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Abstract
A single-issue spatial election is a voter preference profile derived from an

arrangement of candidates and voters on a line, with each voter preferring the
nearer of each pair of candidates. We provide a polynomial-time algorithm that
determines whether a given preference profile is a single-issue spatial election and,
if so, constructs such an election. This result also has preference representation
and mechanism design applications.
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1. Introduction.

We address the problem of determining whether voter preferences over a slate of can-

didates could have been formed solely on the basis of the candidates’ and voters’ positions

on a single issue. More exactly, given a finite slate of candidates, a finite electorate and

a voter preference profile in the form of a linear ordering of candidates for each voter, is

there an arrangement of the candidates and the voters on a line such that for any voter v

and candidates c and d, v prefers c to d if and only if the distance from v to c is less than

the distance from v to d?

Here the problem splits in two. In the first version of the problem, voters are allowed

to have different perceptions of distance. In particular, for points c, d and e in R with d

between c and e, two voters may disagree on whether d is nearer c or e, but must agree

that c is nearer d than e. A spatial representation as described above, in which voters are

allowed to have different perceptions of distance, is called a convex representation in R.

Equivalently, a convex representation in R is an arrangement of the candidates alone on a

line in such a way that for every voter v and candidate c, there is a convex set in R, that

is, an interval, that contains those candidates and only those candidates who are weakly

preferred to c by v.

Convex representations in R have also been called qualitative scales (Coombs, 1964),

and preferences convexly representable in R have been called ordinally single-peaked pref-

erences (Brams et al, 2002).

Bogomolnaia and Laslier (2007) provide a surprisingly simple answer for the

2-dimensional version of the above question: every preference profile is consistent with

voter preferences being formed on the basis of candidates’ positions on two issues. In

other words, every preference profile has a convex representation in R2.

Bartholdi and Trick (1986) produced a polynomial time algorithm to determine

whether a given voter preference profile has a convex representation in R. Ballester and

Haeringer (2007) then presented a simple characterization of convex representability in

R; they showed that a convex representation in R exists if and only if the given voter

preference profile does not contain as a subprofile either of two examples, one involving
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three voters and three candidates, and one involving two voters and four candidates.

The second version of the problem differs from the first version only in that voters are

required to share a common perception of distance. A spatial representation in R in which

voters are required to share a common perception of distance is called a Euclidean repre-

sentation in R. Euclidean representations in R have also been called quantitative scales

(Coombs, 1964); and preferences that have Euclidean representations in R have been called

cardinally single-peaked preferences (Brams et al, 2002). Bogomolnaia and Laslier (2007)

obtain some interesting results concerning Euclidean representations in higher dimensions.

Their results relevant to our problem appear in their Proposition 15, which in dimension 1

asserts the existence of a Euclidean representation in R if the number of voters is at most

two and the number of candidates is at most three, and also provides a two voter, four

candidate example with no Euclidean representation in R.

We will construct an algorithm that in polynomial time determines whether a given

voter preference profile possesses a Euclidean representation in R and, if so, constructs

such a representation. Here, “in polynomial time” means in a number of steps that is

polynomial in the number of candidates.

Besides the previously mentioned application, recognizing single-issue spatial elections,

and the obvious application, preference representation, our results have a mechanism design

application. Suppose you are planning a community along a stretch of road. You plan

to build homes and several amenities, such as a gym, a grocery store, a bowling alley,

etc. Each prospective home-buyer has ranked the amenities from likely-to-be-used-most-

often to likely-to-be-used-least-often. You would like to know if it is possible to place

the homes and amenities on the highway so that each homeowner is nearest his top-

ranked amenity, second nearest his second-ranked amenity, etc. Since in this context

homeowners will have the same perception of distance, we are looking for a Euclidean

representation in R. (Is there any meaningful interpretation for a convex representation

in R even though homeowners have a common perception of distance? Yes, there is. In a

convex representation, no homeowner ever has to drive past a less-often used amenity to

get to a more-often used amenity.)

The rest of the paper is organized as follows. Section 2 consists of preliminaries.
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Sections 3 contains our result on Euclidean representations in R. Section 4 contains some

concluding remarks.

2. Preliminaries.

Let I be a finite set of voters or, more generally, individuals. Let A = {aj}j∈J be a

finite slate of candidates or, more generally, a finite set of distinct alternatives, indexed

by J , a finite set of positive integers. We assume for convenience that no two voters have

identical preferences. Let R = (Ri)i∈I be an ordered |I|-tuple of distinct linear orders on

A. A linear order Ri on A is a complete, transitive, antisymmetric binary relation on A.

The expression ajRia
k can be read “i weakly prefers aj to ak.” Alternative aj ∈ A is

Ri-minimal (Ri-maximal) if akRia
j (ajRia

k) for all ak ∈ A. A linear order is essentially

a ranking of alternatives from the most preferred (Ri-maximal) to the least preferred (Ri-

minimal). Then (I, A, R) is a profile of linear orders.

For X ⊆ Rd , co(X) is the convex hull of X in Rd.

Definition 1. A convex representation in Rd for profile (I, A, R) is a set X = {xj}j∈J ⊆

Rd such that for all i ∈ I and xk ∈ X, the upper contour set Ui(xk) := {xj : ajRia
k}

satisfies Ui(xk) = co(Ui(xk)) ∩ X.

Definition 2. A Euclidean representation in Rd for profile (I, A, R) is an ordered pair

(X, W ) with X ∪W = {xj}j∈J ∪{wi}i∈I ⊆ Rd such that for i ∈ I and distinct aj , ak ∈ A,

ajRia
k if and only of ρ(xj , wi) < ρ(xk, wi), where ρ is Euclidean distance.

Definition 3. A profile of linear orders (I, A, R) is 3,3-twisted if there exist b, c, d ∈ I and

distinct ap, aq, ar ∈ A such that, among ap, aq and ar, ap is Rb-minimal, aq is Rc-minimal

and ar is Rd-minimal.

Definition 4. A profile of linear orders (I, A, R) is 2,4-twisted if there exist b, c ∈ I and

distinct ap, aq, ar, as ∈ A such that arRba
qRba

p, apRca
qRca

r, asRba
q and asRca

q.

Proposition 1. (Ballester and Haeringer, 2007) A profile of linear orders (I, A, R) has a

convex representation in R if and only if it is neither 3,3-twisted nor 2,4-twisted.
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A family of problems (Q(n)) is an infinite sequence of collections of problems. Consider

an algorithm that solves (Q(n)), that is, an algorithm that solves every

Q ∈ ∪+∞
n=1Q(n). Such an algorithm is a polynomial-time algorithm if there is a polynomial

P such that for every positive integer n, the algorithm solves each Q ∈ Q(n) in at most

P (n) steps. In general, a polynomial-time algorithm can be usefully implemented on a

computer, an algorithm that takes an exponential number of steps cannot.

3. Euclidean Representations in R.

We now construct an algorithm that inputs a voter preference profile (I, A, R) and

outputs a Euclidean representation (X, W ) with X ∪ W = {xj}j∈J ∪ {wi}i∈I ⊆ R or

announces that no Euclidean representation in R exists.

Step 1 . First check to see that |I| ≤
(|A|

2

)
+ 1. This is a necessary condition, since,

if (X, W ) is a Euclidean representation in R for (I, A, R) and wb < wc it follows from

the fact that voters have distinct preferences that there must exist xp and xq such that

wb < (xp + xq)/2 < wc. Since there are
(|A|

2

)
candidate-pair midpoints, there can be at

most
(|A|

2

)
+ 1 voters.

Step 2 . Use Proposition 1 to determine whether (I, A, R) possesses a convex representation

in R. If not, (I, A, R) possesses no Euclidean representation in R. If so, construct a convex

representation X in R for (I, A, R) using the method of Ballester and Haeringer (2007) or

Bartholdi and Trick (1986).

Next, in order to establish and exploit the (limited) uniqueness of Euclidean represen-

tations in R, we need to reindex the candidates. Suppose a|A|, a|A|−1, . . . , ar+1 have been

chosen for 1 ≤ r ≤ |A|. (If r = |A|, this means the reindexing has not yet begun.) Choose

ar to satisfy

aris Ri−minimal in A − {a|A|, a|A−1|, . . . , ar+1} for some i and, if possible, such that

there exists ak with ar Ri−minimal in A − {a|A|, a|A−1|, . . . , ar+1, ak} for all i
(1)

Notice that the construction is not in general unique. By our use of (1) in the construction,

for all j, aj is Ri−minimal in {a1, a2, . . . , aj} for some i (2)
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Now partition A into t sets

{A1 = {ak1 = a1, a2, . . . , ak2−1}, A2 = {ak2 , ak2+1, . . . , ak3−1},

. . . , At = {akt , akt+1, . . . , a|A|}}

defined inductively by

k1 = 1, kl+1 is the smallest j > kl, such that aj is Ri−minimal in {a1, a2, . . . , aj} for all i

(3)

Lemma 1. If (I, A, R) has a convex representation in R and |Al| > 1, then, up to order

in R, there are exactly two convex representations in R for (I, Al, R|Al
), and these two

convex representations are oppositely ordered.

Proof . Suppose |Al| > 1 and Zl = {zkl , zkl+1, . . . , zkl+1−1} (or {zkl , zkl+1, . . . , z|A|} if l =

t) is a convex representation in R for (I, Al, R|Al
). Then {zkl , zkl+1} and {−zkl ,−zkl+1}

are convex representations in R for (I, {akl , akl+1}, R|{akl ,akl+1}) and they are oppositely

ordered in R. If |Al| > 2, by (2) and (3) both akl+2 and aq are Ri-minimal in

{akl , akl+1, akl+2} for some i, where aq 6= akl+2. Then, both zkl+2 and zq are extrema of

{zkl , zkl+1, zkl+2}. Therefore the order of {zkl , zkl+1} in R uniquely determines the order

of {zkl , zkl+1, zkl+2} in R. In other words, up to order in R there are exactly two convex

representations in R for (I, {akl , akl+1, akl+2}, R|{akl , akl+1, akl+2}): {zkl , zkl+1, zkl+2}

and {−zkl ,−zkl+1,−zkl+2}. Continue adding on one aj at a time until the conclusion

holds for Al

Our description of Step 3 requires the following notation. Let B = ∪|Al|>1Al. Let

Al1, Al2. . . . , Als be the subsequence of A1, A2, . . . , At containing all Al ⊆ B. For any set

Z ⊆R, let −Z = {−z: z ∈ Z}.

Step 3 . From Step 2 we have a convex representation X ⊆R for (I, A, R) and therefore

a convex representation Z ⊆R for (I, B, R|B). We will define a linear order ≤ on Z (not

in general the order inherited by Z from R under less-than-or-equal) such that the order

of candidates in every Euclidean representation in R for (I, B, R|B) agrees with ≤ or its

inverse. Clearly, this agreement condition places no restrictions on the linear order (Z,≤)

if (I, B, R|B) possesses no Euclidean representation in R.
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Let Zl1 = {zj : aj ∈ Al1}. Using Lemma 1, without loss of generality we can let ≤ on

Zl1 be the order on Zl1 inherited from R ordered by less than or equal (in short, let ≤ on

Zl1 agree with Zl1 ⊆R). By Lemma 1 we must define ≤ on Zl2 to agree with Zl2 ⊆R or

to be ordered oppositely to Zl2 ⊆R.

Question 1. Is there a Euclidean representation in R for (I, B, R|B) with Zl1 ordered by

≤, with Zl2 ordered like Zl2 ⊆R, and such that zkl1+zkl1+1

2 ≤ zkl2+zkl2+1

2 ? Without loss of

generality, assume zkl1 < zkl1+1 and zkl2 < zkl2+1. By (2) and (3), choose b, c ∈ I such that

akl1Rba
kl1+1 and akl2+1Rca

kl2 . A “yes” answer to Question 1 would imply akl2Rba
kl2+1

and akl1+1Rca
kl1 .

Question 2. Same question, but with zkl2+zkl2+1

2 < zkl1+zkl1+1

2 . By (2) and (3), choose

d, e ∈ I such that akl1+1Rda
kl1 and akl2Rea

kl2+1. A “yes” answer to Question 2 would

imply akl2+1Rda
kl2 and akl1Rea

kl1+1

If not(akl2Rba
kl2+1 and akl1+1Rca

kl1) and not(akl2+1Rda
kl2 and akl1Rea

kl1+1), then

the answers to Questions 1 and 2 are “no” and “no.” There is no Euclidean representation

in R for (I, B, R|B) with Zl1 ordered by ≤ and Zl2 ordered like Zl2 ⊆R. Therefore we

adopt the only remaining alternative and define ≤ on Zl2 to be ordered oppositely to

Zl2 ⊆R. This guarantees that in every Euclidean representation in R for (I, B, R|B), the

order of Zl1 and the order of Zl2 both agree with ≤ or both agree with its inverse.

On the other hand, if akl2Rba
kl2+1 and akl1+1Rca

kl1 we ask a third question.

Question 3. Is there a Euclidean representation in R for (I, B, R|B) with Zl1 ordered by

≤ and Zl2 ordered oppositely to Zl2 ⊆R? If so we have zkl1 < zkl1+1 and zkl2+1 < zkl2 . If
zkl1+zkl1+1

2
≤ zkl2+zkl2+1

2
, then by akl1Rba

kl1+1, akl2+1Rba
kl2 , a contradiction. If

zkl2+zkl2+1

2
< zkl1+zkl1+1

2
, then by akl2+1Rca

kl2 , akl1Rca
kl1+1, a contradiction.

Therefore the answer to Question 3 is “no.” We adopt the only remaining alternative

and define ≤ on Zl2 to agree with Zl2 ⊆R. This guarantees that in every Euclidean

representation in R for (I, B, R|B), the order of Zl1 and the order of Zl2 both agree with

≤ or both agree with its inverse.

The final case, akl2+1Rda
kl2 and akl1Rea

kl1+1, similarly leads us to define ≤ on Zl2 to

agree with Zl2 ⊆R.

7



Next use ≤ on Zl2 to define ≤ on Zl3, use ≤ on Zl3 to define ≤ on Zl4, etc.

Now extend ≤ on Zl1 and ≤ on Zl2 to ≤ on Zl1 ∪ Zl2 so that the order of Zl1 ∪ Zl2

in every Euclidean representation in R for (I, B, R|B) agrees with ≤ on Zl1 ∪ Zl2 or its

inverse as follows. By (2), (3) and the fact that a candidate least preferred by any voter

must give rise to an extremum of a convex representation, zkl2 and zkl2+1 must be extrema

of ≤ on Zl1∪{zkl2 , zkl2+1}; otherwise ≤ on Zl1∪{zkl2 , zkl2+1} cannot agree with the order

of Zl1 ∪{zkl2 , zkl2+1} in a convex representation in R for (I, B, R|B), and therefore cannot

agree with the order in a Euclidean representation in R for (I, B, R|B). Then ≤ on Zl1 and

on Zl2 determines ≤ on Zl1 ∪ {zkl2 , zkl2+1}. If |Al2| ≥ 3, zkl2+2 and either zkl2 or zkl2+1

must be extrema of ≤ on Zl1∪{zkl2 , zkl2+1, zkl3+1} so that ≤ on Zl1 and on Zl2 determines

≤ on Zl1∪{zkl2 , zkl2+1, zkl2+2}. Continuing in this way, we define ≤ on Zl1∪Zl2, then use

≤ on Zl2 and Zl3 to define ≤ on Zl1 ∪ Zl2 ∪ Zl3, etc. We pass the linear order (Z,≤) to

Step 4, considering Z as simply an abstract set on which a linear order has been defined.

Step 4. From Step 3 we have Z = {zj : aj ∈ B} and a linear order ≤ on Z such that the

order of candidates in every Euclidean representation in R for (I, B, R|B) agrees with ≤

or its inverse. We now want to think of Z as a subset of R that is not completely specified,

but such that the order of Z in R is in agreement with the linear order ≤ defined in Step 3.

We can completely specify Z and also define W = {w1, w2, . . . , w|I|} ⊆R so that (Z, W )

is a Euclidean representation in R for (I, B, R|B) if and only if there is a solution in real

values to the following system of linear inequalities:

(1) all inequalities zp < zq from the given linear order (Z,≤), passed from Step 3 and

(2) (zr+zs)
2 < (zp+zq)

2 if zp, zq, zr, zs ∈ Z, zp < zq, zr < zs and there exists b ∈ I such that

zpRbz
q and zsRbz

r.

If a solution Z exists, W is defined from Z as follows, If b ∈ I, zp, zq ∈ Z and zp < zq,

then wb < zp+zq

2 if zpRbz
q and wb > zp+zq

2 if zqRbz
p.

Notice that the number of unknowns in the system of inequalities defining Z is

|B| ≤ |A| and the number of inequalities is less than |B|2+|I||B|4 ≤ |B|2+
((|B|

2

)
+1

)
|B|4 ≤

|B|6 ≤ |A|6

At the end of Step 4, we have arrived at one of two possible outcomes.

8



The first possibility is that we have concluded that there is no Euclidean representation

in R for (I, B, R|B) in which the order of candidates agrees with the linear order on Z

defined in Step 3. Then by Step 3, there is no Euclidean representation in R for (I, B, R|B),

which implies there is no Euclidean representation in R for (I, A, R).

The second possibility is that we have constructed a Euclidean representation (Z, W )

in R for (I, B, R|B).

We will use the following fact to extend (Z, W ) to a Euclidean representation in R

for (I, A, R).

Lemma 2. Suppose (I, A, R) has a convex representation in R, i ∈ I, |Al| = 1, Al 6= Am

and ar ∈ Am. Then arRia
kl if and only if m < l.

Proof . By (3) akl is Ri-minimal in {a1, a2, . . . , akl}. If m < l, then r < kl so that arRia
kl .

Now suppose there exists r, l, m ≤ |A| and b ∈ I with ar ∈ Am, l < m and arRba
kl .

Further, suppose r is the minimal such integer. By (2) ar is Rc-minimal in {a1, a2, . . . , ar}

for some c ∈ I. Since kl+1 ≤ r and since aklRia
kl+1 for all i, (which follows from (3)) akl is

not Rb-minimal in {a1, a2, . . . , ar}. Therefore there exists p with kl < p < r such that ap

is Rb-minimal in {a1, a2, . . . , ar} and aklRca
p by the minimality of r. Since aklRca

pRca
r,

there must be q with kl < q < r and q 6= p such that aklRca
pRca

qRca
r for some c. If

there were no such q for all c with apRca
r, we could not have p < r by (1). We also have

aklRba
q by the minimality of r.

We now have aklRca
pRca

qRca
r and arRba

klRba
qRba

p. Setting kl = s, these expres-

sions say (I, A, R) is 2-4 twisted, which together with Proposition 1 contradicts the convex

representability in R of (I, A, R).

Step 5 . From Step 4 we have a Euclidean representation (Z, W ) in R for (I, B, R|B), which

we now use to construct a Euclidean representation (X, W ), in R for (I, A, R). Suppose

|Al| = 1. We may have l < m for all Am ⊆ B, l > m for all Am ⊆ B, or m < l < n for

some m, n with Am, An ⊆ B. We will deal with the third case, which is the most difficult.

By Lemma 2, if ap ∈ Am, aq ∈ An and m < l < n, then apRia
klRia

q for all i ∈ I. We

first construct Y ⊆ R by setting yp = zp for ap ∈ B such that p < kl; by setting yq > zq
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if q > kl and zq > zp for ap ∈ B such that p < kl; and by setting yq < zq if q > kl and

zq < zp for ap ∈ B such that p < kl.

If in addition we construct Y so that |yq−zq| = |yr−zr| whenever yq 6= zq and yr 6= zr,

then (Y, W ) will be a Euclidean representation in R for (I, B, R|B), since (yq+yr)
2 = (zq+zr)

2

if yq > zq and yr < zr or if yq = zq and yr = zr, and since in any other case yq, yr and
(yq+yr)

2
will be in the same direction from each voter as were zq, zr and (zq+zr)

2
, respectively.

Finally, if |yq−zq| is chosen large enough whenever yq 6= zq, then we can define ykl by

placing it between {yp: yp = zp} and {yp: yp > zp} (or {yp: yp < zp} if we prefer), in such

a way that (Y ∪{ykl}, W ) is a Euclidean representation in R for (I, B ∪{akl}, R|B∪{akl}).

Continuing to treat one akl at a time in this manner, we arrive at (X, W ) = (Y ∪{ykl : |Al| =

1}, W ), a Euclidean representation in R for (I, A, R).

It is easy to see that Steps 1, 3 and 5 of our algorithm are accomplished in polynomial

time, that is, in a number of steps that is polynomial in |A|. Bartholdi and Trick (1986)

proved that Step 2 can be acccomplished in polynomial time. We discuss Step 4 in Section

5.

Finally by our construction, the number of distinct Euclidean representations in R

for a given representable (I, A, R), where two representations are distinct if they order the

candidates differently, is 2|A−B−A1|+δ where δ =
{

1 if B 6= ∅
0 if B = ∅

5. Concluding Remarks: Linear Programming.

We note that our application of linear programming is somewhat unusual. Gale (2007)

points out that almost all linear programming applications concern consumption or pro-

duction problems; that is, they involve optimizing over a set of processes that consume or

produce a set of goods.

Concerning the complexity of linear programming problems, it is well known that in

practice the famous simplex method solves linear programming problems relatively quickly.

Borgwardt (1982) and Smale (1983) proved that the average number of steps required by

the simplex method is polynomial. However, Klee and Minty (1972) had already demon-

strated that for worst-case examples, the simplex method requires an exponential number

of steps. Fortunately, Khachiyan (1980) demonstrated that the ellipsoidal method does in
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fact solve linear programming problems in polynomial time. Since we have a polynomial-

time reduction of our problem, determining whether a Euclidean representation in R exists

and if so constructing one, to a linear programming problem, and since linear programming

problems are solvable in polynomial time, our problem is solvable in polynomial time.
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