
University of Connecticut
DigitalCommons@UConn

Master's Theses University of Connecticut Graduate School

8-3-2012

Efficient Algorithms for Sorting on GPUs
Seema M. Munavalli
sn2710@gmail.com

This work is brought to you for free and open access by the University of Connecticut Graduate School at DigitalCommons@UConn. It has been
accepted for inclusion in Master's Theses by an authorized administrator of DigitalCommons@UConn. For more information, please contact
digitalcommons@uconn.edu.

Recommended Citation
Munavalli, Seema M., "Efficient Algorithms for Sorting on GPUs" (2012). Master's Theses. 322.
http://digitalcommons.uconn.edu/gs_theses/322

http://lib.uconn.edu/
http://lib.uconn.edu/
http://lib.uconn.edu/
http://digitalcommons.uconn.edu
http://digitalcommons.uconn.edu/gs_theses
http://digitalcommons.uconn.edu/gs
mailto:digitalcommons@uconn.edu

Page i

Efficient Algorithms for Sorting on GPUs

 Seema Mahesh Munavalli

B.E., Visveswaraiah Technological University, Belgaum, 2003

A Thesis

Submitted in Partial Fulfillment of the

Requirements of the Degree of

Master of Science

at the

University of Connecticut

2012

Page ii

APPROVAL PAGE

Master of Science Thesis

Efficient Algorithms for Sorting on GPUs

Presented by

Seema Mahesh Munavalli, BE.

Major Advisor ___

Dr. Sanguthevar Rajasekaran

Associate Advisor __

Dr. Reda Ammar

Associate Advisor __

Dr. Chun-Hsi Huang

University of Connecticut

2012

Page iii

ABSTRACT

Efficient Algorithms for Sorting on GPUs

Seema Mahesh Munavalli

Major Advisor: Dr. Sanguthevar Rajasekaran

Sorting is an important problem in computing that has a rich history of investigation by

various researchers. In this thesis we focus on this vital problem. In particular, we

develop a novel algorithm for sorting on Graphics Processing Units (GPUs). GPUs are

multicore architectures that offer the potential of affordable parallelism.

We present an efficient sorting algorithm called Fine Sample Sort (FSS). Our FSS

algorithm extends and outperforms sample sort algorithm presented by Leischner[2],

which is currently the fastest known comparison based algorithm on GPUs. The

performance gain of FSS is mainly achieved due to the quality of the samples selected.

By quantitative and empirical approach, we found out the best way to select the samples,

which resulted in an efficient sorting algorithm. We carried out the experiment for

different input distributions, and found out that FSS outperforms sample sort by at least

26% and on an average by 37% for data sizes ranging from 40 million and above across

various input distributions.

Page iv

DEDICATION

This work is dedicated to God, my parents, my husband Mahesh Munavalli, my advisor

Dr. Sanguthevar Rajasekaran, Dr. Reda Ammar, faculty and staff at university of

Connecticut. I would like to thank each one of the above for their patience, support and

encouragement.

Page v

ACKNOWLEDGEMENTS

I would like to thank my Advisor Dr. Sanguthevar Rajasekaran for his guidance, support

and encouragement throughout the course of this research. I would also like to thank my

committee members, Dr. Reda Ammar and Dr. Chun-Hsi Huang for their support.

I would specially thank Dr. Sanguthevar Rajasekaran and Dr. Reda Ammar for providing

me funding at UConn.

Finally I would like to thank my parents, my husband Mahesh Munavalli, friends, staff

and faculty at UConn for their constant support and understanding.

Page vi

Table of Contents

1 Introduction ... 1

2 Graphics Processing Unit (GPU) and Compute Unified Device Architucture (CUDA) 3

2.1 Graphics Processing Unit (GPU) ... 3

2.2 The Need for GPUs ... 3

2.3 GPU Computing.. 4

2.4 GPU Architecture ... 5

2.5 CUDA (Compute Unified Device Architecture) ... 8

2.5.1 Kernel .. 9

2.5.2 Thread ... 9

2.5.3 Block .. 9

2.5.4 Warp .. 9

2.5.5 Grid .. 9

2.5.6 Arrays of Parallel threads .. 10

2.5.7 Thread Batching ... 11

2.5.8 Managing Memory .. 12

2.5.9 Thread Life Cycle in hardware ... 13

2.5.10 Thread Scheduling/Execution .. 13

2.6 Factors impacting the performance of applications .. 14

2.7 Good and Bad candidates for a GPU.. 15

3 Previous Work on Sorting on GPU.. 16

4 Fine Sample Sort Algorithm ... 20

4.1 Sequential Fine Sample Sort algorithm overview... 20

4.2 Fine Sample Sort algorithm for GPUs ... 21

4.3 Experimental study .. 22

4.4 Experimental Results .. 23

5 Conclusions and Future work ... 36

5.1 Conclusion .. 36

5.2 Future Work ... 36

6 References ... 38

Page vii

LIST OF FIGURES

Figure 1: Processing flow on CUDA (Compute Unified Device Architecture) 5

Figure 2 : NVIDIA’s GTX 480 GPUs ... 7

Figure 3: NVIDIA’s Tesla GPUs ... 8

Figure 4 : Organization of threads, thread block and grid. .. 10

Figure 5 : Computation of address via thread. .. 11

Figure 6: The Execution Model .. 12

Figure 7: Execution time comparison for descending order input data. 24

Figure 8: Execution time comparison for normal distribution input ... 26

Figure 9: Execution time comparison for Poisson distributions input ... 29

Figure 10: Execution time comparison for uniform distributions input .. 31

Page 1

 CHAPTER 1

1 INTRODUCTION

In the world of computing there exist many challenging problems. One among them is

sorting. Efficient sorting is crucial, as many applications depend on them. Some

applications of sorting follow:

• Binary search in databases.

• Many problems in computer graphics and computational geometry.

• Motif search in computational biology; and so on.

 Hence, it is of utmost importance to design efficient sorting algorithms for emerging

architectures, which can exploit architectural features. One such emerging architecture is

the Graphics Processing Unit (GPU).

Graphics Processing Units (GPUs) are massively parallel many-core processors. They

work on SIMD (Single Instruction Multiple Data) model. CUDA (Compute Unified

Device Architecture) is the computing engine in Nvidia graphics processing units, which

allows developers to code algorithms for execution on GPUs, through variants of industry

standard programming languages such as C and C++. Reasonable cost and massively

parallel computation capability have resulted in an explosion of research directed towards

expanding the applicability of GPUs to a wide variety of high-performance computing

applications such as sorting.

.

Page 2

Utilizing the advantages of the architectural attributes offered by GPUs, we were able to

develop and implement a parallel sorting algorithm named Fine Sample Sort (FSS). Our

experimental study demonstrates that FSS outperforms sample sort developed by

Leischner [2], which is currently the fastest known comparison-based GPU sorting

algorithm.

Performance of FSS depends crucially on the quality of splitters selected. By empirical

and quantitative approach, we were able to find the best way to select splitters. These

splitters reduced the number of sort phases needed to ultimately reach a bucket size that

can be locally sorted in the shared memory of GPUs.

For the performance analysis we have experimented with commonly accepted set of input

distributions. The various distributions considered are normal distribution, Poisson

distribution, uniform distribution, and descending order data set. Our results indicate that

Fine Sample Sort outperforms sample sort by at least 26% and on an average by 37% for

data sizes ranging from 40 million and above across various input distributions.

Page 3

CHAPTER 2

2 GRAPHICS PROCESSING UNIT (GPU) AND COMPUTE

UNIFIED DEVICE ARCHITUCTURE (CUDA)

Introduction

There are many challenging computing problems that are impractical to be solved in a

reasonable amount of time with single processors. These applications can be solved in a

reasonable amount of time using architectures that support many-core processors. One

such architecture is Graphics Processing Unit. In this chapter we will study about GPU

architecture, along with CUDA (Compute Unified Device Architecture) which is a

software environment for GPUs.

2.1 Graphics Processing Unit (GPU)

 A Graphics Processing Unit (GPU) is a specialized electronic circuit, which is

massively parallel with many-core processors. GPUs belong to single instruction,

multiple data (SIMD) class of parallel computers that perform the same operation on

multiple data simultaneously to exploit data level parallelism.

2.2 The Need for GPUs

 There are many advantages of GPU’s. To list a few:

• Traditionally, most graphics operations, such as transformations between

coordinate spaces, lighting and shading operations have been performed

on the CPU. There is a need to offload many of these operations from the

CPU (primarily arithmetic and logic) to specialized graphics hardware

(based on vector & matrix processing).

Page 4

• Parallelism is the future of computing and the GPU architecture is well

suited for parallel applications.

• It exhibits a high performance at a low cost.

2.3 GPU Computing

 The model for GPU computing is to use a CPU and GPU together in a

heterogeneous co-processing mode. The sequential part of the application runs on the

CPU and the computationally-intensive part runs on GPU. From the user’s view the

application runs faster because it is using the high-performance of the GPU to boost

performance. A typical mode of operation of a GPU follows:

1. Copy data from the main CPU memory to GPU memory

2. CPU sends processing instructions to the GPU

3. GPU cores execute instructions in parallel

4. Copy the result from GPU memory to main memory

Figure 1 provides a summary of the CUDA.

Page 5

Figure 1: Processing flow on CUDA (Compute Unified Device Architecture)
1

2.4 GPU Architecture

 Graphics processing units (GPUs) are massively parallel many-core processors.

Below are the specifications of NVIDIA’s GTX 480 and NVIDIA’s Tesla GPU’s:

 NVIDIA’s GTX 480 GPUs: These GPUs have 480 scalar processing cores (SPs) per chip.

These cores are partitioned into 15 Streaming Multiprocessors (SMs). Each SM

comprises of 32 SPs. Each SM shares a 48KB local memory (called shared memory) that

1
 http://en.wikipedia.org/wiki/File:CUDA_processing_flow_%28En%29.PNG

Page 6

may be utilized by the threads running on this SM. GTX 480 has a 1536MB global

memory. Figure 2 presents some details.

NVIDIA’s Tesla GPUs: These GPUs have 240 scalar processing cores (SPs) per chip [4].

These cores are partitioned into 30 Streaming Multiprocessors (SMs). Each SM

comprises of 8 SPs. Each SM shares a 16KB local memory (called shared memory) and

the 240 on-chip cores also share a 4GB off-chip global (or device) memory. Figure 3

shows the various components of TESLA GPUs.

a scalable parallel programming

Figure 2 : NVIDIA’s GTX 480 GPUs

programming

Page 7

2.5 CUDA (Compute Unified Device Architecture)

CUDA is a scalable parallel programming

parallel computing. This

the heterogeneous serial

multicore CPUs.

Figure 3: NVIDIA’s Tesla GPUs

CUDA (Compute Unified Device Architecture)

is a scalable parallel programming model and a software environment for

computing. This is an extension of the familiar C/C++ environment. It

rial-parallel programming model. CUDA also

Page 8

and a software environment for

environment. It follows

CUDA also maps well to

Page 9

2.5.1 Kernel

 Kernel is a normal C function that is called on the host machine (CPU) and runs

on device machine (GPU). One kernel is executed at a time. Invocation of a kernel

executes many threads, through which parallel computing is achieved.

2.5.2 Thread

This is an execution of a kernel with a given index. Each thread uses its j index to

access elements in, such that the collection of all threads cooperatively processes the

entire data set.

CUDA threads have the following properties:

• CUDA threads are extremely lightweight

• They have very little creation overhead

• Instant switching is supported

2.5.3 Block

This is a group of threads. We can coordinate the threads using the _syncthreads()

function that makes a thread stop at a certain point in the kernel until all the other threads

in its block reach the same point.

2.5.4 Warp

 Warp is a group of 32 threads, to be executed in SIMD fashion by a CUDA SM.

2.5.5 Grid

Group of blocks together form a grid.

Page 10

Figure 4 displays the relationships among the different components of CUDA. Figures 5

and 6 portray some execution features of

CUDA.

Figure 4 : Organization of threads, thread block and grid.
2

2.5.6 Arrays of Parallel threads

A CUDA kernel is executed by an array of threads

2
 Bandyopadhyay, S. and Sahni, S., GRS - GPU Radix Sort for Large Multifield Records, International

Conference on High Performance Computing (HiPC), 2010

Host

Kernel

1

Kernel

2

Grid

 Block

 (0,1)

Block

(0, 1)

Block

(0, 2)

Block

(1, 0)

Block

(1, 1)

Block

(1, 2)

Grid

Block (1, 1)

 Thread

(n, 2)
Thread

(n, 3)
Thread

(n, 4)

Theard
(0, 0)

Thread

(0, 1)
Thread

(0, 2)
Thread

(0, 3)
Thread

(0, 4)

Page 11

• All threads run the same code

• Each thread has an ID that it uses to compute memory addresses and make

control decisions

Figure 5 : Computation of address via thread.
3

2.5.7 Thread Batching

 In CUDA, kernel launches a grid of thread blocks. These thread blocks are

executed on SMs and threads within each block are executed on scalar processors. The

threads within a block can cooperate via shared memory, but threads in different blocks

cannot cooperate.

3
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.p

df

…
float x = input[threadID];

float y = func(x);
output[threadID] = y;

…

threadID

Page 12

Figure 6: The Execution Model
4

2.5.8 Managing Memory

 CPU and GPU have separate memory spaces. There is no direct provision to

access GPU memory. In order for any application to utilize the GPUs, the data should be

first stored in CPU memory. Host (CPU) code manages to transfer data to device (GPU)

memory and then parallel computations are performed on the GPU. It is the

responsibility of the host code to manage allocation and de-allocation of memory of the

GPUs.

4
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.p

df

Page 13

2.5.9 Thread Life Cycle in hardware

1. Launch CUDA kernel as below

KernelFunction<<<dimGrid, dimBlock>>>(…);

Then thread blocks are serially distributed to all the SMs with

potentially >1 thread blocks per SM.

2. The thread blocks in each SM are launched as warps of threads by

hardware after invocation of kernel. SM schedules and executes warps

that are ready to run on the scalar processors.

3. Parallel computations are performed by threads in the GPU.

4. Kernel exits after the completion of parallel computation.

2.5.10 Thread Scheduling/Execution

Warps are scheduling units in an SM. Each thread block is divided into 32-thread

warps and the threads within the warps are executed on scalar processors. For example:

If 3 blocks are assigned to an SM and each Block has 256 threads, the number of

warps=8 (256/32). This implies that for 3 blocks, we have 24 warps. At any point in time,

only one of the 24 Warps will be selected for instruction fetch and execution.

SM Warp Scheduling

• SM hardware implements zero-overhead warp scheduling

• Warps whose next instruction has its operands ready for consumption

are eligible for execution

• Eligible Warps are selected for execution on a prioritized scheduling

policy

Page 14

• All the threads in a warp execute the same instruction, when selected.

2.6 Factors impacting the performance of applications

• Non-common instructions within a warp are serialized. So avoiding

thread divergence within a warp should be considered.

• Global memory is very expensive than access to registers or shared

memory. Data to be used several times should be read once from the

global memory and stored in registers or shared memory for future

use.

• When the threads of a half-warp access global memory, this access is

accomplished via a series of memory transactions. The number of

memory transactions equals the number of different 32-byte (64-byte,

128-byte, 128-byte) memory segments that the words to be accessed

lie in, when each thread accesses an 8-bit (16-bit, 32-bit, 64-bit) word.

Given the cost of a global memory transaction, it pays to organize the

computation so that the number of global memory transactions made

by each half warp is minimized.

• Shared memory is divided into banks in a round robin fashion using

words of size 32 bits. When the threads of a half warp access shared

memory, the access is accomplished as a series of one or more

memory transactions. Let S denote the set of addresses to be accessed.

Each transaction is built by selecting one of the addresses in S to

define the broadcast word. All addresses in S that are included in the

broadcast word are removed from S. At a time only one address from

Page 15

each of the remaining banks is removed from S. The set of removed

addresses is serviced by a single memory transaction. Since the user

has no way to specify the broadcast word for maximum parallelism,

the computation should be organized so that, at any given time, the

threads in a half warp access either words in different banks of shared

memory or they access the same word of shared memory.

2.7 Good and Bad candidates for a GPU

Good candidates for a GPU

Data-parallel computations that involve more arithmetic operations compared to memory

operations attain maximum performance on GPUs. This is because the volume of very

fast arithmetic instruction can hide the relatively slow memory accesses. For example,

extraction of endmembers in a hyper spectral image is a good candidate for GPU, as we

can exploit data parallelism.

Bad candidates for a GPU

In particular, task-parallel computations which execute different instructions on the same

or different data cannot efficiently utilize the hardware on a GPU as it often ends up

running sequentially.

Conclusion

In this chapter we explored multicore GPUs and CUDA software environment through

which we can devise efficient parallel algorithms that are based on SIMD principle.

Page 16

CHAPTER 3

3 PREVIOUS WORK ON SORTING ON GPUS

Introduction

Since sorting is one of the most widely studied and challenging problems in computer

science, emerging architectural capabilities of graphics processors brought considerable

attention to sorting on GPUs. In this chapter, we will explore prevailing comparison

based sorting algorithms on GPUs and Lemma.

3.1 Prior Works

Cederman, et al. [8] have adapted quick sort for GPUs. Their adaptation first partitions

the sequence to be sorted into subsequences, sorts these subsequences in parallel, and

then merges the sorted subsequences in parallel.

Satish, et al. [3] have developed an even faster merge sort. In this merge sort, two sorted

sequences A and B are merged by a thread block to produce the sequence C, when A and

B have less than 256 elements each. Each thread reads an element of A and then does a

binary search on the sequence B with that element to determine where it should be placed

in the merged sequence C. When the number of elements in a sequence is more than 256,

A and B are divided into a set of subsequences by using a set of splitters. The splitters are

chosen from the two sequences in such a way that the interval between successive

splitters is small enough to be merged by a thread block.

Page 17

GPU sample sort was developed by Leischner, et al. [2]. Sample sort is reported to be

about 25% faster than the best comparison based sorting algorithm, merge sort of [3], and

on average more than 2 times faster than GPU quicksort.

3.2 Fine Sample Sort

The basic idea behind the Fine Sample Sort algorithm is the following Lemma, which

was developed by Reif and Valiant [13].

Lemma: Let T be an ordered set and S1 be a random sample of T of size n
2
2

m/3
. Sort S1

and select elements in positions n
2
, 2n

2
, …, (2

m/3
-1) n

2
. Let these keys be in the list S2.

Keys in S2 partition T. Let q be the maximum size of any of these parts. Then,

Pr[q > (1 + n
-1/3

)|T|/2
m/3

] < 2
-c1n

for some constant c1 > 0 and

Pr[q < (1 - n
-1/3

)|T|/2
m/3

] < 2
–c2n

for some constant c2 > 0 under the assumption that n
4
2

m/3
= o(|T|) and that n

2
2

m/3
=

o(|T|
2/3

).

Proof: The probability that an element in T is sampled in S1 is p =
��

|�|
= (n

2
2

m/3
) / |T|

Split T into segments of size d. Let X = B(d,p) be a binomial random variable counting

how many elements in a region of length d from T are present in S1. The mean of X is

µ= dp = dn
2
2

m/3
/|T| . The probability that one of the final partitions is greater than d is the

same as the probability that a region of size d contains less than n
2

elements from S1.

 Prob[part > d] = Prob[X < n2]. In order to apply the Chernoff bounds we

Page 18

compute the following:

(1 -ε) µ = n
2

 =>1- ε =|T|/d2
m/3

= (d2
m/3

-|T|)/ d2
m/3

We apply the Chernoff bound:

Prob[X < n
2
] < exp(-ε

2
 µ/2)

 =exp(-((d2
m/3

-|T|)/ d2
m/3

)
2

(dn
2
2

m/3
)/2|T|)

 =exp(-(nd2
m/3

-|T|)
2
n

2
) /2d|T|2

m/3
)

The probability that there exists any part of length d with less than n
2

elements of S1 is

<=|T|/d(Prob[X < n
2
]).If q is the maximum size of the final parts, then:

Prob[q > d] <=(|T|/d) exp(-(nd2
m/3

-|T|)
2
n

2
) /2d|T|2

m/3
)

Now, if we use d = (1 +
n-1/3

)|T|/2
m/3

we have:

Prob[q > (1 + n
-1/3

)|T|/2
m/3

)] <= (2
m/3

/(1+ n
-1/3

))exp(-((n(1+n
-1/3

)|T|-|T|)
2
n

2
)/ 2(1+n

-

1/3)|
|T|

2
))

<= (2
m/3

)exp(-((n(1+n
-1/3

)-1)
2
n

2
)/ 2(1+n

-1/3
))

<= (2
m/3

)exp(-(n
2
(1+n

-1/3
)
2
n

2
)/)/ 2(1+n

-1/3
))

<=(2
m/3

)exp(-n
4
(1+n

-1/3
)/2)

<= (2
m/3

)exp(-n
4
(1+1)/2)

<=(2
m/3

)exp(-n
4
)

We have used the fact that n
-1/3

 < 1 for n > 1. As long as

m/3 - n
4
/2 < -n we have the bound required in the problem. □

Page 19

Conclusion

In this chapter we explored previous works done on comparison based sorting algorithms

and a Lemma by Reif and Valiant. With this prevailing knowledge of existing lemma and

previous existing comparison based sorting algorithms on GPUs, we have devised an

efficient comparison based sorting algorithm.

Page 20

CHAPTER 4

4 FINE SAMPLE SORT ALGORITHM

Introduction

In this chapter we will look at the sequential version of Fine Sample Sort (FSS)

algorithm, followed by Fine Sample Sort algorithm on GPUs along with the data used for

the experiments and their results.

4.1 Sequential Fine Sample Sort algorithm overview

 SampleSort(e[1,n], 128)

begin

 //M is the data size that fits in the shared memory of GPU

if (n < M)

 {

 return SmallSort(e)

 }

 else

{

Choose a random sample S of size 128[0.005(n
1/3

)]

Sort the random sample.

From the sorted list pick elements that are in positions 0.005(n
1/3

),

 2[0.005(n
1/3

), 3[0.005(n
1/3

)],…, 127[0.005(n
1/3

)]

for 1 ≤ i ≤ n do

Page 21

{

 Find j ∈ {1, . . . , 128}, such that

 b1 = {e[i] ∈ e |e[i]<= s1 },

 bj ={e[i] ∈ e | sj−1 < e[i] ≤ sj }, for 2<= j < =127;

 b128 = {e[i] ∈ e | e[i] >s127} }

 return Concatenate(SampleSort(b1, 128), . , SampleSort(b128, 128)

}

end

4.2 Fine Sample Sort algorithm for GPUs

In order to efficiently map our computational problem to a GPU architecture, we

decompose it into data-independent sub problems that can be processed in parallel by

blocks of concurrent threads. We divide the input into p = (Input size)/ (No of elements

to be processed in a block) tiles, i.e., we divide the input into p = ⌈n/ (t · ℓ) ⌉ tiles. By

choosing 256 threads per block and assigning 8 elements per thread, balance is achieved

between the parallelism exposed by the algorithm and memory latency.

A high-level description of FSS follows:

Phase 1: Choose the size of the splitters to be 128[0.005(input size)
1/3

]

Phase 2: Sort the chosen splitters

Phase 3: From the sorted list of splitters select elements that are in positions

 0.005(n
1/3

), 2[0.005(n
1/3

)], 3[0.005(n
1/3

)], …, 127[0.005(n
1/3

)]. These selected

 elements form the splitter set.

Phase 4: Each block loads the splitters set into its fast private shared

Page 22

 memory of GPU and each thread block computes the bucket indices for all the

 elements in its tile. It counts the number of elements in each bucket and stores

 this per-block k-entry histogram in the global memory.

Phase 5: Perform a prefix sum over the k × p histogram tables stored in a column-major

 order to compute global bucket offsets in the output.

Phase 6: Since storing the bucket indices in global memory is not faster than just

 recomputing them, each thread block again computes the bucket indices for all

 the elements in its tile, computes their local offsets in the buckets and finally

 stores elements at their proper output positions using the global offsets

 computed in the previous step.

Sorting of buckets is delayed until the whole input is partitioned into buckets of size at

most M (for some relevant value of M), so that the buckets fit in the shared memory. For

buckets of size less than M we use quicksort by Cederman and Tsiga [8]. To improve

load-balancing, buckets are scheduled for sorting ordered by size.

4.3 Experimental study

 The implementation was done using an Intel core i7 processor @3.20 GHz with 16

GB RAM on 64 bit windows 7 professional operating system. We used NVidia GTX 480

GPU for our experiment. The NVIDIA GeForce GTX 480 has a compute capability of

2.0. It was released in March 2010. It has 32 K registers per multiprocessor. The data bus

for the GTX 480 GPU is PCI-E 2.0, whose maximum bandwidth is 16 GB/s. Theoretical

maximum global memory bandwidth of the GTX 480 GPU is 177.4 GB/s. DRAM access

has high latency due to limited bandwidth, but on-chip memory access is much faster.

Page 23

The GTX 480 GPU has 32 shared memory banks and the bandwidth of shared memory is

1.344TB/s and the global memory size is 1535 MB.

For the analysis of runtime we have used the following commonly accepted set of

distributions and compared our FSS algorithm with sample sort, which is currently the

best known comparison based sorting algorithm for GPUs.

Uniform distribution – When we employed a uniformly distributed random input in the

range [10M-100M] FSS was 47% faster and on an average 55% faster for data sizes of

40M and above.

Poisson distribution- When the data was Poisson distributed in the range [10M-100M]

FSS was at least 26% faster and on an average 37% faster for data sizes of 40M and

above.

Normal distribution- When the input data had a Normal distribution in the range [10M-

100M], FSS was at least 49% faster and on an average 57% faster for data sizes of 40M

and above.

Descending ordered – When the data was already sorted in descending order in the range

[10M-100M], FSS was at least 48% faster and on an average of 59% faster for data sizes

of 40M and above.

4.4 Experimental Results

 Our experimental results are summarized in Figures 7, 8, 9, and 10. Graphs are

plotted for random samples of different sizes to emphasize how the selection of sample

size matters in phase 1 of the algorithm.

Page 24

Figure 7: Execution time comparison for descending order input data.

Table 1: Run times of the sample sorting algorithm for descending order input (Ref:

Figure 7)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 42.79 92.93 1269.73 5583.61 9895.57

2 42.61 93.57 1269.93 5584.06 9894.52

3 42.43 93.62 1270.18 5583.68 9892.54

4 42.74 93.61 1270.22 5584.33 9894.55

5 42.45 93.59 1270.07 5583.79 9892.28

6 42.43 92.58 1270.09 5584.71 9893.76

7 42.61 93.68 1270.23 5583.86 9894.08

8 42.47 93.51 1270.25 5584.76 9892.60

9 42.56 93.06 1270.07 5582.36 9892.96

10 42.59 93.18 1270.26 5588.22 9893.71

Average run

time

(milliseconds)

42.57 93.33 1270.10 5584.34 9893.66

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

E
x
ec

u
ti

o
n

 T
im

e
in

 m
il

li
se

co
n

d
s

DataSize (in Millions)

Execution Time Comparision of Decending Order Input Data

Fine Sample Sort [0.01(n^.67)] Sample Sort

Fine Sample Sort Fine Sample Sort[0.01(n^.33)]

Fine Sample Sort [0.005(n^.67)]

Page 25

Table 2: Run times of sample sorting algorithm for descending order input (Ref:

Figure 7)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 10265.90 10453.00 10689.30 10744.80 10780.30

2 10265.60 10454.70 10690.20 10745.80 10780.80

3 10265.20 10454.80 10689.80 10746.40 10778.70

4 10266.30 10453.80 10696.60 10749.10 10780.50

5 10265.80 10455.40 10690.00 10746.00 10781.00

6 10265.30 10455.20 10689.70 10753.30 10779.90

7 10268.50 10455.70 10691.60 10745.00 10779.70

8 10265.50 10453.60 10690.30 10746.70 10779.90

9 10267.10 10454.90 10690.30 10746.10 10780.60

10 10266.40 10453.80 10688.80 10745.20 10780.30

Average run

time

(milliseconds)

10266.16 10454.49 10690.66 10746.84 10780.17

Table 3 : Run times of Fine Sample Sort algorithm for descending order input (Ref:

Figure 7)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 67.62 483.77 1183.44 1985.75 3021.18

2 68.22 484.03 1182.51 1986.59 3024.74

3 68.04 484.01 1182.18 1986.92 3024.56

4 67.58 483.91 1183.04 1986.95 3024.62

5 67.86 484.19 1181.99 1986.83 3024.59

6 67.72 484.08 1182.19 1986.43 3024.47

7 67.76 484.49 1182.35 1986.93 3023.94

8 67.60 484.04 1181.89 1986.66 3023.21

9 68.07 484.02 1182.61 1986.76 3024.74

10 67.58 484.20 1182.62 1987.12 3024.04

Average run

time

(milliseconds)

67.81 484.07 1182.48 1986.69 3024.01

Page 26

Table 4 : Run times of Fine Sample Sort algorithm for descending order input (Ref:

Figure 7)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 3669.14 4179.98 4824.77 5081.92 5577.71

2 3671.05 4178.55 4820.40 5084.20 5579.29

3 3671.00 4179.42 4820.09 5083.84 5579.17

4 3669.95 4179.22 4820.88 5084.12 5588.15

5 3669.46 4179.38 4820.65 5083.93 5579.64

6 3671.11 4179.20 4820.64 5083.03 5586.93

7 3670.13 4179.64 4819.30 5084.23 5579.64

8 3670.16 4179.16 4820.23 5081.81 5580.53

9 3670.16 4179.16 4819.77 5084.07 5580.13

10 3670.11 4179.31 4819.64 5084.27 5587.49

Average run

time

(milliseconds)

3670.23 4179.30 4820.64 5083.54 5581.87

Figure 8: Execution time comparison for normal distribution input

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

0 20 40 60 80 100 120

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 m
il

li
se

co
n

d
s

Data Size (in Millions)

Execution Time Comparision for Normal Distribution Data

Sample Sort Fine Sample Sort

Fine Sample Sort [0.01(n^.33)] Fine Sample Sort [0.005(n^.67)]

Fine Sample Sort[0.01(n^.67)]

Page 27

Table 5 : Run times of Sample Sort algorithm for Normal distribution data (Ref:

Figure 8)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 44.61 93.09 1576.21 5823.58 9153.79

2 44.44 92.29 1576.80 5819.87 9160.33

3 43.93 91.54 1577.00 5819.61 9147.42

4 44.05 91.30 1576.89 5819.34 9147.14

5 44.43 91.77 1577.17 5821.46 9157.63

6 43.99 91.83 1576.59 5822.14 9146.96

7 44.04 91.51 1578.07 5825.59 9147.58

8 43.83 91.50 1578.10 5822.13 9151.41

9 43.70 90.82 1577.06 5820.16 9150.86

10 43.74 90.93 1577.18 5823.29 9147.93

Average run

time

(milliseconds)

44.08 91.66 1577.11 5821.72 9151.11

Table 6 : Run times of Sample Sort algorithm for Normal distribution data (Ref:

Figure 8)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 10112.20 10622.30 10670.80 10735.40 10812.00

2 10118.60 10626.60 10670.20 10735.60 10807.50

3 10129.70 10624.80 10669.50 10735.60 10806.50

4 10118.50 10624.70 10667.60 10735.20 10807.40

5 10118.60 10626.50 10674.70 10734.90 10807.20

6 10120.20 10624.90 10667.40 10742.20 10808.30

7 10121.00 10628.20 10680.10 10737.90 10807.40

8 10118.90 10625.40 10666.60 10735.60 10813.00

9 10122.00 10625.10 10669.70 10740.90 10814.20

10 10120.80 10628.30 10667.00 10735.50 10807.60

Average run

time

(milliseconds)

10120.05 10625.68 10670.36 10736.88 10809.11

Page 28

Table 7 : Run times of Fine Sample Sort algorithm for Normal distribution data

(Ref: Figure 8)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 70.87 427.66 1394.89 2195.57 2602.12

2 70.55 427.61 1395.11 2196.95 2604.17

3 71.21 427.23 1394.88 2196.91 2603.98

4 70.68 428.28 1394.72 2197.21 2604.22

5 70.70 428.75 1393.15 2197.42 2603.35

6 70.68 427.44 1394.52 2198.93 2604.01

7 70.68 427.30 1395.89 2195.40 2602.31

8 71.09 427.45 1394.65 2196.82 2604.44

9 70.77 427.26 1395.15 2196.72 2604.38

10 70.93 428.85 1394.15 2196.72 2603.75

Average run

time

(milliseconds)

70.82 427.78 1394.71 2196.87 2603.67

Table 8 : Run times of Fine Sample Sort algorithm for Normal distribution data

(Ref: Figure 8)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 4532.19 4803.02 4850.82 5198.49 5464.93

2 4532.43 4806.47 4849.27 5309.32 5467.41

3 4534.46 4807.75 4850.03 5201.26 5465.36

4 4532.69 4806.85 4848.29 5201.41 5468.26

5 4534.75 4811.28 4856.22 5202.10 5466.67

6 4534.85 4805.83 4849.16 5199.67 5467.87

7 4534.00 4807.73 4852.07 5202.15 5467.44

8 4537.65 4806.54 4851.05 5200.69 5466.00

9 4533.71 4806.99 4849.75 5201.40 5465.73

10 4535.02 4807.56 4849.76 5200.01 5466.39

Average run

time

(milliseconds)

4534.18 4807.00 4850.64 5211.65 5466.61

Page 29

Figure 9: Execution time comparison for Poisson distributions input

Table 9 : Run times of Sample Sort algorithm for Poisson distribution data (Ref:

Figure 9)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 26.36 47.27 203.53 788.28 976.93

2 26.22 46.65 203.53 792.63 976.82

3 26.38 46.92 204.49 788.84 979.63

4 26.41 47.54 203.74 790.11 978.64

5 28.13 47.51 203.74 788.54 975.86

6 28.10 47.56 203.51 790.50 973.27

7 28.19 47.64 203.05 791.26 977.29

8 28.15 47.80 203.41 788.46 980.29

9 28.22 48.03 204.02 792.23 973.03

10 27.21 47.87 203.96 794.62 977.30

Average run

time

(milliseconds)

27.34 47.48 203.70 790.55 976.91

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 20 40 60 80 100 120

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 m
il

li
se

co
n

d
s

Data Size (in Millions)

Execution Time Comparision for Poisson Distribution Data

Sample Sort Fine Sample Sort

Fine Sample Sort [0.01(n^0.33)] Fine Sample Sort[0.005(n^.67)]

Fine Sample Sort[0.01(n^0.67)]

Page 30

Table 10 : Run times of Sample Sort algorithm for Poisson distribution data (Ref:

Figure 9)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 1078.04 1134.42 1143.54 1198.32 1237.55

2 1072.45 1139.05 1144.23 1177.11 1232.42

3 1076.11 1137.45 1145.50 1186.17 1233.42

4 1078.20 1137.81 1163.95 1171.09 1232.92

5 1078.89 1134.42 1144.51 1171.74 1237.33

6 1077.21 1141.24 1143.99 1174.72 1233.26

7 1077.94 1141.59 1144.73 1173.74 1235.36

8 1075.17 1144.03 1146.76 1185.26 1235.60

9 1081.06 1142.21 1145.18 1185.71 1234.90

10 1079.85 1138.06 1145.64 1170.88 1232.51

Average run

time

(milliseconds)

1077.49 1139.03 1146.80 1179.47 1234.53

Table 11 : Run times of Fine Sample Sort algorithm for Poisson distribution data

(Ref: Figure 9)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 50.70 174.17 298.21 490.21 536.90

2 49.80 176.23 297.74 490.19 542.14

3 50.90 176.94 297.34 493.62 540.76

4 50.35 175.06 294.96 492.38 540.07

5 50.78 175.99 297.06 492.28 539.81

6 50.03 172.68 299.08 490.30 538.60

7 50.15 172.15 296.21 496.58 535.48

8 50.33 175.14 294.97 492.67 541.20

9 49.95 172.15 296.49 495.86 540.06

10 50.95 175.92 293.87 493.89 538.19

Average run

time

(milliseconds)

50.39 174.64 296.59 492.80 539.32

Page 31

Table 12 : Run times of Fine Sample Sort algorithm for Poisson distribution data

(Ref: Figure 9)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 589.58 660.91 697.79 836.16 918.35

2 588.45 663.50 691.63 844.52 906.00

3 586.38 667.44 693.97 839.16 902.95

4 588.99 655.35 695.05 849.60 900.06

5 588.59 662.80 696.18 838.71 912.99

6 587.33 661.58 692.70 835.27 908.52

7 586.25 660.89 695.89 830.86 907.08

8 587.94 659.36 702.15 844.00 914.84

9 587.88 658.81 696.26 844.10 917.47

10 592.92 661.12 701.27 840.96 907.28

Average run

time

(milliseconds)

588.43 661.18 696.29 840.33 909.55

Figure 10: Execution time comparison for uniform distributions input

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

0 20 40 60 80 100 120

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 m
il

li
se

co
n

d
s

Data Size (in Millions)

Execution Time Comparision for Uniform Distribution Data

Sample Sort Fine Sample Sort

Fine Sample Sort [0.01(n^0.33)] Fine Sample Sort [0.005(n^0.67)]

Fine Sample Sort [0.01(n^0.67)]

Page 32

Table 13: Run times of Sample Sort algorithm for Uniform distribution data (Ref:

Figure 10)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 47.21 53.01 1095.49 5727.87 8881.92

2 47.31 52.83 953.45 5711.22 8931.22

3 47.01 52.81 1146.08 5716.37 8881.70

4 46.97 53.29 1246.25 5715.89 8903.40

5 47.37 53.05 1143.63 5710.42 8892.15

6 48.16 52.19 1247.40 5381.63 8886.28

7 47.10 52.09 1143.30 5721.21 8880.73

8 47.33 52.04 1243.99 5712.86 8888.62

9 46.64 52.29 1244.63 5719.62 8890.06

10 46.06 52.18 1244.99 5710.79 9337.15

Average run

time

(milliseconds)

47.11 52.58 1170.92 5682.79 8937.32

Table 14: Run times of Sample Sort algorithm for Uniform distribution data (Ref:

Figure 10)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 10439.50 10647.30 10707.10 10771.20 10853.90

2 10499.90 10639.50 10552.60 10766.80 10864.00

3 10467.80 10637.90 10707.50 10771.50 10865.40

4 10458.60 10637.90 10708.10 10771.80 10870.10

5 10443.90 10637.90 10716.50 10775.70 10854.10

6 10447.20 10655.90 10711.50 10770.10 10853.20

7 10440.00 10649.50 10557.50 10614.30 10853.50

8 10447.10 10652.20 10714.80 10771.30 10854.80

9 10451.60 10642.20 10718.80 10771.30 10854.80

10 10454.30 10640.10 10707.70 10770.10 10855.30

Average run

time

(milliseconds)

10454.99 10644.04 10680.21 10755.41 10857.91

Page 33

Table 15: Run times of Fine Sample Sort algorithm for Uniform distribution data

(Ref: Figure 10)

 Data Size →

Experiment 10000000 20000000 30000000 40000000 50000000

1 86.84 554.63 1395.00 2195.01 3106.12

2 77.42 373.47 1184.24 2195.12 3102.84

3 63.16 428.96 1688.39 2194.22 3094.40

4 77.29 459.10 1399.16 2192.70 3097.84

5 88.04 427.99 1509.07 2195.50 3098.26

6 87.26 491.12 1238.46 2195.26 3121.47

7 68.66 402.22 1396.74 2196.82 3106.72

8 63.35 490.65 1454.48 2192.99 3095.72

9 63.29 661.62 1452.44 2212.76 3097.54

10 64.57 458.89 1086.71 2196.71 3121.56

Average run

time

(milliseconds)

73.99 474.86 1380.47 2196.71 3104.25

Table 16: Run times of Fine Sample Sort algorithm for Uniform distribution data

(Ref: Figure 10)

 Data Size →

Experiment 60000000 70000000 80000000 90000000 100000000

1 4376.03 4626.53 5141.50 5750.65 5844.02

2 4382.42 4637.30 4731.39 5421.51 5407.47

3 4377.10 4639.16 4333.24 5647.08 5507.25

4 4387.39 4636.91 4945.46 5868.19 5614.53

5 4386.74 4632.84 5047.17 6217.58 5957.20

6 4383.23 4629.93 5254.70 5097.79 5508.65

7 4395.39 4632.78 4733.57 5421.20 5620.24

8 4377.82 4628.92 5580.11 5987.12 6075.01

9 4377.91 4625.33 5373.82 5535.56 4870.45

10 4414.84 4631.99 4937.96 5315.05 5731.22

Average run

time

(milliseconds)

4385.89 4632.17 5007.89 5626.17 5613.60

Page 34

Table 17: Comparison of % difference in average runtimes over 10 runs of sample

sort and Fine Sample Sort algorithms for descending order input

Data Size Sample Sort

Fine

Sample

Sort % Difference

40000000 5584.34 1986.69 64

50000000 9893.66 3024.01 69

60000000 10266.16 3670.23 64

70000000 10454.49 4179.30 60

80000000 10690.66 4820.64 55

90000000 10746.84 5083.54 53

100000000 10780.17 5581.87 48

 Average % difference = 59

Table 18: Comparison of % difference in average runtimes over 10 runs of sample

sort and Fine Sample Sort algorithms for normal distribution input

Data Size Sample Sort

Fine

Sample

Sort % Difference

40000000 5821.72 2196.87 62

50000000 9151.11 2603.67 72

60000000 10120.05 4534.18 55

70000000 10625.68 4807.00 55

80000000 10670.36 4850.64 55

90000000 10736.88 5211.65 51

100000000 10809.11 5466.61 49

 Average % Difference = 57

Page 35

Table 19 : Comparison of % difference in average runtimes over 10 runs of sample

sort and Fine Sample Sort algorithms for Poisson distribution input

Data Size Sample Sort Fine Sort % Difference

40000000 790.55 492.8 38

50000000 976.91 539.32 45

60000000 1077.49 588.43 45

70000000 1139.03 661.18 42

80000000 1146.8 696.29 39

90000000 1179.47 840.33 29

100000000 1234.53 909.55 26

 Average % Difference = 38

Table 20 : Comparison of % difference in average runtimes over 10 runs of sample

sort and Fine Sample Sort algorithms for uniform distribution input

Data Size Sample Sort Fine Sort % Difference

40000000 5682.79 2196.71 61

50000000 8937.32 3104.25 65

60000000 10454.99 4385.89 58

70000000 10644.04 4632.17 56

80000000 10680.21 5007.89 53

90000000 10755.41 5626.17 48

100000000 10857.91 5613.6 48

 Average % Difference = 56

Conclusion

In this chapter we have given details on the steps involved in Fine Sample Sort along

with the experiment results. Our experimental results indicate that FSS is very

competitive in practice. In particular, it is faster than the best known prior GPU sorting

algorithm based on comparisons.

Page 36

CHAPTER 5

5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

 In this thesis, we have explored the features of graphics processing units.

Considering the architectural attributes of the GPU, along with the advantages of random

sampling techniques, we were able to devise Fine Sample Sort (FSS), an efficient

comparison based sorting algorithm, which outperforms the currently best known

comparison sorting algorithm, i.e., sample sort by Nikolaj Leischner[2]. Comparison of

FSS against sample sort was done for different input distributions. The results show that

for uniformly distributed inputs, FSS is 47% faster and on an average 55% faster. For

Poisson distributed data. FSS is at least 26% faster and on an average 37% faster. For

normally distributed data, FSS is at least 49% faster and on an average 57% faster. For

input data that is already sorted in descending order, the speedup of FSS is at least 48%

and on an average the speedup is 59%. The above statements hold for data sizes of 40

million and above.

5.2 Future Work

 Since GPUs offer the potential of affordable parallelism, there exists a wide scope

to utilize the attributes it provides, in order to develop complex and efficient parallel

algorithms, which are based on the SIMD model. We feel that our FSS algorithm can be

further improved in terms of memory usage by improving the way the histograms of the

blocks are calculated. In FSS we calculate the histograms of all the blocks and store these

histograms and this requires a large amount of global memory space when we are dealing

with large input data sizes. One way to improve this algorithm in terms of memory usage

Page 37

is to maintain a single histogram table, which has 128 entries at any time. Every block,

after calculating its histogram in local memory, can update its values in the histogram

table stored in the global memory.

Page 38

6 REFERENCES

[1] http://www.engr.uconn.edu/~rajasek/

[2] N. Leischner, V. Osipov and P. Sanders, GPU sample sort, IEEE International

 Parallel and Distributed Processing Symposium (IPDPS), 2010

[3] N. Satish, M. Harris and M. Garland, Designing Efficient Sorting Algorithms

 for Manycore GPUs, IEEE International Parallel and Distributed

 Processing Symposium (IPDPS), 2009.

[4] Bandyopadhyay, S. and Sahni, S., GRS - GPU Radix Sort for Large

 Multifield Records, International Conference on High Performance

 Computing (HiPC), 2010

[5] NVIDIA CUDA Programming Guide, NVIDIA Corporation, version 3.0,

 Feb 2010.

[6] CUDPP: CUDA Data-Parallel Primitives Library, http://www.gpgpu.

 org/developer/cudpp/, 2009.

[7] Horowitz, E., Sahni, S., and Mehta, D., Fundamentals of data structures

 in C++, Second Edition, Silicon Press, 2007.

[8] Cederman, D. and Tsigas, P., GPU-Quicksort: A Practical Quicksort

 Algorithm for Graphics Processors, ACM Journal of Experimental

 Algorithmics(JEA), 14, 4, 2009.

[9] http://courses.engr.illinois.edu/ece498/al/Syllabus.html

[10] http://classx.stanford.edu/ClassX/system/users/web/pg/view_subject.php?subject=N

 VIDIA_ICME_SPRING_2010_2011

[11] http://developer.nvidia.com/

Page 39

[12] http://en.wikipedia.org/wiki/GeForce_400_Series

[13] J.H. Reif and L.G. Valiant, A Logarithmic Time Sort for Linear Size Networks,

 in Proc. 15
th

 Annual ACM Symposium on Theory of Computing,

 Boston, MASS., 1983, pp. 10-16.

	University of Connecticut
	DigitalCommons@UConn
	8-3-2012

	Efficient Algorithms for Sorting on GPUs
	Seema M. Munavalli
	Recommended Citation

	Microsoft Word - 306652-text.native.1343968443.docx

