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Abstract

Scientists are continually faced with the need to express complex mathematical notions in code.

The renaissance of functional languages such as LISP and Haskell is often credited to their ability

to implement complex data operations and mathematical constructs in an expressive and natural

idiom. The slow adoption of functional computing in the scientific community does not, however,

reflect the congeniality of these fields. Unfortunately, the learning curve for adoption of functional

programming techniques is steeper than that for more traditional languages in the scientific

community, such as Python and Java, and this is partially due to the relative sparseness of

available learning resources. To fill this gap, we demonstrate and provide applied, scientifically

substantial examples of functional programming, We present a multi-language source-code

repository for software integration and algorithm development, which generally focuses on the

fields of machine learning, data processing, bioinformatics. We encourage scientists who are

interested in learning the basics of functional programming to adopt, reuse, and learn from these

examples. The source code is available at: https://github.com/CONNJUR/CONNJUR-Sandbox

(see also http://www.connjur.org).
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Introduction

Scientists express complex mathematical constructs and data translations in code. The

modern age of science, wherein data sources are increasingly distributed and data types are

increasingly complex, places unique demands on scientific programmers. The renewal of

interest in functional programming languages in the past decade has enabled software

engineering with increased modularity, composability, and programmer efficiency in many

NIH Public Access
Author Manuscript
Proc Int Conf Inf Technol New Gener. Author manuscript; available in PMC 2014 October 15.

Published in final edited form as:
Proc Int Conf Inf Technol New Gener. 2012 ; 2012: 89–94. doi:10.1109/ITNG.2012.21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

https://github.com/CONNJUR/CONNJUR-Sandbox
http://www.connjur.org


analytical domains, due to the fact that functional approaches are capable of “masking” the

machine level implementation data editing which is necessary for complex data processing

schemes [1]. The result is thus a natural, mathematical depiction of the way information

flows through a particular problem domain.

The fields of protein bioinformatics and structural biology require integration of

mathematical constructs, software libraries, and complex data structures that are difficult to

express using conventional programming paradigms. Such repositories can easily span

1000s of lines of procedural code implementing complex operations of matrix manipulation,

combinatorial comparisons, and iteration through semantically dense data structures. Such

endeavors are ideally suited to functional programming approaches: by hiding the details of

the underlying data structures and machine-level data operations, functional approaches to

scientific computing allows researchers to once again focus on the actual problem domain

which they are interested in addressing, rather than any non-essential “accidental”

computational complexity.

This manuscript introduces a sandbox for learning how these abstract concepts are applied to

real world scientific analysis and visualization. We introduce and exemplify tidbits of a

completely open-source source-code repository, which aims to increase the accessibility of

practical functional programming constructs applied to real-world problems relevant to the

bioinformatics community in a language neutral environment.

First, to demonstrate the power of functional abstraction for bioinformatics tasks, we

describe its application to the definition of sample scheduling patterns of NMR for

nonuniform data collection using Haskell (a purely functional language). The ability to

rapidly define and integrate complex mathematical abstractions into the NMR sample

scheduling workflow demonstrates the power of Haskell for implementing dynamic,

experimental frameworks for mathematical programming, and provides a template to new

researchers interested in abstracting the quantitative logic of their codebase so that it is both

maintainable as well as easily modifiable.

Second, we also address one of the criticisms of functional programming, which is that,

although it is powerful and expressive, there are libraries in other languages which do not

readily port to different platforms. To address this concern, we exemplify the power and

ease of integrating Clojure with pre-existing bioinformatics libraries for the standard Java

programming language. The portable, tight JVM integration that Clojure provides is

demonstrated as a data integration framework, interoperating with BioJava, a plotting tool

via the Incanter toolset, and also by molecular visualization, with the popular Jmol library.

In short, these provide scientists examples of how to accomplish powerful data analysis and

visualization tasks in a practical, but functional, idiom using the Clojure language.

Active development of the CONNJUR-Sandbox is underway. There are examples of both

prototypical scripts which briefly demonstrate important, less-known features of functional

languages (such as GUI design, remote data integration, and language interoperability), as

well as production ready code, which exemplify robust features of “real” source repositories

– such as standardized unit tests, dependency management, and build automation.

Fenwick et al. Page 2

Proc Int Conf Inf Technol New Gener. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We encourage contributions from programmers of different backgrounds, including

developers from the Clojure, Haskell, Erlang, OCaml, and Ruby communities, who are

interested in learning more about problem-solving in functional programming, and applying

their skills to complex problems.

There are other existing examples, largely genome related, of functional programming work

in the open-source bioinformatics community: The BioCaml project offers a variety of

parsers for different genomic file formats (https://github.com/agarwal/biocaml), the official

BioClojure project, deals with analysis and visualization of genomic data (https://

github.com/jandot/bioclojure), and the BioHaskell project (http://biohaskell.org/) offers

further analysis of genomic data. We expect that the CONNJUR-Sandbox project, which

focuses on protein bioinformatics and machine learning, will instruct and prepare novice

scientists for in the practical aspects of functional programming (unit testing, data

integration, visualization) where didactic resources are lacking..

Haskell Sample Scheduler

A. Background

NMR -- Nuclear Magnetic Resonance -- spectroscopy is a technique for collecting

information about molecules. In the context of protein spectroscopy, it is applied to collect

data which can be used to determine structure and dynamics. NMR experiments collect data

in multidimensional (1 to 4 or more) grids, where each of the dimensions represents time or

a pseudo-time dimension. Conventional experiments collect data evenly spaced, on-grid data

points. The total amount of time to complete a data collection experiment depends on the

number of points collected; thus, experimental time grows very quickly with the number of

dimensions -- 4-dimensional experiments can take days to fully complete.

Not only is this expensive to run the spectrometer for such a long time, but there can also be

negative consequences on the quality of the sample: samples may not be stable for the entire

length of time required for the experiment, leading to detrimental effects on data quality. An

alternative to uniform collection is non-uniform collection of on-grid data points. This

reduces the time necessary to complete the experiment -- often, the time savings can be

greater than 50% of the original experimental time. This technique has already been

successfully applied. Additional proposals have shown the value of non-uniform collection

in two other areas: quadrature units [2] and number of transients[3]. Quadrature detection is

used to distinguish between signal phase; 2n quadrature units are typically collected, where n

is the number of dimensions. Non-uniform transient collection refers to applying signal

averaging non-uniformly with respect to grid point.

There have been a large number of published algorithms for generating various schemes of

on-grid sampling. However, the need for an integrated platform which unifies these

algorithms for the benefit of the programmer and user has become evident recently, with the

advent of non-uniform quadrature detection and a renewed interest in non-uniform transient

collection. Additionally, there are multiple spectrometer companies and tools for dealing

with non-uniform data; typically, each of these has a special format -- another degree of

complexity for the NMR spectroscopist to deal with. The goal of this project is to create
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such a platform which enables combination and reuse of the various algorithms by means of

a coherent and complete data model.

B. Summary of Results

1) Data model of schedule—A data model was implemented in Haskell, as well as in

MySQL, an open-source Relational Database Management System (RDBMS). A formal

data model is necessary to enable computerized use and interpretation of sample schedules,

as well as allowing researchers to easily share and describe schedules. The model we

describe is a superset of existing, informal models; it provides additional descriptive power

for specifying more rich and complex schedules and sampling schemes.

Specifically, the model includes support for non-uniform quadrature detection and transient

selection. These two areas have been largely unexplored by NMR researchers. However, the

richness of our model allows a user of the code to easily switch between uniform and non-

uniform settings for both quadrature and transients -- while allowing continued use of

traditional sampling schemes.

Basically, a sample schedule has an associated number of dimensions which determines the

dimensionality of the grid points and quadrature units -- for example, a 1D schedule has 1D

grid points and quadrature units, a 2D schedule has 2D points, and so on. Each unique

combination of grid point and quadrature unit is termed a “point”; the number of times each

point appears in the schedule is the number of “transients”. In database terms, “point” +

sample schedule identifier is the primary key of the point table.

2) Model of schedule creation workflow—We break down schedule creation into

three distinct steps: schedule generation, point selection, and schedule modification. Many

schedules can be created solely with a ‘generation’ step. However, more complicated

schedules can not be expressed so simply; these are then expressed with combinations of

generation, selection, and modification steps.

Generation: points from a grid and quadrature units are combined to create a simple

schedule. Also, the number of transients is selected for each point; the current default is to

have one transient for each point, as non-uniform transient selection can be achieved by

different means. However, this can easily be extended in future versions if desired.

Selection: points from a schedule are selected; this can involve selection with or without

replacement. If without replacement, this operation will simply filter out some points. If

with replacement, this operation results in non-uniformly transient detection. Additionally,

there are options, during the selection stage, to select all transients together, all quadrature

units of a grid point together, or all separate, allowing maximum flexibility.

Modification: many schedules can be improved by adding random noise, such as Gaussian

blurring [4] or bursty selection [5]. Such an operation would typically adjust all of the points

in a schedule in some way without removing any directly.

Such a conceptualization of schedule creation provides maximum expressiveness, allowing a

user to easily create schedules that would otherwise involve a large amount of work.
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3) Integrated, interactive environment for creation, evaluation of schedules—
Loading the code into the Haskell interpreter (GHCi) allows the user to interactively create,

view, and analyze sample schedules. The combination of data model and useful functions

allows analysis of schedules at a very high level, while the interpreter allows flexible

experimentation and combination with a variety of algorithms, allowing a user to identify

potentially useful workflows, which can then be more robustly coded at a later time. The

very low barrier of entry to creating and examining various sample schedules saves the

NMR spectroscopist time.

4) Example schedules—Bundled with the code are a number of example sample

schedules of interest, including schedules demonstrating the Halton sub-random sampling

scheme, exponential sampling scheme, non-uniform transients selection, non-uniform

quadrature selection, and uniform grid sampling scheme. In addition to these schedules, the

code/data used to create them is given.

5) Flexible export options -- schedule formatting—The code includes many options

for schedule output, including all those used by common spectrometer companies, as well as

the Rowland Toolkit, and a custom column-based format including transients, and a custom,

unambiguous JSON format for explicit automated data transfer and sharing, possibly with

other programs or through web services.

6) Implementation—This project was implemented using a purely functional

programming language for a number of reasons. Haskell’s rich type system facilitates type-

safe programming at a very high level, which results in code that is more general, easier to

comprehend, and much shorter. In many cases, complex algorithms were easy to implement

and easy to read and understand once the project reached the maintenance phase.

Additionally, the richness of its type system catches a whole host of typing errors at

compile-time rather than at run-time --allowing the programmer to have much more

confidence in the quality of his/her code. Due to its nature as a functional language, Haskell

code is inherently testable; additionally, an easily available Haskell library known as

QuickCheck provides a very robust means of testing properties of code.

7) Future goals—The main future goal of this project is an application for creating sample

schedules, usable from the command line or a Graphical User Interface (GUI). User-defined

parameters, in a JSON-formatted text file or from the GUI, would be passed in to the

program, which then uses the parameters to create and execute a schedule workflow. Errors

could occur either when reading the parameters, or when executing the workflow; they

would then be reported to the user in place of a schedule. The schedule may be output in any

of a number of formats, including Varian and Bruker. The major advantage of using JSON

parameter files is the ease of sharing, creating, and analyzing the parameters, due to the

prevalence of JSON as a data format.

Java, LISP, and Bioinformatics: The Three Worlds Collide

The flexible and expressive nature of LISP languages have engendered support from

theoretical computer scientists for several decades. In particular, the ability to customize
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LISP syntax for particular, domain specific problems has been leveraged in several domains.

However, the lack of a standard platform for installing, learning, and using LISP has been a

barrier to adoption in other areas. The emergence of the Clojure programming language,

which is free, open source, and well supported, has changed this paradigm, enabling a JVM

ready platform for building applications which can leverage the expressiveness of LISP with

a lower barrier to entry.

One particular area of interest in our group has been integrated protein bioinformatics. We

have previously deployed applications [6] which leverage the CONNJUR framework [7] for

data integration, the BioJava library [8] for analyzing proteins sequences and structures, as

well as the Jmol tool [9] for molecular visualization. One of the concerns that small

laboratories face in designing large, data driven applications is the maintenance of their code

base, which can grow quite rapidly. Such applications can benefit from not only the wide

variety of numerical and scientific libraries available in mainstream languages (such as Java,

C++, Perl, and Python), but also the conciseness and abstractness of functional code. Clojure

provides a unique combination between availability of libraries and accessibility of function

paradigms.

In order to exemplify the Clojure language for solving and integrating domain specific

problems, we have deployed several examples of the integration of Clojure with the popular

BioJava library for protein bioinformatics. For example, the CONNJUR-Sandbox source

tree includes examples of how to remotely and integrate and test the functionality of BioJava

into a Clojure project, examples of how to load, parse, and visualize protein structures from

the PDB in just a few lines of code using the LISP-like syntax of Clojure, and the basic

elements of data visualization for NMR-derived protein chemical shift data, by virtue of the

Incanter library for data plotting.

Included are screen shots, and code snippets, which exemplify the expressive and functional

nature of these operations - along with the robustness of the Clojure platform for integrating

with real, computationally intensive Java processes at the API level. The ability to utilize

Clojure in this context will open up new venues for the penetration of functional

programming concepts into the Bioinformatics community, while also showcasing the

ability of modern LISP dialects to satisfy the multidimensional requirements of the modern

scientific programmer - who must not only design new algorithms, but also engineer

solutions for maintaining and visualizing the implementation of such constructs.

Since Clojure is Java-based, we are able to quickly and easily package the source code into

executable .jar files, which can be run by any computer equipped with the Java Virtual

Machine (JVM) 1.6 or higher. This was accomplished using the ‘leiningen’ build tool for

dependency management and project builds.

A Clojure Amino Acid Predictor

C. Background

The Clojure Amino Acid Predictor is a machine learning algorithm based on a binary

Support Vector Machine (SVM). In binary SVM algorithms, examples are represented by
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sparse vectors, in Rn, where each entry of the vector holds the value of a feature,

corresponding to the index of the entry. For example, if one is trying to categorize a set of

journal abstracts into one of two classes, biology and astronomy, the abstracts represent

examples and selected keywords in the abstract, corresponding to each index of the sparse

vector, could represent features. The frequency of keywords in the abstracts represent the

values at the feature index in the sparse example vector. The learning model, f, learns to

associate each sparse vector, X = (x1, x2, … xn ), with either the positive class, f(X) > 0, or

the negative class, f(X) < 0, via the mapping f: X → Y, Y = {−1, +1}, where elements in the

negative class are assigned to −1 and elements in the positive class are assigned to +1. The

model learns by maximizing its projection (minimizing the L2 norm) onto elements in the

positive class via the inner product. It gets closer to elements in the positive class, and

further from elements in to negative class, gradually partitioning Rn, into two disjoint sets

bounded by a hyperplane; positive examples are on one side of the hyperplane and negative

examples on the other [10].

D. Design

The essence of the Clojure Amino Acid Predictor is to treat a neighborhood, e.g.,

“GLAMS”, centered about an amino acid of interest, in this case A, as an example and

define features about A in that neighborhood. Neighborhoods represent the decomposition

of a peptide sequence into local examples and know nothing about other examples extracted

from the sequence. For example in “GLAMS”, LM is an inner neighbor and GS is an outer

neighbor. We teach our model to guess the center of a neighborhood given inner and outer

neighbors. To distinguish inner from outer neighbors a “1” is appended to inner neighbors,

LM → LM1, and a “2” is appended to outer neighbors, GS → GS2. Neighborhoods capture

local information about each amino-acid, and we train our SVM classifier to recognize this

information. The actual implementation uses eight features per example; we only describe

two features, inner and outer neighbors, for clarity.

This project makes liberal use of Clojure’s lazy sequence evaluation, combining infinite and

finite lists as exemplified in this short and expressive code snippet:

(def protein-neighborhood (let [ s (stringseq-tuple protein-neighbors)]

(zipmap (into (stringseq s (repeat “1”)) (stringseq s (repeat “2”)))

(iterate inc 1))))

In these three lines of code, we create a map, protein-neighborhood, of all 20*20*2 = 800

possible inner and outer neighbors given a 20 letter alphabet of amino acids; each inner/

outer neighbor is indexed from 0–799. protein-neighbors is a list of all ordered, 20*20= 400,

pairs of amino acids in tuple format. The function stringseq-tuple turns this list of tuples

into a list of ordered strings while stringseq lazily concatenates each element of the ordered

string list with an infinite sequence of ones. The map, protein-neighborhood, can also be

used as a function that returns the index of an inner/outer neighbor:
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(defn get-protein-neighbor-index [protein-neighbor] “String -> Int”

(protein-neighborhood protein-neighbor))

(get-protein-neighbor-index “LS1”) returns 783, the index for the inner neighbor LS1. Now,

the idea is to take a peptide sequence and find all the neighbors, a straightforward

implementation of regular expressions in Clojure:

(defn target-neighbors [string] ;; returns neighborhoods about desired amino 

acid

(let [ matches (re-seq #“..[A]..” string) ]

matches))

This function returns all the neighborhoods centered about A in a peptide sequence. For

instance, calling the function target-neighbors on the sequence “LMAGSAPW…” yields the

sequence of neighborhoods (“LMAGS” “GSAPW” …). In addition, negative

neighborhoods, examples in the negative class, are generated identically to target-neighbors

except the regular expression “..[^A]..” is used in place of “..[A]..” to match all the

neighborhoods centered around every amino acid except A. These error neighborhoods train

the model to avoid examples not associated with features centered around A.

This project currently reads a raw-text peptide sequence as a training set and learns to

predict amino acid gaps in a test protein related to the training protein. It writes a file with a

score (calculated from the provided correct sequence) for the number of correctly predicted

gaps, and offers a sequence of amino acid propositions, ordered from most likely to least

likely, for each gap. The algorithm typically yields 100% accuracy for artificial proteins

generated by concatenating a set of neighborhoods, with distinct features, in a random order:

{“LMAGS” “GSAPW” …} → “GSAPWLMAGS …”. This proves the algorithm works

when training and predicting on proteins with this highly ordered local structure.

Unfortunately most real proteins lack this structure, so this algorithm, in its current form,

lacks a valuable use case. Fortunately, the code can easily be adapted to solve any protein

classification problem. The technical details of this project are described in the open source

repository.

E. Rationale and Future Work

The use of Clojure in a computationally extensive machine learning task evidences its

potential as an alternative to mainstream languages like C++ for the computational science

community. Clojure’s core library of functions, lazy sequences, expressiveness and

emphasis on functional code allow for easy parsing of files, implementation of numerical

procedures, I/O, and parallel computation. The multi-classification algorithm trains 20

models for each of the 20 amino acids. Each model is trained independently of the others,

thus the models can be trained in parallel using Clojure’s advanced concurrency features.

The Hadoop framework offers tools to make this parallelism easier and more efficient.
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CONNJUR – Sandbox On The Web

The source code is free and open source, and available on our github page at https://

github.com/CONNJUR/CONNJUR-Sandbox. Contributions of any kind, including

suggestions, documentation support, testing, and new languages or algorithm sandbox

implementations, are welcomed.

Methods

We used the command-line tool ‘git’, to provide local source control capabilities, together

with github for remote, shared, and distributed source control between members of the

group. For java dependency management and project builds, we have employed ‘leiningen’,

a script specifically targeted at Clojure, and built on top of maven, for such tasks.

Future of Bioinformatics and Functional Programming

Through this paper, we hope to establish the practicality, value and usefulness of functional

programming to the bioinformatics and NMR communities and to the scientific

programming community at large. It is our belief that the inherent advantages of functional

programming will lead it to continue to grow in popularity in the coming years; we hope that

project CONNJUR-Sandbox will provide guidance, motivation, and a place of learning for

computing scientists interested in learning about and applying the benefits of functional

programming to biologically relevant problems.
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Figure 1.
A MySQLWorkbench data model of a non-uniform sample schedule.
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Figure 2.
The process of building complex sample schedules.
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Figure 3.
The flow of execution in the proposed sample scheduler functional program.
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Figure 4.
A plot of chemical shift of CA atom vs. residue number, created with Clojure, Incanter
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Figure 5.
Figure 5: a plot of color-mapped chemical shift values, created with Clojure, BioJava and

Jmol.
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