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ABSTRACT 

 

Efficient Algorithms for Sorting on GPUs 

Seema Mahesh Munavalli 

Major Advisor: Dr. Sanguthevar Rajasekaran 

 

Sorting is an important problem in computing that has a rich history of investigation by 

various researchers. In this thesis we focus on this vital problem. In particular, we 

develop a novel algorithm for sorting on Graphics Processing Units (GPUs). GPUs are 

multicore architectures that offer the potential of affordable parallelism.   

We present an efficient sorting algorithm called Fine Sample Sort (FSS). Our FSS 

algorithm extends and outperforms sample sort algorithm presented by Leischner[2], 

which is  currently the fastest known comparison  based  algorithm on GPUs. The 

performance gain of FSS is mainly achieved due to the quality of the samples selected. 

By quantitative and empirical approach, we found out the best way to select the samples, 

which resulted in an efficient sorting algorithm. We carried out the experiment for 

different input distributions, and found out that FSS outperforms sample sort by at least 

26% and on an average by 37% for data sizes ranging from 40 million and above across 

various input distributions. 
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    CHAPTER 1 

1 INTRODUCTION 

In the world of computing there exist many challenging problems. One among them is 

sorting. Efficient sorting is crucial, as many applications depend on them. Some 

applications of sorting follow: 

 

• Binary search in databases. 

• Many problems in computer graphics and computational geometry. 

• Motif search in computational biology; and so on. 

 

 Hence, it is of utmost importance to design efficient sorting algorithms for emerging 

architectures, which can exploit architectural features. One such emerging architecture is 

the Graphics Processing Unit (GPU). 

 

Graphics Processing Units (GPUs) are massively parallel many-core processors. They 

work on SIMD (Single Instruction Multiple Data) model. CUDA (Compute Unified 

Device Architecture) is the computing engine in Nvidia graphics processing units, which 

allows developers to code algorithms for execution on GPUs, through variants of industry 

standard programming languages such as C and C++. Reasonable cost and massively 

parallel computation capability have resulted in an explosion of research directed towards 

expanding the applicability of GPUs to a wide variety of high-performance computing 

applications such as sorting. 

. 
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Utilizing the advantages of the architectural attributes offered by GPUs, we were able to 

develop and implement a parallel sorting algorithm named Fine Sample Sort (FSS). Our 

experimental study demonstrates that FSS outperforms sample sort developed by 

Leischner [2], which is currently the fastest known comparison-based GPU sorting 

algorithm.  

 

Performance of FSS depends crucially on the quality of splitters selected. By empirical 

and quantitative approach, we were able to find the best way to select splitters. These 

splitters reduced the number of sort phases needed to ultimately reach a bucket size that 

can be locally sorted in the shared memory of GPUs. 

 

For the performance analysis we have experimented with commonly accepted set of input 

distributions. The various distributions considered are normal distribution, Poisson 

distribution, uniform distribution, and descending order data set. Our results indicate that 

Fine Sample Sort outperforms sample sort by at least 26% and on an average by 37% for 

data sizes ranging from 40 million and above across various input distributions. 
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CHAPTER 2 

2 GRAPHICS PROCESSING UNIT (GPU) AND COMPUTE 

UNIFIED DEVICE ARCHITUCTURE (CUDA) 

Introduction 

There are many challenging computing problems that are impractical to be solved in a 

reasonable amount of time with single processors. These applications can be solved in a 

reasonable amount of time using architectures that support many-core processors. One 

such architecture is Graphics Processing Unit. In this chapter we will study about GPU 

architecture, along with CUDA (Compute Unified Device Architecture) which is a 

software environment for GPUs. 

2.1 Graphics Processing Unit (GPU)   

         A Graphics Processing Unit (GPU) is a specialized electronic circuit, which is 

massively parallel with many-core processors. GPUs belong to single instruction, 

multiple data (SIMD) class of parallel computers that perform the same operation on 

multiple data simultaneously to exploit data level parallelism. 

2.2 The Need for GPUs 

         There are many advantages of GPU’s. To list a few: 

• Traditionally, most graphics operations, such as transformations between 

coordinate spaces, lighting and shading operations have been performed 

on the CPU. There is a need to offload many of these operations from the 

CPU (primarily arithmetic and logic) to specialized graphics hardware 

(based on vector & matrix processing). 
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• Parallelism is the future of computing and the GPU architecture is well 

suited for parallel applications. 

•  It exhibits a high performance at a low cost. 

2.3 GPU Computing 

         The model for GPU computing is to use a CPU and GPU together in a 

heterogeneous co-processing mode. The sequential part of the application runs on the 

CPU and the computationally-intensive part runs on GPU. From the user’s view the 

application runs faster because it is using the high-performance of the GPU to boost 

performance. A typical mode of operation of a GPU follows: 

 

1. Copy data from the main CPU memory to GPU memory 

2. CPU sends processing instructions to the GPU 

3. GPU cores execute instructions in parallel 

4. Copy the result from GPU memory to main memory 

Figure 1 provides a summary of the CUDA. 
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Figure 1: Processing flow on CUDA (Compute Unified Device Architecture)
1
 

2.4 GPU Architecture 

         Graphics processing units (GPUs) are massively parallel many-core processors. 

Below are the specifications of NVIDIA’s GTX 480 and NVIDIA’s Tesla GPU’s: 

 

 NVIDIA’s GTX 480 GPUs: These GPUs have 480 scalar processing cores (SPs) per chip. 

These cores are partitioned into 15 Streaming Multiprocessors (SMs). Each SM 

comprises of 32 SPs. Each SM shares a 48KB local memory (called shared memory) that 

                                                           

 

1
 http://en.wikipedia.org/wiki/File:CUDA_processing_flow_%28En%29.PNG 
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may be utilized by the threads running on this SM. GTX 480 has a 1536MB global 

memory. Figure 2 presents some details. 

 

NVIDIA’s Tesla GPUs: These GPUs have 240 scalar processing cores (SPs) per chip [4]. 

These cores are partitioned into 30 Streaming Multiprocessors (SMs). Each SM 

comprises of 8 SPs. Each SM shares a 16KB local memory (called shared memory) and 

the 240 on-chip cores also share a 4GB off-chip global (or device) memory. Figure 3 

shows the various components of TESLA GPUs. 



 

a scalable parallel programming

 

 

 

 

 

Figure 2 : NVIDIA’s GTX 480 GPUs   

 

programming 
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2.5 CUDA (Compute Unified Device Architecture)

CUDA is a scalable parallel programming 

parallel computing. This 

the heterogeneous serial

multicore CPUs. 

 

Figure 3: NVIDIA’s Tesla GPUs 

CUDA (Compute Unified Device Architecture) 

is a scalable parallel programming model and a software environment for 

computing. This is an extension of the familiar C/C++ environment. It

rial-parallel programming model. CUDA also
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and a software environment for 

environment. It follows 

CUDA also maps well to 
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2.5.1 Kernel 

  Kernel is a normal C function that is called on the host machine (CPU) and runs 

on device machine (GPU). One kernel is executed at a time. Invocation of a kernel 

executes many threads, through which parallel computing is achieved. 

2.5.2 Thread 

This is an execution of a kernel with a given index. Each thread uses its j index to 

access elements in, such that the collection of all threads cooperatively processes the 

entire data set. 

CUDA threads have the following properties: 

• CUDA threads are extremely lightweight 

• They have very little creation overhead 

• Instant switching is supported 

2.5.3 Block 

This is a group of threads. We can coordinate the threads using the _syncthreads() 

function that makes a thread stop at a certain point in the kernel until all the other threads 

in its block reach the same point. 

2.5.4  Warp 

             Warp is a group of 32 threads, to be executed in SIMD fashion by a CUDA SM. 

2.5.5 Grid 

Group of blocks together form a grid. 
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Figure 4 displays the relationships among the different components of CUDA. Figures 5 

and 6 portray some execution features of 

CUDA.  

Figure 4 : Organization of threads, thread block and grid.
2
 

2.5.6 Arrays of Parallel threads 

A CUDA kernel is executed by an array of threads 

                                                           

 

2
 Bandyopadhyay, S. and Sahni, S., GRS - GPU Radix Sort for Large Multifield Records, International 

Conference on High Performance Computing (HiPC), 2010 
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• All threads run the same code  

• Each thread has an ID that it uses to compute memory addresses and make 

control decisions 

 

Figure 5 : Computation of address via thread.
3
 

2.5.7  Thread Batching 

             In CUDA, kernel launches a grid of thread blocks. These thread blocks are 

executed on SMs and threads within each block are executed on scalar processors. The 

threads within a block can cooperate via shared memory, but threads in different blocks 

cannot cooperate. 

                                                           

 

3
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.p

df 

        

… 
float x = input[threadID]; 

float y = func(x); 
output[threadID] = y; 

… 

threadID 
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Figure 6: The Execution Model
4
 

2.5.8  Managing Memory 

                CPU and GPU have separate memory spaces. There is no direct provision to 

access GPU memory. In order for any application to utilize the GPUs, the data should be  

first stored in CPU memory. Host (CPU) code manages to transfer data to device (GPU) 

memory  and then  parallel  computations are performed on the GPU. It is the 

responsibility  of  the host code to manage allocation and de-allocation of memory of the 

GPUs. 

  

                                                           

 

4
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.p

df 
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2.5.9  Thread Life Cycle in hardware 

1. Launch CUDA kernel as below  

KernelFunction<<<dimGrid, dimBlock>>>(…); 

Then thread blocks are serially distributed to all the SMs with  

potentially >1 thread blocks per SM. 

2. The thread blocks in each SM are launched as warps of threads by 

hardware after invocation of kernel. SM schedules and executes warps 

that are ready to run on the scalar processors. 

3. Parallel computations are performed by threads in the GPU. 

4. Kernel exits after the completion of parallel computation. 

2.5.10 Thread Scheduling/Execution 

Warps are scheduling units in an SM. Each thread block is divided into 32-thread 

warps and the threads within the warps are executed on scalar processors. For example: 

If 3 blocks are assigned to an SM and each Block has 256 threads, the number of 

warps=8 (256/32). This implies that for 3 blocks, we have 24 warps. At any point in time, 

only one of the 24 Warps will be selected for instruction fetch and execution. 

SM Warp Scheduling 

• SM hardware implements zero-overhead warp scheduling 

• Warps whose next instruction has its operands ready for consumption 

are eligible for execution 

• Eligible Warps are selected for execution on a prioritized scheduling 

policy 
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• All the threads in a warp execute the same instruction, when selected. 

2.6 Factors impacting the performance of applications 

• Non-common instructions within a warp are serialized. So avoiding 

thread divergence within a warp should be considered. 

• Global memory is very expensive than access to registers or shared 

memory. Data to be used several times should be read once  from the 

global memory and stored in registers or shared memory for future 

use. 

• When the threads of a half-warp access global memory, this access is 

accomplished via a series of memory transactions. The number of 

memory transactions equals the number of different 32-byte (64-byte, 

128-byte, 128-byte) memory segments that the words to be accessed 

lie in, when each thread accesses an 8-bit (16-bit, 32-bit, 64-bit) word. 

Given the cost of a global memory transaction, it pays to organize the 

computation so that the number of global memory transactions made 

by each half warp is minimized. 

•  Shared memory is divided into banks in a round robin fashion using 

words of size 32 bits. When the threads of a half warp access shared 

memory, the access is accomplished as a series of one or more 

memory transactions. Let S denote the set of addresses to be accessed. 

Each transaction is built by selecting one of the addresses in S to 

define the broadcast word. All addresses in S that are included in the 

broadcast word are removed from S. At a time only one address from 
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each of the remaining banks is removed from S. The set of removed 

addresses is serviced by a single memory transaction. Since the user 

has no way to specify the broadcast word for maximum parallelism, 

the computation should be organized so that, at any given time, the 

threads in a half warp access either words in different banks of shared 

memory or they access the same word of shared memory. 

2.7 Good and Bad candidates for a GPU 

Good candidates for a GPU 

Data-parallel computations that involve more arithmetic operations compared to memory 

operations attain maximum performance on GPUs. This is because the volume of very 

fast arithmetic instruction can hide the relatively slow memory accesses. For example, 

extraction of endmembers in a hyper spectral image is a good candidate for GPU, as we 

can exploit data parallelism. 

Bad candidates for a GPU  

In particular, task-parallel computations which execute different instructions on the same 

or different data cannot efficiently utilize the hardware on a GPU as it often ends up 

running sequentially. 

Conclusion 

In this chapter we explored multicore GPUs and CUDA software environment through 

which we can devise efficient parallel algorithms that are based on SIMD principle. 
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CHAPTER 3 

3 PREVIOUS WORK ON SORTING ON GPUS 

Introduction 

Since sorting is one of the most widely studied and challenging problems in computer 

science, emerging architectural capabilities of graphics processors brought considerable 

attention to sorting on GPUs. In this chapter, we will explore prevailing comparison 

based sorting algorithms on GPUs and Lemma.  

3.1 Prior Works 

Cederman, et al. [8] have adapted quick sort for GPUs. Their adaptation first partitions 

the sequence to be sorted into subsequences, sorts these subsequences in parallel, and 

then merges the sorted subsequences in parallel.  

Satish, et al. [3] have developed  an even faster merge sort. In this merge sort, two sorted 

sequences A and B are merged by a thread block to produce the sequence C, when A and 

B have less than 256 elements each. Each thread reads an element of A and then does a 

binary search on the sequence B with that element to determine where it should be placed 

in the merged sequence C. When the number of elements in a sequence is more than 256, 

A and B are divided into a set of subsequences by using a set of splitters. The splitters are 

chosen from the two sequences in such a way that the interval between successive 

splitters is small enough to be merged by a thread block.  
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GPU sample sort was developed by Leischner, et al. [2]. Sample sort is reported to be 

about 25% faster than the best comparison based sorting algorithm, merge sort of [3], and 

on average more than 2 times faster than GPU quicksort. 

 

3.2 Fine Sample Sort 

The basic idea behind the Fine Sample Sort algorithm is the following Lemma, which 

was developed by Reif and Valiant [13]. 

Lemma: Let T be an ordered set and S1 be a random sample of T of size n
2
2

m/3
. Sort S1 

and select elements in positions n
2
, 2n

2
, …, (2

m/3 
-1) n

2
. Let these keys be in the list S2. 

Keys in S2 partition T. Let q be the maximum size of any of these parts. Then, 

Pr[q > (1 + n
-1/3

)|T|/2
m/3

] < 2 
-c1n

 

for some constant c1 > 0 and 

Pr[q < (1 - n
-1/3

)|T|/2
m/3

] < 2 
–c2n

 

for some constant c2 > 0 under the assumption that n
4
2

m/3 
= o(|T|) and that n

2
2

m/3 
= 

o(|T|
2/3

). 

Proof: The probability that an element in T is sampled in S1 is p = 
��

|�| 
= (n

2
2

m/3
) / |T|  

Split T into segments of size d. Let X = B(d,p) be a binomial random variable counting 

how many elements in a region of length d from T are present in S1. The mean of X is  

µ= dp = dn
2
2

m/3
/|T| . The probability that one of the final partitions is greater than d is the 

same as the probability that a region of size d contains less than n
2 

elements from S1. 

 Prob[part > d] = Prob[X < n2]. In order to apply the Chernoff  bounds we 
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compute the following: 

(1 -ε) µ = n
2 

 =>1- ε =|T|/d2
m/3

= (d2
m/3

-|T|)/ d2
m/3

 

We apply the Chernoff  bound: 

Prob[X < n
2
] < exp(-ε

2
 µ/2) 

                      =exp(-((d2
m/3

-|T|)/ d2
m/3

)
2 

(dn
2
2

m/3
)/2|T|) 

                      =exp(-(nd2
m/3

-|T|)
2
n

2
) /2d|T|2

m/3
) 

 

The probability that there exists any part of length d with less than n
2 

elements of S1 is 

<=|T|/d(Prob[X < n
2
]).If  q is the maximum size of the  final parts, then: 

Prob[q > d] <=(|T|/d) exp(-(nd2
m/3

-|T|)
2
n

2
) /2d|T|2

m/3
)  

Now, if we use d = (1 + 
n-1/3

)|T|/2
m/3 

we have: 

Prob[q > (1 + n
-1/3

)|T|/2
m/3

)] <= (2 
m/3

/(1+ n
-1/3

))exp(-((n(1+n
-1/3

)|T|-|T|)
2
n

2
)/ 2(1+n

-  

1/3)|
|T|

2
)) 

<= (2 
m/3

)exp(-((n(1+n
-1/3

)-1)
2
n

2
)/ 2(1+n

-1/3
)) 

<= (2 
m/3

)exp(-(n
2
(1+n

-1/3
)
2
n

2
)/ )/ 2(1+n

-1/3
)) 

<=(2 
m/3

)exp(-n
4
(1+n

-1/3
)/2) 

<= (2 
m/3

)exp(-n
4
(1+1)/2) 

<=(2 
m/3

)exp(-n
4
) 

We have used the fact that n 
-1/3

 < 1  for n > 1. As long as 

m/3 - n
4
/2 < -n we have the bound required in the problem.  □  
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Conclusion 

In this chapter we explored previous works done on comparison based sorting algorithms 

and a Lemma by Reif and Valiant. With this prevailing knowledge of existing lemma and 

previous existing comparison based sorting algorithms on GPUs, we have devised an 

efficient comparison based sorting algorithm. 
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CHAPTER 4 

4 FINE SAMPLE SORT ALGORITHM 

Introduction 

In this chapter we will look at the sequential version of Fine Sample Sort (FSS) 

algorithm, followed by Fine Sample Sort algorithm on GPUs along with the data used for 

the experiments and their results. 

4.1  Sequential Fine Sample Sort algorithm overview 

 SampleSort(e[1, . . . .n], 128) 

begin 

                 //M is the data size that fits in the shared memory of GPU 

if  (n < M ) 

                                 { 

  return SmallSort(e) 

                                   } 

         else 

{ 

Choose a random sample S of size 128[0.005(n 
1/3

)] 

Sort the random sample. 

From the sorted list pick elements that are in positions  0.005(n 
1/3

),      

 2[0.005(n 
1/3

), 3[0.005(n 
1/3

)],…, 127[0.005(n 
1/3

)] 

 

for 1 ≤ i ≤ n do 
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{ 

   Find j ∈ {1, . . . , 128}, such that 

                                       b1   = {e[i] ∈ e  |e[i]<= s1 }, 

                                       bj       ={e[i] ∈ e  |  sj−1 < e[i] ≤ sj }, for 2<= j < =127; 

                                      b128    = {e[i] ∈ e  |  e[i] >s127} } 

  return Concatenate(SampleSort(b1, 128), . , SampleSort(b128, 128) 

} 

end 

4.2 Fine Sample Sort algorithm for GPUs 

In order to efficiently map our computational problem to a GPU architecture, we 

decompose it into data-independent sub problems that can be processed in parallel by 

blocks of concurrent threads.  We divide the input into p = (Input size)/ (No of elements 

to be processed in a block) tiles, i.e., we divide the input into p = ⌈n/ (t · ℓ) ⌉ tiles. By 

choosing 256 threads per block and assigning 8 elements per thread, balance is achieved 

between the parallelism exposed by the algorithm and memory latency. 

A high-level description of FSS follows: 

 

Phase 1: Choose the size of the splitters to be 128[0.005(input size)
1/3

] 

Phase 2: Sort the chosen splitters 

Phase 3: From the sorted list of splitters select elements that are in positions 

     0.005(n
1/3

),  2[0.005(n
1/3

)], 3[0.005(n 
1/3

)], …, 127[0.005(n 
1/3

)]. These selected    

               elements  form the splitter set.  

Phase 4: Each block loads the splitters set into its fast private shared    
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   memory of GPU and  each thread block computes the bucket indices for all  the  

               elements in its tile. It counts the number of elements in each bucket and stores   

               this per-block k-entry histogram in the global memory. 

Phase 5: Perform a prefix sum over the k × p histogram tables stored in a column-major     

               order to compute global bucket offsets in the output. 

Phase 6: Since storing the bucket indices in global memory is not faster than just 

               recomputing them, each thread block again computes the bucket indices for all       

   the elements in its tile, computes their local offsets in the buckets and finally    

   stores  elements at their proper output positions using the global offsets   

   computed in   the previous step. 

              

Sorting of buckets is delayed until the whole input is partitioned into buckets of size at 

most M (for some relevant value of M), so that the buckets fit in the shared memory. For 

buckets of size less than M we use  quicksort by Cederman and Tsiga [8]. To improve 

load-balancing, buckets are scheduled for sorting ordered by size. 

4.3 Experimental study 

         The implementation was done  using an Intel core i7 processor  @3.20 GHz with 16 

GB RAM on 64 bit windows 7 professional operating system. We used  NVidia GTX 480 

GPU for our experiment. The NVIDIA GeForce GTX 480 has a compute capability of 

2.0. It was released in March 2010. It has 32 K registers per multiprocessor. The data bus 

for the GTX 480 GPU is PCI-E 2.0, whose maximum bandwidth is 16 GB/s. Theoretical 

maximum global memory bandwidth of the GTX 480 GPU is 177.4 GB/s. DRAM access 

has high latency due to limited bandwidth, but on-chip memory access is much faster. 
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The GTX 480 GPU has 32 shared memory banks and the bandwidth of shared memory is 

1.344TB/s and the global memory size is 1535 MB. 

For the analysis of runtime we have used the following commonly accepted set of 

distributions and compared our FSS algorithm with sample sort, which is currently the 

best known comparison based sorting algorithm for GPUs. 

Uniform distribution – When we employed a uniformly distributed random input in the 

range [10M-100M] FSS was 47% faster and on an average 55% faster for data sizes of 

40M and above. 

Poisson distribution- When the data was Poisson distributed in the range [10M-100M ] 

FSS was  at least 26% faster and on an average 37%  faster for data sizes of 40M and 

above. 

Normal distribution- When the input data had a Normal distribution in the range [10M-

100M], FSS was  at least 49% faster and on an average 57% faster for data sizes of 40M 

and above. 

Descending ordered – When the data was already sorted in descending order in the range 

[10M-100M], FSS was  at least 48% faster and on an average of 59% faster for data sizes 

of 40M and above. 

4.4 Experimental Results 

         Our experimental results are summarized in Figures 7, 8, 9, and 10. Graphs are 

plotted for random samples of different sizes to emphasize  how the selection of sample 

size matters in phase 1 of the algorithm. 
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Figure 7: Execution time comparison for descending order input data. 

Table 1: Run times of the sample sorting algorithm for descending order input (Ref: 

Figure 7) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 42.79 92.93 1269.73 5583.61 9895.57 

2 42.61 93.57 1269.93 5584.06 9894.52 

3 42.43 93.62 1270.18 5583.68 9892.54 

4 42.74 93.61 1270.22 5584.33 9894.55 

5 42.45 93.59 1270.07 5583.79 9892.28 

6 42.43 92.58 1270.09 5584.71 9893.76 

7 42.61 93.68 1270.23 5583.86 9894.08 

8 42.47 93.51 1270.25 5584.76 9892.60 

9 42.56 93.06 1270.07 5582.36 9892.96 

10 42.59 93.18 1270.26 5588.22 9893.71 

Average run 

time 

(milliseconds) 

42.57 93.33 1270.10 5584.34 9893.66 
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Table 2: Run times of sample sorting algorithm for descending order input (Ref: 

Figure 7) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 10265.90 10453.00 10689.30 10744.80 10780.30 

2 10265.60 10454.70 10690.20 10745.80 10780.80 

3 10265.20 10454.80 10689.80 10746.40 10778.70 

4 10266.30 10453.80 10696.60 10749.10 10780.50 

5 10265.80 10455.40 10690.00 10746.00 10781.00 

6 10265.30 10455.20 10689.70 10753.30 10779.90 

7 10268.50 10455.70 10691.60 10745.00 10779.70 

8 10265.50 10453.60 10690.30 10746.70 10779.90 

9 10267.10 10454.90 10690.30 10746.10 10780.60 

10 10266.40 10453.80 10688.80 10745.20 10780.30 

Average run 

time 

(milliseconds) 

10266.16 10454.49 10690.66 10746.84 10780.17 

 

Table 3 : Run times of Fine Sample Sort algorithm for descending order input (Ref: 

Figure 7) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 67.62 483.77 1183.44 1985.75 3021.18 

2 68.22 484.03 1182.51 1986.59 3024.74 

3 68.04 484.01 1182.18 1986.92 3024.56 

4 67.58 483.91 1183.04 1986.95 3024.62 

5 67.86 484.19 1181.99 1986.83 3024.59 

6 67.72 484.08 1182.19 1986.43 3024.47 

7 67.76 484.49 1182.35 1986.93 3023.94 

8 67.60 484.04 1181.89 1986.66 3023.21 

9 68.07 484.02 1182.61 1986.76 3024.74 

10 67.58 484.20 1182.62 1987.12 3024.04 

Average run 

time 

(milliseconds) 

67.81 484.07 1182.48 1986.69 3024.01 
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Table 4 : Run times of Fine Sample Sort algorithm for descending order input (Ref: 

Figure 7) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 3669.14 4179.98 4824.77 5081.92 5577.71 

2 3671.05 4178.55 4820.40 5084.20 5579.29 

3 3671.00 4179.42 4820.09 5083.84 5579.17 

4 3669.95 4179.22 4820.88 5084.12 5588.15 

5 3669.46 4179.38 4820.65 5083.93 5579.64 

6 3671.11 4179.20 4820.64 5083.03 5586.93 

7 3670.13 4179.64 4819.30 5084.23 5579.64 

8 3670.16 4179.16 4820.23 5081.81 5580.53 

9 3670.16 4179.16 4819.77 5084.07 5580.13 

10 3670.11 4179.31 4819.64 5084.27 5587.49 

Average run 

time 

(milliseconds) 

3670.23 4179.30 4820.64 5083.54 5581.87 

 

 

Figure 8: Execution time comparison for normal distribution input 
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Table 5 : Run times of Sample Sort algorithm for Normal distribution data (Ref: 

Figure 8) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 44.61 93.09 1576.21 5823.58 9153.79 

2 44.44 92.29 1576.80 5819.87 9160.33 

3 43.93 91.54 1577.00 5819.61 9147.42 

4 44.05 91.30 1576.89 5819.34 9147.14 

5 44.43 91.77 1577.17 5821.46 9157.63 

6 43.99 91.83 1576.59 5822.14 9146.96 

7 44.04 91.51 1578.07 5825.59 9147.58 

8 43.83 91.50 1578.10 5822.13 9151.41 

9 43.70 90.82 1577.06 5820.16 9150.86 

10 43.74 90.93 1577.18 5823.29 9147.93 

Average run 

time 

(milliseconds) 

44.08 91.66 1577.11 5821.72 9151.11 

 

Table 6 : Run times of Sample Sort algorithm for Normal distribution data (Ref: 

Figure 8) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 10112.20 10622.30 10670.80 10735.40 10812.00 

2 10118.60 10626.60 10670.20 10735.60 10807.50 

3 10129.70 10624.80 10669.50 10735.60 10806.50 

4 10118.50 10624.70 10667.60 10735.20 10807.40 

5 10118.60 10626.50 10674.70 10734.90 10807.20 

6 10120.20 10624.90 10667.40 10742.20 10808.30 

7 10121.00 10628.20 10680.10 10737.90 10807.40 

8 10118.90 10625.40 10666.60 10735.60 10813.00 

9 10122.00 10625.10 10669.70 10740.90 10814.20 

10 10120.80 10628.30 10667.00 10735.50 10807.60 

Average run 

time 

(milliseconds) 

10120.05 10625.68 10670.36 10736.88 10809.11 
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Table 7 : Run times of Fine Sample Sort algorithm for Normal distribution data 

(Ref: Figure 8) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 70.87 427.66 1394.89 2195.57 2602.12 

2 70.55 427.61 1395.11 2196.95 2604.17 

3 71.21 427.23 1394.88 2196.91 2603.98 

4 70.68 428.28 1394.72 2197.21 2604.22 

5 70.70 428.75 1393.15 2197.42 2603.35 

6 70.68 427.44 1394.52 2198.93 2604.01 

7 70.68 427.30 1395.89 2195.40 2602.31 

8 71.09 427.45 1394.65 2196.82 2604.44 

9 70.77 427.26 1395.15 2196.72 2604.38 

10 70.93 428.85 1394.15 2196.72 2603.75 

Average run 

time 

(milliseconds) 

70.82 427.78 1394.71 2196.87 2603.67 

 

Table 8 : Run times of Fine Sample Sort algorithm for Normal distribution data 

(Ref: Figure 8) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 4532.19 4803.02 4850.82 5198.49 5464.93 

2 4532.43 4806.47 4849.27 5309.32 5467.41 

3 4534.46 4807.75 4850.03 5201.26 5465.36 

4 4532.69 4806.85 4848.29 5201.41 5468.26 

5 4534.75 4811.28 4856.22 5202.10 5466.67 

6 4534.85 4805.83 4849.16 5199.67 5467.87 

7 4534.00 4807.73 4852.07 5202.15 5467.44 

8 4537.65 4806.54 4851.05 5200.69 5466.00 

9 4533.71 4806.99 4849.75 5201.40 5465.73 

10 4535.02 4807.56 4849.76 5200.01 5466.39 

Average run 

time 

(milliseconds) 

4534.18 4807.00 4850.64 5211.65 5466.61 
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Figure 9: Execution time comparison for Poisson distributions input 

Table 9 : Run times of Sample Sort algorithm for Poisson distribution data (Ref: 

Figure 9) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 26.36 47.27 203.53 788.28 976.93 

2 26.22 46.65 203.53 792.63 976.82 

3 26.38 46.92 204.49 788.84 979.63 

4 26.41 47.54 203.74 790.11 978.64 

5 28.13 47.51 203.74 788.54 975.86 

6 28.10 47.56 203.51 790.50 973.27 

7 28.19 47.64 203.05 791.26 977.29 

8 28.15 47.80 203.41 788.46 980.29 

9 28.22 48.03 204.02 792.23 973.03 

10 27.21 47.87 203.96 794.62 977.30 

Average run 

time 

(milliseconds) 

27.34 47.48 203.70 790.55 976.91 
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Table 10 : Run times of Sample Sort algorithm for Poisson distribution data (Ref: 

Figure 9) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 1078.04 1134.42 1143.54 1198.32 1237.55 

2 1072.45 1139.05 1144.23 1177.11 1232.42 

3 1076.11 1137.45 1145.50 1186.17 1233.42 

4 1078.20 1137.81 1163.95 1171.09 1232.92 

5 1078.89 1134.42 1144.51 1171.74 1237.33 

6 1077.21 1141.24 1143.99 1174.72 1233.26 

7 1077.94 1141.59 1144.73 1173.74 1235.36 

8 1075.17 1144.03 1146.76 1185.26 1235.60 

9 1081.06 1142.21 1145.18 1185.71 1234.90 

10 1079.85 1138.06 1145.64 1170.88 1232.51 

Average run 

time 

(milliseconds) 

1077.49 1139.03 1146.80 1179.47 1234.53 

 

Table 11 : Run times of Fine Sample Sort algorithm for Poisson distribution data 

(Ref: Figure 9) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 50.70 174.17 298.21 490.21 536.90 

2 49.80 176.23 297.74 490.19 542.14 

3 50.90 176.94 297.34 493.62 540.76 

4 50.35 175.06 294.96 492.38 540.07 

5 50.78 175.99 297.06 492.28 539.81 

6 50.03 172.68 299.08 490.30 538.60 

7 50.15 172.15 296.21 496.58 535.48 

8 50.33 175.14 294.97 492.67 541.20 

9 49.95 172.15 296.49 495.86 540.06 

10 50.95 175.92 293.87 493.89 538.19 

Average run 

time 

(milliseconds) 

50.39 174.64 296.59 492.80 539.32 
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Table 12 : Run times of Fine Sample Sort algorithm for Poisson distribution data 

(Ref: Figure 9) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 589.58 660.91 697.79 836.16 918.35 

2 588.45 663.50 691.63 844.52 906.00 

3 586.38 667.44 693.97 839.16 902.95 

4 588.99 655.35 695.05 849.60 900.06 

5 588.59 662.80 696.18 838.71 912.99 

6 587.33 661.58 692.70 835.27 908.52 

7 586.25 660.89 695.89 830.86 907.08 

8 587.94 659.36 702.15 844.00 914.84 

9 587.88 658.81 696.26 844.10 917.47 

10 592.92 661.12 701.27 840.96 907.28 

Average run 

time 

(milliseconds) 

588.43 661.18 696.29 840.33 909.55 

 

 

Figure 10: Execution time comparison for uniform distributions input 
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Table 13: Run times of Sample Sort algorithm for Uniform distribution data (Ref: 

Figure 10) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 47.21 53.01 1095.49 5727.87 8881.92 

2 47.31 52.83 953.45 5711.22 8931.22 

3 47.01 52.81 1146.08 5716.37 8881.70 

4 46.97 53.29 1246.25 5715.89 8903.40 

5 47.37 53.05 1143.63 5710.42 8892.15 

6 48.16 52.19 1247.40 5381.63 8886.28 

7 47.10 52.09 1143.30 5721.21 8880.73 

8 47.33 52.04 1243.99 5712.86 8888.62 

9 46.64 52.29 1244.63 5719.62 8890.06 

10 46.06 52.18 1244.99 5710.79 9337.15 

Average run 

time 

(milliseconds) 

47.11 52.58 1170.92 5682.79 8937.32 

 

Table 14: Run times of Sample Sort algorithm for Uniform distribution data (Ref: 

Figure 10) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 10439.50 10647.30 10707.10 10771.20 10853.90 

2 10499.90 10639.50 10552.60 10766.80 10864.00 

3 10467.80 10637.90 10707.50 10771.50 10865.40 

4 10458.60 10637.90 10708.10 10771.80 10870.10 

5 10443.90 10637.90 10716.50 10775.70 10854.10 

6 10447.20 10655.90 10711.50 10770.10 10853.20 

7 10440.00 10649.50 10557.50 10614.30 10853.50 

8 10447.10 10652.20 10714.80 10771.30 10854.80 

9 10451.60 10642.20 10718.80 10771.30 10854.80 

10 10454.30 10640.10 10707.70 10770.10 10855.30 

Average run 

time 

(milliseconds) 

10454.99 10644.04 10680.21 10755.41 10857.91 
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Table 15: Run times of Fine Sample Sort algorithm for Uniform distribution data 

(Ref: Figure 10) 

  Data Size → 

Experiment  10000000 20000000 30000000 40000000 50000000 

1 86.84 554.63 1395.00 2195.01 3106.12 

2 77.42 373.47 1184.24 2195.12 3102.84 

3 63.16 428.96 1688.39 2194.22 3094.40 

4 77.29 459.10 1399.16 2192.70 3097.84 

5 88.04 427.99 1509.07 2195.50 3098.26 

6 87.26 491.12 1238.46 2195.26 3121.47 

7 68.66 402.22 1396.74 2196.82 3106.72 

8 63.35 490.65 1454.48 2192.99 3095.72 

9 63.29 661.62 1452.44 2212.76 3097.54 

10 64.57 458.89 1086.71 2196.71 3121.56 

Average run 

time 

(milliseconds) 

73.99 474.86 1380.47 2196.71 3104.25 

 

Table 16: Run times of Fine Sample Sort algorithm for Uniform distribution data 

(Ref: Figure 10) 

  Data Size → 

Experiment  60000000 70000000 80000000 90000000 100000000 

1 4376.03 4626.53 5141.50 5750.65 5844.02 

2 4382.42 4637.30 4731.39 5421.51 5407.47 

3 4377.10 4639.16 4333.24 5647.08 5507.25 

4 4387.39 4636.91 4945.46 5868.19 5614.53 

5 4386.74 4632.84 5047.17 6217.58 5957.20 

6 4383.23 4629.93 5254.70 5097.79 5508.65 

7 4395.39 4632.78 4733.57 5421.20 5620.24 

8 4377.82 4628.92 5580.11 5987.12 6075.01 

9 4377.91 4625.33 5373.82 5535.56 4870.45 

10 4414.84 4631.99 4937.96 5315.05 5731.22 

Average run 

time 

(milliseconds) 

4385.89 4632.17 5007.89 5626.17 5613.60 
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Table 17: Comparison of % difference in average runtimes over 10 runs of sample 

sort and Fine Sample Sort algorithms for descending order input 

Data Size  Sample Sort 

Fine  

Sample 

Sort % Difference 

40000000 5584.34 1986.69 64 

50000000 9893.66 3024.01 69 

60000000 10266.16 3670.23 64 

70000000 10454.49 4179.30 60 

80000000 10690.66 4820.64 55 

90000000 10746.84 5083.54 53 

100000000 10780.17 5581.87 48 

  Average  % difference    = 59 

 

 

Table 18: Comparison of % difference in average runtimes over 10 runs of sample 

sort and Fine Sample Sort algorithms for normal distribution input 

Data Size  Sample Sort 

Fine  

Sample 

Sort % Difference 

40000000 5821.72 2196.87 62 

50000000 9151.11 2603.67 72 

60000000 10120.05 4534.18 55 

70000000 10625.68 4807.00 55 

80000000 10670.36 4850.64 55 

90000000 10736.88 5211.65 51 

100000000 10809.11 5466.61 49 

  Average  % Difference  = 57 
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Table 19 : Comparison of % difference in average runtimes over 10 runs of sample 

sort and Fine Sample Sort algorithms for Poisson distribution input 

Data Size  Sample Sort Fine  Sort % Difference 

40000000 790.55 492.8 38 

50000000 976.91 539.32 45 

60000000 1077.49 588.43 45 

70000000 1139.03 661.18 42 

80000000 1146.8 696.29 39 

90000000 1179.47 840.33 29 

100000000 1234.53 909.55 26 

  Average  % Difference   = 38 

 

 

Table 20 : Comparison of % difference in average runtimes over 10 runs of sample 

sort and Fine Sample Sort algorithms for uniform distribution input 

Data Size  Sample Sort Fine  Sort % Difference 

40000000 5682.79 2196.71 61 

50000000 8937.32 3104.25 65 

60000000 10454.99 4385.89 58 

70000000 10644.04 4632.17 56 

80000000 10680.21 5007.89 53 

90000000 10755.41 5626.17 48 

100000000 10857.91 5613.6 48 

  Average  % Difference  = 56 

 

Conclusion 

In this chapter we have given details on the steps involved in Fine Sample Sort along  

with the experiment results. Our experimental results indicate that FSS is very  

competitive in practice. In particular, it is faster than the best known prior GPU sorting  

algorithm based on comparisons.   
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CHAPTER 5 

5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions  

          In this thesis, we have explored the features of graphics processing units. 

Considering the architectural attributes  of the GPU, along with the advantages of random 

sampling techniques, we were able to devise Fine Sample Sort (FSS), an efficient 

comparison based sorting algorithm, which outperforms the currently best known 

comparison sorting algorithm, i.e., sample sort by Nikolaj Leischner[2]. Comparison of 

FSS against sample sort was done for different input distributions. The results show that 

for uniformly distributed inputs, FSS is 47% faster and on an average 55% faster. For 

Poisson distributed data. FSS is at least 26% faster and on an average 37% faster. For 

normally distributed data, FSS is at least 49% faster and on an average 57% faster. For 

input data that is already sorted in descending order, the speedup of FSS is  at least 48% 

and on an average the speedup is 59%.  The above statements hold for data sizes of 40 

million and above. 

5.2 Future Work 

          Since GPUs offer the potential of affordable parallelism, there exists a wide scope 

to utilize the attributes it provides, in order to develop complex and efficient parallel 

algorithms, which are based on the SIMD model. We feel that our FSS algorithm can be 

further improved in terms of memory usage by improving the way the histograms of the 

blocks are calculated. In FSS we calculate the histograms of all the blocks and store these 

histograms and this requires a large amount of global memory space when we are dealing 

with large input data sizes. One way to improve this algorithm in terms of memory usage 
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is to maintain a single histogram table, which has 128 entries at any time. Every block, 

after calculating its histogram in local memory, can update its values in the histogram 

table stored in the global memory. 
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