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Abstract 

The purpose of this project is to develop and analyze a mathematical model for the 

pathogen-host interaction that occurs during early Lyme disease (i.e., the initiation and spread of 

the Erythema Migrants rash). Based on the known biophysics of motility of Borrelia burgdorferi 

and a simple model for the immune response, a PDE model was created which tracks the time 

evolution of the concentrations of bacteria and activated immune cells in the dermis.  We assume 

that a tick bite inoculates a highly localized population of bacteria into the dermis.  These 

bacteria can multiply and migrate. The diffusive nature of the migration is assumed and modeled 

using the heat equation.  Bacteria in the skin locally activate immune cells, such as macrophages.  

These cells track down the bacteria and kill them.  

The immune cells’ "tracking" of the bacteria is modeled using the Keller-Segel model for 

chemotaxis. Additionally, we assume that the rate that the immune cells consume the bacteria is 

proportional to the product of the concentrations of the bacteria and the immune cells.  

Assuming the periodic boundary condition, the model is investigated over a 1D Cartesian 

domain. Once the equations are non-dimensionalized, the resulting system is analyzed using 

analytic and numeric techniques. Six different parameters are considered and their effects on the 

velocity of propagation of the traveling fronts are investigated. Based on the numerical solutions 

obtained, the most important parameter that allows the immune cells to overtake the spreading 

bacteria is the activation rate of the immune cells. However, there seemed to be no regiment of 

parameters under which the bacteria were totally exterminated.  
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Introduction 

Lyme disease in humans 

Lyme disease is a rapidly emerging infectious disorder caused by the tick-borne 

spirochaetal bacterium Borrelia burgdorferi. Since it was first identified in the 1970s, the 

incidence of Lyme disease has increased more than thirty-fold and is now considered the most 

prevalent arthropod- transmitted infection in both the USA and Europe (Radolf, Salazar and 

Dattwyler 487), allowing it to be considered as the prototype of an emerging infectious disease. 

The genome of B. burgdorferi bears resemblance to that of syphilis and the agents of the 

relapsing fever, but it is sufficiently distinct to merit designation as a separate species (Hyde and 

Johnson). If untreated, Lyme disease can lead to a wide array of complications typically 

involving the heart, joints, or nervous system. Arguably the most dangerous consequence of 

Lyme disease is the possibility of cardiac blocks, which can cause people with cardiomyopathy 

to experience the storms of ventricular tachycardia, which, if not averted, in the course of several 

minutes will result in cardiac arrest and subsequent death.  

During the first several days after the inoculation, spirochaetes establish a foothold and 

begin to replicate, with the population eventually growing large enough that they are relatively 

easy to detect by either culture or polymerase chain reaction (Radolf, Salazar and Dattwyler 

498). Laboratory tests are not the only way to detect the presence of Lyme disease. In fact, in 

humans, for every third person, one of the first manifestations of Lyme disease is a roughly 

circular-shaped rash known as Erythema Migrants (EM) that appears within 7-14 days after the 

tick detaches from the skin and then spreads at a rate of approximately 20 cm
2
 per day (Radolf, 

Salazar and Dattwyler 508).  In some cases, there is central clearing in the EM rash, resembling a 

bull’s-eye pattern, which is considered the hallmark of Lyme disease in North America. At the 
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time of writing this thesis, the exact cause of such an inflammatory rash remains uncertain, but it 

is likely caused by the host immune response to the bacterial infection. Once diagnosed, 

antibiotics are the most common way of battling the infection. The medical community also 

reminds people that the presence of Lyme anti-bodies does not rule out the possibility of 

reinfection, which could happen due to either relapse or a new instance of being bitten by an 

infected tick. Moreover, for an EM to be recurrent, it has to occur at the same site as the original 

infection within a relatively short time interval (Radolf, Salazar and Dattwyler 514).  

The costs associated with the diagnosing and subsequent managing of Lyme disease are 

high. In fact, when direct medical expenses are combined with indirect costs (non-medical cost 

and productivity loss), the economic Lyme-evoked damages approach $230 million in the USA 

alone (Marconi and Earnhart 468). With such a large impact on human welfare, the advancement 

of Lyme disease research holds the promise of improving the wellbeing of many people 

throughout the world.    
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One dimensional diffusion  

When modeling the motion of a bacterial organism in some medium, be it a liquid or a 

gas, it is natural to think of the trajectory of its motion as a random walk. These “drunkard’s” 

walks are diffusive in nature, and therefore they can be adequately modeled using a diffusion 

equation. 

Diffusion describes the random process of particles spreading down the concentration 

gradient. The simplest case of diffusion is a one dimensional dispersion of particles which 

demonstrates that the time rate of change of a certain quantity b is proportional to its second 

spatial derivative as expressed below: 

 
 

(1) 

 

The equation above is a one dimensional, parabolic, partial differential equation and D is a 

constant. In physics, this equation is widely used when modeling phenomena such as heat 

transfer through an object or diffusion of particles in a medium (hence D is called a diffusion 

coefficient or the diffusivity). This equation is usually considered for x in some fixed interval 0 ≤  

x ≤ L, with a boundary condition of b(x,0) = f(x) along with respective boundary conditions at 

the endpoints for all t ≥ 0. 

If we consider an equally spaced grid we can easily arrive at the following approximation 

of (1): 

  

 
 

(2) 

Employing index notation allows us to express (2) in a much simpler form: 

 
 

(3) 

Multiplying both sides of (3) by  and combining like terms results in: 

 (4) 
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where λ = DΔt/∆x
2
.  

Having such an expression for λ is quite restrictive, for in order to achieve sufficient 

accuracy, ∆x has to be small, which forces ∆t to be very small. Indeed, decreasing the value of 

the spatial resolution (∆x) by a factor of 1/n will also increase by a factor of n the number of time 

steps needed to reach a certain t-value. Furthermore, the expression for λ reveals that we should 

not make the system move too fast along the t-axis and thus we should consider choosing small 

∆t. It can also be shown that choosing λ ≤ 1/2 is crucial to the convergence of the method for 

when λ = 1/2, the bi,j terms vanish from (4) and for λ < 1/2, the bi,j terms have positive 

coefficients in (4). Adherence to the condition imposed on the value of λ makes this approach 

conditionally stable. The following method is based on a more satisfactory discretization of the 

diffusion equation. 

Crank-Nicolson method 

In the mid 20
th

 century John Crank and Phyllis Nicolson devised a method that imposes 

no restrictions on λ, making this method unconditionally stable. It uses values of b at six 

different points and can be visualized by Figure1. 

 

Figure 1. The six points in the Crank-Nicolson method.  

The mathematical idea behind this method entails averaging the approximations for the 

time derivative found by the forward Euler method and backward Euler method as shown in the 

following three equations.   
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Forward Euler method. 

 
Backward Euler method. 

 
 

(5) 

Multiplying both sides of (5) by 2∆t, writing  as before, and collecting the three 

terms corresponding to time row j+1 on the left yields: 

 (6) 

In general, the three values on the left are unknown, and the three values on the right are known 

(Kreyszig 1099).  

If we divide the x interval 0 ≤ x ≤ L into n equal intervals, we will then have n − 1 

internal mesh points per time row. Next, using (6) for j = 0 and i = 1, … , n − 1, we will obtain a 

system of n – 1 linear equations for the n – 1 unknown values u1,1, u2,1, … , un −1,1 in the first time 

row which will be expressed in terms of the initial values u0,0, u1,0, … , un,0  and the boundary 

values u0,1, …, un,1. The algorithm is then repeated for each time row, that is, for j = 1 to   

j = n −1, and we must solve such a system of n − 1 linear equations resulting from (6).  

Although the numerical value of λ is no longer restricted, choosing smaller values of ∆t 

will still result in better accuracy of the results.   
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Model 

The seminal event in the natural progression of Lyme disease is the deposition of 

spirochaetes into the skin. The actual inoculation delivered by ticks has not been precisely 

measured but available evidence suggests that it is small (Radolf, Salazar and Dattwyler 497). 

Hence, when constructing the model, we assumed that the initial deposition of the bacteria is not 

exceeding several hundred spirochaetes.  

When creating the model, the main principles were borrowed from the Keller-Segel 

system for chemotaxis that describes the collective motion of cells. It was assumed that the 

bacteria can spread (diffuse) from the regions with higher concentration to regions with lower 

concentration. It was also asserted that the B. burgdorferi bacteria grow proportionally to their 

population and that they become deactivated proportionally to the number of macrophages 

present. When it comes to diffusion, macrophages act in an opposite fashion to that of the 

bacteria, that is, the macrophages move from the segment with the lower concentration of 

bacteria to where the bacteria are more concentrated. In other words, the bacteria wants to 

diffuse away from the inoculation site while the macrophages exhibit the affinity to converge to 

the place where bacteria is most concentrated. This fact is accounted for by having a minus sign 

in front of the diffusion term of the macrophages. Unlike the bacteria, the macrophages do not 

grow and multiply but rather are assumed to be dormant and become activated in response to the 

presence of the bacteria. The number of activated macrophages is assumed to be proportional to 

the concentration of the bacteria. Similarly, macrophages are assumed to engage in phagocytosis, 

which leads to their deactivation. The likelihood of a macrophage becoming inactive is assumed 

to be proportional to the overall concentration of macrophages. By considering the 

aforementioned assumptions, a mathematical model was postulated and is presented below:  
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(7) 

In system (7) the bacteria (with density b) diffuse, replicate at rate σb, and are destroyed 

by the immune cells with rate γbm.  The immune cells chemotax toward the bacteria with 

velocity χ b x , are activated at rate σmb, and are deactivated with rate γm. As the EM rash 

spreads at a roughly constant rate (Radolf, Salazar and Dattwyler 508), it was suspected that the 

system might have a traveling front solution -- a hypothesis which found support in the 

accompanying computer simulations. However, in order for the equations to be solved 

numerically, we discretized the system of equations in space and time such that bi,j is the 

bacterial density at node i∆x at time j∆t.  The time derivatives are then discretized as:  

 
i, j i, j 1 i, jb b b

t t
 (8) 

with an analogous expression for m.  A pseudo-implicit scheme based off of the Crank-Nicolson 

method was constructed.  The first equation in (7) becomes: 

 b b
i,j 1 i 1,j 1 i 1,j 1 i, j i 1,j i 1,j b i, j i, j

D D
1 D b b b 1 D b b b m b

2 2 2 2

       (9) 

where 
2D D t x , b b t , and b b t . 

A stable way to develop the dynamic algorithm for the immune cells was to write a discretization 

of the second equation in (7) as: 

 1 m i,j 1 2 i 1,j 1 3 i 1,j 1 1 m i,j 2 i 1,j 3 i 1,j m i,j
1 m m m 1 m m m b          (10) 

where 
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1 i 1, j i, j i 1, j

2 i 1, j i, j

3 i, j i 1, j

m m

m
m

b 2b b

b b

b b

t

4 x

t

t

2







  (11) 

This discretization comes from a finite volume approach to the second equation of (7) and uses a 

Crank-Nicolson scheme. 

Also, to ensure the stability of our computer code we introduced a small amount of 

regular diffusion for macrophages in the second equation of (7). After accounting for the 

introduction of the diffusion term into the second equation of (7), (10) becomes: 

 

 

 

(12) 

where L= kΔt/∆x
2
 and k = 0.01.  

Computational software MATLAB by MathWorks was used to implement (9) and (12) 

(see the Appendix for the actual code). Once implemented, the algorithm was used to investigate 

the effects of the six parameters (γm, γb, χ, σm, σb, D) on the time evolution of the position of peak 

concentrations for both species.  

The results of the computer simulations were tabulated, graphed and are presented and 

discussed in the following section.  
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Results and discussion 

One unit of time in our simulation is approximately equivalent to 1 day, while one unit of 

length signifies a millimeter. To measure the effect of the aforementioned parameters on the 

velocity of the traveling peaks, both r and t were chosen large enough to prevent the traveling 

fronts from “wrapping around” (reaching the boundary of the simulation and appearing on the 

opposite side of the x-axis). For this purpose, all of the simulations were conducted on the 

domain with r = 100 (radius of 10 cm) for durations of either t = 10 or t = 20. 

For each set of simulations, MATLAB was used to generate the numerical solutions, 

which were then graphed and interpolated (linearly) in Microsoft Excel. The results of 

interpolation were used to determine the speeds of the traveling fronts. All of the numerical 

values for the speeds were systematically tabulated and graphed using either regular or 

logarithmic scales.  

In the course of the simulation, we were mindful that every time peaks drifted away from 

the center, we were in effect looking at the spreading of the fringes of the “bull’s-eye” rush. 

However, our model has always resulted in some sort of EM, be it a stationary peak at the origin 

or a multiple train of peaks with dampened amplitudes.   
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Effect of the bacterial growth rate on dx/dt 

For the six parameters considered, our system was the most sensitive to changes in the 

growth rate (σb) of the bacteria.  As seen from Graph 1 and Figure 2, varying σb affects the 

values of stable states, frequency and velocities of the peaks. When analyzing the plot of σb 

versus the velocity, we found that, for the most part, before the peaks reach the end points of the 

domain, we can reasonably approximate their velocity with a polynomial of 6
th 

 degree. 

However, it appears that there are no values of σb that would  allow the macrophages to overtake 

the spreading bacteria.  

 

 Graph 1. Effect of the bacterial growth rate (σb) on dx/dt.  
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Table 1. Numerical data used for generating Graph 1. 

 

 (a) σb = 0.1                                       (b) σb = 1                                     (c) σb = 5 

   

       (d) σb = 9                                            (e) σb = 12 

  

               (f) σb = 15                                           (g) σb = 18 

Figure 2. Concentrations of macrophages (red) and bacteria (blue) at t = 10. 
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Effect of the deactivation rate of macrophages on dx/dt  

When γm was set to 1, the macrophages come close to catching up with the bacteria. At 

the same time, there was a modest secondary peak that caused another wave of the macrophages 

to spread, thus closely resembling the spread of the EM. With γm = 0.01, the macrophages grow 

steadily and rapidly reach three-fold the concentration of the bacteria. Also, there is a secondary 

peak that tends to linger and not spread out.  

With γm = 5, the bacteria feels quite at home and the peaks of both concentrations do not 

move away from the origin (Figure 3 d, e). For any γm >2.5, the resulting velocity of the peaks 

are zero. 

 

 Graph 2. Effect of the deactivation rate of macrophages (γm) on dx/dt.  
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Table 2. Numerical data used for generating Graph 2. 

 

 

(a) γm = 0.1                                       (b) γm = 1                                       (c) γm = 3 

 

(d) γm = 5                                       (e) γm = 40 

Figure 3. Concentrations of macrophages (red) and bacteria (blue) at t = 10. 
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Effect of macrophage chemotaxis on dx/dt 

Nine different values were considered for the chemotaxis (χ) of macrophages and it was 

found that in each case the peaks of both the bacteria and the macrophages were moving away 

from the origin of the inoculation at a persistently constant speed. 

  

Graph 3. Effect of macrophage chemotaxis (χ) on dx/dt. 

 

Table 3. Numerical data used for generating Graph 3. 
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      (a) χ = 0.1                                       (b) χ = 1                                       (c) χ = 5

 

      (d) χ = 5                                       (e) χ = 10                                       (f) χ = 40

 

      (g) χ = 100                                       (h) χ = 1000                                       (i) χ = 10000 

 

Figure 4. Concentrations of macrophages (red) and bacteria (blue) at t = 10. 

As evident from both Graph 3 and Figure 4, qualitative behavior of both populations 

remained virtually the same for χ ranging from 10
-2 

to 10
4
.  
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Effect of the killing rate on dx/dt  

 Nine different values were tried and in each case the qualitative 

behavior of the solutions was virtually the same. In each case the 

concentration of the macrophages was inferior to that of the bacteria. 

The bacteria showed only one initial peak (at the inoculation site), which 

swiftly split into two peaks moving in the opposite direction. The 

macrophages followed suit with both concentrations reaching the steady 

state as shown in the figures below. 

 

Graph 4. Effect of activation rate for the macrophages (γb) on dx/dt. 

With γb = 0.1, the bacteria grows relatively slowly and the macrophages respond at an even 

slower rate. Every time the value of γb was increased ten-fold, the picture was a duplicate of that 

with γb = 0.1. All this time the bacteria has been spreading faster and further than the 

macrophages, which have to play catch-up. With γb =10 there was still no secondary peak but 

with γb = 20 the macrophages were able to briefly overtake the vertical peak of the bacteria at the 
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center. However, such dominance is short lived and the concentration of the macrophages 

decreases rapidly which leads to the backlash of the bacteria at the area of inoculation, thus 

leading to the secondary peak in the concentration of the pathogen.  

With γb = 1000, the bacteria at the center gets severely suppressed which causes the 

initial hump to split into two almost immediately after the inoculation. When γb = 10000, the 

bacteria gets dramatically suppressed by the relatively large and extremely aggressive population 

of macrophages. However, the balance of power shifts very quickly and at t = 10 the 

macrophages are not only outnumbered but they also trail significantly behind the spreading 

front of bacteria.  

 

(a) γb = 0.1                                       (b) γb = 1                                       (c) γb = 5

 

       (d) γb = 10                                       (e) γb = 20                                      (f) γb = 40 
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                 (g) γb =100                                       (h) γb = 1000                                       (i) γb = 10000 

Figure 5. Concentrations of macrophages (red) and bacteria (blue) at t = 10. 

The levels of the steady state (time derivatives are zero) could also be predicted by discarding the 

nonlinearities from system (7): 

 

 

which means that m = σb / γb and b = σbγm / σmγb . Indeed, with all of the parameters being set to 

1, the macrophages’ analytical and graphical settling levels match exactly. If the simulation were 

to be conducted for a considerably longer time period (t >> 10) then the level of bacteria would 

be expected to decrease to the theoretically predicted levels. However, based on the data 

presented in both Graph 4 and Figure 5, it was concluded that enhancing the rate of the 

macrophages’ phagocytizing does not enable the concentration peak of the macrophages to 

overtake that of the bacteria. 
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Effect of diffusion of bacteria on dx/dt 

Next we considered the effect of changes in the 

diffusivity of the bacteria. It was found that varying Db had no 

effect on the steady state levels of concentrations, which seems 

to suggest that even when the bacteria is highly hyper and 

diffusive, this does not pose an impediment for macrophages to 

regulate the concentration of the infection. On the other hand, 

even “sleepy” bacteria with very low ability to diffuse will still 

be able to evade complete extermination by the immune system. 

 As can be seen from Graph 5, increasing Db resulted in an increase in the speed of 

propagation of the bacteria, and, as a reaction, the macrophages’ velocity increased. Also, out of 

all variables analyzed, we were able to obtain an extremely precise approximation polynomial to 

express the velocity of the traveling front as a function of Db.  

 

Graph 5. Effect of diffusion of bacteria on dx/dt. 
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 (a) Db = 0.1                                       (b) Db = 1                                     (c) Db = 5 

  

(d) Db = 10                                           (e) Db = 20 

  

(f) Db = 30                                           (g) Db = 40 

Figure 6. Concentrations of macrophages (red) and bacteria (blue) at t = 10.  
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Effect of activation rate for macrophages on dx/dt 

In the course of experimentation with the various parameters of our model, we found that 

the “Holy Grail” of enabling the immune cells to both overtake the peak and significantly reduce 

the concentration of the bacteria is the value of the activation rate of the macrophages (σm).  Our 

numerical results suggested that the peaks of macrophages are far from consistent in moving 

faster than that of the bacteria. This occurrence can be explained by the fact that during 

simulations, the MATLAB code was fine-tuned to track the movement of the peak of the bacteria 

concentration; hence Graph 6 shows accurately the velocities of the peaks, however small their 

amplitude may be. However, as shown in parts a-i of Figure 7, it is clear that the increase in σm 

yields consistent qualitative behavior which might be the most desirable qualitative behavior 

when trying to design a means to treat the spread of the infection. 

 

Graph 6. Effect of activation rate for the macrophages (σm) on dx/dt. 
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Table 6. Numerical data used for generating Graph 6. 

 

 (a) σm = 0.1                                       (b) σm = 1                                (c) σm = 5 

 

(d) σm = 10                                       (e) σm = 20                                (f) σm = 30 
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(g) σm = 40                                       (h) σm = 1000                             (i) σm = 10000 

Figure 7. Concentrations of macrophages (red) and bacteria (blue) at t = 10. 
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Conclusion and Future Work 

Lyme disease, which is caused by the spirochete Borrelia burgdorferi, is the most common 

tick-transmitted illness in the United States. This project has shown that the immune cells’ 

response to the B. burgdorferi can be described mathematically when using the Keller-Segel 

model for chemotaxis. Based on our findings, in order to ensure that the velocity of the spreading 

concentration of macrophages is greater than that of the bacteria, we must develop a mechanism 

for enhancing the activation rate of macrophages. 

Based on our numerical results, it is reasonable to suppose the existence of a traveling front 

solution, and hence, a part of the future work would be to try and solve the system analytically. 

Once finished analyzing the 1D problem, the next step is to consider a 1D cylindrically-

symmetric model, as well as a transition to a 2D model and eventually to a 3D model.  
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Appendix 
  

MATLAB code 

function [xpeak] = BorreliaInfect1D(chi) 
  
%% define biological parameters 
  
Db = 1;     %% diffusion coefficient for bacteria*; 
sigb = 1;   %% bacterial growth rate* 
gamb = 1;   %% killing rate* 
k=10^(-2);  %% diffusion coefficient for the macrophages 
chi = 1;    %% macrophage chemotaxis constant* 
sigm = 1;   %% activation rate for macrophages* 
gamm = 1;   %% deactivation rate for macrophages* 
 
%% define simulation parameters 
  
GridNum = 500;      %% number of nodes in the computational domain 
Dt = 0.01;          %% time step 
TotalTime = 10;     %% total simulationtime 
  
x = linspace(-100,100,GridNum); 
Dx = x(2) - x(1); 
  
Skip = 1; 
Steps = ceil(TotalTime./Dt./Skip); 
  
D = Db.*Dt./Dx.^2; 
L = k.*Dt./Dx.^2; 
sigb = sigb.*Dt; 
gamb = gamb.*Dt; 
  
chi = chi.*Dt./4./Dx; 
sigm = sigm.*Dt; 
gamm = gamm.*Dt./2; 
  
%% define initial conditions 
  
b(:,1) = exp(-0.1.*x.^2); 
m(:,1) = zeros(size(x)); 
Time(1) = 0; 
  
%% define matrices 
  
Vec = (1:GridNum); 
  
BLeft =   sparse(Vec,Vec,1+D-sigb./2,GridNum,GridNum) ... 
        + sparse(Vec,circshift(Vec,[0 -1]),-D./2,GridNum,GridNum) ... 
        + sparse(Vec,circshift(Vec,[0 1]),-D./2,GridNum,GridNum); 
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BRight =   sparse(Vec,Vec,1-D+sigb./2,GridNum,GridNum) ... 
         + sparse(Vec,circshift(Vec,[0 -1]),D./2,GridNum,GridNum) ... 
         + sparse(Vec,circshift(Vec,[0 1]),D./2,GridNum,GridNum); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% 
  
%% Time Stepping 
  
for n = 1:Steps 
     
    b(:,n+1) = b(:,n); 
    m(:,n+1) = m(:,n); 
     
    for k = 1:Skip 
         
        B2 = circshift(b(:,n+1),[0 -1]) - b(:,n+1); 
        B3 = b(:,n+1) - circshift(b(:,n+1),[0 1]); 
         
    MLeft =   sparse(Vec,Vec,1+chi.*(B2-B3)+gamm+L,GridNum,GridNum) ... 
            + sparse(Vec,circshift(Vec,[0 -1]),chi.*B2+L,GridNum,GridNum) ... 
            + sparse(Vec,circshift(Vec,[0 1]),-(chi.*B3-L),GridNum,GridNum); 
           
    MRight =   sparse(Vec,Vec,1-L-chi.*(B2-B3)-gamm,GridNum,GridNum) ... 
             + sparse(Vec,circshift(Vec,[0 -1]),-(chi.*B2-L./2),GridNum,GridNum) ... 
             + sparse(Vec,circshift(Vec,[0 1]),chi.*B3+L./2,GridNum,GridNum); 
          
    SourceB = BRight*b(:,n+1) - gamb.*m(:,n+1).*b(:,n+1); 
    SourceM = MRight*m(:,n+1) + sigm.*b(:,n+1); 
     
    b(:,n+1) = BLeft\SourceB; 
    m(:,n+1) = MLeft\SourceM; 
    B(n)=trapz(b(:,n+1));     
    M(n)=trapz(m(:,n+1));      
    t(n)=n*Dt  ;   
  
    end 
     
     [~,in]=max(sign(x').*b(:,n+1)); 
     xpeak(n)=x(in); 
clf; 
plot(x,b(:,n+1)) 
hold on 
plot(x,m(:,n+1),'r') 
plot(xpeak(n),b(in,n+1),'o') 
mov(:,n) = getframe; 
     
end 
clf; 
 figure 
    plot(t,abs(xpeak)) 
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