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Abstract

The study investigates the role of credit risk in a contiraiime stochastic
asset allocation model, since the traditional dynamic éaork does not provide
credit risk flexibility. The general model of the study extisrthe traditional dy-
namic efficiency framework by explicitly deriving the optanvalue function for
the infinite horizon stochastic control problem via a wegghtolatility measure
of market and credit risk. The model’s optimal strategy weshtcompared to that
obtained from a benchmark Markowitz-type dynamic optirticaframework to
determine which specification adequately reflects the aggdtietminal investment
returns and strategy under credit and market risks. Therpap®vs that an in-
vestor's optimal terminal return is lower than typicallydinated under the tra-
ditional mean-variance framework during periods of eledatredit risk. Hence
| conclude that, while the traditional dynamic mean-vac@approach may in-
dicate the ideal, in the presence of credit-risk it does moueately reflect the
observed optimal returns, terminal wealth and portfolieston strategies.

Journal of Economic Literature Classification: GO, G10, C02, C15

Keywords: Dynamic Strategies; Credit Risk; Mean-Variance AnalySipti-
mal Portfolio Selection; Viscosity Solution; Credit Defa8waps; Default Risk;
Dynamic Control



The Effects of Credit Risk on Dynamic Portfolio Management: A New
Computational Approach
1.0 Introduction

Managers of financial assets, such as stocks amdisbotypically seek to
maximize their expected returns on investment fagiven level of risk. In fact the
ultimate goal of modern investment theory is to stamct an optimal portfolio of
investments from a set of risky assets. Investnmetitese risky assets generally depends
on the discount rate, the market return and thatiMity parameters. From the classical
pedagogical work of Markowitz (1952, 1959), theimatl portfolio for a given level of
risk and set of constraints can be derived under"thean-variance (MV) efficiency
frontier" using known optimization algorithms suabk quadratic programming (Zhet
al (2000), Bieleckiet al (2005)).

Under any given mean-variance optimization framéwaohne portfolio with the
highest expected return and the smallest minimizecnce (market risk) is said to be more
efficient. These properties of efficient portfoliase central to both static and dynamic
optimization. However, a recognizable weaknesshis methodology is the apparent
exclusion of a credit ridkneasure from the investor's operational risk f@mts investors
continuously seek higher returns on investmentsetomes increasingly impractical to

ignore the effects of credit risk on expected ptidfreturng. In fact, in any dynamic

% Here credit risk is defined as the risk of defaulthe deterioration in credit quality of a refecerentity
that is part of the portfolio that the investor dml For further reading on credit risk the readay hook at
Jarrowet al (2001), Duffie (1999), and Dunbar (2008).

3 While complete hedging is not possible, the inmesbuld buy credit default swaps (CDS) as a hedge
against credit quality changes (risk) in the defnponent of the investment portfolio opportunity, se
however the cost of the CDS premium would ultimatesult in a net reduction in the overall terminal

hedged payoff(su* ~ P = Jh where iﬂ< *u), because the terminal hedged payoff would be lower
by the cost of the hedge.



portfolio management setting, since an infinitelyd agent may hold his portfoIiEV\/i
i=1

over some investment horizor t, the implied credit risk of holding the securitiesthe

portfolio increases with the investment horizon. Agh, an ideal asset in periganay

disappear (default) prior to the intended matupigyiodr >t, which poses some level of
risk to the agent’s expected level of return.

In section 4.0 the paper develops a baseline Matkdype and an extended
market/credit-risk dynamic optimization set of misdéhat were used to investigate the
optimal investment strategy under credit and marlg. More specifically the study
derived; (a) closed-form solutions for optimal asdcation and investment strategy in
both a mean-“market” risk and a mean-“market/cfedgk framework; and (b) the
reaction function of the risk-averse agent wheredawith both market and credit risk.
Not surprising the later analyses of the studysitates that given added investment risk
(such as credit risk) an agent will react by madiyhis efficient selection strategy
which could result in a lower optimal terminal netas demonstrated in figure 1.

In deriving the study’s extended model we stanmfrihe basic formulation of the
Markowitz (1952, 1959) framework where we denote taturns ofn risky assets by a

n*1vectorR, the unobserved future retuén (assumed unknown), and the instantaneous

variance-covariance matrix of stock and bond fugtdrns;

S WEE) =4 3> ww cov(i, ) =" @.1)

* Such a model develops a summation of the stardarigtion of the various risk components as a proxy
for the increased catastrophic impacts of totalrkeizand credit) risk on an investor’s portfolio.



wherecov(i N ) is the covariance between returns from investmientsandj. The mean-
variance optimization solves the asset allocatiorwhich minimizes the portfolio risk’,

while achieving a certain target return Thus our problem is to minimize
o= (Jf,+af) =>"> ww, cov(i, j) (1.2)
i=1 j=1

Subject to the constraints

WEW =4 and w+ W+ w=1 (1.3)

n
i=1

where the portfolio strategies are defined by thvesightsw, +...+w,, the short sales

constrainty, sw <7, (i=1,2,..n) and where we use (af) = (af+0,i))to represent

a pooled cross-sectional measure of credit andehesgk in the extended model framework.

In the traditional Markowitz/Merton framewodk represents market ri(skri).

Expression 1.2 demonstrates that under the exteinalegwork, when an investor
makes an investment in a firm, the investor is egdoto both market and credit risk.
Economic theory and recent empirical work by Dun{zfl08) suggests that market and
credit risk are intrinsically related to each otHerfact on the “investment risk continuum?”,
when the value of the firm's assets unexpectedbnghs, market risk is created, which
increases the probability of default, subsequegethyerating credit risk. This underscores the
need for work in portfolio optimization that inviggttes the dual impacts of both credit and
market risk on expected returns. Moreover, as @bdeduring the credit crisis of 2008,
when financial markets experience a “flight to gyalwnhich typically characterizes periods
of high credit risk, the rational agent will receia lower total return because of this lower

portfolio efficiency curve, as depicted in figure 1



Figure 1: Risk Return Characteristics under Pooled Market and Credit Risk
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Note: Point A represents the efficient allocative market-risk adjusted returns from a risk-free investment
and an investment in A. Point B represents the efficient allocative pooled-risk investment returns
as credit risk increases and investors move to a lower expected return because of a flight to quality.

The remainder of the paper is organized into foectiens. In section 2 we
explore the existing literature on integrated m#dkedit risk portfolio optimization.
Section 3 lays out the basic setup of the modetstigated in this paper. This section
introduces the dynamic framework of the model aisgu$ses the technical background
for optimal dynamic asset allocation, giving somemiew of current dynamic asset
allocation methodologies and the analytical procedar including the credit risk proxy
to the optimization process. Section 4 derivesagmal portfolio problem under credit
risk. The model is later calibrated to U.S. interase, stock return, credit and market risk

data. Section 5 presents the data, some repragentatculations and discussions on the



main empirical findings regarding the role of ctedsk in the dynamic mean-variance

framework. Section 6 summarizes the finding angppses areas of future research.

20 Background Review of Credit Risk and Asset Allocation Models

The literature on portfolio management has focusedecent years on asset
allocation using a dynamic framework, which hasrasts in Markowitz's (1952, 1959)
celebrated static mean-variance analyses. Sinc&dWae's (1952, 1959) publication,
one of the most spectacular breakthroughs to hanexged in stochastic portfolio theory
was from Merton (1971, 1973), who derived optimghamic portfolio allocation in
continuous time where security prices were alloteeébllow a diffusion process. Since
Merton’s work there have been several extensiors applications to the classical
optimization problem, particularly the derivatiomda solution to the optimization
problem via the Hamilton-Jacobi-Bellman (HJB hete@fequation (Zhou and Li (2000),
Bielecki et al (2005)). This paper builds on Meitorvibrant strand of portfolio
optimization theory, while extending the Linear Quatic approach of Zhou and Li
(2005) to incorporate credit risk into the dynamsset allocation problem.

The effect of credit risk on the asset allocatisobtem has received relatively
little attention, with the exception of recent wadbly Jobstet al (2001), Ramaswamy
(2002) and Jobgdt al (2006). The growing influence of credit risk imdincial markets is
highlighted by the 2001 proposal by the BASEL comteei on banking supervision for a
stricter focus on the credit risk management ofkbamvestment portfolio, see for
example Gordy (2003), Dangt al (2003) and Lopez (2003). Prior negligence of dredi

risk in dynamic portfolio management although sisipg, maybe due in part to the



relative under developed credit markets that wereexistence when Merton first
introduced his acclaimed paper in 1971. Since there has been an exponential growth
in financially engineered productand the size of the global bond markets, (Dunbar
(2008)). The British Bankers Association estimahed the credit derivative market grew
from a notional $180 billion in 1997 to $5.0 trdh in 2004 and is expected to reach
upwards of $8.2 trillion in 2006 A review of the credit markets has shown thatlevhi
overall quality of global credit has deterioratbd tvolume of corporate bonds (corporate
credit risk) has risen dramatically over the past fears.

Although portfolio optimization models incorporagicredit risk are still in a state
of infancy, recent papers by Ramaswany (2002) a$tJet al (2006) conclude that
portfolio diversification of credit risk is much medifficult than for market risk. Hence
credit risk appears to play a far more significemie in the outcome of an investor’s
terminal return than previously believed. So ineassg the effects of portfolio risks on
terminal investors’ returns it is imperative to igera measure of total portfolio risk
inclusive of credit and market risk, which leadshis paper; The effects of credit risk on
dynamic portfolio management. However, while theper maybe closely related to
papers in the recent literature, none of thesecgaes by practitioners allow for a cross-
sectional pooled (market-credit) risk measure gatulates the agent’s total portfolio
risk exposure.

The growing importance of the corporate debt conepbrof the overall global

debt market (relative to government debt) indicaegowth in global credit risk, which

®>The creation of most of these credit derivativedoicts were in response to the significant growith i
corporate risk. These products such as Credit Mtefavaps were generally created as a protectiomsiga
the burgeoning global debt market.

®In an August 3% 2006 Wall Street Journal article “Can Anyone Relitbe Swaps” the current CDS
market was estimated at upwards of $17 trillion.



in itself partly explains the observed exponergrawth in the use of credit default swaps
to mitigate this growing counterparty risk. Much this growth in counter-party risk
stems from the ever increasing demand by banksiranse companies, institutional
investors and hedge funds seeking credit risk arsee to cover risky long bond
exposures. As far back as November 2002, then Feef @lan Greenspan appearing
before the Foreign Relations Committee suggestatl dhe positive outcome of this
growth is the strengthening of the financial sedtprspreading credit risk more broadly
across the entire sector as against having ibalktentrated among a few participants.
Observed investor attitudes suggest that invesioosv aversion to both market
and credit risk. For example during the height oé @f the most severe credit crisis of
this decade, Bear Stearns (BSC) equity may haveallpiexhibited relatively low levels
of market risk (volatility). However investors’ paption of the firm’s credit risk as
reflected in the meteoric rise in the price of fine’s credit default swap(CDS) resulted
in a number of investors abandoning Bear Sterngtye@nd debt products prior to its

near collapsé See figure 2.

" Credit-default swaps (CDS) are financial instrumsemnderwritten on bonds and loans that are used to
speculate on a company's ability to repay its detedit risk). They pay the buyer face value infeaage
for the underlying securities or the cash equivasdould a borrower fail to adhere to its debt agrents.

A rise (decline) in the price of the CDS indicatkterioration (increase) in the perception of dredk.
Increased volatility in the price of the credit aeit swap provides an indication of the level @dit risk in

a particular referenced entity.

8 The 2007 credit crisis created by the elevateatilny in the U.S. credit market spread uncertaiand
apprehension among market participants in manytdesrincluding some emerging markets. This resdulte
in an unprecedented “flight to quality” by a numladrinvestors, where they reallocated their investm
portfolios away from perceived credit risky assate more secured lower yielding products such &. U
Treasury and Municipal Bonds.



Figure 2: Quarterly Price Changes for Bear Sterns Credit Default Swap
for the period 2003 - 2008
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The graph shows that a deterioration in the credit quality of MBIA resulted in a dramatic rise in the credit risk
premiums that investors pay to insure The firms debt against the risk of default. This surge in the firm's default risk
premium was as a result of deteriorating U.S. and global creditmarkets and MBIA's esposure to corporate and
derivative creditrating gaurantees

The study’s makes three main contributions; firstlyproposes a new perspective
in portfolio optimization that derives a probabjlitveighted pooled credit-market risk
measure for use in deriving the agent’s optimalaaiyic asset allocation. Secondly, it
provides a framework for the evaluation of the stee's optimal portfolio strategy under
market and credit risk conditions, using quadratility maximization. Thirdly, it derives
a convenient approach for determining an agentls awversion coefficient that is useful
in helping to explain the portfolio choices of istaers. To illustrate the analytical
flexibility and potential of the extended dynamietimodology, an empirical specification
was tested under a number of scenarios involvieditand market risk experiences to
see how closely the results reflect actual marketitions. The study adopts changes in
historical CDS bid-ask spreads as a proxy of cradk. This is in keeping with the

approach by a number of studies in the literativat thave used CDS spreads as

10



determinants of default risk, such as Longstafél (2005), Das and Hanouna (2006) and

Dunbar (2008).

3.0 TheModd Structure: Dynamic Framework and Technical Background

This section contains the basic setup of the ex@miynamic optimization model
investigated in this paper. As discussed in sediOnthe study develops two alternative
models that were used as the primary tools for gtigating the investor’'s optimal
dynamic solution given both market and credit rigle first develop a benchmark model
that allows us to determine the investor’s attitddemarket risk; next we creatively
exposed the agent to credit risk through a morepbet@ risk measure so as to determine
any changes in investor’s attitudes to credit rile follow the usual conditions for a
dynamic portfolio optimization strategwhere the risky security is allowed to follow a
geometric Brownian motion and a constant risk-fege.

Assumptions: (i) Credit risk is measured by changes in the credit defaalp $®@DS) of each firm.
(ii) In a short sale, an investor sells borrowed shar#geimope of profiting by buying
them back later at a lower price.

The study considers a pure exchange, frictionless@ny with a finite horizon

[0,7] for a fixed 7 > 0] . Following the usual conditions of portfolio optaation, trading

can be discrete or continuous and traded are epuyucts as are both defaultable and
default-free zero coupon bonds of all maturitieee Pportfolio of U.S. Treasury bonds

serves as the numeraire. The underlying uncertaintile economy is represented by a

fixed filtered complete probability spac(eQ,F,Q,{ th}po) on which is defined a

°In a dynamic context we construct mean-variandiieft portfolios by optimally allocating wealth
across securities as the expected returns andnear@ovariance changes over time. As discussed in
footnote 2 we may hedge the change in the investopgwortunity set, however the hedged payoffs hell
lower because of credit risk

11



standard { th}po adapted Zdimensional Brownian motion

X(t)E(Xl(t) ..... X? (t))' (Duffie (1996)). The probability spacéQ,F,Q) with the
fiItration{FtZ t<as r}(—oost<rs+oo), Hilbert spaceH equipped with the inner

product(., ) and a Euclidean norfd|. , defines the Banach space. Now given the
Lagrangian specification;

¢(+)isan F — adaptedlH - valued measurable procesgor]

L2 (0,7, H)=1¢( r 3.1
t
With Euclidean norm,;
1
T 2 2
06, =[ Eflocrml; ] <o 62
t
Where the price of the default-free bond is givgn b
{dIP’O(t) = r(t)P,(t)dt t0[o,7] (3:3)
P,(0)=P,>0

and equity price is stochastic and risky in theneeny and the price follows a

ItG'sprocess that is represented as;

dP (1) =P (t){b(t) dt+i(anf +af)(t) X! (1)}, td[0,7]

B(0)=E >0

(3.4)

12



whereh is the expected return on equity per unit of tiM +a§) > Qis the volatility
vector® of the real return on equity per unit of tinrez Ois the instantaneous spot rate

return and where? represents market risk.

The following assumptions are made for the studysdratic programming
models:

1. The portfolio considered in this paper is assdn@ be self financing and
continuously rebalanced.

N

. Financial Markets are dynamically complete.

3. For the rational investor it is assumed that tfeueof the expected terminal

4
Jr(s)ds

wealth “d” satisfiesd > E| W

4. 1t is assumed that volatility in the credit ddfasawaps of firms is a proxy of
credit risk in financial markets.

5. It is assumed that in the familiar Markowitz meaniance modelaf) is a
probability weighted average of market ri@kri) and credit risl(af)

(o2}

. W(1) is predictable with respects to the information Bgfand meets the usual
integrating conditiong?

Now let’s consider an agent (investor) with aniatitvealthW, >0and total wealth over
a fixed time intervalr 20 of W(t) . Moreover, the agent also receives a stream of
investment incomE{ q} that he can use to buy additional payoffsrddifferent given

assets at pricgs The investor’s optimization problem can be repntésd by expressions

1.1-1.3oras;

'®We assume that the volatility vect[xr)’m, O'C] has full rank. This assumption ensures that nettieer

bond nor the stock is a redundant asset in theozogn
M Harrison-Pliska (1981) and Duffie (1996)

13



TD%XD[u(t)] s.t.iZ;:W (3.5)
whereu(t) = the expected terminal returns of a portfolicstafcks §) and bondsk), and
also whereE(V\(Hl)) = E(e+ W)=1.

Given the agent's investment stratepy(t)}, , asset allocation process

{w(t)}; that maximizes the expected utility of his wealtidl 4is information sz%ith} ,

720
the preferences of the infinitely lived agent canépresented by the time additive utility
function in equation 3.6, with varying levels odkiaversion. Here we follow the Hansen-
Richard (1987) and Cochrane (2008) approach wimés imarginal utility and the mean-

variance frontier.
E[Ie“”t(t)[w( £ x W] d} (35
0
We callu(t),i=0,1,2,...m, the total market value of the agent’s wealth @ m

bond(B,), and stockS ), whereu(t) = (u(%),...,u, (t))is a control variable or investment

strategy which may change over tim&inceu(t) is self financing it means that;

W {vvo(t)d—s(t) +W() AR )] 3.7
where
dR= {d—sl,...,d—SN ,ﬁj (3.8)
55 "B

W(1) is the portfolio value at, andw dRis a scalar product. The terminal paydffhas

finite variance.

14



Definition: The portfolio strategies are defined by the (N+1) dimeraioactor of weightsv(t) in

assetsl,...,n and the zero-coupon borf (t) . Without loss of generality5, (1) is
defined as reinvested dividends.

From the agent’s utility function in expression,3lee agent will try to maximize

his expected optimal terminal investment retu(ué) given his decisional wealth

constraint;

Y4 Y4 V4
dW(t)={ rOW( D+ (B = 1) y ( t)} de> > w (g O+ O3))+( (g (r+a (3)) Oy dX(x
i=1

=1 i=1

(3.9

w(0)=W,y=1(0), Otherwise

given thatw,(t) denotes the wealth invested in risky assets (sjpeksd w,(t)is the

wealth invested in nominal bonifsThese weights sometimes have additional consstaint

Y swW < i1=12,..v
wherey, 20, which represents the “short selling” constraiist,a positive constant,
o, and o represents the market and credit risk exposure itivestor faces,
u (), i=0,1,...mdenotes the total market value of the agent’s \Wwealtthei™ bond or
stock and wheré¢(0) is the lower bound on the decisional varie(Wg:z O). Note that

due to the positive lower bound imposed on investsi is clear that wealth should also
have a lower positive bould, since the agent needs some minimal amount oftlwveal
for investment which cannot be negative. This cboliis expressed in the assumption

below;

12 W and W are adapted to the information structhfe The weights represent the agent's investment
strategy.

15



Assumption: The proces$\, describing the agent’s wealth is subject to théofeing constraint

W(t) = I(t) (0t >0, where the strictly positive functioh(t),t >0 represents the
solvability level.

Following Hansen and Richard (1987) the study asfun(s) by its Riesz representation

in the Hilbert Space as an admissible portfoliatsy® if u(-) 0 L2 (0,7;R?). In fact the
pair (W()u()) is an admissible pair iW(-)DLZF(O,r;]Rf) is a solution of the

stochastic differential equation in expression &Bere the contran(-) aOu [O,r] .

4.0  Dynamic Portfolio Problem under Credit Risk
To add clarity to the results this section lays ol framework for the
determination and addition of credit risk to theemigs investment risk exposure.
Building the extended dynamic optimization modbEg study uses the popular dynamic
Merton framework as the benchmark, but allows tenéis investment risk frontier to be
a pooled parameter of credit and market risk. Owblem is then to minimize this
complete risk measure for a given level of retexpression 1.2.
Definition: Credit risk is defined as the risk of default oe tbeterioration in credit
guality of a reference entity that is part of tr@folio that the investor holds.
The study uses credit default swaps (CDS) as aypiaxcredit risk in financial
markets. The CDS is a bellwether of increasing diexg) investor confidence in
corporate creditworthiness. A rise (decline) intksaworsening (improving) perceptions
of credit quality. Credit default swaps are finaténstruments that are used to speculate

on a company's ability to repay debt. Unlike théeedled model where we represented

13 The set of strategies that satisfy the equalityiarquality constraints are called the admissieleof the
guadratic programming problem.

16



portfolio risk asr; = (U§1+Uf), the benchmark model assumes that the agentfofort

risk is only a function of market rigk’ :(a;). Moreover, the study’s cross-sectional

pooled risk framework is assumed to nest the i@adit mean-variance market risk
model. In the absence of credit risk, the agengsltt constraint depicted in expression

3.9 converges to the benchmark dynamic optimizatiodel in equation 4.0.

z z z _
dW(t):{r(t)W(mZ(b(t)— (1) uj(t)} deY. D (0 (D) u(y dX ()

i=1 =1 i=1

W (0)=W,, Otherwise (4)3

Where the general constrained controlled lineachststic differential notation in 4.0 can

be simplified for mathematical ease without losg@ferality to notation 4.1 below;

dW()={ AQW( 9+ B ) )+ ()} d’rz D(Y @) dX(

j=1

w(0)=W,—(d-u), Otherwise (4.3

Where

A(t) and f(9) are scalars

u(s) L2 (0,7;R%);

w(t) =W(t)-(d- U,

A(t) = r(t);

f(t) =(d-u)r(t);

B(t) = (b (t) - r(),....0, (t)-r (t);

D;(t) = (g, (t) + o ()),-... Oy ¢)+0c ());

B(t) ORZ and D (9 OR*( j=1,...,2) are column \aors

Z
The matrixz B(Y D(} is non Singular
j=1

17



Following Vasicek (1977), it is assumed that credi c; (like market riskr;) follows an

Ornstein-Uhlenbeck diffusion proce¥s;
dg =«(G - ¢) dt+ o7 dz (4.2)
where¢ is the long-run mearrrﬁis the volatility parameter anglis the mean reversion.

From assumptiord in section3 the investor’s risk frontier is a combination afth

market and credit risk which may be represented as;

2 =

Iy

(of1 +0’C2) (4.3)

_ 2 _ 2
B U L Ul L (4.9
n+m-2

wheren andm are the number of observations in both sets &fdata. From figure 2,
notice that when Bear Stern’s credit risk was nwistent during early 2004 through late

2006, the pooled risk measure would only reflectkaitarisk.

41  TheExtended Dynamic Cross-Sectional Risk Model

In this section, we derive the extended dynamitcieficy frontier (Cross-

sectional Pooled Risk frontier), in the varianc@exted return spa#éjf(\/\{)), E(W)) .

j
= ((a2W) +o2(W)), E(W))
The CSPR frontier consists of payoffs that minintize portfolio risk which is defined in

the following way;

min _E{2W(r)?) =, mn_ E{[W(r)— d*+ 2] EWE)- 4} (4.1.1)

{u(yau[t.r]} u(+)Ou[t.z]

“WhereC , 0'[2; and K are positive constants ar@d, is standard Brownian motion.

18



Subject to the constraints irR* solved for different values of the expected terhina
wealth ‘d”
E[w]=d
(R)=1u) O L1 (0.7;R?)
(W(-). u(+)) satisfies equatiod.0
Given expression 4.1.1 and the controlled linegqregentation in equation 4.0, our
objective is to find a portfolio with the minimumarket and credit risk for a given

optimalu(s) that minimizes the terminal cost function

I(r, w:u) = E{1 Wr)’) (4.1.2)
Where the associated value function of the comtdollinear stochastic differential
equation in 4.1 and the stochastic control probieraxpression 4.1.2 (the LQ problem)
is defined as;

V(r,w)= inf J(, w U-)) (4.1.3)

u(.)Ou(t,r)
As a necessary condition for optimality, the HaamilJacobi-Bellman (HJB) equation

related to the family of stochastic control probseim expression 4.1.3 is given as;

v, (7, w) +inf

u=0

Pl Ay we &) w ()] 5 w( £y URY B) p=o

(4.1.4)

v(7,w) :% W, Otherwise

Where D t) =(Dl(t)' e D, (t))

5 The reader is referred to the optimality condisidor the HJB framework in Fleming and Rishel (1975
for additional insights.
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The value functio’/ (7, w)defined in equation 4.1.3 is a constrained visgosit
solution of the HIB equation in 4.1.4 on the inaé[riy, +oo] . In fact using the uniqueness

theorems of Crandall and Lions (1983, 1990, 199 )can show that the value function
IS a unique smooth viscosity solution of the HIBawpn.
Expressed in terms of the investment strategy dndted for credit risk, the HIB

equation 4.1.4 may be represented as

2 fd_
SR (4.1.5)

dd 1 2, 2
{(U,W?D%{{ wlis = e+ w -+ Wi+ )+ 2| Wotk o) - wo,)

Wherep > 0is a unique strict global “minimizer” or constanscbunt factor, and

H (x, DV(X), D*U x))é s[uE]J{U(x}{(Ha)H 0 x-a w-na we&o_—_l} D(x)+%0202 x DBy % K[ | li+oo]

is the generalized Hamiltonian.

Definition: A vector o OOR? is called a strict global minimizer of expressin.6, if o OF
and there is a neighborhoodJ (p*)OR? such that f(p)= f(p) for
all pOu(p ) n F.

To find pwe put forward the following Lemma,;

LEMMA 1. Let Q be a continuous, strictly convex quadratic function
-1 -1 412
d(p)2 (D) p+(D) "B

Over,oD[O,OO]Z, whereB'0R?,DOR** andD'D >0. Thend has a unique strict

(4.1.6)

global “minimizer” or constant discount factgp D[O,OO)Z .
Hence Lemma 1 implies that;

[0y 2+(0) 8] (o) p(D) 8" 0,000  @17)
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The Kuhn-Tucker condition for minimization of Q imexpression 4.1.6
over[O,oo)Z lead to the Lagrange multiplier vectdg D[O,oo)Z such that
§=0d(p)=|(DD)" p+(DD) " E] (4.1.8)
whered p=0and & =(D')” p+(D')" B (The Lagrange multiplier vector)
=6 =0d(p)=D"¢
= pD* =0
~ d(aB)=d(aD?) =%a2H?H2

So given this unique minimizErderived in expression 4.1.6 and the Lagrange pliglti

in 4.1.8, the global minimizer and the Lagrange tipliér for the extended dynamic

optimization model can be expressed as;

p(r)= argp(t)é[nDi’Q)m%H(a; +a2)(t) " p+ (o +a2) (1) (b()- r(t)l)H2 (4.1.9)
and;
6 (t)=(op +a2)(t)" p(t)+(ag +02)(t) " (B(t)-r(t)1) (4.1.10)

Hence from equations 4.1.9 and 4.1.10 the optirogfglio selection strategy in

the presence of both market and credit risk thatesponds to the expected terminal

wealth E[W(r)] = d, as a function of timeand initial wealthW, can be expressed as;

U (W) =[G (tW), o (W]

' The Lagrange Multiplier Vecto(@) approximates the marginal impact on the objectivaction

(maxD u (t):l) caused by a 1 unit change in the constant of thetraint.

ubou
" This unique global minimizer may also be refertedelsewhere in the optimization literature as a

constant discount factor.
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It follows from the verification theorems of Gozand Russo (2006) and the results in

Crandall and Lions (1983), Crandall and Newcomb88)9 Ishii (1987) and Ishii and

Loreti (2002) thatu” (t, w) as defined by 4.1.11 is an optimal feedback control

—I r(s)ds

_((aﬁ (t)+o (t))(afA (t)+o? (t))’j_l[[)(t) +(b(t) - r(t)l)}{w —(d—,u*) e’ ]

T

—_[r(s)ds (4111)

u' (t,W) = ifw-(d-x)er <0

0 ifW—(d—,u*)e_!r(S)ds>O

Where the expected terminal return for investorldchn be written as

r(s)ds

U :d_V\ﬁ—e (4.1.12)

thus the agent’s efficiency frontier is represerdsgd

T 2 , 2
J-T(S)dS jr (s)ds
d-We H Wr)]- wWe
Var[W(r)]=~— = . (4.1.13)
[l as [lecsf as
e° -1 e -1

T T 2
LEMMA 2. The following relation holds foj-r(s)dsand j”é” dsover 1 D[0,00]
t t

[rs)ds=p(9(r -9~ [@..(3 da

Whent=0

=N Ejr(t)dt:yr
0

22



hencejr(s)ds~ N (Y (7- 9]

5.0 Dataand Empirical Illustration

In this Section, we demonstrate that the extertijghmic analysis of Section 4
can easily be adapted to alternative economic enwients. Section 5.1 illustrates the
analytical flexibility of our methodology in relain to a benchmark baseline dynamic
framework, and provides an explicit solution to éx¢ended dynamic credit risk model.

The study selected 10 actively traded stocks,r@arate bonds and the U.S. 10-
year Treasury bond to illustrate the approach fetin&ting the extended dynamic
optimization model. The corporate bonds are Gendfhdctric’'s (GE) CUSIP#
369604AY9 and JPMorgan’s (JPM) CUSIP# 014037179%]emme stocks are Alcoa
(AA), Procter & Gamble (PG), McDonald’s (MCD), Dey (DIS), Wal-Mart (WMT),
American Express (AXP), AT&T (T), Boeing (BA), Capdlar (CAT) and International
Business Machines (IBM). The study chose represeatatocks from the Dow Jones
industrial-30 covering a variety of industries amdich had high trading volumes on the
NYSE. Trade data for these stocks and bonds wkea tiiom Bloomberg and covered 7
years, ranging from July 32001 to July 3% 2008. Days with no trading activities were
eliminated from the study. From this data, the metof each individual stock and

corporate bond, was calculated for each month so the averagehtyorgturn was given

by
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n

2

r= tzlil , WhereN is the number of observations. Using this data,ctbvariance

between each pair of stocks is then calculated by

Z (ra,t —I’_a)(l’ bt _r_b)
t=1
N-1

cov(r, r,) =

For ease of computation but without loss of geitgrale assume thaty is evenly

weighted across all asset classes in the portfolio.

Table 1: Summary Statistics of the study's terminal wealth portfolio's risk and returns used to obtain the optimal
solutions for the two different portfolio strategies

Terminal Wealth - d
Firm Name Ticker Industry CR y U,i UCZ Uﬁ
1 Alcoa AA Aluminium BBB 2.89 8.94% 21.78% 15.36%
2 American Express AXP  Consumer Finance A 2.36 5.81% 29.02% 17.42%
3 AT&T T Telecommunications BBB 1.33 7.33% 23.25% 15.29%
4 Boeing BA AeroSpace & Defence BBB 5.50 7.31% 23.54% 15.43%
5 Caterpillar CAT Commercial Vechicles A 24.59 7.20% 17.37% 12.29%
6 General Electric GE Industrial AAA 1.72 5.44% 24.98% 15.21%
7 International Business Machines IBM  Computer Services A 9.53 7.20% 20.49% 13.85%
8 JPMorgan Chase Bank JPM  Banking A 7.31 8.42% 24.94% 16.68%
9 McDonalds MCD Restaurants BBB 16.49 6.92% 21.81% 14.37%
10 Procter & Gamble PG Consumer Products A 5.49 4.03% 15.21% 9.62%
11 WalMart WMT Retailer A 2.24 5.00% 21.43% 13.22%
12 Disney DIS Consumer Entertainment |BB 8.56 6.22% 22.22% 14.22%
Notes:

J - Mean Returns

02 - Variance

CR - Credit Rating

*GE Bond - CUSIP
*JPMorgan Bond - CUSIP

5.1  Discussion

From table 1, the study’s portfolio was comprisgdlO equity products and 2
corporate bonds. From table 1 we develop creditraarket risk optimization models in
a stochastic programming framework and found that gortfolio composition is best
optimized by utilizing an asset allocation along fines of approximately 80 percent

equity and 20 percent fixed income. From the pbdfmix we letm = 12, whilst the
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interest rate on the 10-Year U.S. Treasury bondinbtl from Bloomberg at the close of

trading on July 31 2008 was 4.02% and the appreciation rate of rhestocks

=(xl,x2...>§])'. The resulting LaGrange Multiplier and unique mmiger in equations

4.1.9 and 4.1.10 are derived as follows;

B(t) = (%, % %,)

while the unique minimizer ove[(),oo)m is given as
p(r)=[4.02,0,0,0,0,0,0,0,0,0,d with a minimum valu¥

s(p) = HJ;1,5+6’H2 =0.0407 for the benchmark model and 0.0092 for the exténde

model.
Hence from Lemma 3 the agent’s efficient portfdadocation) strategy under

the benchmark framework would be;

[0.03]
0.03
0.03
1002 m () 20T i ) 4026-t)
W)= 0.01[w (d-u)é } if W=( o) €2 <0
0.00
0.00

0.00}
0 it W —(d-4) >0

(5.1.1)

18 Suppose u and v are two orthogonal vectorRihthen, ||u + \/||2 = || L“Z +|| \HZ.

Proof: The proof of this theorem is fairly simple. Frone throof of the triangle inequality for norms we
have the following statement.

Jus s =g+ 2(ur 9+ §°

However because u and v are orthogonal we haveQuéwd so we geﬂu + \/”2 = || Lﬂz +|| \H2 i
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Where the optimal strategy attains its maximum &alu

Jr.r(s)ds o3
g=4-W%e  _ d ‘f}{)ﬁa (5.1.2)
Jlofes  1-€
1-¢

And his efficient frontier can be written as;

d_v\{)é[r(s)ds 2

E[W(r)]-Ww, é%

AR, N R
€° -1

(5.1.3)

For the extended model we find that the expectedital return is given by

*

*
uTraditional > uExtendec

J{r(s)ds o3
g=d4We  _ d \{)VO(EZ (5.1.4)
floofes  1-€
1-e°

Then the efficient frontier is represented as

Var [W(T)]Traditional > Var[ V\(T)] Extended

=W &0 2
varw(o)) - O

(5.1.5)

Firstly, the study demonstrates in equations 5tir@ugh 5.1.5 that given credit

risk the investor’'s true optimal dynamic asset adton is lower than previously
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indicated by the benchmark dynamic framework. lot fdne investor’s true terminal
return may lie on or between the upper market-bskndary and the lower credit-risk
enhanced boundary as graphically illustrated usemgple data in figure 3. In addition
the graph shows that in the presence of credit, tis& investor's efficiency frontier
moves inwards to a lower terminal return as illatgd by equations 5.1.2 and 5.1.3
respectively. However since the extended modelested in the benchmark dynamic

framework, when credit risk dissipates< Othen the agent’s risk frontier and terminal

return converges to that of the benchmark model.

Similarly, the analysis shows that the agent'sciit strategy of portfolio
selection corresponding to the expected terminabltvediffers under both risk
measurement scenarios. Expression 5.1.1 indicasegyiven the level of optimal return
obtained from equations 5.1.2 and 5.1.4, the gjyatieat works for the market-risk only
scenario would not work in an investment environmewolving both market and credit
risk. Hence as indicated in this analysis this ageth modify his investment strategy so

as to better adapt to the alternative credit riskgstment environment.

Figure3: Efficiency Frontier underthe Benchmark and Po&étdk Frameworks

Returns (%)

al

]

1

]

1

]
1

o 1 2 3 4 5 6
Risk (%6)

—e—Benchmark Risk-Variance Model - Pooled Risk-Variance Model
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Secondly, the closed form solution in expressiadh8&demonstrates that given
credit risk, investors exhibit a greater level iskraversion as indicated by a larger risk
aversion coefficient. Notice that since 5.1.5 Haesgmalleru’ it follows that he will have

a greater risk aversion coefficient when the ingesstaken in expression 5.1.8.

. J{r(s)ds 1 ~ jr(sds d_v\éé[r(s)ds
uU=u'e +=|U-de == 0= (5.1.6)
[leI ds
1-¢°
. ; Jr'r(s)ds
:%=% (5.1.7)
jr(s)ds
i-u'e
, -1
. ; jr(s)ds
~¢= % (5.1.8)
r(s)ds
u-u'e
1 1
->—>—
b Pe

Finally, the study shows that the added (cred# results in a reduction in the
agent’s terminal return on his investment becadigbeninvestor’s level of risk aversion.
In fact, the analysis adds support to the longstendiiew that during periods of
increased credit risks, investors reduce theirihgklof credit risky products and move to
the safety of the lower yielding risk-free produsisch as U.S. Treasury instruments,

which results in an overall lower terminal portéoheturn.
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6.0 Conclusion

Bajeux and Portait (1998) concluded from theidgtan dynamic asset allocation
that the dynamic efficient framework outperformdue tstandard static framework.
Moving a step further, this study demonstrates thatcredit risk enhance framework is
fundamentally much more flexible and dynamic thiaa traditional dynamic framework.
The paper first established a baseline dynamiarepdition model which was used to
determine an optimal terminal return given marksk.rA more complete risk model
inclusive of credit risk was later developed todstigate investors’ attitude to credit risk.
The empirical illustration of the extended crosstiemal pooled risk model demonstrates
that the dynamic optimal portfolio return is lowdran indicated by the benchmark
Markowitz and Merton mean-variance framework beeawaditional models implicitly
assumes the non-existence of credit events.

The inclusion of credit risk shows that given tlagiability of credit risk and risk
aversion, an investor’s true optimum may be belbgienchmark optimum or within a
given boundary region as illustrated in figure 3 fact, the extended model exhibits the
analytical flexibility whereby changes in risk it investors’ decisions (flight-to-
guality) as they move to minimize overall portfotieks for a given level of return.

From the standpoint of policy this work will noblg compliment past empirical
work in dynamic asset allocation but will also pdw®/investors a vehicle for determining
a more complete measure of perceived portfolio mskan investment environment
characterized by deteriorating (improving) credigbity and rising (falling) market risk
(interest rates). The flexibility of the model igyhlighted in the fact that in the absence

of credit risks, the model converges to the stashdgnamic optimization framework.
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