a case by case basis by the investigator and once purchased often 

require time-consuming and expensive preparation before use. Furthermore, depending 

on the type and length of the probe used, tissue penetration and specificity can be altered 

[26]. Although in situ hybridization expression has been widely used in developmental 

studies, expression of the promoters has been reported to be low and may be affected by 



technical problems [30]. Therefore, a need exists for alternative means for visualization 

and quantification of genetic activity as a means for cell identification within transgenic 

models of tooth movement. The use of transgenic constructs and fluorescent proteins 

may overcome these experimental problems and simplify the detection of differentiated 

bone cells at various stages of development, such as osteoblasts. 

Markers of Osteoblast Lineage 

Osteoblast differentiation is characterized by a series of maturational steps during 

which an osteoprogenitor cell proliferates and undergoes sequential changes in 

morphology and expression of bone-associated marker genes. a-Smooth muscle actin 

(aSMA) has been identified as a marker specific for osteoprogenitor cells prior to 

entering the osteogenic pathway; in a cellular environment completely devoid of 

osteoblast cells, cells expressing aSMA have been shown to transition to an 

osteoprogenitor lineage leading to extensive osteogenesis [31]. Preosteoblasts are 

characterized by fibroblastic morphology, alkaline phosphatase (ALP), and type I 

collagen (Collal) messenger RNA (mRNA) expression. Early osteoblast stages are more 

cuboidal and express bone sialoprotein (BSP). BSP is a highly sulfated, phosphorylated 

and glycosylated protein that is characterized by its ability to bind to hydroxyapatite [32]. 

The deposition of BSP into the extracellular matrix and the ability of BSP to nucleate 

hydroxyapatite crystal formation indicate a potential role for this protein in the initial 

mineralization of bone [33]. Moreover, BSP has been reported to be mitogenic for pre- 

osteoblasts and to promote the differentiation of these cells into osteoblasts, thereby 

stimulating bone calcification [34], and expression of BSP mRNA has been reported to 



be increased in the tension area during rodent tooth movement [35] and during in vitro 

compression of Saos-2 human osteoblastic cell lines [32]. 

Mature osteoblasts and osteocytes characteristically express DMPl [28]. During 

mechanical loading using Pavlin's transgenic model, expression of DMPl mRNA in 

osteocytes was shown to increase 2-fold as early as six hours after treatment in both bone 

formation and bone resorption sites, and up to 3.5 fold after four days of loading. In 

contrast, osteoblast mRNA expression showed a transient 45% decrease in bone 

formation sites and a constant decrease of DMPl mRNA during the entire course of 

treatment in resorption sites [28]. This is in agreement with reports that DMPl is highly 

expressed in osteocytes compared to osteoblasts [36]. Terminal differentiation of the 

osteoprogenitor cell is associated with Osteocalcin (OC) mRNA and mineralization of 

bone [28]. 

The use of the rat type I collagen (Collal) promoter as a marker for stages of 

osteoblast differentiation in vitro and in vivo has been well established [30]. Different 

lengths of collagen promoters (3.6kb and 2.3kb) containing a 13-base pair bone element 

have demonstrated high level expression in osteoblasts [3 71. Transgenic mice have been 

developed which carry a green fluorescent protein (GFP) tagged to specific promoter 

fragments. This has enabled investigators to utilize microscopy to visualize the GFP- 

tagged promoter fragments and to correlate GFP expression with different stages of 

osteoblast differentiation. Dacic et al. showed that the 3.6 kb rat Collal promoter is 

expressed in culture during the early post-proliferative stage (day 7-9), and gets stronger 

when the cell differentiation progresses [38]. In contrast, the 2.3 kb rat Collal promoter 

is activated at later stages (around day 14), and shows very high expression in 



mineralized nodules [38]. This evidence suggests that the 3.6 kb Collal promoter is a 

linkage marker for pre-osteoblasts and osteoblasts, while the 2.3 kb Collal promoter 

reflects endogenous Collal expression in differentiating osteoblasts and osteocytes [38]. 

Transgenic mice containing more than one GFP-labeled promoter construct have 

recently been developed at the University of Connecticut to advance the detection of 

bone remodeling cells at various stages of differentiation. Transgenic mice are now 

available which contain three-color promoter constructs driving distinguishable GFP 

isomers: Bone Sialoprotein (BSP)- FPtopaz to detect early osteoblasts, Dentin Matrix 

Protein 1 (DMP1)- FPcherry to detect osteocytes, and Tartrate Resistant Acid Phosphatase 

(TRAP)- FPcyan to detect osteoclasts. These multiplex approaches to the identification 

and isolation of osteoblast lineage cells should help to define the molecular and cellular 

determinants that initiate and maintain remodeling during orthodontic treatment [39]. 

Furthermore, these GFP transgenes offer certain advantages over other molecular biology 

techniques: retention of their fluorescent property after extensive tissue preparation, 

visualization in unstained sections that preserve the histological architecture of bone, 

detection of GFP signals directly through microscopy without depending on the diffusion 

of a substrate, indefinite stability of prepared specimens. These characteristics of 

utilizing GFP transgene molecular technology address many of the shortcomings of in 

situ hybridization and immunohistochemistry. When comparing GFP detection results 

with genetic activity identified through in situ hybridization, adjacent tissue sections 

demonstrated the same expression patterns of transgenes, thereby validating the use of 

this GFP technj.que in lieu of in situ hybridization [30]. Although in situ hybridization 

and immunological techniques can be used to appreciate the microheterogeneity in a 



developing or remodeling tissue, the ease and specificity of detecting a visible marker 

gene has great experimental appeal. Though no single technique is infallible, any 

methodology or protocol that accurately streamlines specimen analysis and facilitates 

data collection may inherently diminish procedural errors and reduce problems with 

sensitivity, accuracy and precision of measurement. Therefore, GFP, when driven by a 

promoter that is activated at a particular level of cellular differentiation, may provide a 

strategy for identifying and isolating subpopulations of cells at increasing levels of 

osteoblast development. 



RATIONALE 

Although Pavlin developed a transgenic mouse model to investigate bone 

remodeling in response to orthodontic force in 2000, few studies have since been 

documented which employ in vivo transgenic mouse models. Furthermore, no in vivo 

orthodontic tooth movement model has utilized visual promoter transgene (GFP) markers 

for direct microscopic visualization and quantification of osteoprogenitor cells at various 

stages of maturation. Orthodontic tooth movement involves the complex interaction of 

several differentiated populations of cell types within the periodontal ligament. Very 

little is known, however, about how specific cell populations within the PDL respond to 

orthodontic force. With the development of multi-colored GFP promoter transgenes to 

detect various stages of cellular differentiation of the osteoblast lineage, we have a 

powerful marker to efficiently visualize how a homogeneous cell population within the 

periodontal ligament responds to orthodontic force using GFP transgene technology. 

Therefore, the goals of this study are to develop an in vivo tooth movement model using 

mice with GFP transgenes and to evaluate the expression and localization of osteoblast 

lineage cells in periodontal ligament over a time course of orthodontic force application. 



HYPOTHESIS 

Using an in vivo transgenic mouse model, our project aims to characterize the 

localization of osteoblast precursor cells within the periodontal ligament over a time 

course of orthodontic tooth movement. We will specifically analyze the furcation area 

of the maxillary first molar, which includes areas of compression and tension, based on 

the direction of the applied force. To localize cells within the osteoblast lineage, the 

model will be applied to mice transgenic for early osteoblast differentiation markers, 

specifically transgenic mice containing a-smooth muscle actin GFP-fused promoter 

(aSMAGFP), transgenic mice containing the 3.6 kb fragment of the rat collagen type 1 

promoter fused to a Topaz-fluorescent protein (Co13.6GFP), and transgenic mice 

containing a bone sialoprotein GFP-fused promoter (BSPGFP). Using these mice, we 

hypothesize that there will be an increase in expression of aSMA, Co13.6, and BSP GFP 

positive cells on the tension side of loaded specimens compared to unloaded controls in 

the furcation of the maxillary first molar from zero to seven days in vivo. 

Null hypotheses: 

1. There will be no increase in expression of aSMA, Co13.6, or BSP GFP 

positive osteoblast lineage cells post application of orthodontic force on the 

tension side compared to the control side from zero to seven days in vivo. 



SPECIFIC AIMS 

Aim #1: Develop an in vivo orthodontic tooth movement mouse model 

Pavlin et al. developed and characterized an in vivo mouse tooth movement model 

to analyze histomorphometric and genetic responses of periodontal tissues to orthodontic 

force. Using similar materials as well as adapting unpublished techniques from an in 

vitro mouse mandible organ culture tooth movement model developed by Bibko et al., we 

will develop an in vivo orthodontic tooth movement model in mice. 

Aim #2: Apply the model to mice transgenic for fluorescent protein (GPP) tagged 

promoters which identify various stages of osteoblast maturation. 

Using the transgenic mice, we will characterize the differential expression of 

aSMA, Co13.6, and BSP GFP within the PDL in the in vivo orthodontic tooth movement 

model. 

Aim #3: Examine if USMA, Co13.6, or  BSP GFP expressing cells also express 

RANKL within the PDL in an in vivo orthodontic tooth movement model. 

RANKL will be localized in the periodontal area of the maxillary first molar 

using immunohistochemistry. The immunohistochemistry images will be overlaid with 

the GFP fluorescence images to identify if a specific population of osteoblast precursor 

cells is co-localized with the presence of RANKL in the PDL. 
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Localization of Osteoblast Precursor Cells in the Periodontal Ligament Using an In vivo 

Orthodontic Tooth Movement Model 

ABSTRACT 

Objective: To evaluate the effects of orthodontic tooth movement on cells of the 

osteoblast lineage in the periodontal ligament model using transgenic mice containing 

transgenes of promoters of osteoblast diffferntiation fused to green fluorescent proteins 

(GFP). 

Materials and Methods: The maxillary first molar was loaded with 10-1 2 grams of 

force for 12 hr, 48 hr, or 7 d in transgenic mice 10-1 2 weeks of age. Mice were 

transgenic for one of the following GFP-tagged bone markers of osteoblast lineage cells: 

a-smooth muscle actin (aSMA), 3.6 kb fragment of the rat collagen type 1 promoter 

(Co13.6), or Bone Sialoprotein (BSP). Loaded sites of pressure and tension were 

compared with contra-lateral unloaded controls. 

Results: Frozen sections of the maxillary first molar showed a significant decrease in 

GFP expression for all osteoblast bone markers in the PDL at all time points when 

comparing the pressure side of control sites to the pressure side of loaded sites. The 

tension side of loaded sites predominantly demonstrated a slight, but not significant, 

increase in GFP expression compared to controls. 

Conclusion: An in vivo tooth movement model using transgenic mice with GFP bone 

markers provides an efficient and effective model to investigate the cellular events of 

orthodontic tooth movement. Osteoblast lineage cells may lose their osteoblast 

phenotype in response to compressive force. 



INTRODUCTION 

Orthodontic tooth movement is contingent upon the underlying cellular and 

molecular responses within the periodontal ligament (PDL) to an applied force. This 

process of mechanotransduction stimulates bone remodeling during which osteoblasts 

produce bone on the tension side and osteoclasts resorb bone on the pressure side of the 

PDL.'-~ Complex interactions between osteoclasts and osteoblasts involve numerous 

biologic players, including systemic hormones, cytokines and growth  factor^.^ 

Increasingly, it has been recognized that a greater understanding of the cellular 

determinants and the factors regulating the bone remodeling process is necessary to 

enable future innovations in orthodontic treatment. Consequently, the study of the 

biology of tooth movement has evolved into an interdisciplinary field, merging the 

technical expertise and materials science of clinical orthodontics with the molecular 

investigative acumen of cellular, molecular and bone biology research. 

Orthodontic tooth movement involves the complex interaction of several 

differentiated populations of cell types within the periodontal ligament. Very little is 

known, however, about how specific cell populations within the PDL respond to 

orthodontic force. New methods have recently been developed to isolate and study 

defined populations of cells through the use of transgenic mice with green fluorescent 

protein (GFP) reporters hsed to the promoter of differentiation  marker^.^ The 

advantages of using this technology are that it allows for the spatial and temporal 

visualization of the expression of the promoter on tissue sections, cells can easily be 

isolated by Fluorescent activated cell sorting (FACS), and one can multiplex different 



fluorescent reporters.' These methods have already been successfully used in bone 

studies to label and isolate cells at distinct stages of osteoblast differentiati~n.~ 

Osteoblast differentiation is characterized by a series of maturational steps during 

which an osteoprogenitor cell undergoes sequential changes in expression of bone- 

associated marker genes. a-Smooth muscle actin (aSMA) has been identified as a marker 

specific for osteoprogenitor cells prior to entering the osteogenic pathway; in a cellular 

environment completely devoid of osteoblast cells, cells expressing aSMA have been 

shown to transition to an osteoprogenitor lineage leading to extensive o~ t eo~enes i s . ' ~  

Preosteoblasts are characterized by alkaline phosphatase (ALP) and type 1 collagen 

(Collal) mRNA expression. Early osteoblast stages express bone sialoprotein (BSP), 

characterized by its ability to bind to hydr~xya~atite." Mature osteoblasts and osteocytes 

characteristically express D M P ~  . I 2  The use of the rat Collal promoter as a marker for 

stages of osteoblast differentiation in vitro and in vivo has been well e~tablished.~ 

Transgenic mice have been developed which carry GFP tagged to specific promoter 

fragments. This has enabled investigators to utilize microscopy to visualize the GFP- 

tagged promoter fragments and to correlate GFP expression with different stages of 

osteoblast differentiation. 

No in vivo orthodontic tooth movement model has been reported in the literature 

that utilized visual promoter transgene markers (GFP) for direct microscopic 

visualization and quantification of osteoprogenitor cells at various stages of maturation. 

With the development of multi-colored GFP promoter transgenes to detect various stages 

of cellular differentiation of the osteoblast lineage, we have a powerful marker to 

efficiently visualize how a homogeneous cell population within the periodontal ligament 



responds to orthodontic force using GFP transgene technology. Therefore, the purpose 

of this study was to develop an in vivo tooth movement model using mice with GFP 

transgenes and to evaluate the expression and localization of osteoblast lineage cells in 

periodontal ligament over a time course of orthodontic force application. 

MATERIALS AND METHODS 

All experiments were performed under an institutionally approved protocol for the 

use of animals in research (University of Connecticut Health Center #2008-432). Thirty- 

six transgenic mice 10-12 weeks of age weighing 20-25 g were used for the study. Mice 

were weighed daily, and any mouse that lost more than 20 % of its body weight was 

sacrificed and excluded from the study. Twelve mice (n=12) were transgenic for a- 

smooth muscle actin GFP-fused promoter (aSMA), twelve mice (n=12) were transgenic 

for 3.6 kb fragment of the rat collagen type 1 GFP-fused promoter (Col3.6), and twelve 

mice (n=12) were transgenic for bone sialoprotein GFP-fused promoter (BSP). The 

animals were housed under normal laboratory conditions, fed transgenic soft dough diet 

(Bio-Sew, Frenchtown, NJ) and water ad libitum, and acclimated for 2 weeks under 

experimental conditions. 

Mice were anesthetized with intramuscular injections of ketamine (6pg/g body 

weight) and fitted with a custom mouth prop formed from 0.032" round stainless steel 

wire for appliance placement (Figure 1). A custom-made 0.006" x 0.030", closed, nickel- 

titanium coil spring (Ultimate Wireforms, Inc., Bristol, CT) was used to deliver 

orthodontic force. The forceldeflection rate (FIA) for the spring was determined to be 10 

to 12 g over a range of 0.5 to 1.5 mm activation (data not shown). 



Appliance delivery was performed under a dissecting microscope. A 0.008" 

stainless steel wire was threaded through the contact between the first and second left 

maxillary molars. Self-etching primer (Transbond Plus self etching primer, 3M Unitek, 

Monrovia, CA) was applied to the lingual surface of the first molar, and the wire was 

bonded to the tooth with light-cured dental adhesive glass ionomer cement (GC Fuji 

Ortho LC, GC America) and cured with a curing light (Flashlite 1401, Discus ~enta l '  

Culver City, CA). The distance between the maxillary first molar and the left incisor was 

measured to the nearest 0.5 mrn with a conventional Michigan-0 periodontal probe with 

Williams markings. A segment of the spring was cut to measure 2 mm less than the 

molar-incisor distance - the 2 mm discrepancy accounting for up to 1.5 mm of activation 

plus 0.5 mm of space occupied by the 0.008" wire between the first molar and spring. 

The spring was then ligated to the wire around the first molar. A second 0.008" stainless 

steel wire was inserted through the mesial end of the spring. The spring was activated by 

pulling it toward the left central incisor with the wire. Activation distance was calibrated 

with a Michigan-0 periodontal probe with Williams markings by measuring the distance 

from the incisor to the mesial end of the passively ligated spring; with the probe in place, 

the spring was activated 1.5 mm to deliver a force of 10-12 grams. The wire on the 

mesial end of the spring was ligated around the left incisor and bonded in place with 

light-cured dental adhesive resin (Transbond XT, 3M Unitek, Monrovia, CA). The 

mandibular incisors were reduced to prevent appliance damage. Only the left side of the 

maxilla was mechanically loaded; the contralateral right side served as control. 

Each group of 12 GFP transgenic mice was equally divided into three time 

intervals of force duration: 12 hrs, 48 hrs, and 7 days. After completion of the time 



course, mice were euthanized with CO2 followed by cervical dislocation. The mice were 

decapitated and the maxillae were removed and cleaned of soft tissues and muscles. The 

hemisected maxillae were placed in 10% formalin for five days at 4" C, washed in 

phosphate buffered saline, and placed in 30% sucrose for 12 hrs. The maxillae were 

immersed in individual disposable base molds containing frozen embedding medium 

(Shandon M-1, Thermo Scientific, Waltham, MA). The embedding media was flash 

frozen in a chilled solution of 2-methylbutane over dry ice. Sagittal sections 5-pm thick 

were cut of the loaded left and control right sides using a Leica CM1900 Cryostat (D- 

69226; Leica, Inc., Nussloch, Germany). Sections were oriented to visualize the mesial- 

buccal and distal-buccal roots of the maxillary first molars, including the interradicular 

bone and the coronal 113'~ of the radicular pulp. Four tissue sections were cut for each the 

left and right side. 

Digital images of each section were captured using a Zeiss Axiovert 200 M 

microscope equipped with a GFP FITCITexas Red dual filter cube, a motorized stage, 

and digital camera. Images were taken at 20x magnification in the furcation area of both 

the mesial-buccal and distal-buccal roots. Based on the mesial direction of the force, the 

mesial surface of the distal-buccal root (pressure side) was imaged. Conversely, the 

distal aspect of the mesial-buccal root (tension side) was imaged. For comparison, the 

same pressure and tension locations of the furcation area were imaged for both the 

mechanically-loaded left side and the unloaded right side. The inferior border of the 

image area was aligned at the most coronal portion of the respective root surface in order 

to capture the region of the PDL in closest proximity to the furcation (Figure 2). 



Following GFP imaging, sections were stained with hematoxylin (Invitrogen, Carlsbad, 

CA) according to the manufacturer's directions. 

To quantify the number of osteoblast lineage cells, images were viewed in Adobe 

Photoshop (Adobe Systems Inc., San Jose, CA) and cells expressing GFP fluorescence 

within the boundaries of the PDL space were counted in a blinded fashion by a calibrated 

investigator who did not know which tissue samples were being counted. Images for the 

pressure and tension sides in both the mechanically-loaded left side and the unloaded 

right side were counted in identical fashion. The same imaging protocol was used to 

capture images and count the total cells in the corresponding hematoxylin images. A 

GFP labeling index (number of GFP positive cells1 total number of cells) was calculated 

according to the following formula: Ratio of GFP positive cells = (# GFP positive cells 1 

# all cells). Images of the pressure and tension sites of the first molar were taken and 

counted from four tissue sections per side (loaded left and control right) per mouse. The 

average GFP labeling index of the pressure and tension sites of the four sections was 

calculated for each side (left vs. right) for each mouse. For each of the GFP transgenes 

and time points, 4 mice were used, and the mean GFP labeling index for each group was 

calculated. The means for the GFP labeling index of the pressure and tension sites for the 

loaded left molar and unloaded right molar at each time point for each GFP transgene 

were compared using student t-tests. Significance was accepted when K.05.  Statistical 

analyses were carried out with GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). 

RESULTS 

During the duration of the experiment, animals typically lost weight on the first 

day, returned to their original weight after days 2 to 3, and continued to gain weight 



through day 7. No animal lost any body weight after 1 week compared to day 0 (data not 

shown). Qualitatively, both the GFP images and hematoxylin images demonstrated that 

the applied force consistently produced a narrowing, or compression, of the PDL space 

on the mesial surface of the distal-buccal root. Conversely, the distal surface of the 

mesial-buccal root displayed a widening of the PDL space in response to the tensile 

force. These morphologic changes were visible even in the groups loaded for only 12 

hours (Figure 3). 

After 12 hours of mechanical loading, a significant decrease in fluorescent protein 

expression for all three osteoblast differentiation markers was observed in the pressure 

side of the furcation area of loaded first molars compared to unloaded controls (Table 1). 

Figures 4, 5, and 6 A-D show sagittal sections of fluorescent images after 12 hours of 

loading in Co13.6, BSP, and aSMA mice, respectively. Arrows signify direction of force 

application. For the tension side of the furcation of the first molar at 12 hours of loading, 

the mechanically loaded BSP group demonstrated a significant increase (P<0.05) in GFP 

expression compared to the unloaded BSP group (Fig. 5 C, D). In the Co13.6 and aSMA 

12 hour mice, a non-significant increase in GFP expression was observed on the loaded 

tension sides when compared to the unloaded tension controls (Fig. 7). 

Among the mice in the 48 hour group, both the aSMA and BSP mice showed a 

non-significant increase in GFP expression on the loaded tension sides compared with the 

unloaded control tension sides. The Co13.6 48 hour group, however, demonstrated a non- 

significant decrease in GFP expression on the loaded tension side when compared to the 

unloaded tension controls. GFP expression decreased significantly in the pressure side of 



the furcation area of loaded first molars compared to unloaded controls for the Co13.6, 

BSP, and aSMA 48 hour groups (Table 1 ; Figs. 4, 5,6). 

In the 7 day group, all three osteoblast differentiation markers demonstrated a 

significant decrease in GFP expression when comparing loaded pressure sides to 

unloaded pressure sides (Table 1 ; Figs. 4,5,6). On the experimental tension sides of the 

7 day groups, GFP expression in the Co13.6 and aSMA mice increased, but not 

significantly, when compared to the control tension sides. For the BSP 7 day group, a 

non-significant decrease in GFP expression was observed in the loaded tension vs. 

unloaded tension sites. 

Comparison of the pressure sides to the tension sides of the controls showed no 

significant difference at any time point for any GFP transgene. 

DISCUSSION 

The focus of this study was on the response of osteoblast lineage cells to 

orthodontic force in an in vivo murine model. In order to localize osteoblast cells within 

the periodontal ligament, the model was used in transgenic mice with GFP markers for 

different stages of osteoblast differentiation. Cells expressing proteins such as type I 

collagen and bone sialoprotein have been shown to be representative of the osteoblastic 

stage of differentiation. Different length collagen promoter fragments containing a 13- 

base pair element, including the 3.6kb and 2.3kb fragments, have demonstrated high 

levels of expression in oste~blasts.'~ Dacic et al. showed that the 3.6 kb rat Coll a1 

promoter is expressed in culture during the early post-proliferative stage, and gets 

stronger when the cell differentiation progresses.'4 By illuminating cells which express 

these various promoters with GFP markers, we now have a powerful tool to efficiently 



visualize populations of homogeneous osteoblast cells at known stages of differentiation 

in a tooth movement model. Use of these GFP transgenes offers certain advantages over 

other molecular biology techniques such as in situ hybridization and 

immunohistochemistry: retention of their fluorescent property after extensive tissue 

preparation, visualization in unstained sections that preserve the histological architecture 

of bone, detection of GFP signals directly through microscopy without depending on the 

diffusion of a substrate, and indefinite stability of prepared specimens. 8 

Application of orthodontic force to the maxillary first molar in this study resulted 

in two distinct patterns of response from osteoblast lineage cells on the tension and 

pressure sides. On the tension side, the ratio of cells expressing GFP markers of 

osteoblast lineage typically increased, though not significantly, compared to controls. 

The earliest time point registered in this study was at 12 hours, and the longest was 7 

days; for these times, as well as for the 48 hour groups, the majority of the GFP markers 

showed a modest increase in expression. These data are consistent with Pavlin's findings 

that the number of osteoblasts on the alveolar bone surface in tension sites of the 

periodontal ligament showed a non-significant increase between 48 hours and 6 days of 

orthodontic loading. In Pavlin's studies, however, no difference between loaded sites of 

tension and controls was seen in the first 24 hours, and significant increases were 

15, 16 observed from days 6 through day 12 of observation. The contrast in significance in 

the present study with Pavlin's may be attributed to terminating the time course at 7 days; 

perhaps had the force application been extended longer, more significant expression 

would have been seen in the tension side, similar to Pavlin's data. Differences in results 

may also be attributed to the materials and methods used to detect osteoblasts; GFP 



detection utilized in this study measures promoter activity, whereas Pavlin determined 

Coll a1 mRNA activity using in situ hybridization. 

In contrast to the increase observed on the tension side, GFP expression was 

significantly reduced on the compression sites when compared to controls at the same 

time points. This result has not previously been reported in the literature in an in vivo 

study. BSP mRNA has been reported to be increased during in vitro compression of 

Saos-2 human osteoblastic cell lines." 

One interpretation of the significant decrease in GFP expression on the pressure 

side is that the osteoblast cells lose their phenotype due to de-differentiation in response 

to the orthodontic force. Alternatively, the loss of GFP expression may be due to the fact 

that the cells have undergone necrosis or apoptosis, processes which have been 

implicated in the formation of regions of hyalinization within the PDL. ' , ~ ,~  Though not 

confirmed in this study, the light force range of 10-12 grams used has previously been 

shown in mouse models to promote physiologic tooth movement without inducing areas 

of hyalinization.15 Definitive light microscopy analysis would be needed to confirm the 

absence of hyalinization in this study. 

In order to better interpret the results of this study, future study designs would 

benefit from further development of the GFP model. In particular, the creation of 

transgenic mice that can express multiple markers of sequential stages of osteoblast 

maturation simultaneously and distinctly within the same animal would be of great 

benefit. Such mice could be used to definitively show how osteoblast lineage cells 

continue, cease, or regress in differentiation in response to mechanical loading by 

analyzing how the relative proportion of each stage of differentiation varies with force 



application. Furthermore, a longer time course of orthodontic tooth movement would 

provide greater insight into the underlying biology. 

CONCLUSION 

An in vivo tooth movement model using transgenic mice with GFP bone markers 

provides an efficient and effective model to investigate the cellular events of orthodontic 

tooth movement. Osteoblast lineage cells may lose their osteoblast phenotype in 

response to compressive force. 
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CHAPTER I11 - DISCUSSION 

Addendum to Chapter I1 - Aim #3 

In addition to the materials and methods described in Chapter I1 which relate to 

Aim #1 and Aim #2 of this thesis, experimental design and results for Aim #3 (RANKL 

Localization) were obtained but not included in the manuscript for journal submission. 

The materials and methods and results of the RANKL experimentation are presented 

below, followed by comprehensive discussion and conclusion chapters inclusive of all 

Aims. 

Immunohistochemical Analysis of RANKL Expression 

Materials and Methods 

After GFP imaging, the same sections were used for detection of RANKL 

expression. After washing in PBS for 5 minutes three times, endogenous peroxidase 

activity in the fixed sections was prevented by treating them with 3% hydrogen peroxide 

in PBS for 25 min, followed by washing in PBS. Non-specific reactivity was blocked 

with 10% rabbit serum in PBS for 1 hour and 30 minutes at room temperature. Anti- 

RANKL (goat polyclonal anti-mouse RANKL antibody, BD Biosciences, San Jose, CA) 

was then added at a dilution of 1 :200 in 2% rabbit serum for 24h at 4OC. The sections 

were washed with PBS and incubated with biotinylated rabbit anti-goat secondary 

antibody diluted 1 :200 in 2% rabbit serum for one hour at room temperature. A negative 

control was used in the immunostaining procedure with non-immune goat serum and 

addition of secondary antibody. The immunocomplexes were visualized in brown with a 

DBA substrate kit (VECTASTAIN Elite ABC) following the manufacturer's directions 

under a light microscope, followed by counterstaining with hematoxylin. Sections were 



dehydrated in ascending alcohol solutions (50%, 70%, 80%, 95% x2, and 100% x2) and 

finally cleared with xylene two times prior to mounting with Permount. 

Images of the RANKL stained sections were captured using the same procedure 

described previously in Chapter I1 for the GFP images. Using Adobe Photoshop, images 

of the RANKL stained sections were superimposed over the corresponding images of 

GFP promoter expression. The number of RANKL positive cells overlapping a GFP 

positive cell was counted. 

Results 

Representative hematoxylin and RANKL-stained images from the frozen sections 

are shown in Figure 8. RANKL positive cells were seldom detected within the 

periodontal ligament of the frozen sections. Though negative controls obtained during 

the RANKL staining process did confirm the success of the staining via evidence of 

brown cells observed in the interradicular marrow spaces under low magnification light 

microscopy, the PDL space under high magnification consistently showed little or no 

RANKL staining in both loaded and unloaded specimens. RANKL positive cells were 

more frequently observed in peri-vascular areas within the alveolar bone. The limited 

number of RANKL positive sections revealed no pattern or correlation related to type of 

force (pressure vs. tension), GFP promoter expression, or duration of force. 

A representative image of the RANKL stained section overlaid with its corresponding 

Co13.6 GFP image is shown in Figure 9. The results of RANKL staining, therefore, 

could not be used for meaningful statistical analysis. 



DISCUSSION 

In the present study, an in vivo tooth movement model using mice with GFP 

transgenes was developed to evaluate the localization of osteoblast lineage cells in the 

periodontal ligament over a time course of orthodontic force application. The 

biomechanical force system was adapted from the model described by Pavlin et a1 [22]. 

Using a super-elastic nickel-titanium coil ligated from the maxillary first molar to the 

incisors, a force of 10-12 grams was delivered to groups of transgenic mice. Based on 

the application of force delivery, the resulting vector of force had a mesial and extrusive 

direction. Therefore, the furcation of the molar presented an ideal area for analysis since 

the mesial-buccal and distal-buccal roots in this location can portray areas of mesial and 

extrusive movement. The force system was applied for a period of 12 hours, 48 hours, or 

7 days. This time course was consistent with previous murine models of orthodontic 

tooth movement, and represented a manageable investment in time allocation to initially 

develop an in vivo model while minimizing the likelihood of appliance failure over a 

longer time interval. Hematoxylin stained frozen sections showed demonstrable areas of 

compression and tension in the periodontal ligament for specimens subjected to force. 

Sections were not stained with eosin because hematoxylin staining was performed after 

RANKL staining. 

Though much information has been learned through the use of animal models in 

orthodontics over the past century, more information is still needed about the biological 

responses of the paradental tissues to mechanical stimuli, especially in the initial phases 

of orthodontic treatment. An increase in the expression of cytokines, such as interleukin- 

l a  and tumor necrosis factor-a, has been seen within three hours in sites of compression 



and tension during tooth movement studies in rats [40]. As early as four hours, CAMP 

and insulin-like growth factor-I levels have been shown to increase, and cells within the 

periodontal ligament demonstrate evidence of differentiation [41]. The bone 

transcription factor Runx2 and extracellular signal-regulated kinases have been shown to 

be up-regulated in response to orthodontic force; proportions of Runx2-positive cells and 

pERK112-positive cells significantly increase after only eight hours of loading in rats 

[421. 

The first part of this study focused on the response of osteoblast lineage cells to 

orthodontic force in an in vivo murine model. In order to localize osteoblast cells within 

the periodontal ligament, the model was used in transgenic mice with GFP markers of 

different stages of osteoblast differentiation. Cells expressing proteins such as type I 

collagen and bone sialoprotein have been shown to be representative of the osteoblastic 

stage of differentiation. Different length collagen promoter fragments containing a 13- 

base pair element, including the 3.6kb and 2.3kb fragments, have demonstrated high 

levels of expression in osteoblasts [37]. Dacic et al. showed that the 3.6 kb rat Collal 

promoter is expressed in culture during the early post-proliferative stage, and gets 

stronger when the cell differentiation progresses [38]. By illuminating cells which 

express these various promoters with GFP markers, we now have a powerful tool to 

efficiently visualize osteoblast cells at known stages of differentiation in a tooth 

movement model. Use of these GFP transgenes offer certain advantages over other 

molecular biology techniques such as in situ hybridization and immunohistochemistry: 

retention of their fluorescent property after extensive tissue preparation, visualization in 

unstained sections that preserve the histological architecture of bone, detection of GFP 



signals directly through microscopy without depending on the diffusion of a substrate, 

and indefinite stability of prepared specimens. 

Application of orthodontic force to the maxillary first molar in this study resulted 

in two distinct and contradicting patterns of response from osteoblast lineage cells. On 

the tension side, the ratio of cells expressing GFP markers of osteoblast lineage typically 

increased, though not significantly, compared to controls. The earliest time point 

registered in this study was at 12 hours, and the longest was 7 days; for these times, as 

well as for the 48 hour groups, the majority of the GFP markers showed this modest 

increase in expression. These data are consistent with Pavlin's findings that the number 

of osteoblasts on the alveolar bone surface in tension sites of the periodontal ligament 

showed a moderate but non-significant increase between 48 hours and 6 days of 

orthodontic loading. In Pavlin's study, however, no difference between loaded sites of 

tension and controls was seen in the first 24 hours, and significant increases were 

observed from days 6 through day 12 of observation [22]. The lack of significance in this 

study may therefore be attributed to terminating the time course at 7 days; perhaps had 

the force application been extended longer, more significant expression would have been 

seen in the tension side, similar to Pavlin's data. 

In contrast to the increase observed on the tension side, GFP expression was 

significantly reduced on the compression sites when compared to controls at the same 

time points. This unexpected result has not previously been reported in the literature in 

an in vivo study. BSP mRNA has been reported to be increased during in vitro 

compression of Saos-2 human osteoblastic cell lines [32]. Cultures of primary cell 

populations, however, are not homogeneous, and in cases of cloned immortalized or 



transformed osteoblast lines, cells may be examined at different stages of differentiation. 

A major concern with any bone culture is that the cells may express an incomplete or 

altered osteoblast phenotype in a culture condition [22]. 

One interpretation of this significant decrease is that the osteoblast cells lose their 

phenotype due to de-differentiation in response to the orthodontic force. Alternatively, 

the loss of GFP expression may be due to the fact that the cells have undergone necrosis 

or apoptosis, processes which have been implicated in the formation of regions of 

hyalinization within the PDL [1,2,4]. Though not confirmed in this study, the light force 

range of 10-12 grams used has previously been shown in mouse models to promote 

physiologic tooth movement without inducing areas of hyalinization [22]. Definitive light 

microscopy analysis would be needed to confirm the absence of hyalinization in this 

study. Due to the use of frozen sectioning in the present study, detection of hyalinization 

was not possible. While frozen sectioning did preserve the overall morphology of the 

native histological environment, the fine details and micro-architecture of the sections 

was not well maintained using this technique. 

In the second part of the study, the frozen sections were stained to detect the 

presence of RANKL within the paradental tissues. Frozen sectioning was utilized in 

order to best preserve GFP expression. Previous work has shown that when compared to 

paraffin processing of transgenic GFP mice, frozen sectioning yields superior retention of 

GFP expression and stronger GFP signaling [43]. The quality of histological images 

obtained from frozen sectioning, however, has widely been acknowledged to be inferior 

to paraffin sectioning. In this regard, using frozen sectioning represents a trade off 

between GFP detection and histological analysis. For this study, frozen sectioning was 



elected in order to first meet the objective of characterizing a baseline of data for 

localization of osteoblast lineage GFP expression. As a result, the quality of histological 

sections was handicapped, and RANKL staining was most likely impeded. 

CHAPTER IV - CONCLUSION 

SIGNIFICANCE OF RESULTS 

An in vivo tooth movement model using transgenic mice with GFP bone markers 

provides an efficient and effective model to investigate the cellular events of orthodontic 

tooth movement. Using this model, consistent results were observed that revealed 

possible trends in osteoblast lineage cells during the initial stages of orthodontic tooth 

movement. In particular, osteoblast lineage cells may lose their osteoblast phenotype 

within the first day of compressive force application. This trend is sustained through 

seven days of tooth movement. 

FUTURE DIRECTION 

In order to better interpret the results of this study, future study designs would 

benefit from further development of the GFP model. In particular, the creation of 

transgenic mice that can express multiple markers of sequential stages of osteoblast 

maturation simultaneously and distinctly within the same animal would be of great 

benefit. A single mouse that could express aSMA, Co13.6, Co12.3, and DMPl transgenes 

would greatly amplify the investigative potential. Such mice could be used to 

definitively show how osteoblast lineage cells continue, cease, or regress in 

differentiation in response to mechanical loading by analyzing how the relative 

proportion of each stage of differentiation varies with force application. Furthermore, a 



longer time course of orthodontic tooth movement would provide greater insight into the 

underlying biology. Finally, paraffin processing and longer decalcification times for 

tissue specimens would best be applied in cases where immunohistological staining is 

anticipated. 



FIGURES 

Figure 1: Bonding of spring to maxillary first molar, head stabilized with custom 0.032" 
stainless steel mouth prop 



Figure 2: Illustration of imaging regions of maxillary first molar. Images were taken at 
20x magnification in the furcation area of both the mesial-buccal and distal-buccal roots. 
Based on the mesial direction of the force (arrow), the mesial surface of the distal-buccal 
root (pressure side) was imaged. Conversely, the distal aspect of the mesial-buccal root 
(tension side) was imaged. For comparison, the same pressure and tension locations of 
the furcation area were imaged for both the mechanically-loaded left side and the 
unloaded right side. The inferior border of the image area was aligned at the most 
coronal portion of the respective root surface in order to capture the region of the PDL in 
closest proximity to the furcation 
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Figure 3: 5x hematoxylin stained sagittal section of the maxillary first molar. Note the 
compressed PDL on the mesial aspect of the DB root (C) and the stretched PDL on the 
distal aspect of the MB root (T) 



Figure 4. 20x Fluorescent images of sagittal sections of the distal-buccal (pressure side) and mesial-buccal 
(tension side) roots of maxillary first molars of transgenic mice containing the 3.6 kb fragment of the rat 
collagen type 1 promoter fused to a topaz-fluorescent protein (Col3.6GFP). Note the significant decrease 
in expression of GFP in the PDL in images B, F, J (with force) relative to images A, E, I (without force), 
respectively. 
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Figure 5: 20x Fluorescent images of sagittal sections of the distal-buccal (pressure side) and mesial-buccal 
(tension side) roots of maxillary first molars of transgenic mice containing bone sialoprotein (BSP) 
promoter fused to a topaz-fluorescent protein (BSPGFP). Note the significant decrease in expression of 
GFP in the PDL in images B, F, J (with force) relative to images A, E, I (without force), respectively. 
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Figure 6:  20x Fluorescent images of sagittal sections of the distal-buccal (pressure side) and mesial-buccal 
(tension side) roots of maxillary first molars of transgenic mice containing a-smooth muscle actin (aSMA) 
promoter hsed  to a topaz-fluorescent protein (aSMAGFPP). Note the significant decrease in expression of 
GFP in the PDL in images B, F, J (with force) relative to images A, E, I (without force), respectively. 
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Figure 7: Comparison of Col3.6-GFP (A, B), aSMA-GFP (C,D), and BSP-GFP (E,F) expression as a 
ratio of GFP+ cells to total cells in pressure and tension sites of the periodontal ligament in loaded vs. 
contra-lateral unloaded maxillary first molars at 12 h, 48 h, and 7 days of treatment. 
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Figure 8: 20x Immunohistochemical analysis of RANKL expression in a sagittal section 
of the distal-buccal root of the maxillary first molar. Note poor quality of anatomy due to 
frozen section. R+ indicates RANKL positive cells localized around a blood vessel in the 
alveolar bone. Note lack of RANKL staining within PDL. 
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Figure 9: Co-localization of irnmunohistochemical analysis of RANKL expression in a 
sagittal section overlaid with corresponding Co13.6GFP sagittal section 



Table 1. Mean ratios for GFP positive cells on the pressure 
side by duration of force and transgene 

Trans- Control Mean 
Time LOadedMean ~g~~~~~~ * 

~ e n e  Ratio +/- S. D. Ratio +/- S. D. 

BSP 0.143 +I- 0.029 0.043 +I- 0.031 0.00317* 

a S ~ ~  0.034 +I- 0.005 0.005 +I- 0.01 0 0.00627* 

48 hr C013.6 0.101 +I- 0.055 0.012 +I- 0.01 1 0.04526* 
BSP 0.136 +I- 0.026 0.043 +I- 0.01 1 0.00281* 

a S ~ ~  0.030 +I- 0.013 0.003 +I- 0.006 0.02029* 

7d C013.6 0.093 +/- 0.019 0.039 +I- 0.013 0.00406* 
BSP 0.171 +I- 0.031 0.056 +I- 0.013 0.00237' 

a~~~ 0.034 +I- 0.010 0.007 +I- 0.008 0.00459* 

*Levels of significance for Student t-test between control and loaded: 
P > .05 = no significant difference 
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