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1. Introduction

Let Z∗ be a d × 1 random vector that denotes an observation from the population

of interest (henceforth called the “target” population) and suppose there exists a parameter

θ∗ ∈ Θ ⊂ Rp satisfying the moment condition

EP ∗ [g(Z∗, θ∗)] = 0. (1.1)

The moment function g is a q × 1 vector of functions known up to θ∗ such that q ≥ p, i.e.,

overidentification is allowed, and P ∗ is the unknown probability distribution of Z∗ (note that

Z∗ can have discrete components). The notation EP ∗ indicates that expectation is with respect

to P ∗. Cf. Section 3.4 for some illustrative examples.

If data is collected by random sampling, so that observations from the target pop-

ulation have the same chance of being represented in the realized sample, then it is well

known how to efficiently estimate θ∗ using the generalized method of moments (GMM); cf.

Newey and McFadden (1994). However, as with many large datasets, if data is collected by

stratified sampling so that units from the target population have unequal chances of being

selected, then the realized sample consists of observations drawn from the distribution induced

by the sampling scheme rather than the target distribution P ∗ — and in general the two

distributions are not the same.

Therefore, since the parameter of interest θ∗ is a function of P ∗ (cf. (1.1)) and not the

distribution induced by the sampling scheme, statistical procedures that do not account for the

consequences of stratification are not guaranteed to produce reliable inference about θ∗. For

instance, letting Z1, . . . , Zn denote the stratified sample, the sample average
∑n

j=1 Zj/n will

in general not be a consistent estimator of θ∗ := EP ∗ [Z
∗], the mean of the target population,

because plimn→∞ n−1
∑n

j=1 Zj = EPobs
[Z] by a weak law of large numbers, where Pobs denotes

the distribution induced by the sampling scheme, but EPobs
[Z] 6= EP ∗ [Z

∗] because Pobs 6= P ∗.
The asymptotic properties of M -estimators when data is collected by standard stratified

sampling are examined in Wooldridge (2001). However, the parameters of interest in his models

are exactly identified whereas we allow θ∗ to be overidentified. Therefore, (1.1) nests his setup

as a special case. Note that since the moment conditions in Wooldridge’s paper are exactly

identified, their validity cannot be tested, at least unless additional moment conditions are

added. In contrast, we also investigate specification testing under stratification. Finally, unlike

Wooldridge who does not address efficiency issues in his paper, we obtain the efficiency bound

for estimating θ∗ (a nonstandard problem because observations collected by standard stratified

sampling are independently but not identically distributed) and propose an estimator of θ∗

that is asymptotically efficient, i.e., its variance matches the efficiency bound as the sample

size becomes arbitrarily large. An additional benefit of our efficiency bound result is that it
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can be used to show that the M -estimators in Wooldridge (2001) are asymptotically efficient

within their class.

The treatment in this paper is general enough to allow for different sources of stratifi-

cation. For instance, in models where Z∗ can be decomposed into endogenous and exogenous

components, the approach taken here can handle stratification based only on the endogenous

variables, or on the exogenous variables alone, or stratification that is based on a subset of

these variables, in a straightforward manner (cf. Example 3.2). The stratifying variables can

be discrete or continuously distributed (or both). We have also taken special care to derive

intuitive closed form expressions for the asymptotic variances of estimators proposed here so

that standard errors are easily obtained.

Instead of attempting to review here the large existing literature on the statistics of

stratified sampling, we refer the readers to the bibliography in Tripathi (2007). Note that

Tripathi treats the aggregate shares (defined subsequently) as unknown parameters but requires

an additional random sample to deal with their consequent lack of identification whereas in

the present paper — as well as in Wooldridge (2001) — the aggregate shares are known, an

assumption that is justifiable for many datasets (cf. Section 2). The proof of the efficiency

bound presented here is also different than the proofs of the efficiency bounds in Tripathi

(2007). In short, to the best of our knowledge, the results obtained here are not to be found

elsewhere in the literature.

The remainder of the paper is organized as follows. In Section 2 we describe stan-

dard stratified sampling and the statistical consequences of collecting data by such a sampling

scheme. Estimators of θ∗, their asymptotic properties, inference, and some useful examples that

illustrate the insights obtained in this paper are discussed in Section 3. Section 4 concludes.

All proofs are in the appendices.

2. Standard stratified sampling

Let the support of Z∗ be partitioned into L nonempty disjoint strata C1, . . . ,CL. In

standard stratified (SS) sampling, used to collect most large datasets, the number of observa-

tions drawn from each stratum is fixed in advance and data is sampled randomly within each

stratum. In particular, suppose that n observations Z1, . . . , Zn are collected by SS sampling

with nl :=
∑n

j=1 1(Zj ∈ Cl) defined to be the (predetermined) number of observations drawn

from the lth stratum, l = 1, . . . , L, so that the “sampling fractions” (namely, the nl/n’s) sum

to one, i.e., (n1/n) + . . . + (nL/n) = 1. The distribution induced by the SS sampling scheme,

denoted by Pn, is then given by

Pn(Z ∈ B) :=
L∑

l=1

(nl/n)

Q∗
l

∫

B

1(z ∈ Cl) dP ∗(z), (2.1)
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where B is any Borel subset of Rd and Q∗
l := P ∗(Z∗ ∈ Cl) is the probability that a randomly

chosen observation from the target population lies in the lth stratum. [For the sake of com-

pleteness, a short proof of (2.1) is provided in Appendix A.] The Q∗
l ’s are popularly called

“aggregate shares” because Q∗
1 + . . . + Q∗

L = 1. Notice that (2.1) implies that the density of Pn

with respect to any Borel measure on Rd that dominates P ∗ is given by

dPn(z) :=
L∑

l=1

(nl/n)

Q∗
l

1(z ∈ Cl)dP ∗(z), z ∈ Rd.

As noted by Wooldridge (2001, p. 453), the aggregate shares Q∗ := (Q∗
1, . . . , Q

∗
L)L×1

being unconditional probabilities can often be estimated easily and extremely precisely from

large surveys such as the census. So it is not very surprising that researchers working with

stratified datasets often disregard the estimation uncertainty that comes from estimating the

aggregate shares and simply assume that they are known. Therefore, as in Wooldridge (2001),

we also maintain the assumption that the Q∗
l ’s are known. [By contrast, severe identifica-

tion problems arise if the aggregate shares are unknown; cf. Tripathi (2007) for an extensive

discussion regarding these problems and their resolution.]

Observations collected by SS sampling are independently but not identically distributed

(inid) because the nl’s are treated as nonstochastic constants. This complicates the problem

of calculating the efficiency bounds which are much easier to obtain in an iid setting. Fortu-

nately, this technical hurdle can be bypassed with the following trick: Let K0 := (K0
1 , . . . , K

0
L)

denote an L × 1 vector of unknown parameters in (0, 1)L such that
∑L

l=1 K0
l = 1 and assume

(counterfactually) that observations in the stratified sample are iid draws from the density

dP (z) :=
L∑

l=1

K0
l

Q∗
l

1(z ∈ Cl)dP ∗(z), z ∈ Rd. (2.2)

We show in Section 3 that estimating K0 — which can be thought of as the vector of

“limiting” sampling fractions — jointly and efficiently with θ∗ leads to asymptotic inference

that is conditional on the observed values of the nl’s. In other words, treating the sampling

fractions as unknown parameters to be estimated (even though they are known!) has the effect

of asymptotically conditioning on the number of observations lying in each stratum of the

stratified sample. Therefore, our asymptotic results are valid under the inid framework though

we derive them in an artificially created iid environment.
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3. Efficient estimation

3.1. Motivation. Our estimator is easy to motivate. Let K0
−L := (K0

1 , . . . , K
0
L−1)(L−1)×1 and

K0
L := 1−∑L−1

l=1 K0
l . Then, by (2.2),

dP ∗(z) =
L∑

l=1

Q∗
l

K0
l

1(z ∈ Cl)dP (z) = dP (z)/bQ∗(z, K
0
−L), (3.1)

where

bQ∗(z, K
0
−L) :=

L∑

l=1

K0
l

Q∗
l

1(z ∈ Cl).

Hence, (3.1) implies that

EP ∗ [g(Z∗, θ∗)] = EP [g(Z, θ∗)/bQ∗(Z,K0
−L)]. (3.2)

Moreover, since EP [1(Z ∈ Cl)] = K0
l by (2.2), it follows that K0

1 , . . . , K
0
L−1 are exactly identified

by the L− 1 moment conditions

EP [s(Z)−K0
−L] = 0, (3.3)

where s(Z) := (1(Z ∈ C1), . . . ,1(Z ∈ CL−1))(L−1)×1. Therefore, by (3.2) and (3.3),

(1.1) ⇐⇒ EP

[
g(Z, θ∗)/bQ∗(Z, K0

−L)

s(Z)−K0
−L

]
= 0.

Hence, β0 := (θ∗, K0
−L)(p+L−1)×1 can be efficiently estimated by doing optimal GMM on the

(q + L− 1)× 1 transformed moment function

ρ(Z, β) :=

[
g(Z, θ)/bQ∗(Z, K−L)

s(Z)−K−L

]
:=

[
ρ1(Z, β)

ρ2(Z, K−L)

]
, (3.4)

where ρ1(Z, β) := g(Z, θ)/bQ∗(Z,K−L) and ρ2(Z, K−L) := s(Z)−K−L.

The two-step optimal GMM estimator of β0, denoted by β̃ := (θ̃, K̃−L)(p+L−1)×1, is given

by

β̃ := argmin
β∈B

ρ̂′(β)V̂ −1
ρ (β̌)ρ̂(β),

where B := Θ × [0, 1]L−1, ρ̂(β) :=
∑n

j=1 ρ(Zj, β)/n, and V̂ρ(β̌) :=
∑n

j=1 ρ(Zj, β̌)ρ′(Zj, β̌)/n

estimates EP [ρ(Z, β0)ρ
′(Z, β0)] with a preliminary estimator β̌ := argminβ∈B ρ̂′(β)ρ̂(β).
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3.2. Asymptotic normality and efficiency. Let ‖ · ‖ denote the Euclidean norm. The fol-

lowing standard regularity conditions ensure that GMM estimators are consistent and asymp-

totically normal.

Assumption 3.1. (i) β0 ∈ B is the unique solution to EP [ρ(Z, β)] = 0; (ii) B is compact;

(iii) ρ(Z, β) is continuous at each β ∈ B w.p.1; (iv) EP [supβ∈B ‖ρ(Z, β)‖2] < ∞; (v) The

matrix EP [ρ(Z, β0)ρ
′(Z, β0)] is nonsingular; (vi) β0 ∈ int(B); (vii) ρ(Z, β) is continuously

differentiable in a neighborhood N of β0 and EP [supβ∈N ‖∂ρ(Z, β)/∂β‖] < ∞; (viii) The matrix

EP [∂ρ(Z, β0)/∂β] is of full column rank.

(i)–(v) can be used to prove consistency and (vi)–(viii) to prove the asymptotic normality

of GMM estimators as in Newey and McFadden (1994).

Let ε denote the residual that results when ρ1(Z, β0) is orthogonally projected onto the

space spanned by the coordinates of ρ2(Z, K0
−L); i.e.,

ε := ρ1(Z, β0)− Σ12V
−1
2 ρ2(Z, K0

−L),

where Σ12 = EP [ρ1(Z, β0)ρ
′
2(Z, K0

−L)] and V2 := EP [ρ2(Z,K0
−L)ρ′2(Z, K0

−L)]. Then, letting

0k1×k2 denote the k1 × k2 matrix of zeros, we can show the following result.

Theorem 3.1. Let Assumption 3.1 hold. Then, as the size of the stratified sample n →∞,
[

n1/2(θ̃ − θ∗)
n1/2(K̃−L −K0

−L)

]
d−→ N(0(p+L−1)×1,

[
(D′Ω−1D)−1 0p×(L−1)

0′p×(L−1) V2

]
),

where D := EP [∂ρ1(Z, β0)/∂θ] and Ω := EP [εε′].

From the proof of Theorem 3.1 it is clear that θ̃ is asymptotically linear with in-

fluence function −(D′Ω−1D)−1D′Ω−1ε. But since ε is orthogonal to ρ2(Z,K0
−L) by defini-

tion, the central limit theorem reveals that θ̃ is asymptotically independent of
∑n

j=1 s(Zj) =

(n1, . . . , nL−1)(L−1)×1. Therefore, as emphasized in Section 2, inference using the asymptotic

distribution of θ̃ is equivalent to inference based on the asymptotic distribution of θ̃ conditional

on the number of observations lying in each stratum of the stratified sample.

Let V1 := EP [ρ1(Z, β0)ρ
′
1(Z, β0)]. From the definition of ε, it is immediate that

Ω = V1 − Σ12V
−1
2 Σ′

12.

Since D and Ω can be estimated by replacing population expectations with their sample analogs,

standard errors of θ̃ are straightforward to obtain.

The next result shows that the asymptotic variances of θ̃ and K̃−L coincide with the

efficiency bounds for estimating θ∗ and K0
−L, respectively. Therefore, θ̃ and K̃−L are asymp-

totically efficient.
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Theorem 3.2. Let Assumption 3.1 hold. Then, the efficiency bound for estimating θ∗ and

K0
−L are given by (D′Ω−1D)−1 and V2, respectively.

Theorem 3.2 also implies that the M -estimators in Wooldridge (2001) are asymptotically

efficient within their class. To see this, suppose that θ∗ is just identified, i.e., q = p. Then,

θ̃ and K̃−L are obtained by setting the sample analog of EP [ρ(Z, β0)] to zero; i.e., θ̃ solves∑n
j=1 g(Zj, θ̃)/bQ∗(Zj, K̃−L) = 0, where K̃−L = (n1/n, . . . , nL−1/n). Hence, by Theorem 3.1,

the asymptotic variance of n1/2(θ̃ − θ∗) reduces to D−1ΩD′−1. But, as shown in Appendix A,

D =
L∑

l=1

Q∗
lEP ∗ [

∂g(Z∗, θ∗)
∂θ

|Z∗ ∈ Cl] = EP ∗ [
∂g(Z∗, θ∗)

∂θ
]

Ω =
L∑

l=1

Q∗
l
2

K0
l

VarP ∗ [g(Z∗, θ∗)|Z∗ ∈ Cl].

(3.5)

Therefore, notational differences aside, comparing (3.5) above with equations (3.2), (3.7), and

(3.8) in Wooldridge (2001) reveals that D−1ΩD′−1 matches the asymptotic variance in The-

orem 3.2 of Wooldridge’s paper. Hence, the M -estimators proposed there are asymptotically

efficient.

Remarks. (i) The known aggregate shares satisfy the moment condition

EP [(s(Z)−Q∗
−L)/bQ∗(Z, K0

−L)] = 0,

where Q∗
−L := (Q∗

1, . . . , Q
∗
L−1)(L−1)×1. Similarly, because (3.1) defines a density,

EP [1/bQ∗(Z, K0
−L)− 1] = 0.

However, since ρ3(Z, K0
−L) := (s(Z)−Q∗

−L)/bQ∗(Z, K0
−L) and ρ4(Z, K0

−L) := 1/bQ∗(Z,K0
−L)−1

are linear transformations of ρ2(Z, K0
−L), cf. the proofs of Theorem 3.2 and Lemma B.1, these

moment conditions are automatically satisfied by (3.4).

(ii) Notice that B is compact if and only if Θ is compact. Furthermore, Assump-

tion 3.1(viii) holds if and only if D or equivalently, by (3.5), EP ∗ [∂g(Z∗, θ∗)/∂θ] is full rank

(this follows because K0
1 , . . . , K

0
L−1 are just identified). The latter is of course a well known

sufficient condition for θ∗ to be locally identified (Newey and McFadden, 1994, p. 2127). ¤

3.3. A computational simplification. As mentioned earlier, if θ∗ is just identified then no

optimization is necessary to obtain β̃ because then K̃−L = (n1/n, . . . , nL−1/n), K̃L = nL/n,

and θ̃ solves
∑n

j=1 ρ1(Zj, θ̃, K̃−L) = 0. By contrast, if θ∗ is overidentified and enters the moment

function nonlinearly, then implementing β̃ requires searching over a subset of Rp+L−1. However,

taking advantage of the fact that (n1/n, . . . , nL/n) is an asymptotically efficient estimator of K0,

it is possible to construct a GMM estimator of θ∗ so that the dimensionality of the optimization

problem is reduced to Rp without compromising its asymptotic efficiency.
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To see this, let K̂−L := (n1/n, . . . , nL−1/n)(L−1)×1, K̂ := (K̂−L, nL/n)L×1, and

θ̂ := argmin
θ∈Θ

ρ̂′1(θ, K̂−L)Ω̂−1(θ̌, K̂−L)ρ̂1(θ, K̂−L), (3.6)

where Ω̂(θ, K−L) := V̂1(θ,K−L)− Σ̂12(θ, K−L)V̂ −1
2 (K−L)Σ̂′

12(θ, K−L),

V̂1(θ, K−L) := n−1

n∑
j=1

ρ1(Zj, θ,K−L)ρ′1(Zj, θ,K−L),

Σ̂12(θ, K−L) := n−1

n∑
j=1

ρ1(Zj, θ,K−L)ρ′2(Zj, K−L),

V̂2(K−L) := n−1

n∑
j=1

ρ2(Zj, K−L)ρ′2(Zj, K−L),

and θ̌ := argminθ∈Θ ρ̂′1(θ, K̂−L)ρ̂1(θ, K̂−L) is a preliminary estimator of θ∗.
Since K̂ estimates a nuisance parameter, it makes sense to think of θ̂ as a “plug-in”

GMM estimator of θ∗. Note that if θ∗ is just identified, then θ̂ = θ̃; but they will be different

in finite samples whenever θ∗ is overidentified. However, the following result shows that θ̂ and

θ̃ are always asymptotically equivalent.

Lemma 3.1. n1/2(θ̂ − θ̃) = oP (1) under Assumption 3.1.

Lemma 3.1 implies that θ̂ is also asymptotically efficient. Therefore, since it is compu-

tationally less expensive than θ̃, for the remainder of Section 3 we focus on θ̂.

3.4. Examples. In this section we look at some illustrative examples. Henceforth, let Ik be

the k × k identity matrix and D̂(θ,K−L) := ∂ρ̂1(θ, K−L)/∂θ. The support of a random vector

A is denoted by supp(A).

Example 3.1 (Estimating the population mean). Let θ∗ denote the mean of the target popu-

lation, i.e., EP ∗ [Z
∗ − θ∗] = 0 =⇒ g(Z∗, θ∗) := Z∗ − θ∗. Therefore, since θ∗ is just identified,

θ̂ =

∑n
j=1 Zjb

−1(Zj, K̂−L)
∑n

j=1 b−1(Zj, K̂−L)
=

L∑

l=1

Q∗
l Z̄l,

where Z̄l :=
∑n

j=1 Zj1(Zj ∈ Cl)/nl is the lth stratum sample average and the second equality

follows because
∑n

j=1 b−1(Zj, K̂−L) = n and
∑n

j=1 Zjb
−1(Zj, K̂−L) = n

∑L
l=1 Q∗

l Z̄l. The esti-

mated asymptotic variance of θ̂ in this example is given by âsvar(θ̂) = n−1Ω̂(θ̂, K̂−L) due to

the fact that here D̂(θ̂, K̂−L) = −n−1
∑n

j=1 b−1(Zj, K̂−L)Ip = −Ip. ¤

Example 3.2 (Linear instrumental variables (IV)). Suppose that Y ∗ = X∗′θ∗ + u∗ and some

of the regressors are endogenous. Assume there exists a q × 1 vector of instrumental variables
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W ∗ satisfying EP ∗ [u
∗|W ∗] = 0 w.p.1. This leads to an IV model of the form

EP ∗ [W
∗(Y ∗ −X∗′θ∗)] = 0 =⇒ g(Z∗, θ∗) := W ∗(Y ∗ −X∗′θ∗),

where Z∗ := (Y ∗, X∗,W ∗)(1+p+q)×1. Because g is linear in parameters, the first order condition

for (3.6) has a closed form solution. Thus no optimization is necessary to obtain θ̂ even when

θ∗ is overidentified and it is easy to verify that θ̂ takes the familiar form of an IV estimator

with a correction for stratification, i.e.,

θ̂ = ((
n∑

j=1

XjW
′
j

bQ∗(Zj, K̂−L)
)Ω̂−1(θ̌, K̂−L)(

n∑
j=1

WjX
′
j

bQ∗(Zj, K̂−L)
))−1

× (
n∑

j=1

XjW
′
j

bQ∗(Zj, K̂−L)
)Ω̂−1(θ̌, K̂−L)(

n∑
j=1

WjYj

bQ∗(Zj, K̂−L)
). (3.7)

Since here D̂(θ̂, K̂−L) = −n−1
∑n

j=1 WjX
′
j/bQ∗(Zj, K̂−L),

âsvar(θ̂) = n−1(D̂′(θ̂, K̂−L)Ω̂−1(θ̂, K̂−L)D̂(θ̂, K̂−L))−1.

Notice that (3.7) implicitly assumes that Y ∗, X∗,W ∗ were all collected by SS sam-

pling. But if only Y ∗ is collected by SS sampling whereas X∗ and W ∗ are obtained by ran-

dom sampling, then θ̂ can be obtained by simply letting Cl := CY ∗
l × supp(X∗) × supp(W ∗),

where CY ∗
l denotes the lth stratum of the support of Y ∗; i.e., θ̂ can be obtained by replac-

ing the bQ∗(Zj, K̂−L) in (3.7) with bQ∗(Zj, K̂−L) :=
∑L

l=1(nl/n)1(Yj ∈ CY ∗
l )/Q∗

l . [Models

with exogenous regressors and stratification based only on the response variable are often

said to be “endogenously” stratified.] Similarly, for stratification based only on (Y ∗, X∗), use

bQ∗(Zj, K̂−L) :=
∑L

l=1(nl/n)1((Yj, Xj) ∈ CY ∗×X∗
l )/Q∗

l to construct θ̂, where CY ∗×X∗
l is now the

lth stratum of the support of Y ∗×X∗. Modifications to bQ∗ needed to account for other sources

of stratification follow mutatis mutandis. ¤

Example 3.3 (Box-Cox type transformation model). Let h1(Y
∗, θ∗1) = h2(X

∗, θ∗2) + u∗, where

h1 and h2 are real-valued functions known up to the θ∗’s and EP ∗ [u
∗|X∗] = 0 w.p.1. Since least

squares will not consistently estimate θ∗ := (θ∗1, θ
∗
2), we propose an IV estimator instead. So,

letting A(X∗) denote a vector of instruments that just identify or overidentify θ∗, we have an

IV model of the form

Ep∗ [A(X∗)(h1(Y
∗, θ∗1)− h2(X

∗, θ∗2))] = 0 =⇒ g(Z∗, θ∗) := A(X∗)(h1(Y
∗, θ∗1)− h2(X

∗, θ∗2)),

where Z∗ := (Y ∗, X∗). If h1 or h2 are nonlinear in parameters then, unlike the previous

examples, θ̂ is not available in closed-form but has to be computed numerically as described

in (3.6). As in the previous example, depending upon what variables are used to stratify the

target population, bQ∗ has to be defined appropriately when implementing θ̂ and computing its

standard errors. ¤
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Before ending this section, we look at a special case of SS sampling that is often encoun-

tered in applied work.

Example 3.4 (Proportional allocation). This refers to the case when the predetermined sam-

pling fractions are chosen to be equal to the known aggregate shares, i.e., K̂ = Q∗ for each n.

The plug-in GMM estimator of θ∗ under proportional allocation is θ̂PA := θ̂|Q∗=K̂ , i.e., simply

replace the bQ∗ in (3.6) by bK̂ . For instance, since bK̂(Z, K̂−L) = 1, it is easy to see that the

θ̂PA’s for Examples 3.1 and 3.2 are, respectively,
∑n

j=1 Zj/n and

((
n∑

j=1

XjW
′
j)Ω̂

−1(θ̌, K̂−L)(
n∑

j=1

WjX
′
j))

−1(
n∑

j=1

XjW
′
j)Ω̂

−1(θ̌, K̂−L)(
n∑

j=1

WjYj).

n1/2(θ̂PA − θ∗) is asymptotically normal with mean zero and variance (D′
PAΩ−1

PADPA)−1, where

DPA := D|K0=Q∗ = EP [∂g(Z, θ∗)/∂θ] and ΩPA := Ω|K0=Q∗ ; in particular, by (3.5),

DPA =
L∑

l=1

Q∗
lEP ∗ [

∂g(Z∗, θ∗)
∂θ

|Z∗ ∈ Cl] & ΩPA =
L∑

l=1

Q∗
l VarP ∗ [g(Z∗, θ∗)|Z∗ ∈ Cl].

Standard errors of θ̂PA are easily obtained because DPA and ΩPA can be consistently esti-

mated by D̂(θ̂PA, K̂−L)|Q∗=K̂ and Ω̂(θ̂PA, K̂−L)|Q∗=K̂ , respectively. Note that since DPA =

EP ∗ [∂g(Z, θ∗)/∂θ] and ΩPA − EP ∗ [g(Z∗, θ∗)g′(Z∗, θ∗)] is negative definite (cf. Lemma B.4),

proportional allocation leads to a more efficient GMM estimator than random sampling. This

result, well known in the context of estimating population means, is often cited as the raison

d´être for proportional allocation. ¤

3.5. Inference. Finally, a brief comment regarding hypothesis and specification tests. Suppose

we want to test the parametric restriction H(θ∗) = 0 against the alternative that it is false,

where H is a h×1 vector of twice continuously differentiable functions such that ∂H(θ∗)/∂θ has

rank h ≤ p. As described in Newey and McFadden (1994, Theorem 9.2), a variety of statistics

based on θ̂ can be used to test this hypothesis. In each case, the test statistic is asymptotically

χ2
h under the null. Confidence regions can be obtained by inverting these test statistics.

Next, assume that q > p. Since inference based on the estimated θ∗ is sensible only if

(1.1) is true, it is important to test it against the alternative that it is false. It is straightforward

to show that Ĵ := nρ̂′1(θ̂, K̂−L)Ω̂−1(θ̂, K̂−L)ρ̂1(θ̂, K̂−L), the J-statistic corresponding to the

plug-in GMM estimator θ̂, is asymptotically χ2
q−p under the null hypothesis that (1.1) is true.

Therefore, rejecting (1.1) whenever Ĵ ≥ Qχ2
q−p

(1 − α) yields a asymptotic size-α specification

test for (1.1), where Qχ2
q−p

(t) denotes the tth quantile of a χ2
q−p random variable.
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4. Conclusion

We have shown how to do efficient GMM based inference when data is collected by

standard stratified sampling and the aggregate shares are assumed to be known.

Appendix A. Proofs

Additional notation used throughout the proofs: K := diag(K0
1 , . . . , K

0
L−1) and Q :=

diag(Q∗
1, . . . , Q

∗
L−1) are (L− 1)× (L− 1) diagonal matrices, L2(Z, P ) is the set of real-valued

functions of Z that are square-integrable with respect to P , the operator PA denotes orthogonal

projection onto A ⊂ L2(Z, P ) using the inner product 〈a, b〉P := EP [ab], the induced P -norm

is ‖ · ‖P :=
√
〈·, ·〉P , the range and null space of D are R(D) and N(D), respectively, and 1̃

denotes the (L− 1)× 1 vector of ones.

Proof of (2.1). Let Z denote an observation collected by SS sampling. Then, by the definition

of SS sampling, Law(Z|Z ∈ Cl) = Law(Z∗|Z∗ ∈ Cl) for l = 1, . . . , L. But,

Prob(Z ∈ B|Z ∈ Cl) =
Prob(Z ∈ B ∩ Cl)

nl/n
& Prob(Z∗ ∈ B|Z∗ ∈ Cl) =

P ∗(Z∗ ∈ B ∩ Cl)

Q∗
l

.

Therefore,
Prob(Z ∈ B ∩ Cl)

nl/n
=

P ∗(Z∗ ∈ B ∩ Cl)

Q∗
l

for l = 1, . . . , L

implies that

Prob(Z ∈ B) =
L∑

l=1

(nl/n)

Q∗
l

P ∗(Z∗ ∈ B ∩ Cl).

The desired result follows since P ∗(Z∗ ∈ B ∩ Cl) =
∫

B
1(z ∈ Cl) dP ∗(z). ¤

Proof of Theorem 3.1. By standard GMM theory, β̃ is consistent and n1/2(β̃−β0) is asymp-

totically normal with mean zero and variance (D′
ρV

−1
ρ Dρ)

−1, where

Dρ := EP [∂ρ(Z, β0)/∂β] & Vρ := EP [ρ(Z, β0)ρ
′(Z, β0)] =

[
V1 Σ12

Σ′
12 V2

]
.

Now, with D2 := EP [∂ρ1(Z, β0)/∂K−L],

Dρ =

[
D D2

0(L−1)×p −IL−1

]
.

Also, by the partitioned inverse formula,

V −1
ρ =

[
Ω−1 −Ω−1Σ12V

−1
2

−V −1
2 Σ′

12Ω
−1 V −1

2 + V −1
2 Σ′

12Ω
−1Σ12V

−1
2

]
.
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Hence, letting J := D2 + Σ12V
−1
2 , some straightforward algebra reveals that

D′
ρV

−1
ρ Dρ =

[
D′Ω−1D D′Ω−1J

J ′Ω−1D V −1
2 + JΩ−1J

]
Lemma B.1

=

[
D′Ω−1D 0p×(L−1)

0′p×(L−1) V −1
2

]
.

The desired result follows. ¤

Proof of Theorem 3.2. Let t 7→ Pt denote a curve from I0, an interval containing zero, into

the set of probability distributions of Z such that Pt|t=0 = P . Then the score function for the

loglikelihood log dPt is Ṡ ∈ {h ∈ L2(Z, P ) : EP [h(Z)] = 0}. Also, let θt and K−L,t be curves

through θ∗ and K0
−L, respectively, such that EPt [ρ1(Z, θt, K

0
−L,t)] = 0, EPt [ρ2(Z, K0

−L,t)] = 0,

EPt [ρ3(Z, K0
−L,t)] = 0, and EPt [ρ4(Z, K0

−L,t)] = 0 for t ∈ I0. Differentiating these moment

conditions with respect to t and evaluating the resulting derivatives at t = 0, we can use

Lemma B.1 and (B.1) to show that

Dθ̇ − Σ12V
−1
2 K̇−L + EP [ρ1(Z, β0)Ṡ] = 0 (A.1)

K̇−L − EP [ρ2(Z, K0
−L)Ṡ] = 0 (A.2)

EP [ρ3(Z,K0
−L)ρ′3(Z, K0

−L)](Q−1 +
1̃1̃′

Q∗
L

)K̇−L − EP [ρ3(Z,K0
−L)Ṡ] = 0 (A.3)

EP [ρ4(Z, K0
−L)ρ′3(Z,K0

−L)](Q−1 +
1̃1̃′

Q∗
L

)K̇−L − EP [ρ4(Z, K0
−L)Ṡ] = 0, (A.4)

where θ̇ and K̇ are the tangent vectors to θt and K−L,t, respectively, at t = 0.

Now, V −1
2 = (K−K0

−LK0
−L

′
)−1 = K−1 + 1̃1̃′/K0

L. Hence, by (B.3),

VarP [ρ3(Z,K0
−L)] = (Q−Q∗

−LQ∗
−L

′)V −1
2 (Q−Q∗

−LQ∗
−L

′)

EP [ρ3(Z, K0
−L)Ṡ] = (Q−Q∗

−LQ∗
−L

′)V −1
2 EP [ρ2(Z, K0

−L)Ṡ].

Therefore, since (Q−Q∗
−LQ∗

−L
′)−1 = Q−1 + 1̃1̃′/Q∗

L,

(A.2) ⇐⇒ (A.3). (A.5)

Similarly, since

ρ4(Z, K0
−L) = 1̃′(QK−1 +

Q∗
L

K0
L

IL−1)(ρ2(Z,K0
−L) + K0

−L)− 1,

it can be shown that

EP [ρ4(Z, K0
−L)ρ′3(Z,K0

−L)] = 1̃′(QK−1 +
Q∗

L

K0
L

IL−1)(Q−Q∗
−LQ∗

−L
′)

EP [ρ4(Z,K0
−L)Ṡ] = 1̃′(QK−1 +

Q∗
L

K0
L

IL−1)EP [ρ2(Z,K0
−L)Ṡ].
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Hence,

(A.4) ⇐⇒ 1̃′(QK−1 +
Q∗

L

K0
L

IL−1)(K̇−L − EP [ρ2(Z,K0
−L)Ṡ]) = 0,

which means that

(A.2) =⇒ (A.4). (A.6)

Thus, (A.5) and (A.6) together imply that (A.3) and (A.4) do not affect the efficiency bound

for estimating θ∗ or K0
−L.

Now, by (A.1) and (A.2),

Dθ̇ + EP [εṠ] = 0. (A.7)

Therefore, the tangent space of score functions is given by

Ṁ := {Ṡ ∈ L2(Z, P ) : EP [Ṡ] = 0 & EP [εṠ] ∈ R(D)}. (A.8)

Suppose we want to obtain the efficiency bound for estimating λ′θ∗, where λ ∈ Rp is

chosen arbitrarily. Then, thinking of λ′θt as some functional η of the loglikelihood log dPt, by

(A.7) it follows that, for every Ṡ ∈ Ṁ,

∇η(Ṡ) := −λ′D+EP [εṠ] = 〈−λ′D+ε, Ṡ〉P ,

where ∇η is the pathwise derivative of η and D+ the Moore-Penrose generalized inverse of D.

But, since Ṡ ∈ Ṁ,

∇η(Ṡ) = 〈−λ′D+ε, PṀ(Ṡ)〉P = 〈−PṀ(λ′D+ε), Ṡ〉P .

Note that PṀ exists, and thus is uniquely defined, because Ṁ is closed in the norm topology;

cf. Lemma B.2. Hence, following the argument in Severini and Tripathi (2001), the efficiency

bound for estimating λ′θ∗ is given by EP [PṀ(λ′D+ε)]2, the squared operator norm of ∇η. But

PṀ(λ′D+ε)
Lemma B.3

= λ′D+ε− EP [λ′D+ε]− ε′(Iq − Ω−1D(D′Ω−1D)−1D′)Ω−1EP [ελ′D+ε].

Hence, since EP [ελ′D+ε] = EP [εε′]D+′λ = ΩD+′λ,

PṀ(λ′D+ε) = ε′Ω−1D(D′Ω−1D)−1(D+D)′λ = ε′Ω−1D(D′Ω−1D)−1λ,

where the second equality follows because the operator D+D is a projection onto the orthog-

onal complement of N(D) — a well known property of generalized inverses — and D is full

rank by Assumption 3.1(viii). Therefore, the efficiency bound for estimating λ′θ∗ is given by

λ′(D′Ω−1D)−1λ. Since λ was chosen arbitrarily, it follows that the efficiency bound for esti-

mating θ∗ is given by (D′Ω−1D)−1. A similar argument, but now using (A.2) instead of (A.7),

shows that the efficiency bound for estimating K0
−L is given by V2. ¤
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Proof of (3.5). Observe that

bQ∗(Z, K0
−L) :=

L∑

l=1

K0
l

Q∗
l

1(Z ∈ Cl) =⇒ 1

bQ∗(Z,K0
−L)

=
L∑

l=1

Q∗
l

K0
l

1(Z ∈ Cl).

Hence, since EP [1(Z ∈ Cl)] = K0
l by (2.2),

D := EP [
∂

∂θ

g(Z, θ∗)
bQ∗(Z, K0

−L)
] =

L∑

l=1

Q∗
l

K0
l

EP [
∂g(Z, θ∗)

∂θ
1(Z ∈ Cl)]

=
L∑

l=1

Q∗
lEP [

∂g(Z, θ∗)
∂θ

|Z ∈ Cl]

=
L∑

l=1

Q∗
lEP ∗ [

∂g(Z∗, θ∗)
∂θ

|Z∗ ∈ Cl] (A.9)

= EP ∗ [
∂g(Z∗, θ∗)

∂θ
],

where (A.9) follows because Law(Z|Z ∈ Cl) = Law(Z∗|Z∗ ∈ Cl) for each l by the definition of

SS sampling. Next, a similar argument shows that

V1 = EP [
g(Z, θ∗)g′(Z, θ∗)

b2(Z,K0
−L)

] =
L∑

l=1

Q∗
l
2

K0
l

EP [g(Z, θ∗)g′(Z, θ∗)|Z ∈ Cl].

Moreover, since Σ12 = EP [ρ1(Z, β0)s
′(Z)], V −1

2 = K−1 + 1̃1̃′/K0
L, and s′(Z)1̃ = 1− 1(Z ∈ CL),

some laborious but straightforward matrix algebra reveals that

Σ12V
−1
2 Σ′

12 =
L∑

l=1

Q∗
l
2

K0
l

EP [g(Z, θ∗)|Z ∈ Cl]EP [g′(Z, θ∗)|Z ∈ Cl].

Therefore,

Ω := V1 − Σ12V
−1
2 Σ′

12

=
L∑

l=1

Q∗
l
2

K0
l

(EP [g(Z, θ∗)g′(Z, θ∗)|Z ∈ Cl]− EP [g(Z, θ∗)|Z ∈ Cl]EP [g′(Z, θ∗)|Z ∈ Cl])

=
L∑

l=1

Q∗
l
2

K0
l

VarP [g(Z, θ∗)|Z ∈ Cl]

=
L∑

l=1

Q∗
l
2

K0
l

VarP ∗ [g(Z∗, θ∗)|Z∗ ∈ Cl]. ¤

Proof of Lemma 3.1. Recall that θ̂ satisfies the first order necessary condition

D̂′(θ̂, K̂−L)Ω̂−1(θ̌, K̂−L)ρ̂1(θ̂, K̂−L) = 0p×1.
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Now, by a mean value expansion,

ρ̂1(θ̂, K̂−L) = ρ̂1(θ
∗, K̂−L) + D̂(θ̄, K̂−L)(θ̂ − θ∗),

where θ̄ lies between θ̂ and θ∗. Therefore, n1/2(θ̂ − θ∗) equals

−(D̂′(θ̂, K̂−L)Ω̂−1(θ̌, K̂−L)D̂(θ̄, K̂−L))−1D̂′(θ̂, K̂−L)Ω̂−1(θ̌, K̂−L)n1/2ρ̂1(θ
∗, K̂−L).

Similarly, by another mean value expansion,

ρ̂1(θ
∗, K̂−L) = ρ̂1(θ

∗, K0
−L) + D̂2(θ

∗, K̄−L)(K̂−L −K0
−L),

where D̂2(θ,K−L) := ∂ρ̂1(θ,K−L)/∂K−L and K̄−L lies between K̂−L and K0
−L. But K̂−L −

K0
−L = ρ̂2(K

0
−L) because ρ2 is linear in parameters. Therefore, by a uniform weak law of large

numbers (Newey and McFadden, 1994, Lemma 2.4),

n1/2(θ̂ − θ∗) = −(D′Ω−1D)−1D′Ω−1n1/2(ρ̂1(β0) + D2ρ̂2(K
0
−L)) + oP (1).

Hence, by Lemma B.1,

n1/2(θ̂ − θ∗) =
n∑

j=1

−(D′Ω−1D)−1D′Ω−1εj + oP (1). (A.10)

From the proof of Theorem 3.1 it is clear that the influence function of θ̃ is also given by

−(D′Ω−1D)−1D′Ω−1ε, i.e.,

n1/2(θ̃ − θ∗) = n−1/2

n∑
j=1

−(D′Ω−1D)−1D′Ω−1εj + oP (1). (A.11)

Therefore, the desired result follows from (A.10) and (A.11). ¤

Appendix B. Some useful results

Lemma B.1. D2 = −Σ12V
−1
2 . Therefore, J = 0q×(L−1).

Proof of Lemma B.1. We show that D2 = −Σ12V
−1
2 . The consequence that J = 0q×(L−1)

then follows from the definition of J . Begin by observing that

D2 = −EP [
ρ1(Z, β0)

bQ∗(Z, K0
−L)

∂bQ∗(Z,K0
−L)

∂K−L

].

But we can show that

∂bQ∗(Z, K0
−L)

∂K−L

= (s(Z)−Q∗
−L)′(Q−1 +

1̃1̃′

Q∗
L

)

= ρ′3(Z,K0
−L)(Q−1 +

1̃1̃′

Q∗
L

)bQ∗(Z, K0
−L).

(B.1)
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Hence,

D2 = −EP [ρ1(Z, β0)ρ
′
3(Z, K0

−L)](Q−1 +
1̃1̃′

Q∗
L

). (B.2)

Next, a little algebra reveals that we can express ρ3(Z, K0
−L) as

ρ3(Z,K0
−L) = ((Q−Q∗

−LQ∗
−L

′)K−1 +
Q∗

L

K0
L

Q∗
−L1̃′)(ρ2(Z, K0

−L) + K0
−L)− Q∗

L

K0
L

Q∗
−L. (B.3)

Therefore, since EP [ρ1(Z, β0)] = 0,

EP [ρ1(Z, β0)ρ
′
3(Z, K0

−L)] = Σ12(K
−1(Q−Q∗

−LQ∗
−L

′) +
Q∗

L

K0
L

1̃Q∗
−L

′). (B.4)

But since (Q−Q∗
−LQ∗

−L
′)−1 = Q−1 + 1̃1̃′/Q∗

L and Q∗
L = 1−Q∗

−L
′1̃,

(K−1(Q−Q∗
−LQ∗

−L
′) +

Q∗
L

K0
L

1̃Q∗
−L

′)(Q−1 +
1̃1̃′

Q∗
L

) = K−1 +
1

K0
L

1̃1̃′

= (K−K0
−LK0

−L
′
)−1

= V −1
2 .

In other words, we have shown that

K−1(Q−Q∗
−LQ∗

−L
′) +

Q∗
L

K0
L

1̃Q∗
−L

′ = V −1
2 (Q−1 +

1̃1̃′

Q∗
L

)−1,

which implies, by (B.4), that

EP [ρ1(Z, β0)ρ
′
3(Z, K0

−L)](Q−1 +
1̃1̃′

Q∗
L

) = Σ12V
−1
2 . (B.5)

The desired result now follows from (B.2) and (B.5). ¤

Lemma B.2. Ṁ, defined in (A.8), is closed in the ‖ · ‖P norm.

Proof of Lemma B.2. Let ṁ ∈ cl(Ṁ). Then, there exists a sequence (mj)j∈N ⊂ Ṁ such that

‖mj − ṁ‖P → 0 as j →∞. Clearly, ṁ ∈ L2(Z, P ) and

lim
j→∞

‖mj − ṁ‖P = 0 =⇒ lim
j→∞

EP [mj] = EP [ṁ] =⇒ EP [ṁ] = 0.

Moreover, by Cauchy-Schwarz,

‖EP [εmj]− EP [εṁ]‖2 ≤ trace(Ω)‖mj − ṁ‖2
P =⇒ EP [εmj] −−−→

j→∞
EP [εṁ].

But since EP [εmj] ∈ R(D) for every j ∈ N and R(D) is finite dimensional hence closed, it

follows that EP [εṁ] ∈ R(D). Therefore, ṁ ∈ Ṁ and the desired result follows. ¤

Lemma B.3. Let h ∈ L2(Z, P ). Then,

PṀ(h) = h− EP [h]− ε′(Iq − Ω−1D(D′Ω−1D)−1D′)Ω−1EP [εh].
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Proof of Lemma B.3. Let π∗ := h − EP [h] − ε′(Iq − Ω−1D(D′Ω−1D)−1D′)Ω−1EP [εh]. Note

that π∗ ∈ L2(Z, P ), EP [π∗] = 0, and

EP [επ∗] = D(D′Ω−1D)−1D′Ω−1EP [εh] ∈ R(D).

Thus, π∗ ∈ Ṁ. Next, let ṁ ∈ Ṁ. Then,

〈h− π∗, ṁ〉P = 〈ε′(Iq − Ω−1D(D′Ω−1D)−1D′)Ω−1EP [εh], ṁ〉P
= EP [ε′h]Ω−1(Iq −D(D′Ω−1D)−1D′Ω−1)EP [εṁ].

But

ṁ ∈ Ṁ =⇒ EP [εṁ] ∈ R(D) ⇐⇒ EP [εṁ] = Dα for some α ∈ Rp.

Therefore,

(Iq −D(D′Ω−1D)−1D′Ω−1)EP [εṁ] = (Iq −D(D′Ω−1D)−1D′Ω−1)Dα = 0q×1.

Hence, 〈h− π∗, ṁ〉P = 0 for every ṁ ∈ Ṁ. The desired result follows. ¤

Lemma B.4.
∑L

l=1 Q∗
l VarP ∗ [g(Z∗, θ∗)|Z∗ ∈ Cl]− VarP ∗ [g(Z∗, θ∗)] is negative definite.

Proof of Lemma B.4. Let α ∈ Rq and g∗ := g(Z∗, θ∗). Since

VarP ∗ [α
′g∗|Z∗ ∈ Cl] = EP ∗ [(α

′g∗)2|Z∗ ∈ Cl]− (EP ∗ [α
′g∗|Z∗ ∈ Cl])

2

=
EP ∗ [(α

′g∗)21(Z∗ ∈ Cl)]

Q∗
l

−
(
EP ∗ [α

′g∗1(Z∗ ∈ Cl)]

Q∗
l

)2

and x 7→ x2 is strictly convex, by Jensen’s inequality we have that

L∑

l=1

Q∗
l VarP ∗ [α

′g∗|Z∗ ∈ Cl] = EP ∗ [α
′g∗]2 −

L∑

l=1

Q∗
l

(
EP ∗ [α

′g∗1(Z∗ ∈ Cl)]

Q∗
l

)2

< EP ∗ [α
′g∗]2 − (

L∑

l=1

EP ∗ [α
′g∗1(Z∗ ∈ Cl)])

2

= EP ∗ [α
′g∗]2 − (EP ∗ [α

′g∗])2

= VarP ∗ [α
′g∗]. ¤
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