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Efficient Coupling for Random Walk with
Redistribution

Elizabeth Anne Tripp, B.S.

University of Connecticut, 2015

ABSTRACT

What can be said on the convergence to stationarity of a finite state Markov

chain that behaves ‘locally’ like a nearest-neighbor random walk on Z? In this work,

we looked to obtain sharp bounds for the rate of convergence to stationarity for

a particular non-symmetric Markov chain. Our Markov chain is a variant of the

simple symmetric random walk on the state space {0, . . . , N} obtained by allowing

transitions from 0 to J0 and from N to JN . We first looked at the case where J0 and

JN are fixed, deterministic sites; we then also considered the case where J0 and JN

are repeatedly sampled from some given probability distribution. For each of these

two cases, we constructed an efficient coupling for the model, giving an intuitive

and probabilistic explanation for the rates of convergence as well as providing sharp,

computable, and non-asymptotic bounds.
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Preface

The focus of this thesis is to provide sharp bounds on the rate of convergence to

stationarity of a particular discrete and irreversible Markov chain via probabilistic

methods, where the lack of symmetry is created by the model’s redistributive behavior

at the end-points. In the first chapter, we will provide a theoretical introduction to the

the main work. Specifically, we will define an efficient Markovian coupling of Markov

chains and present the main theorems employed to obtain our results. Chapter 2

will contain simple examples of Markov chains with both efficient and non-efficient

couplings, and our results will be presented in Chapter 3.

1



Chapter 1

Introduction

1 Markov Chains

First, some necessary definitions and theorems [11]:

Definition 1.1. Let S be a set. A discrete-time stochastic process X on state space

S is a sequence of random variables indexed by the nonnegative integers X = (Xt :

t ∈ Z+ = {0, 1, 2, . . . }), each taking values in S.

In this work, we will only consider discrete-time stochastic processes on finite state

spaces.

Definition 1.2. A stochastic process X on state space S is called a Markov chain if

there exists a function p : S×S → [0, 1] such that, for all t ∈ Z+ and x0, ...xt−1, x, y ∈

S, the following holds:

P (Xt+1 = y|Xt = x,Xt−1 = xt−1, . . . , X0 = x0) = p(x, y) (1.1)

2
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or, equivalently:

P (Xt+1 = y|Xt = x,Xt−1 = xt−1, . . . , X0 = x0) = P (Xt+1 = y|Xt = x). (1.2)

The function p is called the transition function and can be viewed as an |S| × |S|

matrix.

In simple terms, a Markov chain is a process with “short-term” memory, meaning

that the only information from the history of the process relevant when determining its

distribution in the future is its current state. It is important to note that p determines

the distribution of X conditioned on X0 (in other words, it only determines the

probabilities of transitions, not the initial configuration). The distribution of X0 is

called the initial distribution of X. However, once X0 is also specified, the distribution

of X is uniquely determined.

We write Px for the distribution of X conditioned on X0 = x. More generally, if µ

is a probability distribution on S, that is µ(x) ≥ 0 for all x ∈ S and
∑

x∈S µ(x) = 1,

then Pµ denotes the distribution of X when X0 has law µ. We note that

Pµ =
∑
x∈S

µ(x)Px.

Definition 1.3. If a probability distribution µ satisfies Pµ(X1 ∈ ·) = µ, then we call

µ a stationary distribution for X. This is equivalent to the condition

Pµ(Xt ∈ ·) = µ , ∀t ∈ Z+. (1.3)

We write pt to denote the t-th power of p viewed as a matrix. That is:
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p0(x, y) = I, pt+1(x, y) =
∑
k∈S

pt(x, k)p(k, y) (1.4)

where I denotes the identity matrix.

It is easy to show that for all s, t ∈ Z+ and x, y ∈ S

P (Xt+s = y|Xs = x) = pt(x, y) (1.5)

Definition 1.4. A Markov chain X is irreducible if for any x, y ∈ S, there exists

t ∈ Z+ such that pt(x, y) > 0.

An irreducible chain is thus one that can (eventually) transition from any state to

any state.

A corollary to this is the following:

Proposition 1.5. Suppose that X is an irreducible Markov chain on a finite state

space S. Then it possesses a unique stationary distribution.

For a proof, see [5], p. 22.

Definition 1.6. A Markov chain is called aperiodic if the greatest common divisor

of {t ≥ 1 : pt(x, x) > 0} is 1 for all states x ∈ S.

This means that no state can appear only on a lattice (for instance, only at even

time intervals). The Markov chain X with state space Z and transition function

p(x, x + 1) = p(x, x − 1) = 1
2

is an example of a periodic Markov chain, as it can

return to its initial position only at even times.

Here is a sufficient condition for aperiodicity:
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Proposition 1.7. Suppose that X is irreducible and that, for some x, p(x, x) > 0.

Then X is aperiodic.

Proof. Fix some state y. Because of the irreducibility of X, there exists times t0

and t1 with pt0(y, x), pt1(y, x) > 0. Therefore pt0+t1(y, y) ≥ pt0(y, x)pt1(x, y) > 0.

However, since p(x, x) > 0, it also follows that

pt0+1+t1(y, y) ≥ pt0(y, x)p(y, y)pt1(x, y) > 0.

In fact, pt(y, y) > 0 for all t ≥ t0 + t1. The result follows.

If a Markov chain X on state space S with transition function p is not aperiodic,

one can consider the lazy version of X, which has transition function 1
2
(p+ I), where

I is the identity matrix. More concretely, the transition function of the lazy chain can

be described as follows: flip a fair coin, and if it lands ‘Heads’, then the chain doesn’t

move; if it lands ‘Tails’, sample according to p. This allows the chain to ‘stay put’

with probability at least 1
2
, thereby making the chain aperiodic. Examples of both

irreducible and aperiodic Markov chains can be found in Chapter 2.

Definition 1.8. The total variation distance between two probability distributions

µ and ν on S is defined by

‖µ− ν‖TV = max
A⊂S
|µ(A)− ν(A)| (1.6)

Note that ‖µ−ν‖TV = max
f∈A

∫
fdµ−

∫
fdν = 1

2

∑
x∈S |µ(x)−ν(x)|, where A = {f :

S → [0, 1]}, and thus the total variation distance can be viewed as the (normalized)
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`1-norm of of the difference between the functions µ and ν. Total variation is a metric

on probability measures on S.

We define

dt(x, y) = ‖Px(Xt ∈ ·)− Py(Xt ∈ ·)‖TV , (1.7)

where Px(Xt ∈ ·) denotes the probability distribution of Xt under Px. Note that

dt(·, ·) is a metric on S. We let dt = supx,y dt(x, y).

Suppose now that π is a stationary distribution for X. Then observe that

‖Px(Xt ∈ ·)− π‖TV =
1

2

∑
y∈S

|Px(Xt = y)− Pπ(Xt = y)|

=
1

2

∑
y∈S

|
∑
z∈S

π(z)(Px(Xt = y)− Pz(Xt = y))|

≤ 1

2

∑
y∈S

∑
z∈S

π(z)|Px(Xt = y)− Pz(Xt = y)|

≤ 1

2

∑
z∈S

π(z)
∑
y∈S

|Px(Xt = y)− Pz(Xt = y)|

≤ dt (1.8)

Theorem 1.9 (Ergodic Theorem for Markov Chains). If a finite-state Markov chain

X is aperiodic and irreducible, then there exists c > 0 and ρ ∈ (0, 1) such that dt ≤ cρt.

For proof, see [5], p. 264.

In other words, in light of Proposition 1.5 and Equation (1.8), an irreducible and

aperiodic Markov chain converges to its unique stationary distribution exponentially

fast in total variation.



7

2 Coupling

Definition 1.10. A coupling of Markov chains with transition matrix p is a process

(X, Y ) = ((Xt, Yt) : t ∈ Z+) on state space S × S with the following properties:

1. Each of the marginal processes X = (Xt : t ∈ Z+) and Y = (Yt : t ∈ Z+) is a

Markov chain with transition matrix p.

2. If Xs = Ys, then Xt = Yt for all t ≥ s.

Definition 1.11. A coupling (X, Y ) is Markovian if it is a Markov chain on state

space S × S, and, in addition, it satisfies:

P (Xt+1 = x′|(Xt, Yt) = (x, y), . . . , (X0, Y0) = (x0, y0)) = P (Xt+1 = x′|Xt = x), (1.9)

and

P (Yt+1 = y′|(Xt, Yt) = (x, y), . . . , (X0, Y0) = (x0, y0)) = P (Yt+1 = y′|Yt = y). (1.10)

The conditions (1.9) and (1.10) imply not only that the marginals are Markovian

with respest to their own history, but also that they are Markovian with respect

to q, where q denotes the transition function of (X, Y ). Then (1.9) and (1.10) are

equivalent to

∑
y′

q((x, y), (x′, y′)) = p(x, x′), and
∑
x′

q((x, y), (x′, y′)) = p(y, y′),

respectively.
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A standard example of a Markovian coupling is when X and Y are indepedent

(until they meet). In fact, this coupling is used in the standard proof of Theorem 1.9.

Definition 1.12. The coupling time of a coupling of Markov chains is the first time

the chains meet:

τ = inf{t ≥ 0 : Xt = Yt} (1.11)

Theorem 1.13 (Coupling bound). Let (X, Y ) be a coupling with (X0, Y0) = (x, y).

Then

dt(x, y) ≤ Px,y(τ > t) (1.12)

Proof. From equation 1.7, we have

dt(x, y) = max
A⊂S

(Px(Xt ∈ A)− Py(Xt ∈ A)) . (1.13)

Fix A ⊂ S and let (X, Y ) be any coupling. Then clearly

Px(Xt ∈ A)− Py(Xt ∈ A) = Ex,y[1A(Xt)− 1A(Yt); τ > t] ≤ Px,y(τ > t).

The challenge is to construct a coupling that gives not only an upper bound, but

also a comparable lower bound, on dt. This motivates the following definition:

Definition 1.14. A coupling is efficient if for some x, y ∈ S,

1

t
lnPx,y(τ > t) ∼ 1

t
ln dt (1.14)

as t→∞.
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We comment that this definition is slightly weaker than the definition given in [4],

which can be stated as follows:

A coupling is efficient if there exists x, y such that cdt ≤ Px,y(τ > t) ≤ c′dt for all

t > 0.

Our definition is clearly weaker, as we require asymptotic equivalence at the log-

arithmic scale. This is because, in some cases, the coupling we constructed has a

polynomial correction to the exponential decay, an effect which vanishes at the loga-

rithmic scale. [4] gives an example of a Markov chain for which an efficient, Markovian

coupling does not exist.

Here is a simple and sufficient condition for the efficiency of a coupling:

Proposition 1.15. Suppose that S = {0, . . . , N}, and let (X, Y ) be a coupling satis-

fying Xt ≤ Yt for all t. Then the coupling is efficient.

Proof. Let f : S → [0, 1] be the function f(k) = k/N . Then clearly,

dt(X0, Y0) ≥ EX0,Y0 [f(Yt)− f(Xt)] = EX0,Y0 [f(Yt)− f(Xt); τ > t] ≥ 1

N
PX0,Y0(τ > t).

Note: the processes that we will study are such that the condition for Proposition

1.15 (above) fails.



Chapter 2

Examples

In this chapter, we will present several examples of Markov chains relevant to our

work. In all cases, our state space will be S = SN = {0, . . . , N} for some N ≥ 2.

We begin with two classical models, the random walk on an interval and the random

walk on the cycle, and construct efficient couplings for each. The coupling schemes

introduced for each model will be the building blocks in the construction of the

efficient coupling for the random walk with redistribution in Chapter 3. There, we

will use both schemes, switching from one to the other according to the state of the

system.

1 Random Walk on an Interval

Consider a Markov chain (Xt) on SN with transition function q defined so that the

chain moves one space to the right or left at each time interval, each with probability

1
2
, where, if the chain tries to move outside the interval (i.e. to −1 or N+1), it merely

10
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stays at the end point. This process is called a random walk on an interval. The lazy

random walk (see Chapter 1, Section 1) on SN is the Markov chain with transition

function p given as follows:

if x ∈ SN�{0, N},

p(x, y) =



1
4

if y = x+ 1

1
2

if y = x

1
4

if y = x− 1

and if x ∈ {0, N},

p(x, y) =


3
4

if y = x

1
4

if y = x± 1,

where the ± is ‘+’ if x = 0 and ‘−’ otherwise. This process is clearly irreducible and

aperiodic.

We will now construct a coupling for this model. Let Xt and Yt be two Markov

chains with state spaces and transition functions as described above, where X0 = x

and Y0 = y for some x, y ∈ SN . Flip a coin at each time step to determine whether Xt

stays put or moves according to p; if the chain moves, flip another coin to determine

whether the chain moves to the right or left (where, if Xt is 0 or N , moving to −1

or N + 1, respectively, implies staying put). Have Yt follow the same rule. Thus,

at each transition, Xt and Yt will both be either staying put, moving in the same

direction, or, if either is at {0, N}, moving one step closer together. Thus, the chains

are guaranteed to couple at either 0 or N .

We observe that the coupled process is also a Markov chain. Furthermore, it is

clear from the construction that, conditioned on (X0, Y0) = (x, y), the probability
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that X1 = x′ is equal to p(x, x′). A similar statement holds for Y . Therefore, this is

a Markovian coupling.

We know from Proposition 1.15 that any coupling that guarantees the preservation

of the order of the two Markov chains up to the coupling time will be efficient. Since

this coupling satisfies the condition, it is efficient.

We will refer to this kind of coupling (both copies moving in the same direction

when possible) as rigid coupling. To discuss the coupling time for this and subsequent

processes, we define the following notation:

Definition 2.1. Suppose that Z = (Zn : n ∈ Z+) is the lazy random walk on Z: that

is, Z jumps to a neighboring site with probability 1
4

and stays put with probability

1
2
. Let T (L) denote the exit time of Z from the set {1, . . . , L}:

T (L) = inf{t ≥ 0 : Zt = 0 or Zt = L+ 1. (2.1)

Next, we recall a well-known classical result that will serve for estimating the

coupling time. Write Qz for the distribution of Z starting from Z0 = z. Let T (L) be

as defined in 2.1, and let

λ(L) =
1

2
(cos(

π

L+ 1
) + 1). (2.2)

Then we have the following well-known lemma:

Lemma 2.2.

1. There exists a coupling (Z,Z ′) such that Z ′ is lazy random walk starting from

Z0 = b(L + 1)/2c and T (L) ≤ T ′(L), where T ′ is the exit time of Z ′ from

{1, . . . , L}.
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2. For any z ∈ {1, . . . , L},

Qz(T (L) > t) =
2

L+ 1
cot(

π

2(L+ 1)
) sin(

π

L+ 1
z)λ(L)t + λ2(L)tO(1), (2.3)

where |λ2(L)| < λ(L).

In light of part (1) of the Lemma, in what follows (with the exception of the proof

for Lemma 2.2), we will abuse notation and write T (L) for the distribution of the

exit time of Z from {1, . . . , L} starting from b(L+ 1)/2c.

We now return to the coupling presented above. Assuming that y = x + 1, it is

easy to see that the coupling time is equal to T (N).

Proof.

1. Suppose L is odd so that Z ′ starts from the unique center L+1
2

and Z starts from

z ∈ {1, ..., L}. Assume, without loss of generality, that z < L+1
2

. If L+1
2
− z is even,

we run a reflection coupling (see description in the next section) until Z exits or Z

and Z ′ meet at z + 1
2
(L+1

2
− z) and continue together until exiting. In either case,

T (L) ≤ T ′(L). If L+1
2
− z is odd, the method outlined in the description of rigid

coupling can be employed. Namely, we toss two fair coins, A and B, and have A

determine whether Z or Z ′ moves while B determines which way it moves. After

this procedure, either Z will have exited or Z ′ − Z ≥ 0 is even, in which case we

can continue with the reflection coupling as before. Now, suppose that L is even. In

this case, there are two centers, L+1
2
± 1

2
. Assume, without loss of generality, that

z < L+1
2
− 1

2
. If L+1

2
− 1

2
− z is odd, then have Z ′ start at L+1

2
+ 1

2
; otherwise, have Z ′

start at L+1
2
− 1

2
. This ensures that Z ′−Z is even, so we can run the reflection coupling

as before. For a given z, this only establishes that T (L) ≤ T ′(L0) for Z ′ starting from
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a particular center. Hence, the exit time starting from z is stochastically dominated

by the exit time starting from that particular center. However, since the exit times

starting from either center have the same distribution, this is of no consequence, and

the stochastic dominance holds for both centers.

2. Observe that the sub-Markovian transition function for Z killed outside {1, . . . , L}

is reversible and irreducible on {1, . . . , L}. From the Perron-Frobenius Theorem, the

largest eigenvalue is simple. The corresponding eigenvector, the Perron eigenvalue, is

(without loss of generality) strictly positive on {1, . . . , L}. By symmetry, there exists

an orthonormal basis with respect to the counting measure consisting of eigenvectors,

including the normalized Perron eigenvector as an element. It follows that the Perron

root is the unique element in the basis which does not change signs. Finally, note that

the function sin( π
L+1

x) on {1, . . . , L} and zero elsewhere is an eigenfunction for this

transition function, strictly positive on {1, . . . , L}. Thus, this a Perron eigenvector. In

addition, as is easy to see, the eigenvalue is λ(L) = 1
2
(cos π

L+1
+ 1). A straightforward

computation shows that the `2 normalized Perron eigenfunction is
√

2
L+1

sin( π
L+1

x),

and that
∑x=L

x=1 sin( π
L+1

x) = cot( π
2(L+1)

). The result now follows from the spectral

theorem.

2 Random Walk on a Cycle

Here, we consider essentially the same example as before, but we alter the behavior at

the endpoints, making them “neighbors”: that is, N is identified as the left neighbor

of 0, and 0 is identified as the right neighbor of N . This process is known as a random
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walk on an n-cycle, with n = N + 1. If n is even, the process will be periodic with

period 2, as can be easily seen. Thus, to avoid this issue, we again consider the lazy

random walk, which has the following transition matrix:

p(x, y) =



1
2

if y = x mod N

1
4

if y = x+ 1 mod N

1
4

if y = x− 1 mod N

If we try to adapt the rigid coupling scheme from the last section (namely, having the

two copies move in the same direction simultaneously), we end up with a coupling

in which the distance between the two chains will remain constant and the processes

will never meet.

We will introduce a different coupling, the reflection (or mirror) coupling. We

may assume without loss of generality that X0 = 0. In order to make the discussion

simpler, we will also assume that N is odd and Y0 = y ∈ 2, . . . , N − 1 is even. The

coupling is given as follows: at each time unit, we flip a fair coin, according to which

we decide whether the two copies stay put, or move. In the latter case, we flip another

fair coin, and if it lands ‘Heads’, then we increase X by 1, modulo N , and decrease

Y by 1, modulo N ; if the coin lands ‘Tails’, we increase Y by 1 and decrease X by 1

(both, modulo N). As before, this coupling is Markovian.

We observe that the distance between the two copies, Yt − Xt, which is initially

equal to y, stays put (i.e. does not change) with probability 1
2
, increases by 2 with

probability 1
4
, and decreases by 2 with probability 1

4
, all independently of the past,

until either the distance is 0 or N + 1 (note that 2 ≤ Y0 − X0 = y < N + 1 and

both y and N + 1 are even). Thus, the two copies will meet at the same time that
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a lazy random walk would exit the interval {1, . . . , (N − 1)/2}. Letting T (L) with

L = N−1
2

denote the exit time from this interval, as shown in Theorem 1.9, there

exists a constant c > 0, depending on y and N , such that

P (T (L) > t) ∼ cλt (2.4)

where λ = 1
2
(cos(2π/(N + 1)) + 1).

In particular, by the coupling inequality 1.13, there exists some c′ > 0 such that

dt ≤ c′λt. To obtain a matching lower bound, let f(k) = cos(2πk/(N + 1)). A

straightforward computation shows that for any x, Ekf(X1) = λf(k), and as a result,

Ekf(Xt) = λtf(k). In particular, dt ≥ maxk′,k(f(k) − f(k′))λt = c′′λt. This proves

that the coupling is efficient.



Chapter 3

Our work

1 Background

The goal of this chapter is to construct an efficient coupling for a discrete version of

one-dimensional diffusion with redistribution on an interval, a special case of a model

which was studied independently by several groups of authors ([6][3][8][9][10][12][1]).

Our coupling gives a probabilistic explanation to the rates of convergence to station-

arity for the model and partially answers an open problem posed in [8]. The fact that

the coupling does capture the rate of convergence is nontrivial.

Grigorescu and Kang [6] first considered a model they called Brownian Motion on

the Figure Eight. The model considered was Brownian motion on an interval (0, 1),

which upon hitting the boundary, starts afresh at a point a ∈ (0, 1). It was shown

that the model converges exponentially fast to stationarity with the convergence rate

coinciding with the second eigenvalue of the Dirichlet Laplacian −1
2
d2

dx2
on (0, 1). The

model was generalized to higher dimension [7], more general diffusion and boundary

17
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behavior in [3][2][12]. However, the one-dimensional model with BM as the underlying

diffusion (possibly with constant drift) but more general boundary behavior than

BM on the Figure Eight has attracted some attention because, despite its apparent

simplicity (and obvious regeneration structure), it exhibits interesting and nontrivial

behavior [10][8][9][1]. By more general boundary behavior, we mean that upon hitting

the boundary, the process starts afresh in the domain, but with an initial distribution

ν− if exiting from the left and ν+ if exiting from the right. Of course, this mechanism is

repeated indefinitely. It was shown in [10] that if ν− = ν+, then the rate of convergence

is the second eigenvalue of the Dirichlet Laplacian, and the first Dirichlet eigenvalue

is an (unattainable) infimum of rates of convergence over all choices of ν− and ν+.

In an unpublished work due to the tragic death of Wenbo Li, it was shown that the

third Dirchlet eigenvalue is the maximal rate of convergence. All three results were

obtained by Fourier analysis and did not provide any insight on the probabilistic

mechanism that governs the rate of convergence. Kolb and Wubker [8] obtained an

efficient coupling for the case ν− = ν+, giving a beautiful and intuitive explanation

to the rate of convergence, utilizing the fact that ν− = ν+ allows us to guarantee

coupling once both copies are redistributed at the same time. This principle does not

hold when ν− 6= ν+, a problem left open in [8], and is the main motivation for the

present work. Although our main interest is in this latter case, we also provide our

version of the coupling in [8] for the discrete setting, as this leads to more questions

and completes the picture for the discrete setting.
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2 Our Model

We now describe our model. Our process builds from a lazy random walk on the

state space SN = {0, . . . , N} for some N > 2. Let ν0 be a probability distribution on

{2, . . . , N} and νN be a probability distribution on {0, . . . , N − 2}. Slightly abusing

notation, we consider ν0, νN also as the probability mass functions with domain Z,

through the identification νx(z) = νx({z}). Consider the transition function p on the

state space given by:

p(x, y) =



1
2

x = y

1
4

|x− y| = 1

1
4
νx(y) x ∈ {0, N}, |y − x| > 1.

(3.1)

As is easy to see, the model is never reversible. In what follows, we will always

make the following additional assumptions, which will simplify our arguments and

allow us to focus more on the main ideas and less on parity-related technicalities

(which are still unavoidable, but more manageable):

N ∈ 4N, and ν0, νN are both supported on {3, 5, . . . , N − 3}. (3.2)

As we wish to construct a coupling and consequent bounds which are uniform under

scaling as N → ∞, these assumptions pose no restriction. Any probability distribu-

tion on (0, 1) is a weak limit of scalings of ν0 and νN as above.
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3 Our Results

3.1 Assumptions and Preparation

In order to make the main argument simpler and more visible, we will make a reduc-

tion to a smaller set of initial distributions. To this end, we need some definitions.

Let

ρ = 2bmin{x,N − x : ν0(x) + νN(x) > 0}
2

c. (3.3)

That is, ρ is the largest even number less than or equal to the distance of the union

of the support of ν0 and νN to {0, N}. Observe that, by assumption (3.2), ρ ≥ 2. Let

d̃t = sup
y−x∈2N,y−x≤ρ

dt(x, y). (3.4)

Then we have the following simple proposition:

Proposition 3.1.

d̃t ≤ dt ≤ b1 +N/ρc(d̃t + d̃t−1). (3.5)

Proof. The first inequality is trivial. We turn to the second.

From the triangle inequality, for any x, y we have

dt(x, y) ≤ dt(x0, x1) + · · ·+ dt(xn−1, xn), (3.6)

whenever x = x0 < x1 < · · · < xn = y. Note that y − x = mρ + b for unique pair

(m, b) with m ∈ Z+ and 0 ≤ b < ρ. We set the first (possibly empty set of) differences

xj+1− xj, j < m each to ρ. If y− x is even, we let n = m or n = m+ 1 according to

whether b = 0 or not. In the latter case, we let xm+1 − xm = b. When y − x is odd,
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we do as follows. If b = 1 then set n = m + 1 and let xn − xn−1 = 1. Otherwise, let

n = m+ 2 and set xm+1 − xm = b− 1 and xm+2 − xm = 1.

If y − x is even, then we obviously have

dt(x, y) ≤ b1 +N/ρcd̃t (3.7)

and when y − x is odd, we have

dt(x, y) ≤ b1 +N/ρcd̃t + dt(xn − 1, xn). (3.8)

It remains to find an upper bound for dt(xn − 1, xn). Choose A such that

dt(xn − 1, xn) = Pxn−1(Xt ∈ A)− Pxn(Xt ∈ A). (3.9)

We construct a coupling (X, Y ) starting from (xn−1, xn) as follows. Let L and R

be ν0 and νN distributed random variables, respectively. We will assume that L and

R are independent. For the first step, we toss two independent fair coins, independent

of L and R. If the first lands H, then X moves and Y stays put. Otherwise, Y moves

and X stays put. If the second lands H, then we move the copy we chose one step to

the right, meaning redistribution to R if it’s Y and Y is at N . If it lands T then we

move one step to the left, meaning redistribution to L if it is X and X is at 0. After

this first step, both copies continue to evolve independently. Note that in any case,

exactly one copy moves. If the copy moved is not redistributed, then Y1−X1 ∈ {0, 2}.

If X is redistributed from 0 to L, then xn = 1 and X1 − Y1 = L − 1, so that the

distance after one step is even. Similarly, if Y is redistributed form N , then xn = N ,

so that X1 − Y1 = N − 1−R, which is again even.
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By the Markov property,

dt(xn−1, xn) = E(xn−1,xn) (1A(Xt)− 1A(Yt)) = E(xn−1,xn)E(X1,Y1)(1A(Xt−1)−1A(Yt−1)).

(3.10)

However, by the argument above and the triangle inequality, it follows from (3.7) that

E(X1,Y1)(1A(Xt−1)− 1A(Yt−1)) ≤ b1 +N/ρcd̃t−1. (3.11)

so that dt(xn − 1, xn) ≤ b1 +N/ρcd̃t−1. Plugging this into (3.8) completes the proof.

3.2 Deterministic Redistribution

In this section, we will assume, in addition to (3.2), that ν0 and νN are deterministic.

Specificially

ν0 = δJ0 and νN = δJN , where J0, JN ∈ {3, 5, . . . , N − 3}. (3.12)

Let

L0 =
1

2
max{J0 − 1, N − 1− JN , N + JN − J0}. (3.13)

Observe that L is a positive integer, and it will serve as the “effective length” that

will determine the exponential tail of the coupling time. Roughly speaking, L0 is

the longest interval that one copy of the process needs to exit before the two copies

meet, a sort of “bottleneck” for the coupling. Since the coupling is efficient, this actu-

ally describes the worst case scenario for convergence to stationarity. The geometric
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meaning of L0 is given as follows: if we think of our state space as consisting of two

“loops” (which is incorrect), one from 0 to J0 (where we identify J0 with −1), and

the other from JN to N (where we identify JN with N + 1), then the first two listed

elements of the set on the righthand side represent the lengths of the respective loops.

The third, divided by 2, can be viewed as distance between the centers of the loops.

Observe that the examples in Chapter 2 serve as “extreme” versions of our model:

the random walk on an interval can be thought of as the case where J0 and JN are 0

and N , respectively, while the random walk on an n-cycle can be thought of as the

case where J0 and JN are N and 0, respectively. Note that, given our assumptions

on J0 and JN , these cases are not covered by our work.

Observe that the largest distance between the centers increases as J0 decreases

and JN increases and attains a maximum of N − 2 for J0 = 3, JN = N − 3. The

minimal distance is 0, attained when J0 = N − 3 and JN = 3. We also observe the

following additional bounds for L0:

1. L0 = N
2

whenever J0 = JN

2. L0 ≤ N − 3 (attained when J0 = 3, JN = N − 3)

3. L0 ≥ 2(N−1)
3

(attained when JN = N−1
3

).

The main result of this section is the following:

Theorem 3.2. Suppose that 0 ≤ x < y ≤ N and y − x ∈ {2, 4, . . . , ρ}. Then there

exists a Markovian coupling with (X0, Y0) = (x, y) such that the coupling time τ is

dominated by b6 +N/(ρ+ 1)c independent copies of T (L0).

In fact, the bound in the statement is weaker than the actual result proved, as the

coupling time is dominated by a sum of independent random variables all dominated
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by T (L0). The number of the random variables as well as their distributions depend on

x, y. In particular, with the exception of x, y as in Stage 2c in our proof of the coupling,

the coupling time is dominated by the independent sum of T (max(J0−1
2
, N+1−JN

2
)) +

T (N+JN−J0
2

) + T (J0−3
2

). We will not pursue this further because our main goal is

obtaining the exponential rate, and to do so, the statement of Theorem 3.2 would

become messy; all possibilities are obtained easily from the proof and Figure 3.1. We

comment, however, that for x, y in Stage 2c when L0 = N+JN−J0
2

, the bound obtained

in our construction does contain a sum of at least two independent copies of T (L0),

which implies that the coupling time decays exponentially with a polynomial tail.

We do not know whether this is an artifact of our construction or a limitation of

Markovian couplings.

Since by Lemma 2.2, T (L0) has an exponential tail, and a finite sum of independent

and identically distributed random variables with an exponential tail also has an

exponential tail with the same exponent, it follows from the theorem, Proposition

3.1, and Lemma 2.2-(2) that

Corollary 3.3.

lim sup
t→∞

1

t
ln dt ≤ lnλ(L0). (3.14)

To show that the coupling constructed in Theorem 3.2 is efficient, we need a

matching lower bound:

Proposition 3.4.

dt ≥
1

2
(1− 2π

N
)λ(L0)

t. (3.15)
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3.3 Random Redistribution

Here, we will consider more general redistribution measures under the additional

assumption that ν0 = νN .

As seen in the last section, if ν0 = νN = δJ0 , then 1
t

ln dt ∼ lnλ(N
2

) as t → ∞,

independently of the choice of J0. In this section, we show that this remains the same

under the present, more general, assumptions. The analogous results for Brownian

motion instead of lazy random walk were first obtained by Li and his coauthors [10]

through Fourier analysis, and a probabilistic proof using coupling was given in [8].

The coupling we present here is an adaptation of the coupling idea from the latter

work; we present it here to distinguish it from the case of the previous section.

Theorem 3.5. Suppose that 0 ≤ x < y ≤ N and d = y − x ∈ {2, . . . , ρ}. Then there

exists a coupling with (X0, Y0) = (x, y) such that the coupling time τ is dominated by

at most 5 independent copies of T (N/2).

The matching lower bound is given by

Proposition 3.6. dt ≥ P (T (N/2) > t).

We highlight the following with regard to Theorem 3.5:

1. As shown in our proof of Theorem 3.5, the coupling is not Markovian, unless

ν0 is a point mass distribution. This raises the question of whether there does

exist a Markovian coupling at all, and if so, what is the best bound such a

Markovian coupling can give. The same questions are even more interesting for

the case ν0 6= νN with none being a point-mass distribution. We leave these for

future research.
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2. Unlike the coupling of Theorem 3.2, the coupling in Theorem 3.5 ends after at

most 5 stages, independently of the parameters.

4 Proofs

4.1 Coupling Regimes

To prove our theorems, we begin by introducing the couplings we will apply. The

main idea is to switch between the two coupling regimes described in Chapter 2

(rigid and reflection coupling) according to the state of the system. It is convenient

and simpler to describe the coupling using simple reversible lazy random walk on

{−1, 0, . . . , N,N+1}, with transition of the random walk from 0 to −1 identified with

redistribution to J0 and transition from N to N + 1 identified with redistribution to

JN . Switching between the two regimes occurs at hitting times of the joint process.

4.2 Deterministic Redistribution

Proof of Theorem 3.2 .

Without loss of generality we assume that J0 ≤ N − JN . In order to simplify the

description of the coupling, we let X t = min(Xt, Yt) and Y t = max(Xt, Yt).

Suppose that X0 = x and Y t = y, and let D = y−x. Then D is even and D < J0.

Define the “symmetric” points:

`0(D) =
J0 − 1−D

2
and `N(D) =

N + 1 + JN −D
2

. (3.16)

The coupling is done in four stages. We begin from the stage that corresponds to
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the initial condition of the system. In the description below, the first item describes

the initial configuration.

Stage 1.

1. X0 ∈ {`0(D), `N(D)}. Apply reflection coupling.

2. Stop when coupling occurs.

3. Time to complete: T (J0−1
2

) if X t = `0(D) and T (N−JN−1
2

) if X t = `N(D).

When X does not begin from either of the symmetric points, we will drive it to one

of them. This will be done through rigid coupling. If X is between the symmetric

points, we apply rigid coupling (Stage 2a). When X t < `0(D) or X t > `N(D), there

may be redistribution before X reaches either point (Stages 2b and 2c).

Stage 2a.

1. X0 ∈ {`0(D) + 1, . . . , `N(D)− 1} and D < J0. Apply rigid coupling.

2. Stop when X hits {`0(D), `N(D)}.

3. Time to complete: T (`N(D)− `0(D)− 1) = T (N+JN−J0
2

).

When this stage ends, we continue to stage 1.

Stage 2b.

1. X0 < `0(D) and D < J0. Apply rigid coupling.

2. Stop when either

(a) X hits `0(D), or
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(b) X is redistributed from 0.

3. Time to complete: T (`0(D)) = T (J0−1−D
2

).

If the first alternative holds, we continue to Stage 1. Otherwise, at the end of the

stage, Y is at J0 while X is at D − 1. Thus, the new distance is D′ = J0 + 1 − D,

which is even, since J0+1 and D are even, and D′ < J0, because D is an even positive

integer. Observe then that

`0(D
′) =

J0 − 1−D′
2

=
J0 − 1− (J0 + 1−D)

2
=
D

2
− 1 < D − 1.

Therefore, the symmetric point is below the position of X, and we continue to stage

2a with the new distance D′.

Stage 2c.

1. X0 > `N(D) and D < J0. Apply rigid coupling.

2. Stop when either

(a) X hits `N(D), or

(b) Y is redistributed from N .

3. Time to complete: T (N − `N(D)−D) = T (N−JN−1−D
2

).

If the first alternative holds, we continue to Stage 1. Otherwise, at the end of the stage,

X is at JN while Y is at N + 1−D. Thus, the new distance is D′ = N + 1−D−JN .

If D′ ≥ J0, we continue to Stage 3. Otherwise, it is clear that X ≤ `N(D′), so we

continue to Stage 2a, with the new distance D′.

Stage 3.
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1. X0 ∈ {J0, JN}, X0 ≤ `N(D), and Y 0 = X t +D with D ≥ 2 such that D is even

and D ≥ J0. Apply rigid coupling.

2. Stop when either

(a) X hits `N(D), or

(b) X is redistributed from 0.

3. Time to complete: T (`N(D)). Since D ≥ J0, J0 is odd, and D is even, it follows

from (3.16) that the time is dominated by T (N+JN−J0
2

).

If the first alternative holds, we continue to Stage 1. In this case, we adapt Stage

1 slightly, as we now have D′ > J0. However, since X t = `N(D′) and X t < Y t by

definition, D′ < N + 1− JN , so Stage 1 works as before.

Otherwise, by assumption, after redistribution we have that X = J0 and Y =

D − 1 ≥ J0, so the new distance is D′ = D − (1 + J0). Let us consider three

alternatives:

1. X = J0 > `N(D′). This can only occur if 2c started from JN and J0 > JN . In

this case, we continue to Stage 4.

2. X = J0 = `N(D′). Then we continue to Stage 1, as from alternative 2a.

3. X = J0 < `N(D′). If D′ < J0, we continue to stage 2a. Otherwise, we iterate

stage 3. Since in each iteration the distance decreases by 1 + J0, the number of

iterations does not exceed bD/(1 + J0)c, and we eventually continue to Stage 1

or to Stage 2a. Note that, since the distance decreases after each iteration, `N

increases after each iteration.

Stage 4
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1. X0 = J0 > `N(D) and Y 0 = J0 +D. Apply reflection coupling.

2. Stop when either

(a) Coupling occurs, or

(b) Y is redistributed from N .

3. Time to complete: T (N − J0 − D/2) but since J0 > `N(D), it follows from

(3.16) that N − J0 −D/2 < N−1−JN
2

, so the time is dominated by T (N−1−JN
2

).

If the second option occurs, X = JN and Y = J0 − (N + 1 − (J0 + D)). Since

JN < Y < J0, D
′ = Y − X < J0. Thus, depending on the relation of X = JN

to `0(D
′), we continue to either Stage 1, 2a, or 2b. Furthermore, since, initially,

X > `N(D), we have that X − JN > N + 1− Y and in particular, X > N + 1− Y .

Thus, we disregard the possibility of X redistributing from 0 as Y would always be

redistributed first.

Let us review the coupling. Figure 3.1 displays all possible implementations of the

coupling. Stages 1, 2a, 2b, and 2c are the initial steps, in the sense that the coupling

must begin from one of these stages. In the coupling, each of these steps is repeated

at most once. Stage 2c is unique in the sense that it takes care of the case that the

redistribution may lead to a distance bigger or equal to J0. Stage 3 is invoked when

this happens.

Stage 3 may be repeated a number of times, where the number of iterations is

bounded above by b1 + N/(J0 + 1)c. From Stage 3, the coupling proceeds to either

stage 1, 2a, or 4. From Stage 4, the coupling can either end (meeting) or continue to

one of the Stages 1, 2a, or 2b.

From the point of view of the duration of the coupling, the meeting time is bounded
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Figure 3.1: Summary of the coupling from Section 4.1

above by the independent sum of the times for all Stages, with possible repetitions

for Stage 3. Listing the times for each of the stages in order of appearance, we

have T ((J0 − 1)/2) or T ((N − JN − 1)/2) (Stage 1), T (N+JN−J0
2

), T (J0−1−D
2

) and

T (N−JN−1−D
2

) (Stage 2), T (N+JN−J0
2

) (Stage 3) and T (N−JN−1
2

) (Stage 4). The maxi-

mal length among all intervals mentioned above is therefore 1
2

max{J0 − 1, N − JN −

1, N + JN − J0}, which is L0. Finally, Figure 3.1 shows that the maximal number of

steps (omitting Step 3) is 5, and the result now follows.
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Proof of Proposition 3.4. We will find an eigenfunction f for p which is not con-

stant and has a real eigenvalue λ. Without loss of generality, we may assume that

sup |f | ≤ 1. For any x, y, dt(x, y) ≥ 1
2

(Exf(Xt)− Eyf(Xt)). Since we must have∑
x f(x)π(x) = 0, where π is the stationary distribution of X, it follows that f at-

tains both strictly positive and strictly negative values. In particular, we can choose

x and y such that f(x) > 0 > f(y), and it immediately follows that

dt(x, y) ≥ 1

2
(f(x)− f(y))λt. (3.17)

In order to find f , we will choose f(x) = sin(ρx+ω), and we will find choices for the

parameters ρ and ω that match the upper bounds from Theorem 3.2. Suppose now

that x ∈ {1, . . . , N − 1}. Then

pf(x) =
1

4
(sin(ρ(x+ 1) + ω) + sin(ρ(x− 1) + ω)) +

1

2
sin(ρx+ ω).

Thus, pf(x) = 1
2
(cos ρ + 1)f(x). Now, if we extend f to {−1, . . . , N + 1} and addi-

tionally impose the constraints


sin(−ρ+ ω) = sin(ρJ0 + ω), and

sin(ρ(N + 1) + ω) = sin(ρJN + ω),

(3.18)

then it immediately follows that f (restricted to the state space) is indeed an eigen-

function for p with eigenvalue λ = 1
2
(cos ρ+ 1). In order to proceed, we need to find

choices for ρ and ω that will satisfy the constraints.

The first constraint is met if −ρ + ω + 2π = ρJ0 + ω. That is, ρ(J0 + 1) = 2π,

or ρ = 2π
J0+1

. With this choice of ρ, the first constraint is met for all choices of ω,
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which allows to freely chose ω to meet the second constraint. The actual value of ω

is irrelevant for the eigenvalue calculation.

As is easy to see, we can repeat the argument by considering the second constraint

first. This will give us ρ = 2π
N+1−JN

.

Another way to satisfy the first constraint is to have the arguments of the sin

function in the equation symmetric with respect to a maximum or a minimum of the

sin function, that is π/2 + πk for some integer k. In taking k = 0, the first constraint

is satisfied when

π

2
− (−ρ+ ω) = ρJ0 + ω − π

2
,

and the second constraint will be met if

3π

2
− (ρJN + ω) = ρ(N + 1) + ω − 3π

2
.

Subtract the first equation from the second to obtain π−ρ(JN+1) = −π+ρ(N+1−J0),

that is

ρ =
2π

N + 1 + JN − (J0 − 1)
.

Using the first equation, ω = π
2
− ρ

2
(J0− 1), and the second equation is thus satisfied

as well.

In light of the above, we see that (3.17) is satisfied when λ is chosen to be λ1

in the statement of the theorem, and f is the corresponding eigenfunction of the

form sin( π
L0+1

x+ ω1). Observe that ρ1 ≥ π
N

. In particular, the set {ω1, ρ1 + ω, 2ρ1 +

ω, . . . , Nρ1+ω} contains at least one element whose distance from π/2+πk1 for some

k1 ∈ Z, is at most π
N

, as well as an element whose distance from πk2 for some k2 ∈ Z

is at most π
2
. Call the first x and the second y. Without loss of generality, we may
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assume f(π/2 + kπ) = 1 (otherwise change to −f). It follows that f(x) ≥ 1 − π
N

.

Similarly, f(y) ≤ π
N

. Therefore, f(x)− f(y) ≥ 1− 2π
N

, and the result follows.

4.3 Random Redistribution

Proof of Theorem 3.5. We first prove the theorem for the case that x, y ≤ N/2. By

symmetry, this also covers the case where x, y ≥ N/2. After we construct the coupling

for this stage, we extend it to the remaining case where x ≤ N/2 and y > N/2.

Assume then that 0 ≤ x < y ≤ N/2 and d = y − x ≤ ρ. Let K,K ′ be two

independent random variables distributed according to ν0.

Stage 1a.

1. X0 = x, Y0 = y, 0 ≤ x < y ≤ N/2, d ≤ ρ. Apply Rigid coupling.

2. Stop when either

(a) Y hits N/2, then continue to 1b, or

(b) X is redistributed from 0 to K. Continue to Stage 2a.

3. Time is bounded above by T (N/2).

Stage 1b.

1. Y0 = N/2 and X0 = N/2− d. Apply reflection coupling.

2. Stop when either

(a) Copies meet, or

(b) Yt −Xt = ρ. Continue to 1c.
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3. Time is bounded above by T (ρ/2− 1).

Note that the second alternative will occur before a redistribution, because when X

hits 0, the distance will be N/2 − d + d + N/2 − d = N − d, and since d ≤ ρ, this

quantity is greater or equal to ρ.

Stage 1c.

1. X0 = N/2− d− (ρ− d)/2, Y0 = N/2 + (ρ− d)/2. Apply Rigid coupling.

2. Stop when either

(a) Yt = (N + ρ)/2, then continue to Stage 3, or

(b) X is redistributed from the origin to K, then continue to Stage 3.

3. Time is bounded above by T (N−ρ
2

+ 1).

If the second alternative holds and K ≤ N/2, the processes meet. Otherwise, after

this stage ends, the copies are at a and N − a for some a.

Stage 2a. X0 = K and Y0 = d− 1 (Y never jumped). Apply reflection coupling.

1. Stop when either

(a) Copies meet, or

(b) When distance is K + 1 and continue to 2b.

2. Time bounded above by T (d/2).

Stage 2b.
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1. X0 = K + d/2, Y0 = d/2− 1 (Y never jumped). Apply Rigid coupling.

2. Stop when either:

(a) Y is redistributed from 0 to K and copies meet, or

(b) Yt = N/2− (K + 1)/2; then continue to stage 3.

3. Time is bounded above by T (N/2− (K + 1)/2).

Stage 3.

1. Y0 = N −X0. Apply reflection coupling.

2. Stop when either

(a) The copies meet, or

(b) The copies are redistributed from 0 and N simultaneously to K ′.

3. Time is dominated by T (N/2).

As is easy to see, the coupling ends after no more than four Stages, the longest

chain being 1a→1b→1c→3, and the times for the stages are all dominated by identical

and independently distributed copies of T (N/2). Furthermore, this coupling is not

Markovian, since, in Stage 2b, if Y is redistributed from 0, the transition is from

(0, K + 1) → (K,K), whereas, if the coupling were Markovian and ν0(y) < 1, then

for any y < N , there exists x 6= y and y′ such that the transition (0, y + 1)→ (x, y′)

occurs with positive probability.

We have therefore completed the proof for the case where x, y are both ≤ N/2.

Suppose now that x ≤ N/2 and y > N/2. Let ỹ = N − 2. Then x, ỹ ≤ N/2, and

furthermore, since 0 < y−x ≤ ρ, y−x = |y−N/2|+|N/2−x| = |ỹ−N/2|+|N/2−x|.
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But |ỹ − x| ≤ max{N/2 − ỹ, N/2 − x} ≤ y − x ≤ ρ. Furthermore, since ỹ − y is

even, ỹ − x is even too. Thus, we can construct a coupling (X, Ỹ ) starting from

(x, ỹ) whose coupling time will be dominated by at most four independent copies of

T (N/2). However, letting Y = N − Ỹ , at the coupling time τ for (X, Ỹ ), we have

that Yτ = N − Xτ . Therefore, applying stage 3 again (with an independent copy

of K ′) guarantees that X and Y will be coupled after no more than 5 independent

copies of T (N/2).

Proof of Proposition 3.6. Let f(x) = 1 if x ≤ N/2 and f(x) = 0 otherwise. Now:

dt ≥ EN/4f(Xt)− E3N/4f(Yt) = E(N/4,3N/4)(f(Xt)− f(Yt)),

for every coupling (X, Y ). If we choose reflection coupling until the copies meet and

then move them together, since 3N/4−N/4 is even, it follows that the meeting time

τ occurs exactly when X exists in the set {0, . . . , N/2− 1}. In particular,

dt ≥ E(N/4,3N/4) [(f(Xt)− f(Yt)) ; τ > t] , (3.19)

and the righthand side is equal to P (T (N/2) > t).
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