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Abstract
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overpays any agent by more than one-third of a dollar, and formost consistent
evaluation profiles does much better.
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1. Introduction.

A principal hires three agents to work together on a project. The principal agrees

to pay the team a fixed sum when the project is completed. It must be decided how to

allocate the fixed sum among the three agents. The only information available consists of

agents’ evaluations of the relative contributions of their partners. For example, agent 1

might report that agent 3’s contribution was five times as great as agent 2’s; agent 2 might

report that agent 1’s contribution was seven times as great as agent 3’s; and agent 3 might

report that agent 1’s contribution was 35 times as great agent 2’s. A rule is needed in the

form of a division function that will input the peer evaluations and output the amounts

the agents will receive.

Three desirable properties of a division function are exactness, impartiality and con-

sensuality. A division function is exact if it always outputs amounts that add up to the

fixed sum; impartial if the amount paid to an agent is independent of that agent’s report;

consensual if the amounts paid to the agents respect the peer evaluations whenever those

evaluations are consistent. (In the example above the evaluations are consistent since

5 × 7 = 35. A consensual division rule would assign agents 1,2 and 3 the fractions 35/41,

1/41 and 5/41 of the fixed sum, respectively.)

Unfortunately, de Clippel et al. (2008) showed that in the three-agent case a divi-

sion function cannot be exact, impartial and consensual. There remains the problem of

choosing a division function that satisfies at most two of the three desirable properties.

We require exactness since in our version of the problem the principal is committed to

paying out a fixed sum. We will investigate exact, impartial division functions, which

eliminates strategic considerations. In what follows we will determine the extent to which

an exact, impartial division function must deviate from consensuality. We will adopt a

worst case measure of deviation from consensuality. More exactly, we define the deviation

from consensuality of a division function to be the supremum of the absolute value of the

difference between the amount assigned to an agent by the given division function and the

amount assigned by a consensual division function. Here the supremum is taken over all

three agents and over all consistent peer evaluations. We find that the minimum deviation
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from consensuality for an exact, impartial division function is 1/3. We also produce an

exact, impartial division function with that minimal deviation. This division function is

also symmetric with respect to agents, and each agent’s payoff is increasing in each of her

evaluations by her partners.

Dividing a resource of a fixed size among a fixed number of agents is a problem that

can take on a number of forms. Thomson (2003) surveys the literature pertaining to the

resolution of conflicting claims over a resource. There is also a literature on cake cutting

and pie cutting that focuses on fair division of a divisible good, parts of which are valued

differently by different parties. Brams et al. (2006) provide a recent contribution to this

literature. de Clippel et al. (2008) raised the question at hand, that of dividing a dollar

using a rule that depends only on agents’ evaluations of their associates. They showed

that in the three-agent case there can be no exact, impartial, consensual rule. They

also explored exact, impartial, consensual rules for more than three agents. Tideman and

Plassman (2008) studied the extent to which the unique impartial, consensual division rule

fails to be exact in the three-agent case. Our study can be thought of as complementary

to the three-agent section of their paper, since we study the extent to which all impartial,

exact division rules fail to be consensual in the three-agent case.

The result establishing 1/3 as the minimal deviation from consensuality of a three-

agent exact, impartial division function, and discussion of an example are contained in

Section 3, which is preceeded by a preliminary section and followed by some concluding

remarks.

2. Preliminaries.

Three agents complete a project and submit peer evaluations r = (r1, r2, r3) where

agent i’s evaluation is ri = (ri
j,k, ri

k,j) ∈ [0, +∞] × [0, +∞] with {i, j, k} = {1, 2, 3}, j < k

and ri
k,j = 1

ri
j,k

, including the conventions 0 = 1
+∞ and +∞ = 1

0 . The evaluation ri =

(ri
j,k, ri

k,j) indicates that agent i asserts that agent j’s contribution to the project was ri
j,k

times as great as agent k’s contribution.

Payments are assigned to the agents according to the division function

f(r) = (f1(r), f2(r), f3(r)) where 0 ≤ fi(r) < +∞ for i ∈ {1, 2, 3}. Now we set the fixed
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payment sum at 1 for the sake of simplicity. The division function is exact if f1(r) +

f2(r) + f3(r) = 1 for every peer evaluation profile r. The division function f is impartial

if for every i ∈ {1, 2, 3} agent i’s payment fi does not depend on ri. Then we can write

fi(r) = fi(r
j
k,i, r

k
j,i) for (i, j, k) ∈ T = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Peer evaluations are consistent if r1
23r

2
31 = r3

21 or if one of r1
23 and r2

31 is 0 and the

other is +∞. The division function is consensual if it respects consistency, that is, if

f1(r) + f2(r) + f3(r) = 1 and fi(r) = rk
i,jfj(r) for {i, j, k} = {1, 2, 3} both hold when

evaluations are consistent, with the convention a = +∞× 0 for all a ∈ [0, 1].

3. Exact and Impartial Division Functions.

As mentioned above, de Clippel et al. (2008) showed that for three agents a divi-

sion function cannot be exact, impartial and consensual. We will now investigate exact,

impartial division functions to determine the extent to which they must deviate from

consensuality.

Suppose f is an exact, impartial division function. Then for (i, j, k) ∈ T = {(1, 2, 3),

(2, 3, 1), (3, 1, 2)} and any peer evaluation profile r,

fi(r
j
k,i, r

k
j,i) + fj(rk

i,j, r
i
k,j) + fk(ri

j,k, rj
i,k) = 1 (1)

Setting ri
j,k = 1, for (i, j, k) ∈ T and (rj

k,i, r
k
j,i) ∈ [0, +∞]× [0, +∞]

fi(r
j
k,i, r

k
j,i) = 1 − fj(rk

i,j, 1) − fk(1, rj
i,k) (2)

From (2) we see that if f is an exact, impartial division function, then each fi is additively

separable. We also have the following.

Proposition 1. If f is an exact, impartial division function, then
∑3

i=1 fi(1, 1) = 1.

Proof: Let ri
j,k = rj

k,i = rk
i,j = 1 for (i, j, k) = (1, 2, 3). The conclusion follows from (1).
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Proposition 2. If f is an exact, impartial division function and ai, bi ∈ [0, +∞] for

i ∈ {1, 2, 3}, then
∑3

i=1 fi(ai, 1) +
∑3

i=1 fi(1, bi) ≤ 3.

Proof: For (i, j, k) ∈ T , from (2) fi( 1
bk

, 1
aj

) = 1− fj(aj, 1)− fk(1, bk). Then summing over

T ,

3∑

i=1

fi(
1
bk

,
1
aj

) = 3 −
3∑

j=1

fj(aj, 1) −
3∑

k=1

fk(1, bk) = 3 −
3∑

i=1

fi(ai, 1) −
3∑

i=1

fi(1, bi)

By the definition of a division function, the left side of the first equation is at least zero.

Proposition 3. If f is an exact, impartial division function and ai, bi ∈ [0, +∞] for

i ∈ {1, 2, 3}, then
∑3

i=1 fi(ai, bi) ≤ 2.

Proof: By (2), for (i, j, k) ∈ T ,

fi(ai, bi) = 1 − fj( 1
bi

, 1) − fk(1, 1
ai

)

= 1 − (1 − fk(1, 1) − fi(1, bi)) − (1 − fi(ai, 1) − fj(1, 1))

Then summing over T ,
∑3

i=1 fi(ai, bi) = 3 − 6 + 2
∑3

i=1 fi(1, 1) +
∑3

i=1 fi(ai, 1) +
∑3

i=1 fi(1, bi)

By Propositions 1 and 2
∑3

i=1 fi(ai, bi) ≤ 3 − 6 + 2 + 3 = 2.

Corollary 1. If f is an exact, impartial division function, then for some i ∈ {1, 2, 3},

fi(a, b) ≤ 2/3 for all a, b ∈ [0, +∞].

Proof: Fix ε > 0 and for i ∈ {1, 2, 3} choose ai, bi ∈ [0, +∞] such that fi(ai, bi) ≥

sup fi − ε = sup{fi(x, y): x, y ∈ [0,∞]} − ε. By Proposition 3,
∑3

i=1 fi(ai, bi) ≤ 2.

Therefore, fi(ai, bi) ≤ 2/3 for some i. For this i, sup fi ≤ 2
3 + ε. Therefore, for some i,

sup fi ≤ 2/3.

Definition. The deviation from consensuality of a division function f is D(f) =

sup{|fi(r) − 1

1+rj
k,i

+rk
j,i

| : r is a peer evaluation profile and (i, j, k) ∈ T}.

We so define deviation from consensuality because de Clippel et al. (2008) showed that

the unique impartial, consensual division function is fi(r) = 1

1+rj
k,i

+rk
j,i

for (i, j, k) ∈ T .
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Corollary 2. The deviation from consensuality of an exact, impartial division function is

at least 1/3.

Proof. Suppose f is an exact, impartial division function. Then D(f) ≥ |fi(0, 0)− 1
1+0+0 |

for i = 1, 2, 3. By Corollary 1, there is an i such that fi(0, 0) ≤ 2
3
. Then D(f) ≥ |2

3
− 1| =

1
3 .

To see that the bounds in Proposition 2 and 3 and Corollary 1 and especially Corollary

2 are tight, consider the following example.

Example 1. For (i, j, k) ∈ T , let

Fi(r
j
k,i, r

k
j,i) =

1
6

(
2 +

1 − rj
k,i

1 + rj
k,i

+
1 − rk

j,i

1 + rk
j,i

)

We have chosen this function because it is the simplest division function satisfying the

properties we are about to establish for it. Clearly, F is impartial. That F is exact follows

from the fact that for (i, j, k) ∈ T ,
1−ri

j,k

1+ri
j,k

+
1−ri

k,j

1+ri
j,k

= 0 (recall that ri
j,k = 1

ri
k,j

). For

this example, Fi(0, 1) = Fi(1, 0) = 1
2

and Fi(0, 0) = 2
3

for i ∈ {1, 2, 3}. In addition, F

is symmetric with respect to agents (by which is meant Fi(a, b) = Fj(a, b) = Fj(b, a) for

i, j ∈ {1, 2, 3} and a, b ∈ [0, +∞]); and Fi is decreasing in rj
k,i and rk

j,i for (i, j, k) ∈ T .

Finally, we will show that D(F ) = 1
3 . Let E(x, y) = 1

6

(
2 + 1−x

1+x + 1−y
1+y

)
− 1

1+x+y so

that D(F ) = sup |E| on [0, +∞]× [0, +∞]. In fact sup |E| = max |E| since E is continuous

on [0, +∞] × [0, +∞]. We will first work on the boundary of [0, +∞] × [0, +∞]. There,

E(x, 0) = 1
6 (3 + 1−x

1+x ) − 1
1+x = x−1

3(1+x) so that E(x, 0) is increasing from E(0, 0) = −1
3

to E(+∞, 0) = 1
3
. Next E(x, +∞) = 1

6
(2 + 1−x

1+x
− 1) = 1

3(1+x)
so that E(x, +∞) is

decreasing from E(0, +∞) = 1
3 to E(+∞, +∞) = 0. On the boundary of [0, +∞]×[0, +∞],

max(|E|) = 1
3 and the maximum occurs at (0, 0), (+∞, 0) and (0, +∞).

In the interior of [0, +∞] × [0, +∞], setting ∂E
∂x

= ∂E
∂y

= 0 and solving, x0 = y0 =

1 +
√

3. For the only candidate for a maximum of |E| in the interior, E(x0, y0) = .024.

In summary, the deviation from consensuality for F is 1
3 and occurs when agent i is

rated rj
k,i = rk

j,i = 0 in which case agent i is underpaid compared to a consensual division,

or when agent i is rated rj
k,i = 0 and rk

j,i = +∞, or rj
k,i = +∞ and rk

j,i = 0 in which case

agent i is overpaid compared to a consensual division.
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5. Concluding Remarks.

Notice that for our division function F , extreme overpayment or underpayment com-

pared to consensual payment occurs only for extreme peer evaluations. For example, the

most extreme underpayment of 1
3

occurs only when an agent is rated +∞ compared to

both players, and the most extreme overpayment of 1
3 occurs only in the even more unusual

case when an agent is rated 0 compared to one associate and +∞ compared to another.

On the other hand, for the less extreme consistent evaluation profile (r1
23, r

2
31, r

3
12) =

( 1
2 , 4, 1

2) the exact, impartial division function of Example 1 overpays agent 1 by 3 1
2 cents

compared to the impartial, consensual division function, overpays agent 2 by 43
4 cents and

underpays agent three by 81
4

cents.
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