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Abstract

Computationally handling cracks generally resultsumerically unstable
results. Specifically handling the infinite sses at the crack tip as well as the
abrupt change from virgin material to failed maakdreates numerical
instabilities. This project seeks to determinghifise field physics theory,
particularly the theory developed by B. N. Cassenél., can be appropriately
applied to crack propagation. The method that glfiatd theory uses is by
introducing another state variable, called the pleighe material that represents
the level of failed or cracked, and diffuses itraja crack. This new physics

based variational principle was tested in thisgubj

To test this theory, two numerical test cases wevdeled using finite
difference approximations. The first test appbééar loading creating a mode I
fracture. This test case allowed the accurachettack propagation,
particularly the kink angle, to be shown. The sectest applied tension to a
crack in a mode | fracture. This allowed for theerof the crack growth, as well
as the stress intensity factor to be measured amgared to traditional fracture

mechanics theory.

Both test cases provided results that could be eoedpto calculations
from fracture mechanics theory. In both caseséhalts of the phase diffusion
and stress distribution aligned with the resulbsrfifracture mechanics. From the
results presented here it is clear that phase figygics theory can be

appropriately applied to cracks. This project siascessfully proven that this

viii



theory is ready to be implemented into a finitevedat program for practical

fracture analysis.



M otivation

Predicting the life and failure of single crystalbine blades is
challenging. The current inelastic material mddel has been developed at Pratt
and Whitney in conjunction with the University ob@necticut has proved
difficult to use when cracks are present in simgiestal components. The model
is numerically difficult to implement and the inslon of cracks and other
singularities make it even more diffictlt Any fracture mechanics numerical
algorithm requires re-meshing in order to handéekpropagation. The phase

field method discussed in this thesis avoids tlkf§ieulties.

Other methods of brittle fracture only provide aate results far away
from the crack tip. Near the crack tip, additionalindary conditions are inserted
to provide driving stresses. These types of smhstgive the crack tip a velocity
determined by the amount of energy being put inéocrack tiff®. These
methods do not predict the instabilities at thektgp well nor do they accurately
determine the crack tip velocity. Methods of thist have extreme difficulties

handling the instabilities of rapid dynamic crackwgth*®!,

The goal of this work is to develop a numericgbiementation of the
variational approach developed by B. N. Casserf@t The finite difference
scheme was chosen for the sake of clarity. Inrdaprove that the theory
accurately represents cracks the code should lkea@bhow crack diffusion and
growth that is in agreement with fracture mechathe®ry. More importantly the

code should also show that the numerical stabiigr the crack has improved.



Background

In its most basic implementation, phase field jtg/san be used to
increase the numerical stability of singular aieamaterial models.
Numerically, cracks are difficult to model as tHegve theoretical infinite stresses
at their tips, as well as sharp moving boundaryd@@ns between virgin and
failed material. The idea behind phase field ptg/ss that instead of having
sharp edges of failed and virgin material aroureddtack, the crack is diffused
out into the surrounding material. This allows thaterial to make a smooth
transition from virgin material to fully cracked teaal as well as removing the
infinite stresses that occur at the crack tip. evrstate variable is introduced at
each node that quantifies the level of damage. cfaeked level will be referred
to as the phase of the material. The phase iwatldo go between zero and one,
zero being fully cracked and one being virgin materTherefore, by using the
phase of the material we can show how cracks gaswyell as make the stress of
each node a function of the phase of the nodethatlis needed is a way to
diffuse the phase correctly. Material propertiesexplicit functions of the phase

indicator, so the change of the stiffness in tlaeked area is varied accordingly.

This method has been previously investigated ierde research by Alain
Karmd®%. Karma has done extensive work using phase fireldels to predict
crack growth. In his pap; Phase-Field Model of Mode Ill Dynamic Fracture,
the potential of phase field physics as it relédesrack growth was shown. He
sets up a 1-D mode Il fracture problem. In equafil), the author found a three

term diffusion equation for phase.



tdep(%,1) = DyV2p — Vi ($) — £ ' (9) (€% — &) (D)
In this equation a double well potential functisrused having the form as seen in

equation (2).

Vow($) = ;$2(1 — ¢)? 2
A graph of this double well potential function tsosvn inFigure 1 It is clear
from this plot that the same potential is assigiodooth the fully cracked state

and virgin state.

Karma's Potential Function
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Figure 1: Double Well Potential Function with Syetmic Minimad®

In this paper, a function f@(¢) as seen in equation (3) is assumed. This
function, when multiplied by the elastic modulifasishes the evolution of the

elastic properties with phase change. Karma assume

g(¢p) = 4¢> — 3¢* )



The author then applies his equations to a 1-Ip stodel and uses a Crank-
Nicholson alternating-direction-implicit schemetést his governing equations.

Figure 2 shows his results from this model:

(a) (b) (c) (d)

Figure2: 1-D crack Propagation from Kar ma Results®, 2001

The results show the phase of the material diffysimd propagating along the left
edge of the material. For this model the whiteesponds to a phase of 1 and the
black corresponds to a phase of 0, and the subega through d, show the
progress with time. These figures show thatapisroach allows the diffusion of
the phase of the material, however the variatipnakiple used by Karma is not

entirely physics based.

In the recent publication (Karma 2088}here is an attempt to show how
phase field physics can accurately determine thle &ngles that cracks propagate
at as well as their velocities. Again this papedoices results based on his
previous paper’s variational principle. Figu@,:&llustrates some results for

crack propagation.
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Figure 3: Phase Field Crack Propagation!®

In this work the kink angles for crack propagatimve been foud. Figure 3 is
the result of a phase field simulation for pure@ane shear. However, upon
closer examination the crack curves upwards a®pggates, which contradicts
fracture mechanics. Also in this particular cas@rder to propagate the crack at
the kink angle, the author simply calculates thglethat the crack should
propagate from fracture mechanics, and then ergaheediffusion in that
direction. In this sense, the w&tkorces the crack in a particular direction

instead of allowing the physics to drive the crpoBpagation.

Producing a physics based variational principtetie diffusion of the
phase of the material is critical. In the papéryariational formulation of the

coupled thermo-mechanical boundary-value problangémeral dissipative



solids,” Ortiz shows how to produce a variationahgiple for the coupled
thermo-mechanical problem for dissipative sdlidls This theory assisted in
creating the particular theory that was ultimatelsted in this work. However,
this theory showed how to create a variationalgypile just in space, and did not

include time.



Theory

Constants
The notations used are review in Table 1 below.

Tablel: Parametersand their meanings

Term Definition

K Thermal Conductivity Parameter

K’ Thermal Conductivity Parameter

J’ Diffusion Constant

Q; Vibration Frequency Parameter

Qo Vibration Frequency Parameter

Dy Diffusion Coefficient

Cp Specific Heat

T Characteristic Time for Diffusion Equation
v Random Velocities from Temperature

i Random Velocities from Internal Energy
o Double Well Function Constant

m Parameter for Modifying Modulus

n Parameter for Modifying Modulus

Ol Thermal Coefficient of Expansion

Theory

The theoretical basis for the section is describdef.[7]. In [7], a
physics based Lagrangian is derived that resultstime dependent diffusion
equation. The formulation is backed by supportir@ecular dynamic

simulation§?*®, The Lagrangian density is:

l . 1 -~ 1 -~ e ~ X ’ T
'Bzapqui+§puz+510v2_.[a-ij(v’u’£)j£ij _VDW(¢)_uiFi_ KU,

[
[y
|
N
[SFD]
<1
<



The parameters and variables can all be relatéullagss:

9K D,

Gz
T=—"no\ p= , ,
4c, 41 p) 4c, 4r/ p) 5)

u=—.,V=

UG
QO Ql ’
In the above equations theand V terms represents the random velocities.

These displacements and random velocities areaeganto two components.

The U component is the random velocity due to tempeeatdiheV component
of the random velocity is related to the phaske Lagrangian contains both the
global (u;, v;) and local random componertis, 7;). The local random terms
become zero when averaged over their directiontHayt still contain random
kinetic and potential energy. Although some randiecal components contain
dot accents, these dots do not represent timeade@sg, rather they include
different types of energies. That is, terms with @ccents represent the kinetic

energy contribution. The terms without the acceepsesent potential energy.

Next the variation of the action is set to zerdisTleads to equation (6),
which is the time dependent diffusion equation.

ov 103~ — ., [0 ‘9o |,
_(J ’i)'i ()—¢— L de

T "o VaiVeiT = = UG
'Oat 20V PWA v o

(6)

In this thesis the theory was simplified to mék®aore computationally
friendly. The first simplification that was madethat the elastic waves created

are not being tracked; rather a steady state saligisought. While the elastic

waves are indeed propagating though the matemeil, impacts on the results are

minimal. Tracking these waves though the matevalld be computationally



costly and unnecessary. The next simplificatiomenia that J' is a constant. As
seen in Table 11’ is a diffusion constant. It is not a functiontloé phase of the
material so it was assumed that its change witlpkfase of the material is very
small. This allows the second term to be elimidat€he simplified version of

the diffusion equation can be seen in equation (7).

00
ot

' a gaa-l '

= (‘Jv’i )n —Vow (4”)6_\—(70_ 0_\7J i
(7)

As one can see, this diffusion equation is reducedthree term equation. A
finite difference code was developed for equatin({o update’ at every time
step). A forward difference was used for the toheeivative and central
differences for the spatial derivatives. By udimge difference approximations
to expand the time derivative in this equatioram be written out, in general, as

shown in equation (8).

D41 = Up + Diff — DW — Strain_Energy (8)

Equation (8) is used to update the phase at exaty avery time step. The
eguation can now be discussed term by term. hignveersion of the equation the
terms are replaced with labels to more precisetgilee exactly what their role

is. This is how the equation is actually brokernnughe finite difference model,

as it allows the parts to be determined individydahen added together at the end.
This equation uses the current phasé at the current time step and adds the
change in from the other three terms. The otheetterms are a diffusion term, a

double well potential term, and a strain energgntein this version of the



equationi is used instead @ ¢, or the phase of the material is a functior of

and is related using equation (9).

b

¢ = e )

The first term to be discussed is the diffusiomtefThis term was used to
insure phase diffusion in the direction of the mmam principle stress. The first
step to finding this term’s value was to build Hteess tensor at the current node.
Next, the smallest eigenvalue and the corresporelgenvector of the stress
tensor at the current point were found. Thengsibe of the eigenvector dot
product with the gradient @ and was multiplied to the eigenvector. This pssce
ensures that only directions that are in line \lith gradient of phi are positive.

Finally the eigenvectors are all normalized.

Next two coefficientsP; andDy, were defined.D; represents the
diffusion coefficient in the direction of the cragkowth andD, represents
isotropic diffusion. Generall, was set to zero, aridy was set to a constant

timese((7maxappliedy’Constant) Thjg axnonential term allows the diffusion tetarbe

higher in the direction of crack growth as wellbashigher near the crack tip.
This essentially raises the amount of crack difasaround the crack tip and
increases the diffusion in the direction of cracévgth. NextDy andD; were
used in equation (10) to allow different diffusiconstants in the different

principle directions.

Dij = D05ij + Dlninj (10)

10



As per indicial notation using this equation, equat (11, 12, and 13) were used

to define the two dimensional diffusion tensor eaming term;;, D15, andD,.

Dll = Do + Dln% (11)
D1, = Dinyn, (12)
Dzz = DO + Dln% (13)

Finally the diffusion term could be written outseen in equation (14).

d?v
dy?

dv d?P d?P
& =D, = 42D, —-+D
dt 11 gy2 12 Gxdy 22

14)

Using finite difference approximations on the diffietial terms, this equation can

be expanded into a forward difference equation.

The next term in the diffusion equation is a dowké term. This term
either drives the phase of the material to zerona. Unlike the work by Karma,
this potential function was chosen to be more ptajisi acceptable. This
component can be thought of as the material baishex to either its virgin state
or its fully failed state. It is easiest to undargl the effect of the double well

function by inspecting equation (15) and correspamdraph.

Vow (@) =Vo(1 — $)*(1 + 2¢ + ag?) 15

The graph of this function is seen in Figure 4:

11



Double Well Potential
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Figure4: Double Well Potential Function

As seen, there are two stable positions for theg@lbfthe material that
correspond to local minima’s of potential. Theseat zero (completely failed)
and one (virgin). Also it is important to note tiiae local minima at zero is
higher than the global minima at one. The actuatfion used in the diffusion
equation is the derivative of the double well ptisrfunction with respect tg as

seen in equation (16).

Vow (@) = 2Vo(¢ — Dp(a(2¢ — 1) + 3) (16)

The graph of this function is shown in Figure 5:

12
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Figure5: Derivative of Double Well Potential

As one can clearly see from Figure 5 the doublé¢ meential term will act to

hold the phase at zero or one, or push the phaseds zero or one. For
example, when the phase is just below one, the begomes negative, and when
it is subtracted in the main diffusion equatiorgdts to add to the phase at the

next time step; therefore forcing the phase badk to

The final term to be discussed is the strain gnegggn. Since only the
variation fromi is sought, the rest of the terms generally astetiaith strain

energy are left out. As seen in the previous diffn equation the term is:

Strain Energy = [° %ds’u (17)
This term can be expanded into a form that carebgyeamplemented in the finite

difference code using equation (18).

Strain Energy = Q,9(¢)’ ’qb/(%) El(e,%x + ef,y) + u(ezy + € + ef,y)] (18)

13



Ultimately this term causes the phase to be lowareas that have high amounts

of strain.

It is also important to note that each term inrtfaen diffusion equation is
paired with a constant. These constants were tumexler to give each term its
appropriate amount of influence in the equatiohisTvas determined by a trial
and error method. Numerically no single term stidod able to change the phase

by more than 5% in any given single time step.

Equation (19) shows how an elastic modulus scdiingtion is
incorporated. This is used to modify the moduliige material depending on

the phase of the material.

O = Cijok| g(¢)[5k| —ay (T)(T _TR) - 515] (19)
For this work, with the simplifying assumptionsaainstant temperature, equation

(19) can be simplified as shown in equation (20).

0i; = 9()[AeriSij + 2uei;] (20)

As one can see, the stress is now a function ofldetic modulus scaling
function. A physically acceptable function for thl@stic modulus scaling
function is shown in equation (21).
~ (1_ ¢)m+l[ n]
9(p)=1-—"—|(m+n+1)-(m+1)1+¢)
n (21)
From equation (21) it is clear thgis a function of the phase of the material. It

also incorporatems andn as parameters to adjust the shape of the function.

14



A brief summary of the governing equations candusé in the

Appendix.

Test Cases

Two different test cases were constructed basdbetheory. These test
cases were designed to simulate mode | and mdcecture. Each test case was
a plate of aluminum that had a crack in the cen®ain strain conditions were
assumed, that is the displacement in the z-dineetias zero. This essentially
made the test cases two dimensional. Figure 6 shtimsvbasic set up of both test

cases.

Y-Direction, V-Displacement

(0:0)

X-Direction, U-Displacement

Figure6: Basic set up of test cases.

As seen in Figure 6 the test sample is the grayredisection of the dots. The

yellow portion of the dots in the middle is whehe track is initially at t = 0.

15



The outer ring of orange dots is referred to asnhéd” nodes. These are the
nodes that contain the information regarding thenldary conditions. Figure 6

also shows the orientation of the coordinate systetie lower left corner.

Shear Case

The shear test case was designed to show that pakstheory could
accurately predict the kink angle for crack propgeya The basic setup is the
same as shown and discussed previously in Figuddi@&round the sides of the
plate, a shear stress was applied, where the netneskes, around the plate, were
set to zero. With these conditions the crack shgubw diagonally towards the

upper left and lower right corners. Fracture meatsapredicts that the crack

should initially propagate at 6&nd then turn to propagate at'4%. Figure 7

shows the boundary conditions that were appliedhfershear test case.

16
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Figure7: Shear Test Case Set-up

Tension Case

Uniaxial tension was the second case that wagioesito test the
capabilities of the theory. The interior set upwanilar to the shear test case
with the interior crack. This time, a normal sgegs applied to both the top and
the bottom, essentially pulling the plate from tbe and bottom. With this test
case, the crack is expected to grow straight auatds the sides of the pate. This

set up is shown in Figure 8:

17
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Figure8: Tension Test Case Set-up

From Figure 8, it is clear that this tension tege will have multiple lines

of symmetry. These lines of symmetry can be seéfigure 9.

18



u symmetry

I

vV symmetry

Figure9: Tension Test Case Symmetry

As you can see with this test case the resultsldlatibe symmetric about the
lines shown. Along the lines of symmetry the daspiment is zero as well. This
means that only a quarter of the plate needs tadmeled. By modeling just a
quarter of the plate, it was possible to increaser¢solution of the mesh by four
times without any additional computational costr Example, instead of the
entire plate being 200x200, we can make just tlatquof the plate 200x200,
therefore making the entire plate 400x400. Thisdased resolution leads to
better more reliable results. Figure 10 showsthendary conditions that were

used to model the quarter of the plate.

19
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Figure 10: Symmetry Boundary Conditions

As seen in Figure 10, the shear stress is setrtoareall four sides of the plate.
Next, a normal stress was applied to the top sectind the left side was set to
traction free boundary conditions. Finally the syetry boundary conditions
were applied as shown. These symmetry boundanyittmms fix the vertical
displacement along the bottom edge and the hoatdigplacement along the

right edge.

After a tension test case run, all of the resnlise mirrored about the two
different lines of symmetry using special post @sxsing functions to produce

results comparable to a plate with a crack in thder.
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Finite Difference Code

Finite Difference Formulation

The finite difference method is a numerical wagpproximate the
solution to differential equations. This is doneusing finite difference
equations to approximate derivatives. These apmaions are shown in
equations (22-2111)4]. The index represents the “x” direction and the ingex

represents the “y” direction.

. d Ujpq j=Uj—1j

First order: = (22)
d? Ujpq j—2U; j+Uj—q j

Second or der: = O (23)
dx Ax

. d? Ujy1,it1—Uj1,im1—Ujo1,it1 U j—1,im

Second order mixed: u S VU S e W S V1 Sl e (24)

dxdy 4AxAy

These approximations are substituted into the rgivg differential
equations. In this case, they were used in ahefvarious differential equations,
mostly representing stress equilibrium, appliedsstes, or displacements of the
nodes. A more in depth discussion of how finitéedence works can be found in
Richard Haberman’s book, Applied Partial DifferahtEquations with Fourier

Series and Boundary Value Probléftis

At each node the horizontal and vertical displag@s)e andv
respectively, were the unknowns. Two equationewegated at each node using
the finite difference approximations in conjunctiwith boundary conditions or
stress equilibrium equations. This results in agoations and two unknowns for
each node, which allows for the unknown displacemtmbe solved using a
linear simultaneous equation solver.

21



Sections of Equations

Interior Equations
The interior section of the plate uses stressliegum equations. This

section is shown in Figure 11.

Figure1l: Interior Nodes
The equilibrium equations (25 and 26) are:

Ox + Oryy = 0 (25)
Oyyy + Oxyx =0 (26)
The equations for the stresses can be writterrinstef material constants and
strains. Through the finite difference approxiroas, these strains can be written
in terms nodal displacements. This results in #gus which can be used to
solve the displacements in terms of the currensgladicatorg. The stress
equations are modified to include the phase ofrihterial as discussed in the

theory section.
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Sides
The side n+1 nodes, as shown in the Figure 12aooall of the

information regarding the boundary conditions.

Figure12: Sidenodes

The boundary conditions contained in these nodegiéiter stress or
displacement boundary conditions. Remember, thiegenodes are “n+1” nodes.
The displacement at these nodes is not importaather, the equations that they
represent are used to specify the stress boundaditons at the edge of the

material.

Corners
The corners are the last section of equations &pbeified. The corners are seen

in Figure 13.
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Figure13: Corner Nodes

The corners proved to be difficult. At this poiali, of the interior equations have
been applied, as well as the boundary conditioeseth point. Additional
constrains were needed for the corners. It wagldeéthat a second order Taylor
Series would be used to predict the displacemehieatorners. To do this, a

normal second order Taylor Series was written ewgegen in equation (27).

d2f
2xdx2

fr+dx) = f(x) + L (dx) + 2L (2dx)? (27)

The finite difference approximations were then gled into the Taylor Series,

and expanded about thg term producing equation (28).

Uipr = Ujq + % 2dx + % (4dx)? (28)

This then simplified into equation (29).

Ui +F3*u;—3*xuj g +u_, =0 (29

This Taylor Series uses the previous three nddading to the corner of the
plate, to predict the displacement of the corfiéris simplifies to a forward

difference approximation for setting the changthmcurvature (second
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derivative) equal to zero. For the vertical displament, the three nodes used were
ones vertically in line with the corner. Similarfgr the horizontal displacement,
the three nodes used were the ones horizontaligerwith the corner. This
assumption could be made because the corners aregadugh away from the
crack that the displacement at that point is a leear function of the position, or

a constant strain.

Displacement Boundary Conditions

The last section of boundary conditions to be djgetare the displacement
boundary conditions. These boundary conditionsgmerigid body translation
and rotations. In Figure 14, the red highlightedes are where the vertical
displacements are fixed for the shear test casuilagly, the yellow highlighted

nodes are where the horizontal displacement isifixe

Figure 14: Displacement Boundary Conditions
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These boundary conditions were chosen due to ttéHat they prevent 2-D
ridged body translation and rotation without cagsany stress concentrations.
Explaining how they are implemented is a bit mayefasing. The key is that in
both test cases, the shear stress is either z¢ie applied shear stress the entire
way around. This means that the n+1 nodes, 1 &waythe corner on both
sides of the corner, apply the same equation twigeillustration of this

phenomenon is shown in Figure 15.

Figure 15: Location of equationsfor displacement conditions

As seen in the green highlighted nodes, both (felm1 nodes apply the same
condition to the same node resulting in four repeéa&guations. In order to have
enough equations to apply three displacement bayrdaditions, to properly

fix the plate, three of the four repeated sheaagqgns are used instead to specify
the displacement boundary conditions. The lastatgdl shear equation used a

Taylor Series similar to the corner as its equation
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Phase Finite Difference Representation

To include the phase in the finite difference ¢ad®rward difference
was used for the terms dependence. Initial cardstior the phase of the
material is the same for both the shear and tenisgircases. For initial
conditions, the entire plate is set to virgin mialeiphase is 1), except where the
crack is. Where the crack is the phase is s&lto These initial conditions are

shown in Figure 16:

Figure 16: Phaseinitial conditions

Figure 16 shows the initial condition of the shiest case. For the tension test
case, the crack is moved to the lower right handerodue to the symmetrical

conditions previously discussed.
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As mentioned, in order to allow the phase to défusth time a forward
difference was used for the time derivative. Oargtime step the nextis
calculated (recall the phase is a functiopf The forward difference equation
uses information from its current state, phaseyldcements, and stresses, to
determine what the phase should be in the nextstefe This equation is used at
every node in every time step. The phase boundanglitions were different for
both the shear and the tension test cases. Bhtw test case, where the crack is
initiated, the phase is kept at .01. In this dhseedges of the material are kept at

phase equal to 1. This is shown in the Figure 17:

Figure17: Shear Test Case PhaseB.C.

Due to the symmetry involved in the tension tesec#he phase boundary
conditions are more complicated. Similar to theastiest case, on the left and
top edges, the phase was kept at 1; also the plasskept at .01 where the crack
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was initiated. Due to the symmetry involved irstbase, on the right and bottom
edges, symmetry boundary conditions were usedth®right edgelg/dx was set
to zero. Similarly on the bottom edd#/dy was set to zero. These boundary

conditions are shown in Figure 18:

Phi=1

dPhi/dx=0

Phi=.01

dPhi/dy=0

Figure 18: Tension test case phase B.C.

In Figure 18, remember that the outer ring of naddéke n+1 nodes. This is why

the crack does not continue to the edge of theplat

A failed material figure was created to show thepaigation of the crack
as seen in the results section. This figure weated by using a separate matrix
that was the same size as the plate. Initially @mcle was set to the total number
of time steps. As the plate was run through tme tsteps, when the phase fell
below .5, the node was considered to be failedeMthis occurs the node that

fell below .5 is now assigned a value of the curtene step. By the time the
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code is finished, a matrix is created that hagithe step that each node failed at,
or if it didn’t falil, it reads the final time stepA contour plot of this matrix is easy

to make with the Matlab at this point.

Building the Matrix

The bulk of the finite difference code writtertasbuild the “stiffness
matrix”. While this matrix is not necessarily aetit stiffness matrix that is
created during a finite element analysis, it iSestg0 visualize it as one. As
previously stated, there are two unknowns thasaheed for at each node, the
vertical and horizontal displacement. This me&as there needs to be twice as
many equations as there are nodes in each platéor 8 200x200 plate, there are
40,000 nodes. Each node has two unknowns so 8e@l@fiions need to be
created. As discussed above, the equations caroken down into sections.

Using matrix algebra, the governing equation (3@reated:

[Left Hand Side] = [Stiffness Matrix| * [Unknown Displacements]  (30)

In equation 30 the left hand side is created teedite result of each independent
equation. The left hand side matrix is a 1 colunatrix that has two rows for
each node. For this project the left hand sidesry sparse, the only non-zero
values are where loads are applied. The unknosplatiements matrix is a 1
column matrix that represents the horizontal artica¢ displacements of each

node. Its composition is shown below:
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r Ui
Uy
Uy 3

Ujt1,i+1
V11
V1,2
V1,3

[ Vj+1,i+1]

As stated before, the stiffness matrix was the dstrtb create. Creating it
became a book keeping problem. Each row of theixrnatan independent linear
equation. Each row contains one coefficient thrgdiup with an unknown

displacement. This is shown in the matrix below:

Ul,l U1,2 U1,3 Uj+1,i+1 V1,1 V1,2 V1,3 Vj+1,i+1

U1,1 U1,2 U1,3 Uj+1,i+1 V1,1 V1,2 V1,3 Vj+1,i+1

After creating this set up, each row needs to lkefin with at least one non-zero
number. As previously stated, each node has twoawns and two equations.
Using equations (31) and (32) the rows for eacltenwith position andj can be

found.

length,
dx

Row1=(j—1)+( +3)+1 (31)

— (i _ lengthy . length, length,,
Row2=(G—1)* (—dx + 3) +i+ (—dx + 3) * (—dy + 3) (32
For example, on a 200x200 plate, let's say thaheed to apply two equations to

an interior node dt= 50 and = 100. This means that we would use rows 20,147

and 61,356 of the stiffness matrix to apply theatigns.
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Not only do these equations point to rows to edubut they can also be
used to find the correct column to be used. Famgte, if want to know the
column location where= 50 and = 100 is located we can use the same
equations. The row 1 equation will point to théuoan of the u displacement
coefficient and the row 2 equation will point tetbolumn of the v displacement

coefficient.

Solving the Matrix
As per equation (30) we hajleHS] = [Stiffness matrix] * [unknown
displacements] This equation can be directly solved in Matlaing a sparse

matrix solver, and can be formally written as seeaquation (33).

[Unknown Displacements] = [Stif fness Matrix]™! = [LHS] 83

Matlab was used to solve the simultaneous equatayriee unknown
displacements. The solution vector contains tepldcements of each of the

nodes.

Applying Equations
There were three types of equations that neexlbd applied and inserted
into the stiffness matrix. They are displacem&alor series, and stress

equations. Each is discussed below in more detail.

Displacement
Applying a displacement equation is straight fomvarFor example let's
say that we want to apply a boundary conditionfanthe bottom centev. In

our 200x200 plate for example, we first use equaf8i or 32) foi = 101, ang
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= 1. We find that we can use either row 101 or AdwB810 (the choice of the row
is not critical). Remember that the first row e plate is an n+1 row, meaning
that it is off the plate. This means that we needpply the condition to the row
above, in order to fix the bottom center of theglaSince we want to fix at that
node, the vertical displacement, we will use the Poequation, with = 101 and

= 2, to find the column of the node that we warfito This results in column
41,513. So we now go to row 41,310 and column#3Ldnd set it equal to 1.
We then go to the LHS matrix and apply the dispiaeet of that node, 0, to the

same row that we applied the equation to.

Taylor Series
Applying the Taylor series equations for cornergasy similar to applying

displacement conditions. The previously derivedadign (34) is used.

—Ujp1 +3*u; —3*xu;_1+u_,=0 (34
For example, let’s say that we want to apply theagign to the upper right
corner’s horizontal displacement. To start we teche row corresponding to this
location using equation (31). For a 200x200 siate we usé = 203 and =
203 and determine that we can use row 41,209. [dbadion also corresponds to
the column of the corners location in the matrixvad. The following 4 terms

seen in Table 2 are now applied to the matrix:

Row Column| Value
41,209| 41,209 | -1
41,209| 41,208 | 3
41,209| 41,207 | -3
41,209| 41,206 | 1
Table?2
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Finally the left hand side matrix is updated. Tlaglor Series equation should be
set to zero, so the corresponding row, row 41,20the left hand side matrix is

now set to zero.

Stress Equations
In the stiffness matrix, 3 different types of stregjuations are applied. The three
types are interior stress equilibrium equationsmab stress boundary conditions,

and shear stress boundary conditions.

Interior Stress Equilibrium Equations
As previously discussed, the interior stress @guim equations are

shown below in equations (35 and 36).

Oxxx T Oxyy =0 (35)

Oyyy T Oxyx =0 (36)
In order to be implemented in a finite differencele the equations must be
expanded into equations in terms of material conistalisplacements, and the
phase of the material. First using a modified ioer®f Hook'’s lawt'® the
definitions of stress are written in terms of stgimaterial constants, and the
phase of the material. The stress-strain reldfias can be seen in equation (38).
Next strain-displacement relations, found in equra{B7) are substituted into the
stress-strain equations. Finally taking the appatg derivatives, the first stress

equilibrium equation can be expanded as shown bel@guation (39).
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- b2 i@
x — [A(Exx + Eyy) + z.ugxx]G((p) Oxy = [Zﬂexy]G((P) (38)
(G o) + @ + (G + 5+ 2] e @ F +
u[ie+ dxdy]aap) rulp+EewE =0 @

Next, using the finite difference approximationstioe differential terms, the
differential terms can be expanded to result imal equation in terms af, v,
material constantg and4, and phi. This equation can now be put into the
stiffness matrix as previously discussed at thiatpoThe second stress
equilibrium equation can be expanded with the sproeess. Also the left hand
side matrix row corresponding to this equationeigz so similar to the previous

examples, the corresponding row of the left hadd snatrix is set to zero.

Normal Stress Boundary Conditions
The normal stress boundary conditions are appti¢gde same manner as
the stress equilibrium equations. The normal stieshe yy direction can be

written as shown in equation (40).

Oyy = Oappliea 0T 0 = [A(sxx + syy) + Z,usyy]G(d)) (40)

The previous strain-displacement equations antkfofifference approximations
are substituted into the equation, resulting ire@uation in terms af, v, material
constants, and the phase of the material. Als¢éefh@and side matrix needs to
be updated in the equation to either zero for@itra free surface, or to an

applied stress.
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Shear Stress Boundary Conditions
The shear stress boundary conditions are applilteisame manner as
the normal stress boundary conditions. The shessssboundary condition is

shown in equation (41).

Oxy = Oappliea 07 0 = ZusxyG(d)) (41)

The previous strain-displacement equations antefgtifference approximations
are substituted into the equation, resulting ireguation in terms af, v, material
constants, and the phase of the material. Als¢éefh@and side matrix needs to

be updated in the equation to either zero for @ $rgface, or to an applied stress.

Variable Time Step

One thing that was done to increase the stalofithe code was to include
a variable time step. At each time step of theectite program runs though each
point and determines what the required time stép keep the program stable.
The required time step is a function of the maximsirass of any point in the
plate. The code then applies this time step th eade for the forward difference
phase equation. This modification was successfirdreasing the numerical

stability of the code.

Speeding up the Code
There were many things done to improve the perdoice of the finite

difference code. The biggest problem was dealiitlg thie resulting size of the
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stiffness matrix that is generated. For examplE)»d0 mesh produces 100
nodes, with each node having two equations andawais, resulting in 200
equations and unknowns total. The resulting sgfmatrix is now 200x200,
which is easily constructed and solvable, almostaintly. However, a much finer
mesh is needed. The goal was to use a 200x200. nidésh results in 80,000
equations and unknowns. This also means thatiffreess matrix is
80,000x80,000. Constructing and solving this systé equations takes a

considerable amount of time, especially when huhgloé time steps are needed.

Two main things were done in order to speed ugtmeputational time.
First, the code was modified to be run on a clusiére code was made to run
stand alone, and save its results to data filgsruBning on the cluster, a run that
would take well over 48 hours on a PC could be doress than 8 hours. Also
dozens of runs could be executed at the same fithis. proved to be key when

tuning the parameters of the model.

Also the computational time was reduced by nogi¢hee matrices are
sparse. In a 200x200 mesh, the stiffness matnemged is more than 99.99%
zeros. By generating all of the zeros in the matmnd then solving the system of
equations the standard solvers used proved to bk stower. By using a sparse

matrix and a sparse matrix solver, the code wad gpéy a factor of 6.
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Program Structure

The actual program for this thesis was creatddatiab. Matlab was
chosen as it contains a great deal of convenidtitibdunctions, is very user
friendly for working with large matrices, and hasellent plotting functiorfs”.
Two different versions of the code were create@, fon each test case. The code
section for each case is slightly over 1,000 linadlow chart of the code can be

seen in Figure 19.

Material Properties
Model Parameters
Initialize Matrices

'

Initial Conditions

[
A 2

If not first time step:
Update Phase

Build Stiffrness Matrix:

1) Interior Equation
2) Boundary Conditions
3} Fixed Positions

v
Solve for v
Displacement Vector es
A
v
Take New

Displacement Vector

'

Find Strains and
Stresses with
Hooke's Law

Run
Appropriate
Post Processor

Write Results
to Data Files

ore Time Step
Needed?

A 4

Figure 19: Program Flow Chart
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The program starts out by specifying the matenapprties to be used
such asi and\. Next model parameters are specified. This ohetutems such
as the size of the plate, the amount of loadinggtapplied, or the number of time
steps to be run. Next, all of the matrices artsailized for their size only. There
are a great number of matrices that are initialetettis point such as the strain,
stress, displacement, phase, and many more. Né&at conditions are specified
such as phase and displacement initial conditidliso other matrices that are

functions of the phase or displacement, sucB (@3, are specified at this time.

At this point we are into the section of the ctm®ped throughout every
time step. This section of the code starts outfmating the phase of the material
though the forward difference method previouslydssed. This is done every
iteration, except the first time when the initiahditions for the phase are used
instead. Next, the stiffness matrix is built. 38 a very complex process that
contains two main sections, the first is for thiefior governing equations and the
second is for the boundary conditions. The intesgxtion contains two main
subsections, one for each governing equation. sliffeess matrix is traversed
row by row and the appropriate equation is appligéxt in a similar fashion to
how the interior equations were applied by traveggach row, the stress
boundary conditions and Taylor series boundary itmmd are applied. The last
thing that is done is the fixed position boundaspditions are applied. Before
continuing the entire matrix is checked to insina each row contains at least
one non-zero constant. Also at this point the marchecked to insure that each

row in an independent linear equation. These chbelped a great deal for
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troubleshooting the code and serve to check tleatriitrix is not singular. These
checks can be disabled after the code is workingepty to speed up processing

time, but remain useful if cracks propagate toldbendary.

Next the left hand side matrix is created. Iis ttase the only non-zero
terms that are present are where loads were applieen using the sparse matrix
solver in Matlab the displacement vector is fouiithis displacement vector is
then transformed into a displacement matrix thattha same dimensions as the
plate. Next the strains are calculated using tteensdisplacement laws, and the

stresses are found using Hooke’s Law.

At this point the code has completed a run thaughentire time step. If
the code needs to continue to run for more timessites looped back up as
shown. If not all of the results are written tdalélles. The files can then be read
using a post processer that reads the data fikksraates the figures shown in the
results section. There are two different post @ssors that are used. The first is
the standard one for the shear test cases. Thadecthe symmetry post
processor that mirrors the results about the lriessymmetry for the tension

cases.
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Results

Shear Results

The first set of results to be discussed is tleasresults. In this case, the
plate was 200x200 with an initial crack in the eswith a length of 40. The
shear stress was applied to all four sides. Tpeaation for this test is that the
crack will grow towards the upper left and loweghti corners, initially at 698!
and then turning more horizontal as the crack growse following results

discussed are for a run with 200 time steps.

Figure 20 is the first resulting figure shown asa contour plot of the

final phase of the plate.
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Figure20: Final Phase of Plate

Remember that this crack started out as a singtaeit wide horizontal crack,

initiated from 80 to 120 on the x-axis in the migldif the plate. As one can see
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the phase is zero where the crack is, and diffoaek to virgin material the
further away from the crack you go. It is also ortant to note how the crack

grew towards the upper left and lower right corners

Figure 21 is a contour plot of the shear stresh@plate.
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Figure21: Final Shear Stress

Recall in this case the shear loading was consathtite way around. The light
blue near the sides show the applied shear. Asgpu can see, where the
material has completely failed, the shear streseanrly zero. This is due to the
fact that the modulus of the material is effecywedduced to zero by the modulus
modifying function. The next important observatiormake are the stress
concentrations near the crack tips that are exadibt is expected by fracture

mechanic’s theory.

Figure 22 is a contour plot of the stress in thirection.
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Figure22: Stressinthe X-Direction

The stress in the x direction is very small whéeermaterial has already failed, as
well as far away from the crack. Also worth notiaghe tensile stress
concentration near the crack tips in the upperdett lower right corners. The

upper right and lower left corners have compressikgEss concentrations.
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Figure 23 is the stress in the Y-direction.
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Figure23: StressintheY-Direction

Similar to the stress in the X-Direction, the stresthe Y-direction is low far
away from the crack and where the material hasdyréailed. Again, similar to
the stress in the x-direction, the tensile stresgentrations are high in the
direction of the crack propagation, and compresisithe corners that don’t

propagate.

Figure 24 shows the maximum principle stress¢batesponds to the

previous figures.
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Max Principle Stress
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Figure 24: Maximum Principle Stress

As seen in Figure 24, the maximum principle staes=urs on the crack tips. This
is expected to happen. One can also see thatdb#tercrack tip the maximum
principle stress is very low. This is the key floe variable diffusion constant
shown in the next figure. In every stress plotupper left and lower right
contain positive tensile stress concentrationsleathie lower left and upper right
contain negative compressive stress concentratiohis is what allows the

diffusion constant to push the crack in the diatf highest principle stress.
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Diffusion Constant
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Figure 25: Diffusion Constant

In Figure 25 one can really see the power of thimbke diffusion constant. The
variable diffusion constant allows the crack tdudie only in the direction of
minimum principle stress as previously discusgeigure 26 and Figure 27 show
the direction of the minimum principle stress. s the direction that the
diffusion constant is increased in, driving thefulifon in the direction of the

minimum principle stress.
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Figure 26: Left sideof Crack, Min Figure27: Right sideof Crack, Min

As one can see the minimum principle directionustpng the crack towards the
upper left and lower right corners. In the othemers of the crack, the principle
direction does not push the crack to propagatdorBehis term was introduced,
the crack would grow toward each of the four casnéerhis term prevents the
growth in the upper right and lower left cornergtod crack and encourages the
growth to the other corners. Although in the poewi figures not all of the arrows
point in the precisely exact direction, the ovetadhd is correct; the crack is only

allowed to diffuse in the corners which have pusifrinciple stresses.

Figure 28 plots iso-contour lines on the platdisican be used to
visualize the deformation of the plate. Of couassraling factor is used here in

order to magnify the deformation.
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Figure 28: Deformation of plate

Figure 28 makes it easy to see the failure of tateral where it has cracked.
Essentially the modulus of elasticity is reduceahaatically, which means the

material there can be strained a great deal withmuah stress or resistance.

The final result to be shown is the most excitifggure 29 shows how
the phase of the material changes with time, elsdigréhowing the cracks

propagation.
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Phi at Diffrent Time Steps
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Figure29: Phasewith time
Figure 29 shows how the crack diffuses throughtlagerial with time. The dark

blue lines represent the original location of theck, while the red lines represent
the location of the crack at the final time stepsorder to create Figure 29, it
was decided that a phase threshold of .5 was tsé@. This means that the
material was considered to be failed when the pfeliskelow .5. It is important
to note the crack initially grew at 69°, which isat is predicted by fracture
mechanicg. The crack the curved more horizontal as it gnetich again, this

result is supported by fracture mechanics.
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Phi at Diffrent Time Steps
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Figure 30: Measured Kink Angle

In Figure 30, the phase-time figure was overlaithwai sketch of the
predicted initial kink angle. As you can see,ially the crack grew at almost
exactly 69° and then curved to become more horatorithis is exactly what is

predicted by fracture mechanics.

Figure 31 shows a run with the same set up befbarterun for much
longer. In this run the simulation was allowedua for 400 time steps instead of

200.
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Phi at Diffrent Time Steps
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Figure31: Doubled Run Time Crack Growth

As you can see, in this case the crack continuelifficse as expected. Also in

Figure 31 you can see the crack begin to curveetotme more horizontal. This

is what is expected from fracture mechanics. Tigige also shows that the

crack settles at a propagation of a constant 4%k supported by fracture

mechanics theory. In addition, at the crack tips,crack looks as though it is

about to bifurcate into two cracks. Compared tonkas results, which curve to

become more vertical, these results are more tiealidowever, due to size

restraints, the crack takes up the majority offlage and the sides of the plate are

definitely impacting the results. Ideally a muehger plate should be modeled,
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however due to the size constraints of the finitlecknce model it is not

computationally possible at this point.

Tension Results

The next set of results to be discussed is th&derest results. In this
case, the plate was 200x200 with an initial cracthe lower right with a length
of 40. A normal stress was applied to the tophefilate. Due to symmetry the
bottom of the plate was fixed. The results wesntimirrored about the lines of
symmetry to create the plots seen. This set dis@issed in detail previously in
this thesis. The expectation for this test is thatcrack will grow straight

outwards. The following results shown are the ltasfua run with 200 time steps.

Figure 32 is the first result shown for the tendiest case and is a contour

plot of the final phase of the plate.
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Figure32: Final phase
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Remember that this crack started out as a singhaezit wide crack, going from
160 to 240 on the x-axis in the middle. As one $a@the phase is zero where the
crack is, and diffuses back to virgin material finther away from the crack you
go. ltis also important to note that the crackvgstraight towards the sides of

the plate. Also note that the diffusion was pregh@mtly in the direction of the

crack growth, with very little vertical diffusion.

Figure 33 is a contour plot of the shear stresb@plate.
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Figure 33: Final shear stressplot

As you can see, where the material has compleddbdf the shear stress is nearly

zero. ltis also important to note the corre@strconcentrations at the crack tip.

Figure 34 shown is a contour plot of the stregtiénx-direction.
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Stress X
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Figure34: Final stress-x

The stress in the x direction is very small whéeerhaterial has already failed, as
well as far away from the crack. The stress cotmagans at the tip of the crack

are a result of Poissions effect as the plate wantempress there.

Figure 35 is the stress in the Y-direction.
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Stress Y
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Figure 35: Stressy

This figure is the most convincing that the modelbrking correctly for this test
case. As one can see, above and below the cradtrdss is very small as the
material cannot support a load there. At the tifhe crack on both sides there
are stress concentrations that are the resuleadhtier potion of the plate not
being able to effectively carry the load. Far gfram the crack the stress is

constant and equal to the applied stress as expecte

Figure 36 shows the maximum principle stress¢batesponds to the

previous figures.
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Max Principle Stress
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Figure 36: Maximum Principle Stress

As seen in Figure 36, the maximum principle staes=urs on the crack tips. This
is exactly what is expected to happen. One cansas that behind the crack tip
the maximum principle stress is very low. Thighis key for the variable

diffusion constant shown in Figure 37.
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Diffusion Constant
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Figure 37: Diffusion Constant

Similar to the previous test case, in Figure 37 carereally see the power of the
variable diffusion constant. The variable diffusiconstant allows the crack to
diffuse only in the direction of minimum princips#ress as previously discussed.
Figure 38 and Figure 39 show the direction of theimmum principle stress. This
is the direction that the diffusion constant isreased, driving the diffusion in the

direction of the minimum principle stress.
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As you can see the minimum principle directionusligng the crack horizontally

to the sides of the plate. Although in the presifigures not all of the arrows

point in the precisely exact direction, the ovenadhd is correct.

Figure 40 plots iso-contour lines on the platdisican be used to

visualize the deformation of the plate. Of couassraling factor is used here in

order to magnify the deformation to make it eagiesee.
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Displacement
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Figure40: Deformation

This deformation figure makes it easy to see whigganaterial has failed.
Essentially the modulus of elasticity is reduceahaatically, which means the
material there can be strained a great deal withmugh stress. Notice that where
the crack is the strain is very high. This crasoahows the effect of Poisson’s
effect with dealing with a crack. This deformatioliot also makes it easier to

confirm that the stress plots are correct.

The final result to be shown is the most excitifiggure 41 shows how

the phase of the material changes with time.
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Phi at Difient Time Steps
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Figure4l1: Phaseasa function of time

This figure shows how the crack diffuses throughrtiaterial with time. The

dark blue lines represent the original locatiomhef crack, while the red lines
represent the location of the crack at the fimaktisteps. In order to create this
figure, it was decided that a phase threshold @fa$ to be used. This means that
the material was considered to be failed when tiese fell below .5. Itis
important to note the crack grew perfectly horizbmthich is what is predicted

by fracture mechanics.

Stress Intensity Factor

After creating a model that could accurately mdbelstress and changes
in the phase of the material, the stress intefadior was found and compared
according to fracture mechanics. The stress iittefastor is used when

calculating the stress around a crack tip. Theitentest case was used when
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finding and comparing the stress intensity factofracture mechanics solutions
exist for the exact problem. According to fractarechanics, the stress intensity

factor, K, should follow the relationship descridadequation (423°:

K = Vrao (42)

In this relationshipa is the radius from the crack tip to the centethef crack.
This stress intensity factor was calculated usragtéire mechanics as well as
from the results of the simulation, and the resglstress intensity factors were
compared. Before comparing the stress intensitpfa from the model, a
boundary correction factor was calculdf@d The stress intensity factor now

assumes the following form as seen in equation (43)

K = \mao * F(a, B) (43

The functionF (a, #) is a modifying function that is a function of tgeometry of
the plate. With the geometry that is being uséslequal to the crack length

divided by the plate with, or 80/400 which is 0f2is equal to the height of the
plate divided by the width of the plate. Sincelvewe a square platgjs equal to

1. From table 1F(0.2,1) was determined to be 1.685

Using a tension test run, the stress intensitypfagas found at various

times throughout the run. Figure 42 shows onéede calculations.
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Figure42: Stresslntensity Factor Data

To create this chart, first the actual stress ey direction was plotted going
away from the crack tip. Next, another functikfsgrt@z*r) was created. The
error between the two curves was minimized usiegsthlver in excel. This Kis
then considered to be the stress intensity factothie case. As you can see from

the previous chart the actual results fit eqrt(r) shape of the curve quite

Next the stress intensity factor was calculatedgufracture mechanics.

Using equation (44) from Rooke for an infinitelyntp plate a stress intensity

factor was calculatéd!:

(44)
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In this equationa is half of the cracks total length, or the radimshe crack tip
from the center of the plate, akdis the total width of the plate. This stress
intensity factor was then compared to the one fduom the data for different

crack lengths. The result of this comparison acasden in Figure 43.
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Figure 43: StressIntensity Comparison

Figure 43 shows the final results of the stressnisity comparison calculation.
From the figure it is clear that the finite diffe® solution appears close but not
exact. The overall trend is represented fairlgelp. However, there is quite a

bit of scatter. This scatter can be attributedaidous causes. First, the resolution
of the crack tip is not fine enough. Most of thess concentration is within just
15 nodes. Ideally with more nodes near the crigckite results would be better.

In addition, some of the error can be attributethtoeffects of the ends of the
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plate. Also to get a better fit for the slope of #xperimental results, a better

function relating to # should be used.

Conclusions and Future Work

From the results of this work it is clear that piese field physics theory
can be appropriately applied to cracks. This thedlows crack propagation to
be modeled with great accuracy and increased noatetiability. The phase is
shown to diffuse correctly and the correspondinglification to the modulus
works as well. The stresses surrounding the crackalso the expected results

that align with the expectations from fracture naubs as discussed.

The next step is to implement this theory intorétdi element code. A
custom user element needs to be constructed thatontain the phase of the

material as an additional state variable.

64



Appendix

Phase Field L agrangian Summary

The Lagrangian density can be defined as:

~

1T 001 0y 1oy o e L 1o 1~
£:§pqui +§IOU2+§:0V2_IJU (Viu,g)jgij ~Vou(#)-uF _EKUH u’i_EJv’iVn

Variables and parameters are related through:

v 0’ v? QK Q,D
2 T=— p= K== 5
Q' 4 4 A1/ p) 4c Azl p)

p

u=—.,v=

u
QO

g; :Cijokl g(¢)|_£kl —ay (T)(T _TR)_ngI)J'

The functions are:

o) =1L [im+n+1)- (e o+ o

VDW ((0) :Vo(l_ (0)2(1"' 2§0+ 0’¢2)

The remaining parameters can be temperafurelependent. Note that we can
take K’ =G for isotropic and cubic materials and hen@g =4c,G/K. Using
Q= 4(r/ ,o)J'/ D, the remaining parameters can be taken as teruperat
dependent material parameters. They are:

Cix» . @, Vo, mn.cp, 0,7, K, K', J',and D,,
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Setting the variation of the action to zero yields:
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