




was in line with another report [29] and similar in LNCs
from Astro KO, Endo KO, or WT mice, indicating that the
frequency of MOG-specific T cells was comparable among
these groups. Hence, our results argue against either
astrocyte- or endothelial cell-targeted CCL2 gene deletion
having significantly impaired peripheral T cell behavior
and immune responsiveness to MOG peptide. These find-
ings are further in accord with reports that MOG-specific,
encephalitogenic T cells can be generated in mice with
global knockout of CCL2 [9].

Astro KO and Endo KO mice display altered inflammatory
responses along the CNS microvasculature during EAE
Given the different clinical EAE phenotypes of Astro KO
and Endo KO mice with apparent absence of overt im-
pact on T cell priming, we next sought to determine ef-
fects of cell selective CCL2 loss on inflammatory events
along the CNS microvasculature. 3D perspective projection

views of confocal reconstructions were generated using
Imaris® to provide a more realistic 3D representation of the
z-stack dataset. Notable differences in staining of CLN-5, a
prominent TJ protein in CNS microvessels and BBB deter-
minant [39], were found among WT, Astro KO, and Endo
KO mice during EAE (Figure 5), while naïve mice of all
groups showed no evidence of disparities (data not shown).
At d9, prior to evidence of clinical disease, WT mice
showed focal fragmentation of the CLN-5 staining pattern.
This discontinuous appearance of CLN-5 staining in re-
gions of increased perivascular cellularity was not a result
of CLN-5 staining being distributed in z-planes not cap-
tured during acquisition, as the confocal reconstructions
shown represent 3D images generated from 60 × 1-μm
thick z-slices. Rather, the areas lacking immunostaining
reflected actual sites of CLN-5 disruption associated with ex-
travasating leukocytes. This picture differed significantly from
that seen with naïve mice, where CLN-5 immunostaining

Figure 4 LNCs from MOG35-55-immunized WT, Astro KO, and Endo KO mice show similar responses to MOG35-55restimulation in vitro.
LNCs were prepared from MOG35-55-immunized mice on d12, and restimulated with MOG35-55 for 72 h in culture, after which time different
responses were measured. (a) T cell proliferation. LNC were pulse-labeled with 2 μΜ CFSE for 5 min at the beginning of culture and analyzed after
72 h by FACS, gating on CD3, CD4, CD11a. (b) Cytokine production. The concentrations of IL-17 and IFN-γ were determined in supernatants of
LNC after 72 h in culture. (c) Binding of MOG38-49 MHC class II tetramer-PE. Binding was determined after 72 h in culture, and hCLIP103-117
tetramer-PE served as a control for non-specific binding. Plots were gated on CD4+ T lymphocytes. The frequency of MOG38-49 I-A

b tetramer+

CD4+ T cells is similar among WT, Astro KO, and Endo KO groups, while hCLIP103-117 I-A
b tetramer does not bind cultured T cells. The data shown

are representative of at least two independent experiments; data in (a) and (b) reflect mean value ± standard error.
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appeared continuous, without obvious interruptions, and
perivascular cellularity was absent (Additional file 3:
Figure S2). Hence, for the purpose of highlighting the
pathologic role(s) of CCL2 released from astrocyte and
endothelial sources in neuroinflammation, statistical
comparisons for CLN-5 density were only made be-
tween WT, Astro KO, and Endo KO mice during evolv-
ing EAE. The significantly altered CLN-5 pattern
observed in WT mice during EAE corresponded with a
sharp decrease of approximately 60% in the density of
CLN-5 staining. In stark comparison, Astro KO mice
demonstrated little if any change in CLN-5 staining,
while Endo KO mice displayed a somewhat intermedi-
ate response at this time-point. By d16- following dis-
ease onset- WT mice showed further disruption and
loss of CLN-5 staining, down approximately 80% from

that demonstrated by naïve mice. Astro KO mice at
this later time showed a precipitous loss of CLN-5
staining, declining by approximately 60% (compared to
naïve and d9 mice), while Endo KO mice at d16
showed only a moderate, non-significant CLN-5 de-
crease of approximately 19% (compared to d9).
Differences in leukocyte infiltration patterns were also

obvious among the various strains of mice when vessels
were viewed in longitudinal- and cross-section (Figure 6).
During neuroinflammation, the BM splits into its re-
spective endothelial and parenchymal components [31],
highlighting two spaces: the subendothelial space (be-
tween the endothelium and endothelial BM) and the
perivascular space (between the endothelial BM and the
parenchymal BM). Both these spaces swell with leuko-
cytes that have recently extravasated across the BMECs,

Figure 5 Astro KO and Endo KO mice show differential loss of CLN-5 staining in spinal venules during EAE. (a) Isosurface-rendered images
were generated from confocal z-stacks of 60 μm thick thoraco-lumbar spinal cord cryosections at d9 and d16 EAE, as described in Materials and
Methods. Staining of CLN-5 (green isosurface) and nuclei/DRAQ5 (blue) is shown. Larger images displaying 3D perspective projection views of
confocal reconstructions show CLN-5 channel only, to emphasize the fragmented pattern of TJ protein staining. Inserts depict both CLN-5 and
nuclei, highlighting the close association of altered CLN-5 staining with dense perivascular cellularity representing infiltrating leukocytes. Arrows
demark overt gaps in CLN-5 staining, where the TJ pattern is clearly disrupted. Notably, CLN-5 staining pattern during EAE appears most intact in
Astro KO mice, least so in WT mice, and intermediate in Endo KO mice. (b) Quantification of CLN-5 staining as intensity per unit surface area of
the endothelium. CLN-5 density in naïve WT mice is included as a reference for the normal state, wherein the pattern of CLN-5 junctional staining
is continuous [30]. Statistical comparisons are between groups and within days. (c) Summary of CLN-5 changes. Statistical comparisons are within
groups and between days. A total of 12 venules were analyzed in each group sampled from three mice. Data reflect mean value ± standard
error. Scale = 20 μm.
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but as the BM becomes extensively fragmented during
this process, demarcation between the spaces is blurred
in longitudinal sections. Thus, in referring to leukocyte
distribution, the term “perivascular” is used herein to de-
scribe all extravasated leukocytes that are vessel-associated.
At d16, dense perivascular infiltrates were seen to be asso-
ciated with venules inWT mice, with cells apparently pene-
trating the parenchymal BM to enter the parenchyma
(Figure 6a,d). Astro KO mice showed similar type clusters
of perivascular cells, but no clear evidence of leukocytes in
the act of rupturing the parenchymal BM (Figure 6b,e). Ve-
nules of both WT (Figure 6d) and Astro KO (Figure 6e)
further exhibited lumens within which no cells were
detectable. By contrast, Endo KO mice alone displayed
aggregated cells apparently stalled in the lumen, as
well as a seemingly lesser extent of perivascular cells
(Figure 6c,f–h). To further resolve the aggregated cells
throughout the microvascular lumen of an entire 60
-μm section from Endo KO mice, and graphically dis-
tinguish this pattern from that in WT and Astro KO
mice, the distribution profiles of cells associated with
the lumen and perivascular space, respectively, were
mapped in 3D (Figure 7). Intra-luminal cells could
only be detected in Endo KO mice (Figure 7c). As the
actual number of spinal vessels showing any evidence

of inflammation was extremely low in Endo KO mice
at this time, the few examples detected showed this
common appearance of hindered leukocyte migration.
Moreover, since tissue was perfusion-fixed, these lu-
minal cells are not likely to have resulted from blood
stasis but, instead, suggest a possible deficit in extrava-
sation from CNS microvessels in Endo KO mice.

Discussion
While the critical role of CCL2 in EAE has been revealed
in global CCL2 knockout studies [9], and the chemokine
sources mediating this effect are suggested to reside in the
CNS [10], the identities of the sources responsible for spe-
cific neuroinflammatory events, e.g., effects at the BBB
and leukocyte penetration into the CNS, have not been re-
solved. In the present study, we used mice with targeted
CCL2 gene deletion in astrocytes or endothelial cells,
along with 3D confocal imaging, to establish - for the first
time – that CCL2 from each of these sources regulates dif-
ferent aspects of neuroinflammation and EAE course.
Astro KO mice exhibited a similar onset but reduced se-
verity of disease compared to WT, while Endo KO mice
displayed nearly the opposite clinical pattern. However,
neither of these KO mice showed any significant changes
in MOG-specific T cell responses in LNC cultures,

Figure 6 Astro KO and Endo KOmice display differences in perivascular cellularity associated with spinal venules during EAE. Isosurface-rendered
images were generated from confocal z-stacks of 60 μm cryosections at d16 EAE. Staining of BM Lam 1 (red), CLN-5 (green), and nuclei/DRAQ5 (blue) is
shown. (a, b, c) Longitudinal sections reveal the extent of vessel-associated leukocytes. CLN-5 staining is presented to highlight the endothelial boundary.
Insets represent enlarged view of areas highlighted in white hatched boxes, while double-headed arrows denote the space between the
endothelial and parenchymal BMs. All extravasated leukocytes within this space are considered “perivascular”. InWTmice, a dense accumulation
of DRAQ5+ perivascular cells (representing leukocytes) is seen, a few apparently penetrating the fragmented parenchymal BM (arrowhead). In Astro KOmice, a
similar dense perivascular cellularity is observed, with visibly intact parenchymal BM and lack of parenchymal leukocyte migration. In Endo KOmice, the BM is
also apparently intact, with minimal perivascular cellularity. Scale = 20 μm. (d, e, f) Cross-sections highlight the spatial distribution of vessel-associated
leukocytes. In WT mice, the vessel lumen (demarked by white dashes) appears empty and cells are seen in the perivascular space. A
few cells are visibly penetrating the parenchymal BM (arrowheads), alongwith dense parenchymal cellularity (brackets). In Astro KO mice,
the lumen again appears empty; congregated cells are evident in the perivascular space, with a few parenchymal clusters. In Endo KO
mice, cells are clearly present in the lumen, with apparently fewer cells in the perivascular space as compared to WT and Astro KO mice.
Parenchymal clustering is seemingly absent. The diffuse DRAQ5+ cells are likely parenchymal neural cells. (g-h) The red arrow designates the
same Endo KO image subject to contour-based 3D segmentation (see Materials and Methods) to further resolve luminal (blue) from perivascular (turquoise)
cells. Results are representative of 5–6 microvessels sampled from three mice in each group and two independent experiments. Scale = 10 μm.

Paul et al. Journal of Neuroinflammation 2014, 11:10 Page 10 of 15
http://www.jneuroinflammation.com/content/11/1/10



consistent with the observed effects of CCL2 gene de-
letion being limited to the CNS. Further reflecting
CNS action, Astro KO mice failed to show the paren-
chymal leukocyte infiltration and clear disruption of
CLN-5 that accompanied WT EAE, while Endo KO
mice revealed leukocytes apparently stalled in the lumen
of spinal cord microvessels. Significantly, the combined ef-
fect of separate astrocyte and endothelial CCL2 elimin-
ation on clinical disease closely mirrors the phenotype
reported when CCL2 gene ablation was confined to the
“central compartment” by adoptive transfer of WT T cells
[9] or transplantation of WT bone marrow [10] into global
CCL2 KO mice; i.e., reduced disease severity along with
delayed disease onset. This reinforces the notion that
CCL2 from astrocytes and endothelial cells each contrib-
ute to EAE disease in a major, yet different way. The dif-
ferences in EAE noted between Astro KO and Endo KO
mice may reflect direct consequences of cell-specific
CCL2 release on the CNS microvascular endothelium,
leukocyte migration, or both. Possible actions of CCL2

released by CNS endothelial cells or astrocytes are sche-
matized in Figure 8.

Astrocyte-derived CCL2 regulates BBB integrity and
leukocyte penetration into the CNS parenchyma, while
endothelial-derived CCL2 impacts leukocyte transendothelial
migration
The failure of only Astro KO mice to show clear dis-
ruption of CLN-5 staining at d9 EAE supports the in-
terpretation that CCL2 released from astrocytes figures
prominently in destabilizing endothelial TJs at the
abluminal microvascular surface early during the neu-
roinflammatory process [13]. Later loss of CLN-5 in
these mice by d16 may, instead, reflect disruption of
TJs by extravasating leukocytes. Astrocyte-derived CCL2
may additionally serve to recruit extravasated leukocytes
into the parenchyma, as Astro KO mice revealed leuko-
cytes congregated in the perivascular space. This latter
role is supported by Carrillo-de Sauvage et al. [18], who
described contact of CNS infiltrating T cells with

Figure 7 Astro KO and Endo KO mice display differences in 3D distribution profiles of luminal and perivascular cells. Isosurface-rendered
images were generated from confocal z-stacks of 60-μm thick cryosections from WT, Astro KO, and Endo KO mice at d16 EAE. The BM is
highlighted by staining of Lam1 (red). (Top row) DRAQ5+ nuclei in luminal and perivascular compartments were optically isolated using 3D contour
based segmentation (as described in Materials and Methods), and pseudo-colored blue (luminal) and turquoise (perivascular), respectively. Using Imaris®
spot creation module, each of these nuclei is shown in the 3D dataset (volume) as a “spot object,” designating its luminal or perivascular location.
Scale = 10 μm. (Bottom row) Imaris® vantage plots showing the 3D distributions of luminal and perivascular cells along microvascular x, y, and z-axes
in the corresponding vessels from the top row. Scale = 20 μm. (a) Representative WT vessel showing an empty lumen (*). (b) The lumen in the Astro
KO vessel also appears empty (*) but partially collapsed, possibly owing to accumulation of perivascular cells that are missing guidance cues from
deleted astrocyte-derived CCL2. (c) In contrast, Endo KO vessel shows evidence of congregation of cells in the lumen (blue), possibly reflecting
stalled leukocyte transmigration in absence of endothelial-derived CCL2. Box-and-whisker plots are shown indicating the maximum and minimum
spread from the median, in μm, of luminal or perivascular nuclei along the x, y, and z-axes.
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CCL2-expressing perivascular astrocytes during neu-
roinflammatory disease.
The disruption of CLN-5-containing TJs during EAE

and its prominent control by astrocyte-derived CCL2, is
consistent with numerous reports on the action of CCL2
on TJs and BBB properties in cultured BMECs [13-15,40],
CNS microvessels in vitro [13], and CNS microvessels
in vivo in other neurological settings [41-43]. Notably,
however, a recent report describing the effect of pertussis
toxin injection in mice constitutively overexpressing
CCL2 selectively in oligodendrocytes under direction of
the myelin basic protein (MBP) promoter, found no evi-
dence of a disrupted CLN-5 pattern accompanying
leukocyte extravasation into brain [44]. This apparent
contradiction may be due, in part, to the high level of
chronic over-expression of CCL2 (<100,000 times nor-
mal values) having caused down-modulation of CCR2,
the cognate receptor for CCL2, on BMECs [45], as well
as inappropriate or inadequate access of oligodendrocyte-
derived CCL2 – normally not found in health or disease –
to the CNS microvasculature. The present study thus
underscores the unique relationship between endogen-
ous, astrocyte-derived CCL2, TJs, and BBB permeabil-
ity in neuroinflammatory disease [46].
Endothelial-derived CCL2, on the other hand, may fa-

cilitate a ‘post-adhesion’ stage of leukocyte extravasation,
as the absence of this chemokine pool was uniquely as-
sociated with the appearance of leukocytes stalled within
the microvascular lumen. In support of this hypothesis,
Shulman et al. [23] recently showed that an intraen-
dothelial vesicle pool of CCL2 within cultured HUVECs
is a critical regulator of transendothelial migration of ad-
herent effector T cells. Our data, showing both appar-
ently stalled leukocytes in the microvascular lumen of
Endo KO mice and punctate CCL2 immunostaining in

BMECs of WT mice, may thus represent an extension of
the results of Shulman et al. [23] to an in vivo scenario
and advance a critical role for a CNS endothelial pool of
CCL2, possibly vesicle bound, in mediating leukocyte
transendothelial migration during neuroinflammatory
disease. While this differs from the finding that CCL2
facilitates adhesion of leukocytes to pial microvessels
[21], this distinction may represent the considerable
endothelial heterogeneity that exists along the CNS
microvasculature [47].
The smaller but significant loss of CLN-5 staining

noted in Endo KO mice from d9 to d16 may chiefly rep-
resent the action of astrocyte-derived CCL2, as lesser
extravasation was observed in these mice during this
period. Conceivably, the astrocyte CCL2 pool could
also have guided the lesser amount of extravasated
cells into the parenchyma, resulting in the delayed dis-
ease noted.

Cell-selective CCL2 knockout highlights CNS actions of
CCL2 in neuroinflammatory disease
Our collective findings reinforce critical and non-redundant
roles of CNS CCL2 in mediating EAE, as previously impli-
cated in adoptive transfer and bone marrow chimera EAE
studies with global CCL2 knockout mice [9,10]. Of further
importance, the use of Astro KO and Endo KO mice to-
gether with high-resolution 3D confocal imaging in this
study was able to resolve apparently unique contributions of
astrocyte and endothelial CCL2 pools to EAE pathogenesis.
That both types of mice might share some effects of condi-
tional CCL2 deletion is in accord with reports that BMECs
can deposit CCL2 abluminally [48], and CCL2 can be trans-
cytosed from the abluminal to luminal BMEC surface [34].
Because all endothelial cells in the Endo KO mice are
deficient in CCL2 expression, at this time it cannot be

Figure 8 Differential actions of astrocyte-derived and endothelial cell-derived CCL2 at CNS venules. Based on observations with Astro KO and
Endo KO mice during EAE, the schematic depicts endothelial-derived CCL2 facilitating migration across the endothelium (1), a step post-adhesion.
Astrocyte-derived CCL2 is shown promoting both breakdown of endothelial tight junctions (2), and penetration of leukocytes across the parenchymal
BM into the CNS parenchyma (3).
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concluded that CCL2 from CNS endothelial cells, as
opposed to peripheral endothelial cells, affected the
disease process. However, given the failure of LNCs
from these mice to show any deficits in MOG-stimulated
proliferation, IFN-γ or IL-17 production, or MOG MHC
class II tetramer staining, it is doubtful that the absence of
CCL2 from peripheral endothelial cells was a major factor
in the aberrant EAE patterns noted. Diminished CLN-5
disruption and heightened presence of luminal leukocytes
in Endo KO mice further point to the CNS endothelial
pool of CCL2 as featuring critically in EAE.
Though only EAE was analyzed in this study, astro-

cytes and BMECs have been suspected as critical sources
of CCL2 during other neuroinflammatory conditions in-
vestigating three different CNS inflammatory scenarios
(human glioma, striatal injection of LPS in mice, and
adenovirally injected monkeys) reporting that extravasa-
tion of lymphocytes is mediated by CCL2-expressing as-
trocytes independent of the inflammatory situation and
species [18]. Further, Tei et al. [49] most recently argued
that CCL2 expression by both astrocytes and BMECs
may contribute to the invasion and parenchymal mi-
gration of brain Iba1+/NG2+ cells, descendants of sub-
populations of circulating monocytes, following cerebral
ischemia. Thus, expression of CCL2 by astrocytes and/or
BMECs may be considered a widespread phenomenon as-
sociated with neuroinflammation. The seminal import-
ance attributed to these particular sources of CCL2 does
not preclude contributions by other CCL2-expressing cell
types, e.g., microglia [10,50], which may further modulate
neuroinflammatory disease in their unique ways.
It has nevertheless been firmly established through ele-

gant adoptive T cell transfer [9] and bone marrow chimera
[10] studies, that CCL2 derived from the peripheral
leukocyte compartment is not critical to the development
of EAE. Hence, even though Tie-2-driven Cre expression
has been reported in cells of the hematopoietic lineage
[51], any potential loss of CCL2 from this population
would not detract from our interpretation that CCL2
elimination from BMEC, rather than leukocytes, predom-
inantly altered EAE disease. The delay of disease pheno-
type in Endo KO mice, in fact, is consistent with the lack
of CCL2 immunostaining in BMEC and apparent stalling
of adherent leukocytes observed in these animals.

Therapeutic targeting of CNS CCL2
Lastly, as the BBB has generally been recognized as the
major impediment to drug delivery to the CNS [52],
these results have significant implications for targeting
CCL2 in the treatment of neuroinflammatory disease. It
is thus notable to point out that injection of a CCL2-
neutralizing antibody directly into the brain was effective
at suppressing lymphocyte infiltration following striatal
lipopolysaccharide injection [18], a situation in which

astrocytes were observed to be the major CCL2-
expressing cell type. Arguably, therapeutic inhibition of
endothelial CCL2 would not require circumventing or
penetrating the BBB, in contrast to suppressing astrocyte
production of this chemokine. However, as our and the
recent results of Shulman et al. [23] point out, merely
targeting CCL2 with antibodies or receptor antagonists
may not be effective against vesicle-bound endothelial
CCL2 depots. The recent demonstration that the anti-
inflammatory compound bindarit, a synthetic indazolic
derivative (MWr 324 Daltons) that preferentially inhibits
transcription of the monocyte chemoattractant subfam-
ily of CC chemokines (MCP-1/CCL2, MCP-2/CCL8, and
MCP-3/CCL7), delayed and suppressed EAE in concert
with diminishing CNS microvascular CCL2 expression
[33], suggests that interfering with intra-endothelial
CCL2 might be of high therapeutic value. However, as
BBB disruption often accompanies neuroinflammatory
disease [30,47], drugs that inhibit CCL2 synthesis could
potentially have opportunity to strike at both endothelial
cells and astrocytes, even if only with limited efficiency
at the latter, and thus offer better therapeutic prospects
than antibodies or antagonists. Recent descriptions of
CCL2 involvement in post-ischemic disruption of the
BBB [43], beta-amyloid neurotoxicity [53], and traumatic
brain injury [54], further underscore that modulating
CNS CCL2 synthesis at the vascular and/or parenchymal
level may offer a novel therapeutic option for a wide
range of neuropathologies.

Conclusions
In light of our results, it is determined that CCL2 from
either astrocytes or BMECs separately impacts clinical
EAE and associated neuroinflammatory processes in dis-
tinct ways and through different mechanisms depending
on the source cell type. CCL2 from astrocytes regulates
severity of clinical EAE disease, while controlling pene-
tration of leukocytes into the CNS parenchyma and
disrupting CLN-5 staining pattern along the CNS mi-
crovasculature. In contrast, CCL2 from BMECs ap-
pears to more so determine disease onset, and effect
post-adhesion leukocyte transendothelial migration.
Therapeutic targeting of CCL2 expression or action at
the parenchymal and/or vascular levels may thus offer
promise in treating neuroinflammatory disease.

Additional files

Additional file 1: Contour-based 3D segmentation of luminal- and
perivascular-associated cells in Endo KO mice during EAE. The video
shows 3D reconstruction of the representative Endo KO venule from
Figure 7, allowing for enhanced visualization of the perivascular and
luminal cellularity associated with the microvessel along x, y, and z axes.
It further demonstrates the sequential steps employed for the
contour-based 3D segmentation of DRAQ5+ cells into separate luminal
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and perivascular compartments, using 3D contour surfaces, as described in
Materials and Methods. The nuclei were pseudo-colored in blue (luminal)
and turquoise (perivascular). Each 180°-turn in the video indicates the
following steps in sequence - 3D reconstruction → Lam1 (Red) isosurface →
parenchymal BM contour → endothelial BM contour → segmented nuclei.

Additional file 2: Figure S1. Specificity of CCL2 immunostaining.
Volume rendered images of z-stacks obtained from serialsections of d9
EAE spinal cords used in Figure 6 (left) and naïve (right) mice demonstrating
specific immunoreactivity of the CCL2 antibody. No detectable CCL2 staining
(green) was observed in naïve mice upon incubation with CCL2 antibody or
in EAE mice in the absence of primary antibody. The endothelium is
highlighted with CD31 (red), while DRAQ5 staining reveals the nuclei (blue).
Scale = 20 μm.

Additional file 3: Figure S2. Lack of focal CLN-5 immunostaining loss
and perivascular cellularity in naïve spinal microvessels. Isosurface-rendered
images generated from confocal z-stacks of 60 -μm thick cryosections from
naïve mice showing continuity of CLN-5 staining (green) in naïve spinal
microvessels. The lack of perivascular cellularity associated with typical
inflamed microvessels is further highlighted with DRAQ5 staining for
nuclei (blue). Scale = 20 μm.
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