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Chapter 1 

Introduction 

This chapter is organized into six sections: The first section outlines the motivation for this 

thesis. The second section provides background information on the double-random-phase 

encryption. The third section presents the double-random-phase encryption with photon-counting 

(PC-DRPE). The fourth section discusses how to authenticate the decrypted image from the PC-

DRPE. The fifth section discusses combining the Quick Response (QR) code with the double-

random-phase encryption. Lastly, section 6 presents the conclusion. 

1.1. MOTIVATION 

Millions of transactions of sensitive information are performed every day ranging from the 

exchange of credit card information to using a passport for identification. Ensuring that these 

transactions do not compromise the security of the information being exchanged is critical. In the 

Unites States, there were over 13.5 million passport books and passport cards issued in Fiscal 

Year 2009 [1]. The Department of State government states that in Fiscal Year 2012, there were 

over 3,900 new cases of passport and visa fraud. Of the fraudulent transactions, counterfeiting, 

forgery or alteration of a visa is included. If a person is able to obtain a fraudulent passport, they 

can use this to flee from prosecution, facilitate drug trafficking and terrorist operations, assist 

with other crimes, such as remain in the Unites States illegally, or smuggle illegal aliens to the 

United States [2]. According to the Consumer Sentinel Network, the largest number of 

complaints in 2012 was identify theft [3]. In addition, credit card fraud is up by 87% since 2010 

and results in a total loss of $6 billion [4]. 

Methods exist meant to ensure the authenticity and security of sensitive information. For 

example, credit cards contain a Holographic image meant to make it difficult to duplicate or 
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manufacture a false credit card. Moreover, credit cards include a tamper-evident signature panel 

and embossed numbers that raise the account numbers on the front of the card and extends into a 

hologram [5]. However, as new security measures are introduced into existing items, security 

flaws are also exposed. Although the hologram on a credit card increases the complexity of 

duplicating a credit card, advances in imaging technologies have allowed for the holographic 

image to be captured using a charged coupled device (CCD) camera allowing a skilled 

holographer to duplicate the hologram [6].   

In addition to physical duplication of sensitive information, many transactions of 

sensitive information is also passed through the internet and possible insecure networks. If an 

attacker were to intercept this data, they will have the opportunity to steal this information and 

use it for their own use. Whether it is the electronic transmission of credit card information or 

social security numbers, the protection of this information is of utmost importance. Users must 

be vigilant of phishing scams, malware, and online identity theft [7]. Currently there are 

encryption algorithms and methods for secure electronic communication such as the Advanced 

Encryption Standard (AES), which is a symmetric key algorithm meaning that the encryption and 

decryption keys are identical [8]. Moreover, there is the RSA algorithm, which is a public-key 

cryptography meaning there is a public key and an associated private key used in the 

encryption/decryption process [9,10].  

Optical technologies have been widely explored to encrypt sensitive information. These 

technologies have applications ranging from securing fingerprints to identifying a person based 

on their facial features [7]. One major advantage of optical processing is the speed of processing 

large amounts of information. In addition, optical security can employ numerous parameters for 

encryption including wave length, phase information, spatial frequency or polarization of light. 
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In addition, image information can remain as 256 discrete pixel values instead of having to be 

converted to ones and zeros for an electronic security processor. Although optical methods can 

add further layers of security, it does have its disadvantages such as the cost of the equipment to 

optically implement the encryption scheme or the poor quality of images obtained by optically 

encrypting or decrypting an image [7]. It is possible to combine optical results with 

computational algorithms to improve the image quality at the cost of adding further complexity 

to the system. Nonetheless, current methods of optical encryption are becoming more feasible 

and can be integrated with current technology. 

The double-random-phase encryption (DRPE) [11] is a very popular optical encryption 

method due to its simplicity. Moreover, it is robust against many different attacks [10,15,16] in 

practical use such as the brute-force attack  and chosen plain-text attacks by simply updating the 

encryption keys. There have been numerous improvements to the DRPE including the full phase 

processor [16], applying the DRPE in the Fresnel domain [17] or incorporating the DRPE with 

digital holography [18]. In addition, the DRPE has had applications in data storage [19-21] and 

biometrics [22,23]. 

 

1.2 The Double-Random-Phase encryption  

The double-random-phase encryption will be reviewed. For convenience, one-dimensional notation will 

be used. To begin, let (x,y) and (v,w) denote the spatial and frequency domain, respectively. In addition, 

let f(x,y) be the input image and n(x,y) and b(v,w) be two random noises that are uniformly distributed 

over the interval [0,1]. The encrypted images for the amplitude-based DRPE is given as [11] 
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  ( , ) ( , )exp 2 ( , ) ( , ), x y f x y j n x y h x y    (1.1) 

where  denotes convolution, exp[ 2 ( , )]j n x y  is a phase mask in the spatial domain,  and ( , )h x y is a 

phase mask whose Fourier transform is exp[ 2 ( , )]j b w  .   

 The encrypted images are white stationary noise. It is worth noting that both amplitude and phase 

information must be encrypted since an image can be partially recovered by either bit of information. 

Thus, by using phase masks in both the frequency and spatial domains, both of these components of the 

image are encrypted. Figure 1.1(a) depicts the encryption process. 

To decrypt the image, the decryption process of the DRPE method is used. The Fourier 

transform of ( , )x y  is taken. It is then multiplied by the complex conjugate of the phase mask 

used in the encryption process in the frequency domain, exp[ 2 ( , )]j b w  . The Fourier 

transform is taken once more bringing this back to the spatial domain so that the function 

( , )exp[ 2 ( , )]decryptf x y j n x y  is obtained where ( , )decryptf x y is the decrypted image. Using an 

intensity-sensitive device such as a CCD camera can then recover the input image as 

2
( , )decryptf x y which is equivalent to ( )decryptf x  since the input image is real and positive [11]. 

Figure 1.1(b) depicts the decryption process. 

 The security of the DRPE has been analyzed. It was found that the encryption scheme is 

robust to many attacks, such as the brute force attack.  Moreover, many of the attacks can be 

prevented by simply updating the phase keys [16]. Regardless though, the encryption scheme can 

still be compromised, such as if an attacker tricks a legitimate user into encrypting a known 

image or plain text (chosen- plaintext attack).  In this situation, it is possible to recover the phase  


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(a) 

 

(b) 

Fig. 1.1. Schematic of (a) double-random-phase encryption (DRPE) encryption process and (b) the DRPE 

decryption process. 
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key from the frequency domain. For example, a user may introduce a Dirac signal image into the 

input system. Thus, the ciphered image is simply the phase key presented in the frequency 

domain [10,15,16] compromising the security of the encryption scheme. 

1.3 The Double-Random-Phase encryption with Photon-Counting 

As previously discussed, there are security flaws in the traditional double-random-phase 

encryption processes. Pérez-Cabré et al. proposed a modification to the DRPE: Instead of using 

this algorithm as a linear encryption/decryption scheme, modify the process as an authentication 

method [24]. To do this, photon-counting is performed on the amplitude of the encrypted image. 

Photon-counting is a process that limits the number of photons arriving at a pixel in an image. 

Note that this is a nonlinear transformation of the data. Since photon-counting is performed on 

the amplitude of the encrypted image, information is lost. Thus, rather than recover the primary 

input image in the decryption process, a noise-like decrypted image is obtained. Since only the 

amplitude information was modified, and  not the phase information, it is possible to authenticate 

the photon-limited encrypted image using nonlinear processors [25-31. This can have many 

applications in security including correctly verifying an identification card. 

 Photon-counting itself is modeled as a Poisson distribution [31-34]. That is not to say 

that a Poisson distribution is the only model. Depending on the coherent state of light, the 

photons may follow a binomial, negative binomial, multinomial distribution, or negative 

multinomial distribution [36]. For experiments, we assume that the coherent state can be 

modeled as a Poisson distribution. Moreover, the fewer the number of photons arriving at a pixel, 

the sparser the scene becomes. The probability density function for counting the number of 

photons at an observation area or arriving at pixel j can be modeled as [32]: 
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(1.2) 

where jl is the number of photons detected at pixel j and j is the Poisson parameter defined as ,p jN x  

where Np is the number of photons in the scene and jx  is the normalized irradiance at pixel j 

such that 
1 1M

ij x   with M  being the total number of pixels.  

Using Eq. (1.2), the photon-counting approach can be applied to the amplitude of the encrypted 

images for the DRPE [Eq. (1.1)].  Note that Eq. (1.1) can be rewritten in terms of amplitude and phase of 

the form ( , ) ( , ) exp[ ( , )]x y x y j x y   , where ( , )x y is the amplitude data and ( , )x y  denotes 

the phase information. 

             

Fig. 1.2. (a) 128 x 128 binary input image. (b) the amplitude of the  DRPE encrypted image and (c) the 

phase of the DRPE encrypted images. 
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                                            (a)           (b) 

Fig. 1.3. (a) Photon-limited PC-DRPE encrypted image, ( , )ph x y , using the image shown in Fig. 1.2 

(b) at Np=1000 or 0.0610 photons/pixel and (b) decrypted image from the PC-DRPE of Fig. 1.3 (a). 

The photon-counting method can be implemented by normalizing the amplitude of the encrypted 

images such that   1 1, y ( , y ) / ( , y ) ,M N
i i i ji jx x x      where M and N are the total number of pixels 

in the x and y directions, respectively. The Poisson parameter in Eq. (1.2) is then calculated by 

multiplying  , yx  by Np . For a given Np, a photon-limited encrypted image for the double-random-

phase encryption with photon counting (PC-DRPE), ( , )ph x y , is obtained. Fig. 1.2(a) shows a 128 x 128 

pixel binary input image, ( )f x . Figures 1.2(b) and 1.2(c) depicts the amplitude and phase, respectively, 

of the encrypted images for the DRPE, ( , )x y . Fig. 1.3(a) depicts the photon-limited encrypted image, 

( , )ph x y , at Np=1000 or 0.0610 photons/pixel. 

The process to decrypt the PC-DRPE is identical to the decryption process of the DRPE. The 

Fourier transform of ( , )ph x y is taken. It is then multiplied by the phase mask exp[ 2 ( , )]j b w   and 

the Fourier transform of this product is taken once more yielding ( , )exp[ 2 ( , )]phf x y j n x y , where 

( , )phf x y is the noise-like decrypted image. The intensity of this product can then be taken yielding
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2

( , )phf x y  which is equivalent to  ( , )phf x y  since the primary input image is real and positive. Fig. 

1.3(b) depicts the decrypted image of the encrypted image shown in Fig. 1.3(a). 

1.4 The Double-random-phase encryption with Photon-Counting Authentication 

Using the double-random-phase encryption with photon-counting, the decrypted image is still 

noise-like [Fig. 1.3(b)] and cannot be verified visually. One possible way to authenticate the 

decrypted image is by using nonlinear correlation filters [26-31]. The k
th

 order nonlinear filter is 

an example of a nonlinear correlation filter and was used for authentication due to its simplicity 

and ease of implementation. The filter is presented, using  ,v w to represent the coordinates in 

the frequency domain, as: 

           , , , exp , , ,
k

ph phc x y IFT F v w F v w j v w v w      (1.3) 

where k is the strength of the applied nonlinear that suppresses the amplitude thus determining 

the performance of the filter, IFT is the inverse Fourier transform,  ,F v w is the Fourier 

transform of the input image,  ,phF v w  is the Fourier transform of the photon-limited decrypted 

image,  ,ph v w and  ,v w  are the Fourier phase obtained for the decrypted image and input 

image, respectively, and  || is the modulus operator. 

Fig. 1.4 (a) depicts the decrypted image of the PC-DRPE using Fig. 1.2 (a) as the input 

image to the PC-DRPE . Fig. 1.4. (b) depicts a 128 x 128 pixel binary false class image. Figure 

1.4(c) shows the output of the k
th

 order nonlinear for k=0.3 with the graph normalized to 1. Fig. 

1.4(d) shows the output of the k
th

 order nonlinear filter with k=0.3 using the false class image; the 

maximum peak is 0.18 indicating that the filter was able to distinguish between a true and false 

class image. 
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Fig. 1.4. (a) Decrypted (true class) image of the image shown in Fig. 1.2 (a) used in the PC-DRPE 

encryption scheme; (b) 128 x 128 pixel binary false class image; (c) output of the k
th
 order nonlinear filter 

with k=0.3 using the true class image normalized to 1; (d) output of the k
th
 order nonlinear filter with 

k=0.3 using the false class image with a maximum peak of 0.18. 

 

Much research has been done incorporating photon-counting in optical security. In [37], the PC-

DRPE was extended into three dimensions using three dimensional (3D) integral imaging. It was shown 

that the noise-like decrypted image required fewer photons for authentication than the 2D. Moreover, 

sparse encoding has been investigated [38]. In this technique, the input image is encoded into two phase 

masks M1 and M2. Sparsity is introduced in one of two ways: One way is to generate sparse data from the 

two phase masks and the second method is to generate sparse data from the plaintext image itself. As with 

the photon-counting method, it is visually impossible to authenticate the decrypted images; however, 

correlation filters can be used verify the decrypted images [25-31]. 

 

20 40 60 80 100 120

20

40

60

80

100

120

(a) (b)

(c)
(d)



11 
 

1.5 Quick Response (QR) Code with the Double-Random-Phase Encryption 

The Quick Response (QR) code is a two dimensional (2D) barcode that has gained rapid 

popularity. It was created by D. Wave to serve in the automotive industry in Japan to replace the 

1D barcode [39]. The advantage of using a QR code is that it can be scanned regardless of 

scanning direction or if the QR code is damaged. Moreover, it has much greater storage 

capabilities than a 1D barcode. Thus, the QR code has found many applications including 

helping ID patients in hospitals, providing additional information on business cards, and being 

used in lottery tickets. The QR code has the ability to store upwards of 4,296 alpha numerics, 

7,089 numbers, and 2,953 bytes of 8 bit binary data [40-41]. In addition, online QR generators 

can be used to generate QR codes including the level of error correction and version number 

[41].  

     Figure 1.5(a) shows an image of a QR code generated using the ZXing Project [41] 

containing  36 characters. The QR code itself is a binary image consisting of black squares 

known as modules placed on a white background where each black square represents some bit of 

information about the input text. The QR code can be read by a QR reader built into 

Smartphones such as an iPhone or Android device [42] to retrieve the text. However, as the 

number of characters stored in the QR code increases, the size of the modules decreases, as 

shown in Fig. 1.5(b) which is a QR code containing over 200 characters. As a result, if too much 

information is stored in a QR code, the module size will fall below the resolution limit of the 

camera used in Smartphones making it difficult for the QR code to be read [43].  

       Some of the components of the QR code are described in Fig. 1.5(c). A timing pattern is 

used to tell the QR reader the size of the QR code [39]. Moreover, the finder pattern and 

alignment pattern are used by the QR reader to determine the position of the QR code. Most 



12 
 

importantly, the QR code contains format information that informs the QR reader what type of 

mask was used in the QR code, which aides in reading the QR code. Lastly, the QR code 

contains information regarding the Reed Solomon Error correction [39] to determine the level of 

error correction needed. Note though that as the error correction level increases, the amount of 

data that can be stored in the QR code decreases [43]. The QR code also contains information 

indicating the QR code version number; the higher the version number, the more information 

that can be stored in the QR code.  

     

Fig. 1.5 (a) QR Code generated using ZXing Project [22] containing 36 characters; (b) QR code 

containing over 200 characters; (c) some components of the QR code. 

 

    It is worth noting the security flaws inherently in the QR code. One major flaw is that the 

information inside the QR code cannot be visually seen. Thus, the user must scan the QR code 

which contains unknown information. With commercial Smartphones, if a QR code is scanned 

and contains a URL, the phone is automatically redirected to that URL. As a result, the QR code 

may direct a user to a malicious website that can compromise the security of the QR reader such 

as phishing and malware attacks [44].   

Barrera et. al [45]combined the QR code with the double-random-phase encryption. One 

disadvantage of optically encoding the DRPE is that the decrypted image is noisy due to random  
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(b) 

Fig. 1.6 (a) Optically encrypting the QR code using the double-random-phase encryption and (b) 

optically decrypting the encrypted QR code 
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perturbations and speckle effects degrading the quality of the recovered primary image. To 

overcome this, text is stored inside of the QR code. The QR code is then optically encoded as 

shown in Fig. 1.6(a). The encrypted image is then optically decrypted as seen in Fig. 1.6(b); 

however, the decrypted image is noisy. Due to reed-Solomon error correction incorporated into 

the QR code design, a Smartphone is capable of scanning the QR code and retrieving the 

information stored inside of the QR code. Fig. 1.7(a) depicts the original QR code while Fig. 

1.7(b) shows the optically decrypted QR code shown in Fig. 1.7(a). Figure 1.7 (c) shows the 

scanned text stored inside of the QR code shown in Fig. 1.7(b).  

 

 

Fig. 1.7 (a) Optically encrypting the QR code using the double-random-phase encryption and (b) 

optically decrypting the encrypted QR code 

1.6 Conclusion 

Improving the security of sensitive information is extremely important. To mitigate the ability of 

an attacker to gain access to this information is a challenging task. As new security measures are 

introduced, established security schemes are compromised. Sensitive information can be 

transported physically, such as a passport, or electronically, such as sending credit card 

information over the internet. Many methods exist to add security to these methods; however, 

optical encryption schemes hold many advantages, such as the ability to be implemented either 

(a) (c)(b)
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optically or electronically or a combination of both. Moreover, optical schemes have the ability 

to contain multiple keys for decryption including wavelength, phase mask information, or 

reconstruction distance. Although the technology needed to perform optical experiments can be 

expensive, with further research optical security methods can become more common. 

The double-random-phase encryption is a widely researched encryption scheme. It has 

many nice properties including its ease of implementation and robustness to noise and attacks 

especially when the phase masks are updated. The DRPE has found applications in image 

authentication by applying a photon-counting technique to the amplitude of the encrypted image. 

Although the decrypted image cannot be visually authenticated as the primary input image, it is 

possible to verify the decrypted image using optical nonlinear filters.  In this manuscript, further 

investigation of the DRPE with photon-counting is performed along with potential applications.    
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Chapter 2 

Full phase photon-counting double-random-phase encryption* 

We investigate a full phase based photon-counting double-random-phase encryption (PC-DRPE) 

method. A photon-counting technique is applied during the encryption process creating sparse 

images. The statistical distribution of the photon-counting decrypted data for full phase encoding 

and amplitude phase encoding are derived and their statistical parameters are used for 

authentication. The performance of the full phase PC-DRPE is compared with the amplitude-

based PC-DRPE method. The photon-counting decrypted images make it difficult to visually 

authenticate the input image; however, advanced correlation filters can be used to authenticate 

the decrypted images given the correct keys. Initial computational simulations show that the full 

phase PC-DRPE has the potential to require fewer photons for authentication than the amplitude-

based PC-DRPE.   

The chapter is arranged as follows: in Section 2, the encryption and decryption process for the full 

phase and amplitude-based double-random-phased encryption with photon-counting (PC-DRPE) is 

discussed. In Subsection 3. A, the decrypted image from the amplitude-based PC-DRPE is analyzed.  In 

Subsection 3. B, the decrypted image from the full phase PC-DRPE is analyzed.  The statistical 

distributions are derived for each case. In Section 4, an optical processor is used to verify the decrypted 

images obtained from both encryption methods. In Section 5, a comparison between the full phase and 

amplitude-based PC-DRPE using the optical processor is discussed. In Section 6, the conclusion is 

presented. 

*A. Markman and  B. Javidi, “ Full phase photon counting double-random-phase encryption,” Journal of the Optical Society of 

America A, doc. ID  196636   (posted 1 Dec 2013, in press). 
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2.1. INTRODUCTION 

The role of optical imaging for information security has been investigated by many researchers [1-20]. 

The double-random-phase encryption (DRPE) technique [11] is able to encrypt and decrypt an image; 

however, there may be security flaws in the system [14-15]. Some of these issues may be resolved by 

frequently updating the phase masks used in the DRPE [15].  Over the years, many improvements to the 

DRPE have been developed [16-20,24,45-57]. These include the full phase processor [16], applying the 

DRPE in the Fresnel domain [17] or incorporating the DRPE with digital holography [18]. Moreover, the 

DRPE has had applications in data storage [19-21] and biometrics [22,23]. In [24], Pérez-Cabré et al. 

proposed an additional layer of security to the amplitude-based DRPE by applying photon-counting to the 

encrypted image generating a photon-limited image. This technique is able to control the number of 

photons that arrive at a pixel through a stochastic Poisson process. By limiting the number of photons, a 

sparse encrypted image is created. Thus, rather than recover the entire input image in the decryption 

process, the decrypted image is sparse. However, correlation processors [25-31] can be used to verify the 

decrypted image.  

2.2. ENCRYPTION AND DECRYPTION PROCESS 

The double-random-phase encryption (DRPE) will be reviewed briefly for both the amplitude-based and 

full phase DRPE. For convenience, one-dimensional notation will be used. To begin, let ( )x and ( )  

denote the spatial and frequency domain coordinates, respectively. In addition, let ( )f x  be the input 

image and ( )n x and ( )b   be two random keys that are uniformly distributed over the interval [0,1]. The 

encrypted images for the amplitude-based DRPE and full phase DRPE are given as [11,16] 
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  ( ) ( ) exp 2 ( ) ( ), amp x f x j n x h x   
 

(2.1) 

    ( ) exp ( ) exp 2 ( ) ( ) , full x j f x j n x h x    
 

(2.2) 

 

where   denotes multiplication,  denotes convolution, exp[ 2 ( )]j n x  is a phase mask in the spatial 

domain, and ( )h x is a mask whose Fourier transform is exp[ 2 ( )]j b  . 

Photon-counting is then applied to the encrypted image. This process limits the number 

of photons arriving at each pixel according to a statistical distribution process [24]. It has been 

shown that this process can be modeled as a Poisson distribution [32-35]. Moreover, the fewer 

the number of photons arriving at a pixel, the sparser the scene becomes. The probability density 

function for counting the number of photons at an observation area or arriving at pixel i can be 

modeled as [32]: 

[ ]
( ; ) ,

!

i il
i

i i

i

e
P l

l







 

 for 0,i  
{0,1,2,...},il   

(2.3) 

where il is the number of photons detected at pixel i and i is the Poisson parameter defined as ,p iN x  

where Np is the number of photons in the scene and ix  is the normalized irradiance at pixel i  

such that 1 1M
ii x   with M  being the total number of pixels.  

Using Eq. (2.3), the photon-counting approach can be applied to the encrypted images for both 

the full phase and amplitude-based DRPE [see Eqs. (2.1) and (2.2)]. Note that Eqs. (2.1) and (2.2) can be 

rewritten in terms of amplitude and phase of the form ( ) ( ) exp[ ( )]x x j x   , where ( )x is the 

amplitude data and ( )x  denotes the phase information. 

More specifically, photon-counting is applied to the amplitude of the encrypted images for both 

the amplitude based and full phase DRPE [see Eqs. (2.1) and (2.2)] to generate the photon-limited 


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encrypted image, ( )x . Note that Eqs. (2.1) and (2.2) can be rewritten in terms of amplitude and phase 

of the form ( ) ( ) exp[ ( )]x x j x   , where ( )x is the amplitude data and ( )x  denotes the phase 

information. The normalized irradiance is calculated such that 1( ) ( ) / ( ) .M
i iix x x    The Poisson 

parameter in Eq. (3) is then calculated by multiplying ( )x  by Np. Using Eq. (3), the encrypted and 

photon-limited amplitude data, ( )x , is generated. For a given Np, photon-limited encrypted images for 

the amplitude based and full phase PC-DRPE, ( )amp x and ( ),full x respectively, are obtained. Fig. 2.1(a) 

shows a 256 x 256 pixel binary input image, ( )f x . Figures 2.1(b) and 2.1(c) depict the amplitude of the 

encrypted images for the amplitude based DRPE, ( )amp x  and ( ),full x  respectively. Figures 2.1(d) 

and 2.1(e) show the sparse encrypted images ( )amp x  and ( )full x , respectively, for Np =1000 

photons or 0.0152 photons/pixel.  

To decrypt the image, the decryption process of the DRPE method is used. For the amplitude 

based PC-DRPE, the Fourier transform of ( )amp x  is taken. It is then multiplied by the complex 

conjugate of the phase mask used in the encryption process in the frequency domain, exp[ 2 ( )]i b  . 

The Fourier transform is taken once more bringing this back to the spatial domain so that the function 

( )exp[ 2 ( )]ampphf x i n x  is obtained where ( )ampphf x is the noise-like decrypted image. Using an 

intensity-sensitive device such as a CCD camera can then recover the input image as 
2

( )ampphf x which 

is equivalent to ( )ampphf x  since the input image is real and positive [1]. Figure 2.2(a) shows the 

decrypted image at Np = 1000 or 0.0152 photons/pixel. It is impossible to visually identify the input 

image. 
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Fig. 2.1 (a) 256 x 256 pixel input image, ( )f x ; amplitude of the encrypted image for the (b) amplitude 

based DRPE, ( ),amp x  and the (c) full phase DRPE, ( );full x photon-limited encrypted images with 1000 

photons in the scene (Np) or 0.0152 photons/pixel for the (d) amplitude based PC-DRPE, ( ) ,amp x and the 

(e) full phase PC-DRPE, ( )full x .      

 

(a)

(b) (c)

(d) (e)
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The full phase PC-DRPE encrypted image can be decrypted in a similar fashion. Since the input 

image is real and positive, the photon-limited decrypted image, ( )fullphf x , is [16]: 

 exp ( )( ) ,
fullfull

phph
A j f xf x Arg       

(2.4) 

 

where A is the amplitude of the decrypted image, || is the modulus operation, and Arg  is the argument 

function that restricts the phase angle from  to  .  

     Figure 2.2(b) shows the decrypted image for Np = 1000 or 0.0152 photons/pixel.  As with the 

amplitude based PC-DRPE, we cannot visually identify the input image. 

 

 

Fig. 2.2 Decrypted images for the (a) amplitude-based and the (b) full phase PC-DRPE at Np = 1000. 

 

3. ANALYSIS OF THE PHOTON-COUNTING DECRYPTED IMAGES 

The statistical distributions of the noise-like decrypted images are derived for the amplitude-base and full 

phase PC-DRPE. Showing that the noise-like distributions are not random can potentially aide in 

determining whether the encrypted image has been tampered or to possibly reconstructing the primary 

(a) (b)
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image from the decrypted image. Moreover, the statistical properties can be utilized in correlation 

processors that require the statistical parameters of a scene 

A. Amplitude-based PC-DRPE 

 

For the amplitude-based PC-DRPE, the decrypted image is defined as 
2

( )ampphf x . Since ( )ampphf x  

consists of both real and imaginary terms, it can be rewritten as: 

   ( ) ( ) ( ) ,  
amp amp ampph ph phf x f x j f x

 (2.5) 

where   and   represent the real and imaginary terms, respectively. 

For a low number of photons in the scene (Np), the Shapiro-Wilks test [58] can be used to verify 

that  ( )ampphf x and   ( )ampphf x  each come from a normal distribution. More specifically, it tests: 

 2: data comes from , vs.oH N  
  

 2: data not come from , .aH N  
 

(2.6) 

 

where       is the mean and 2 (>0) is the variance. 

To construct the test, the data, which is assumed to be independent and identically distributed 

(iid), is arranged in ascending order: 

1 2 ... .nx x x  
 

(2.7) 

The following equation is then implemented: 
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   
2

2

11 1
,

k n

i n i i ii i
W a x x x x  

       

for  i=1,2,…k, 

 

(2.8) 

where  x  is the sample mean, 
ia is a tabulated constant, and k  is defined as 

 

 1 / 2, if n isodd
.

/ 2, if n iseven

n
k

n

 
 


                                    (2.9) 

The null hypothesis is then rejected if W is less than some critical value of the test, W , where   

is the significance level [59]. 

Figures 2.3(a) and 2.3(b) depict a histogram of  ( )ampphf x and   ( )ampphf x , respectively, 

for the image shown in Figure 2.2(a); both terms appear to be normally distributed.  Using the Shapiro-

Wilks test at 0.05  , the calculated p-values [59] are 0.9125 and 0.5600 for  ( )ampphf x and 

 ( )ampphf x , respectively, indicating that we fail to reject the null hypothesis that the data is normally 

distributed. Moreover, both distributions are approximately zero mean with different variances that can be 

estimated using maximum-likelihood estimation for the variance of a normally distributed random 

variables [59] : 

2 2

1

1
ˆ ,

n

ii
x

n



                                      (2.10) 

where n is the total number of ix . 
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Fig. 2.3. Histogram of (a)  ( )ampphf x , which is  0,0.0159N , and (b)  ( )ampphf x , which is 

 0,0.0146N , for image shown in Fig. 2.2(a). 

 

Using Eq. (2.10), the variance of   ( )ampphf x , 
2
1,amp̂ , was equal to 0.0159 while the variance 

for   ( )ampphf x ,
2
2,amp̂ , was equal to 0.0146. The distributions of  ( )ampphf x and  ( )ampphf x  can 

be written as: 

   2

1,
ˆ( ) ~ 0, ,

ampph ampf x N 
 

(2.11) 

  
   2

2,
ˆ( ) ~ 0, .

ampph ampf x N 
 

(2.12) 

The decrypted image can be expressed as  

   
2 22

( ) ( ) ( ) .
amp amp ampph ph phf x f x f x      

     (2.13) 

Using Eqs. (2.11-2.13), the distributions of  
2

( )ampphf x and  
2

( )ampphf x  can be written as 

a gamma distribution [See Appendix A for the derivation]: 

(b)(a)



25 
 

 
2

2

1,

1
ˆ( ) ~ ,2 ,

2ampph ampf x 
         

(2.14) 

 
2

2

2,

1
ˆ( ) ~ ,2 .

2ampph ampf x 
         

(2.15) 

The derived distribution of the decrypted image is then 

2
2 2

1, 2,

1 1
ˆ ˆ( ) ~ ,2 ,2

2 2ampph amp ampf x  
   

    
    , 

 

                                                     

2
2

i,

1

1
ˆ~ ,2 .

2
i amp

i




 
  
 

  
(2.16) 

The two-sample Kolmogorov-Smirnov (K-S) test [60] is used to verify that the decrypted image 

follows a  2 2
,1

ˆ1 2,2i i ampi



  distribution by comparing the empirical cumulative distribution function 

(ECDF) of simulated data from  2 2
,1

ˆ1 2,2i i ampi



  with the ECDF of the decrypted image. If the 

difference of the ECDF between the decrypted image and the theoretical distribution is below some 

threshold for each corresponding data point, then we can conclude that the decrypted image follows a 

 2 2
,1

ˆ1 2,2i i ampi



 . To calculate the ECDF for iid iX  , the data is first arranged in ascending order [Eq. 

(2.7)]. 

The ECDF is then calculated as 

 
1

1
[X x],

n

i

i

F x I
n 

   
(2.17) 

where n  is the total number of samples and I is the indicator function.  

The hypothesis test is: 
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       1, 1,: vs. : ,o amp t a amp tH F x F x H F x F x 
  

(2.18) 

where  ampF x is the ECDF of the decrypted image and  1,tF x  is the ECDF of the theoretical 

distribution  2 2
,1

1 2,2i i ampi



 . 

oH is then rejected if  

   1,max ,amp t
x

F x F x K 
 (2.19) 

where K is a tabulated value and  is the significance level. 

Note that bootstrapping [61] is used to estimate the parameters of the simulated 

 2 2
,1

1 2,2i i ampi



  to ensure that that K-S test does not favor the null hypothesis. The test was 

performed using the image shown in Fig. 2.2(a). After 1000 bootstraps, 
2
1, *ˆ amp  and 

2
2, *ˆ amp  were 0.0159 

and 0.0146, respectively.  Using the K-S test at 0.05  , a p-value of 0.1350 was calculated indicating 

that we fail to reject oH . Thus, we can conclude that the distribution of the photon-counting decrypted 

image for a low Np is  2 2
,1

1 2,2i i ampi



 . Figure 2.4 shows a histogram of the decrypted amplitude-

based PC-DRPE image shown in Fig. 2.2(a). 
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Fig. 2.4. Histogram of the decrypted amplitude-based PC-DRPE image [Fig. 2.2(a)] which follows a sum 

of Gamma distributions ,  2 2
,1

1 2,2i i ampi



 , with 

2
1,amp̂ = 0.0159 and 

2
2,amp̂ = 0.0146 at Np=1000. 

If we assume that  ( )ampphf x and   ( )ampphf x  are independent, the expected value and 

variance of   2 2
i,1

1 2,2i ampi



  are 

2
2 2 2

, 1, 2,

1

1
,2 ,

2
i i amp amp amp

i

E   


  
      

  
(2.20) 

2
2 4 4

, 1, 2,

1

1
,2 2 2 .

2
i i amp amp amp

i

Var   


  
      

  
(2.21) 

The derived mean and variance can then be used in spatial filters or correlators [25-31] to authenticate the 

decrypted image. 

B. Full phase PC-DRPE  

 

For the decrypted full phase based PC-DRPE [Eq. (2.4)],  exp ( )fullphA j f x  can be rewritten in terms 

of real and imaginary components: 

     exp ( ) cos ( ) sin ( ) ,full full fullph ph phA j f x A f x jA f x   
 

(2.22) 
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where  cos ( )fullphA f x represents the real component and  sin ( )fullphA f x  is the imaginary 

component. 

For a low Np, the Shapiro-Wilks test [49] shows that  cos ( )fullphA f x  and   sin ( )fullphA f x  

are both Gaussian. Using the image shown in Fig. 2.2(b), the p-values from the Shapiro-Wilks test at 

0.05   for  cos ( )fullphA f x and   sin ( )fullphA f x  are 0.3012 and 0.8047, respectively, indicating 

that we fail to reject the null hypothesis that the data is normally distributed. Moreover, both distributions 

are zero mean with slightly different variances   [Eq. (2.10)]: for  cos ( )fullphA f x , 
2
1,ˆ full =0.0075 

while for  sin ( )fullphA f x ,
2
2,ˆ full = 0.0076. Thus, the distributions of  cos ( )fullphA f x and  

 sin ( )fullphA f x  are 

 2

1,
ˆcos ( ) ~ 0, ,

fullph fullA f x N  
   

(2.23) 

 2

2,
ˆsin ( ) ~ 0, .

fullph fullA f x N  
   

(2.24) 

Figure 2.5 depicts a histogram of  cos ( )fullphA f x and   sin ( )fullphA f x  which appear Gaussian. 
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Fig. 2.5. Histogram of (a)  cos ( )fullphA f x , which is  0,0.0075N , and (b)  sin ( )fullphA f x , 

which is  0,0.0076N ,  of  the full phase PC-DRPE image shown in Fig. 2.2(b). 

      The final decrypted image [Eq. (2.4)] can be rewritten as     

   exp ( ) cos ( ) sin ( ) .
full full fullph ph phArg j f x Arg A f x jA f x          

       (2.25) 

The  arctan   function is used to compute the argument of complex data [Eq. (2.4) and Eq. 

(2.25)]. Since  cos ( )fullphA f x  and   sin ( )fullphA f x  are both normally distributed [Eq.  (2.23) and 

Eq. (2.24), respectively], the quantity inside the  arctan  function is the quotient of two independent 

normally distributed random variables which is a Cauchy distribution [53]. This can be written as 

 
 

2

2 2,

,
2

,

1 1,

sin ( ) ˆ0, ˆ
~ 0, ,

ˆˆ0,cos ( )

full

full

ph ful full

f

l

full ulp lh

f x N
Cauchy

Nf x

  



 
  

  
    

 
(2.26) 

where 0 is the location parameter and 2, 1,ˆ ˆfull full  represents the scale parameter that dictates the spread 

of the distribution. 

(b)(a)
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The Arg function wraps the Cauchy distribution around the unit circle on the interval  ,  . 

The distribution Z=  exp fullphArg A j f x      is then the wrapped Cauchy distribution,  ,WC    , 

with probability density function (PDF) [62-65] 

 

2

2

1 1
Z ~ ,

2 1 2 cos z



   



    
 

,    
 
0 1. 

 
  

(2.27) 

where  is the mean angle defined for all wrapped distributions as: 

    
1 1
cos sin

n n

i ii i
Arg z j z

 
   , (2.28) 

where Arg is the argument function and n is the total number of zi. 

The variable  is the mean vector length defined for all wrapped distributions as:  

    
     

1/2
2 2

1 1
cos sin

n n

i ii i
z n z n

 

 
     , 

 

(2.29) 

where n is the total number of zi. 

To estimate  and , maximum likelihood estimation can be used based on the recursive 

algorithm [54-56]. To begin, we reparameterize Eq. (2.27) by letting 

1 2

2 cos

1

 





 ,        
2 2

2 sin
.

1

 





  
(2.30) 

The wrapped Cauchy distribution can then be rewritten as [See Appendix B for the derivation] 
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 1 2

1 1
~ ,

2 1 cos sin
Z

c z z      
(2.31) 

where 

 1 2
2 2

1 2

1
,

1
c c  

 
 

   . (2.32) 

We then make an additional parameterization to simplify the likelihood equations: 

1 1 2 2and .c c    
 

(2.33) 

We also note that Eq. (2.32) can be rewritten in terms of 1  and 2  [See Appendix C for the 

derivation]: 

2 2

1 21 .c    
  

(2.34) 

Thus, Eq. (2.31) can be rewritten as  

 2 2
1 2 1 2

1 1
~ .

2 1 cos sin
Z

z z       
  (2.35) 

Taking the log likelihood of Eq. (2.35) along with the derivative with respect to 1 and 2  yields 

 1
1

1
cos 0,

n

i i
i

w z
c




    (2.36) 

 2
1

1
sin 0,

n

i i
i

w z
c




   

(2.37) 

 

where iw =  1 21 1 cos sini iz z    for i=1,..,n. 

We can rearrange Eqs. (2.36) and (2.37) to solve for 1  and 2 : 
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 1
1 1

cos ,
n n

i i i
i i

w z w
 

     (2.38) 

 2
1 1

sin .
n n

i i i
i i

w z w
 

    (2.39) 

To calculate ̂  and ̂ , an iterative re-weighting algorithm  [65,66] is used to find the maximum 

likelihood estimators of 1̂  and 2̂  which is given by: 

1) Initialize 
[0]

1   and 
[0]

2  with 
[0]

1 + 
[0]

2 <1  using Eq. (2.30). 

2) Calculate [0]
iw . 

3) Given 
[k]

1 ,
[k]

2 , and [k]
iw  at iteration k, calculate 

[k 1]
1


and 

[k 1]
2


 using Eqs. (2.38) and (2.39), 

respectively. 

4) Repeat step 3 until the algorithm converges for 1̂ and 2̂ . 

The maximum likelihood estimates for ̂  and ̂  can be calculated as [54-56] 

  

21

1

ˆ
ˆ tan ,

ˆ






  
  

   
(2.40) 

   
1 2

2 2
1 2

ˆ ˆ1 1
ˆ

ˆ ˆ

 


 

  



, (2.41) 

 where  1tan   is the four quadrant inverse tangent. 

We note that    is approximately 0 for low Np. Thus,  exp fullphArg A j f x     is distributed 

as  0,WC  . 

  As 0  , which coincides with 0pN  ,   exp fullphArg A j f x    converges to a 

uniform distribution [53-56] on the interval (-1,1). Thus: 
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    exp 0,1 as 0.fullphArg A j f x U         
(2.42) 

Figure 2.6(a) shows an unwrapped histogram [40] from the full phase PC-DRPE decrypted 

image shown in Fig. 2.1(a) at Np =10 or 1.52e-4 photons/pixel which appears to follow a uniform 

distribution   0,1U  at ˆ 0.0115  . 

Using variable transformation [50], if we let y=   exp fullphArg A j f x   , which is 

equivalent to the absolute value of the wrapped Cauchy distribution, the PDF of y then becomes [See 

Appendix D for the derivation]   

 

2

2

1 1
( ) ~ , 0 , 0 1.

1 2 cos
h y y

y


 

  


   

     
(2.43) 

Since the range of y is 0 y   , the expected value of the decrypted image [Eq. (2.4)] can be 

calculated as : 

 
2

20

1 1 1 1
,

1 2 cos(y)
E y y dy

 

    




   
(2.44) 

where  E  is expected value. 

Moreover, the variance can be found by first calculating 
2E y   : 

2
2 2

20

1 1
.

1 2 cos(y)
E y y dy

 

  


   

   
(2.45) 

Using Eq. (2.44) and Eq. (2.45), the variance of the decrypted image is:  
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    2 2

2 2

1 1
.Var y E y E y

 
     (2.46) 

The derived mean and variance can be used in optimum correlation processors [25-31] to 

authenticate the decrypted image. 

The K-S test [60] can then be repeated to show that the decrypted full phase PC-DRPE follows 

 0,WC   under the hypothesis test: 

       2, 2,t: vs. : ,o full t a fullH F x F x H F x F x 
 

(2.47) 

where  fullF x is the ECDF of the decrypted image of the full- phased PC-DRPE and  2,tF x  is the 

ECDF of the simulated distribution  0,WC   .  

The K-S test was performed using the image shown in Fig. 2.2(b). Bootstrapping was used to 

estimate  ; it was found that ̂ =0.1030. Using the K-S test at 0.05  , a p-value of 0.7398 was 

calculated indicating that we fail to reject oH . Thus, we can conclude that for low Np, the decrypted image 

comes from  0,WC   . Fig. 2.6(b) shows a histogram of the image shown in Fig. 2.2b which is the 

decrypted image from the full phase PC-DRPE at  Np=1000. 
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Fig. 2.6. An unwrapped circular histogram of the decrypted image from the full phase PC-DRPE using 

the image shown in Fig. 2.1(a) as the input at (a) 10pN   or 1.52e-4 photons/pixel which follows a 

uniform distribution  0,1U  and (b) 1000pN   or 1.52e-2 photons/pixel (Fig. 2.2b) which follows the 

absolute value of the wrapped Cauchy distribution  0,0.1030WC  . 

 

4. CORRELATION PROCESSOR FOR IMAGE VERIFICATION 

Although many pattern recognition processors can be used to authenticate the decrypted images [25-31], 

the optimum filter, which optimizes the peak-to-output energy (POE), will be used to authenticate the 

decrypted image with the input image [29]. The complex conjugate of the filter, presented in the 

frequency domain, i  

 

 

 

 

(b)(a)
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where * denotes convolution,  R  denotes the Fourier Transform (FT) of the target located at position 

, mb and mr are the expected value of the background and target noise, respectively,  rW  is the FT of 

the window function which is unity within the target and zero elsewhere, and  0
rN  and  0

bN  are the 

power spectrum of the zero mean target and background noise,  respectively. Moreover,  1W  and 

 2W  are defined as: 

     
2

1 0 / ,rW W d W   
 

(2.49) 

                                                
     

2 2

2 0 rW W W   
 

 

                      
    

2

02 / ,rW real W d 
 

(2.50) 

where  0W  is the FT of the window function where it is unity within the input and zero outside the 

input, and d=    0 00W w t dt  .  

The Peak-to-Output energy (POE) [26,29] is computed and used to compare the outputs of the 

optimum filter for the full phase and amplitude-based PC-DRPE. This metric is defined, using 2D spatial 

coordinates  ,x  , as: 
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R m W m W W N W N m W W

  

        
 

 

         
  

(2.48)  
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(2.51) 

where  0,0a  is the value of the output signal at the target location   and L and H are the number of 

pixels in the x and   directions, respectively. 

5. RESULTS 

When comparing the output of the optimum filter for the full phase and amplitude-based PC-DRPE, both 

graphs were normalized to one and the average of 100 simulations was taken. Moreover, the logarithm of 

the POE is used in the POE graphs so that the POE values for a lower number of photons in the scene, Np, 

[Eq. (2.3)] can easily be seen. Note that we assume the background and overlapping noise are equivalent 

A 128 x 128 binary input, shown in Fig. 2.7(a), is used as the input. Figures 2.7(b) and 2.7(c) 

show the decrypted image for the amplitude-based and full phase PC-DRPE, respectively, at Np=1000 or 

0.061 photon/pixel. For both images, it is impossible to visually authenticate the decrypted images. 

Figures 2.7(d) and 2.7(e) show the output of the optimum filter for the amplitude-based and full 

phase PC-DRPE, respectively, at Np=1000.  The mean and standard deviation of the amplitude-based PC-

DRPE are 0.0849 and 0.0054, respectively, while the mean and standard deviation of the full phase PC-

DRPE are 0.4343 and 0.2881, respectively.  Note that there is no clear peak for the amplitude-based PC-

DRPE while there is a distinct peak for the full phase PC-DRPE. Figure 2.8 shows a graph of the log of 

the POE versus the number of photons in the scene (Np) . The graph shows that the full phase PC-DRPE 

has a higher POE than the amplitude-based PC-DRPE at lower Np. At Np=1000 and Np =500, the full 

phase PC-DRPE has a log(POE) of 6.3214 and 5.4934, respectively, which corresponds to a POE of 

556.3513 and 243.0823, respectively. Moreover, at Np =1000 and Np =500, the amplitude based PC- 

DRPE has a  
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Fig. 2.7 (a) 128 x 128 pixel binary input image; photon-limited decrypted images with 1000 photons in 

the scene (Np) or 0.061 photon/pixel for the (b) amplitude based DRPE, ( )ampphf x and the (c) full phase 

PC-DRPE, ( )fullphf x ; output of optimum filter for the (d) amplitude based PC-DPRE and the (e) full 

phase PC-DRPE. 

 

(e)

(b)

(a)

(c)

(d)
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Fig. 2.8. Log of the Peak-to-Output Energy (POE) versus the number of photons in the scene (Np) for the 

amplitude-based and full phase PC-DRPE for a binary image.   

 

log(POE) of 5.1855 and 4.2643, respectively, which corresponds to a POE of 178.66 and 71.1151, 

respectively. 

Figures 2.9(a) and 2.9(b) show the false class binary image, g(x), and the output of the optimum 

filter using the false class image, respectively for the full phase PC-DRPE. The maximum peak of the 

output is 0.360 which indicates that the processor is able to distinguish between a true and false class 

image. 
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Fig. 2. 9 (a) A 128 x 128 pixel false class binary image, (x)g ; (b) optimum filter output for the full phase 

PC-DRPE with ( )g x  at   Np = 1000 which has a maximum correlation peak value of 0.360.      

 

4. CONCLUSION 

In this paper, we have investigated a full phase photon-counting double-random-phase encryption (PC-

DRPE) method. A photon-counting technique is used during the encryption process creating sparse 

photon limited images. The statistical distribution of the photon counting decrypted data for full phase 

encoding and amplitude phase encoding are derived and used for authentication of the data. The 

amplitude based PC-DRPE was shown to have a Gamma distribution whereas the full phase PC-DRPE 

was shown to have the absolute value of the wrapped Cauchy distribution. Simulations are performed for 

photon-limited encrypted and decrypted images for the full phase and amplitude based PC-DRPE. These 

decrypted images are verified using the optimum filter. Initial computational simulations showed that the 

full phase PC-DRPE encryption method may require fewer photons for authentication than the amplitude 

based PC-DRPE. Future work is needed to compare the performance of the full phase PC-DRPE to the 

amplitude based PC-DRPE for different images. 

 

(a) (b)
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Chapter 3 

Photon-counting Security Tagging and Verification Using Optically Encoded 

QR Codes * 
 

We propose an optical security method for object authentication using photon-counting 

encryption implemented with phase encoded QR codes. By combining the full phase double-

random-phase encryption with photon-counting imaging method and applying an iterative 

Huffman coding technique, we are able to encrypt and compress an image containing primary 

information about the object.  This data can then be stored inside of an optically phase encoded 

QR code for robust read out, decryption, and authentication. The optically encoded QR code is 

verified by examining the speckle signature of the optical masks using statistical analysis. 

Optical experimental results are presented to demonstrate the performance of the system.  In 

addition, experiments with a commercial Smartphone to read the optically encoded QR code are 

presented. To the best of our knowledge, this is the first report on integrating photon-counting 

security with optically phase encoded QR codes. 

 The chapter is arranged as follows: Section 2 briefly describes the full phase double-

random-phase encryption with photon-counting (PC-DRPE) and the correlation algorithms for 

authentication. In Section 3, the proposed method of combining the iterative Huffman Coding 

method with the PC-DRPE to store data in an optically encoded QR code is examined along with 

optical experimental results, including optical encoding mask verification to demonstrate the 

proposed concept. Section 4 presents the conclusion.  

*A. Markman, B. Javidi, and M. Tehranipoor, “Photon-Counting Security Tagging and Verification Using Optically 

Encoded QR Codes," IEEE Journal of Photonics, doc. ID  PJ-002016-2013 (posted 1 Dec 2013, in press). 

 

 



42 
 

3.1 INTRODUCTION 

Information security with optical techniques has been widely [11], [14-17], [23],[30], [48], 

[53],[66-70]. Many variations of random phase encoding for security and encryption have been 

proposed [24],[27], [71-82]. Optical techniques in security provide many advantages including 

the ability to secure data with multi-dimensional keys such as wavelength [67], polarization [68], 

and placing the keys in the Fresnel domain [17]. Recently, photon-counting imaging has been 

integrated with the double-random-phase encryption for optical security [24]. The motivation for 

using photon-counting is that the integration of photon-counting imaging generates an additional 

layer of complexity that enhances the security of the system against an attacker. A photon-

limited encrypted image is very sparse compared with a conventional encrypted data. When 

photon-counting is used, the decrypted data is not recognizable by visual inspection making it 

more robust to attacks due to the sparse photon-counting data.  In addition, photon-counting 

imaging follows the Poisson distribution which is a nonlinear transformation unlike the 

conventional double-random-phase encryption which is a linear encoding. The nonlinear 

transformation is advantageous in making the system more robust against attacks.  

     In this paper, we propose a novel method for optical security and tagging. In this 

approach, we encrypt the data using the full phase double-random-phase encryption with photon-

counting [80], and then apply an iterative compression technique based on Huffman coding [83] 

to compress the photon-counting encrypted image. The data can then be stored in an optically 

encoded QR code [39], [40] and placed on the object to be authenticated. Commercial QR 

scanners built into Smartphones such as an iPhone or Android device [42] can be used to scan 

the QR code and capture the encrypted data. The encrypted data can then be decrypted and 

decompressed using the correct keys and dedicated algorithms to deal with the photon-counting 
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nature of the data. Image recognition algorithms such as nonlinear correlation filters [25]-[31] 

can be used to verify the decrypted image against the primary image for authentication. In 

addition, the QR code is optically phase encoded with a pseudo-random key so that the QR code 

is more secure against unauthorized duplication of the optical tag. The optical phase mask is then 

verified using an examination of its speckle diffraction signature using statistical analysis.   

      The proposed method may be particularly useful for authentication of integrated circuits 

(ICs). It adds an additional layer of security against counterfeiting of the IC by removing printed 

information located on the IC and storing its encrypted version in an optically phase encoded 

binary image. Thus, the IC will not contain any printed information about the chip, making it 

difficult for an attacker to identify the IC. 

3.2  Full Phase  Double-random-phase Encoding with Photon-counting 

The full phase double-random-phase encryption with photon-counting (PC-DRPE) can be used 

to encrypt the input image [80]. For convenience, one-dimensional notation will be used in 

explaining the encryption method. To implement the encryption scheme, let ( )x and ( )  denote 

the spatial and frequency domains, respectively. In addition, let ( )f x  be the primary input image 

and ( )n x and ( )b   be two random noises that are uniformly distributed over the interval [0,1]. 

The encrypted image is generated by first phase encoding the input image yielding  exp ( )i f x  

and then multiplying the phase encoded image by the phase mask  exp 2 ( )i n x . This product is 

then convolved with a phase mask, h(x), whose Fourier transform is  exp 2 ( )i b v . The 

encrypted image is then  
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    ( ) exp ( ) exp 2 ( ) ( ),x i f x i n x h x      (3.1) 

where  denotes convolution and  denotes multiplication.  

     Photon-counting imaging [24], [32]-[35] is then applied to the amplitude of the encrypted 

image, ( )x , by limiting the number of photons arriving at each pixel. It has been shown that 

this process can be modeled as a Poisson distribution. Moreover, the fewer the number of 

photons, the sparser the scene becomes due to less photons arriving at a pixel. The number of 

photons arriving at pixel j can be modeled as: 

[ ]
( ; ) ,

!

j jl
j

j j

j

e
P l

l






  for  0j , {0,1,2,...}jl  , (3.2) 

where jl is the number of photons detected at pixel j and j is the Poisson parameter defined as 

,p jN x  where pN  is the number of photons in the scene and jx  is the normalized irradiance at pixel 

j such that 1 1M
jj x   with M  being the total number of pixels. Moreover, the normalized 

irradiance is defined as 1( ) / ( )M
j jjx x  , where ( )jx  is the amplitude information. 

    The full phase PC-DRPE encrypted image, ( )ph x , can then be decrypted. The Fourier 

transform of ( )ph x  is taken and multiplied by the complex conjugate of the phase mask used in 

the frequency domain,  exp 2 ( )i b  .The Fourier transform is then taken once more. In the 

full phase PC-DRPE decryption process, the resulting product must be multiplied by the complex 

conjugate of the phase mask used in the spatial domain,  exp 2 ( )i n x . The final decrypted 

image, ( )phf x , which is real and positive , is then found as [16],[71]: 

 


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 exp ( )( ) ,phph
A i f xf x Arg       (3.3) 

where A is the amplitude of the decrypted image, Arg  is the argument function and || is the 

modulus operator.  

      Rather than recover the decrypted image, a noise-like decrypted image is obtained which 

is difficult to visually authenticate. However, the decrypted can be authenticated using 

classification algorithms such as nonlinear-processors [25]-[31]. To authenticate the decrypted 

image [Eq. (3.3)], a number of image recognition techniques can be used. We have selected the 

k
th

 order nonlinear processor [28] for its simplicity and effectiveness in the experiments that we 

have presented. In this approach, the Fourier transforms of the decrypted image, ( )phf x ,  and the 

input image, ( )f x , are first taken. The processor is implemented by the following equation: 

           exp ,ph ph

k

f f f fc x IFT F v F v j v v      (3.4) 

where IFT is the inverse Fourier transform, k is the strength of the applied nonlinearity and 

determines the performance features of the processor , and  v is the phase information. 

3.3 Embedding Encrypted Data into Optically Phase Encoded QR Code 
 

The data encrypted using the full phase double-random-phase encryption with photon-

counting needs to be compressed and inserted into an optically encoded QR code. Currently, it is 

not possible to insert an image into a QR code [See Appendix E for more information about QR 

codes] due to data size restrictions and the limited resolution of commercial Smartphones when 

scanning the QR code [43]. To overcome this limitation, an image is inserted into a QR code via 

a hyperlink: A user scans the QR code containing the hyperlink which automatically redirects the 

user to the image. We present an iterative Huffman coding method to compress an image so it 

can be stored in a QR code allowing a Smartphone to read the QR code.  
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      In the iterative Huffman coding method, we begin by applying Huffman coding [73] on 

the photon-limited amplitude data, ( )ph x , for low Np [Eq. (3.2)] by converting the image into a 

1 dimensional array. Note that each pixel is an integer value due to the Poisson distribution being 

a discrete distribution. The first Huffman code compression reduces the image into a series of 

bits. The Huffman code can then be represented as a series of integers by first padding the 

Huffman code with zeros to ensure the code can be separated into groups of 8 bits. Each group 

can then be converted to an integer; this is advantageous since the QR code is character limited. 

For example, if a group of 10 pixels has corresponding values [0 1 1 0 0 2 1 4 2 1] in the image, 

the Huffman code is then a series of bits corresponding to the symbol 0, 1, 2, or 4. Suppose a 

group of 8 bits is 10110111, this can be rewritten as 183.  Once there has been one iteration of 

Huffman coding, Huffman coding can be repeated since there will be repeated integers between 

1 and 256 which ranges from 1 to 3 characters each. The described Huffman coding procedure 

can be repeated until there is a low number of characters present in the compressed data.  

    Once the QR code has been scanned, the data can be decompressed if both the dictionary 

and the length of the unpadded Huffman code, in bit form, associated with each Huffman 

iteration are known (allowing for the zero padding to be removed). Moreover, the data can then 

be successfully decrypted if the phase mask keys used in the full phase PC-DRPE are known. 

    Currently, the resolution of the iPhone camera cannot discern the details of the QR code 

if the QR code is too small; however, the QR code can be enlarged using the cameras built into 

Smartphones. The enlarged QR code can then be scanned using a QR reader revealing the 

compressed and encrypted data. Fig. 3.1(a) depicts a 449 x 641 pixel binary image and Fig. 3.1(b)  
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Fig. 3.1 (a) 449 x 641 pixel binary image. (b)  3.15 mm  x 3.15 mm QR code storing the 

encrypted and compressed image shown in (a) placed on a 14.5 mm x 52.1 mm IC; an image of 

the QR code placed next to a dime is also depicted . 

 

 

(c)(b)

(a)
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depicts a 3.15 mm x 3.15 mm QR code, generated using the ZXing Project [41], and placed on a 

14.5 mm x 52.1 mm IC chip. The QR Code is also shown next to a dime in Fig 3.1(b). Figure 

3.2(a) shows an enlarged QR Code obtained from the QR code shown in Fig. 3.1(b) using the 

iPhone 4 camera. Figure 3.2(b) depicts the scanned QR code which reveals the compressed and 

encrypted (for Np= 500) data using the iPhone SCAN application. 

   Once the data has been scanned, it can be decompressed and decrypted. Figure 3(a) 

shows the decrypted input image at Np= 500. Note that it is impossible to visually authenticate 

the decrypted image. However, a nonlinear correlation filter [Eq. (3.4)] can be used to 

authenticate the primary image with the input image. Fig. 3.3(c) shows the output of the k
th

 order 

nonlinear filter normalized to 1 with k=0.3. A distinct peak is obtained indicating the filter 

recognizes the decrypted image as a true class object. Fig. 3.3(b) shows a 449 x 641 pixel false 

class image, g(x), that is used in the k
th

 order nonlinear filter to verify that it can distinguish 

between true and false class objects. Fig. 3.3(d) shows the output of the filter using g(x) which 

has a maximum peak of 0.330. 

         

Fig. 3.2 (a) enlarged QR code taken using the built-in IPhone 4 camera; (b) scanned QR Code 

depicting the encrypted and compressed data  using the IPhone SCAN Application . 

(b

) 

(a) 
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Fig.3.3 (a) Decrypted image obtained from the full phase PC-DRPE using the image shown in 

Fig. 3(a) as the input image (true class object); (b)   449  x 641 pixel false class image; (c) output 

of the k
th

 order nonlinear filter between the true class decrypted image and the true class object 

with k=0.3; (d) output of the k
th

 order nonlinear filter between the true class decrypted image and 

the false class object which has a maximum peak of 0.330 with k=0.3. 

 

 A vulnerability of the proposed technique is that the QR code can be replicated while 

preserving the information stored inside of the code. One way to circumvent this security issue is 

to optically encode the QR code. To do this, we pasted a phase mask on the QR code and used 

coherent optical imaging to verify whether the QR code has been copied. Figure 3.4(a) shows a 

QR code generated using the ZXing Project [41] encoded with a random phase mask placed on 

the QR code. An advantage of a phase mask is that it is transparent, which allows the QR code 

(a)
(b)

(d)(c)
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located on the IC to be scanned. Note that Reed Solomon Error correction incorporated into the 

QR code design [76] can account for any minor physical anomalies in the QR code. Figure 3.4(b) 

shows the enlarged QR code shown in Fig. 3.4(a) successfully scanned using the iPhone SCAN 

Application. 

To verify that the correct phase mask is used, a laser source illuminates the QR code 

located on the IC chip which is covered by the phase mask. The mask used in the experiments is 

a piece of scotch tape. The light scatters off of the random phase mask and generates a speckle 

pattern which can be seen on a projection screen as shown in Figure 3.5. The intensity of the 

speckle pattern can be recorded using a camera. Each phase mask generates a unique speckle 

pattern. Thus, the QR code along with the correct phase mask must be used to verify the QR 

code. Fig. 3.6(a) shows an example of the speckle intensity pattern of the QR code without a 

phase mask illuminated by a HeNe laser. Fig. 3.6(b) depicts the speckle intensity pattern of the 

QR code shown in Fig. 3.4(a).  

 

Fig. 3.4 (a) QR code encoded with a random phase mask placed on an IC and (b) scanned QR 

code shown in (a).       

     We note that the speckle intensity pattern of each individual point on the QR code can be 

modeled as a negative exponential distribution. Thus, the recorded speckle intensity pattern can 

be modeled as a sum of independent negative exponential distributions which is a gamma 

distribution [32,84,85]:   

(a) (b)
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 
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I I n

    
    

   
 (3.5) 

where denotes the mean ensemble, I represents the speckle intensity pattern data points and 

on is the number of independent correlation cells (speckles) within the scanning aperture and 

chosen so that the variance of the approximate and exact distributions are equal: on =
2 2 ,bI 

where b is the standard deviation of the intensity fluctuation relative to the mean intensity.  

 

Fig. 3.5. Experimental set-up for verifying the phase encoded QR code speckle pattern. 

 

The likelihood ratio test [86] can be used for classification between a true and false class 

speckle intensity pattern. Let Ho be the null hypothesis representing the true class object and H1 

be the alternative hypothesis representing the false class object. The log-likelihood function of 

Eq. (3.5) is : 

        
1 1

log log 1 log log ,
N No o

o o j o jj j

n n
l Nn n I N n I

I I


 

 
         

 
   (3.6) 



52 
 

where   represents the distribution parameters and N is the total number of jI . 

     The log-likelihood ratio can be written as: 

    
1

1log log 0,
Ho

H
ol l      (3.7) 

where o and 1  represent the true and false class distribution parameters, respectively.  

     Using the likelihood ratio test [Eq. (3.7)], the true class parameters are obtained from Fig. 

3.6(b) and calculated as  on I  =18.08 and on = 3.43. Moreover, the false class parameters are 

obtained from Fig. 3.6(a) and calculated as on I  = 31.85 and on =7.47. Using a true class 

image, such as Fig. 3.6(b), a log-likelihood difference of 20,682 was calculated indicating that 

the test favors the true class and thus can potentially be used for phase mask authentication. 

 

Fig. 3.6 Speckle intensity patterns generated by a (a) QR code without a phase mask and (b) an 

optically encoded QR code with a phase mask. 

 

3.4 Conclusion 

We propose an optical security method for object authentication using photon-counting 

encryption implemented with phase encoded QR codes. The experiments are presented to 

(a) (b)
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demonstrate authentication of integrated circuits (IC). A binary image containing information 

used to identify an IC is encrypted using the full phase double-random-phase encryption with 

photon-counting (PC-DRPE). The encrypted data is then compressed using an iterative Huffman 

coding technique and embedded in a QR code. Thus, information used to identify the IC does not 

need to be printed on the integrated circuit. Experimental results show that the encrypted and 

compressed data stored in the QR code can be read by a commercial Smartphone. The data can 

then be decompressed and decrypted; however, the decrypted image is noise-like making it 

difficult to visually authenticate the image. Using correlators, the decrypted image can be 

verified as the original binary image. In addition, an optical phase mask was used to encode the 

QR code and it was verified by examining the speckle signature of the mask using statistical 

analysis.  By not requiring the QR scanning device to be connected to the World Wide Web, 

many security vulnerabilities can be avoided such as malware being installed on the QR scanner. 

Moreover, if the IC is intercepted by an attacker, it will be difficult to identify the IC. Future 

work may include various types of encryption and security strategies, storing various parts of 

encrypted and photon-limited data followed by compression in the QR code. 
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APPENDIX 

APPENDIX A 

To show that the decrypted image of the amplitude-based PC-DRPE [Eq. (2.16)], which is 

   
2 22

( ) ( ) ( ) ,
amp amp ampph ph phf x f x f x      

     
(A1) 

 

is the sum of two gamma distributions denoted by : 

2
2 2

1, 2,

1 1
ˆ ˆ( ) ~ ,2 ,2

2 2ampph amp ampf x  
   

    
    , 

 

                          

2
2

i,

1

1
ˆ~ ,2 ,

2
i amp

i




 
  
 

  
(A2) 

we note that  ( )ampphf x and   ( )ampphf x  can be shown to be distributed as  2
1,ampˆ0,N  and 

 2
2,ampˆ0,N  , respectively, where 0 is the mean and 2 (>0) is the variance [Eqs. (2.5-2.12)].  Equation 

(A1) shows the sum of the square of  ( )ampphf x and   ( )ampphf x . We note that  

     
2 2 22 20, 0,1 0,1N N N              . 

(A3) 

  

    It is known that the square of a standard normal distribution, [N(0,1)]
2
, is a chi-squared 

distribution with one degree of freedom ,  2 1 . The  2 1  distribution can be rewritten as a gamma 

distribution: 

 2 1
1 , ,

2


 
   

   
(A4) 
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where  1 2,2 is the gamma distribution with shape parameter 1 2  and scale parameter 2.  

Multiplying both sides of Eq. (A4) by 2 yields: 

 2 2 21
1 , .

2
  

 
   

   
(A5) 

Since  ( )ampphf x and   ( )ampphf x  are both normally distributed with different variances, 

the distribution of the decrypted image becomes:  

2
2 2

1, 2,

1 1
ˆ ˆ( ) ~ ,2 ,2

2 2ampph amp ampf x  
   

    
    , 

 

                          

2
2

i,

1

1
ˆ~ ,2 .

2
i amp

i




 
  
 

  
(A6) 

This is the sum of two gamma distributions. 
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APPENDIX B 

We claim that the wrapped Cauchy distribution [Eq.(2.27)] can be rewritten as: 

  
 1 2

1 1
exp ( ) ~ ,

2 1 cos sin
fullphZ Arg A j f x

c z z


  


    
(B1) 

where 

1 2

2 cos
,

1

 





         
2 2

2 sin
,

1

 





  
(B2) 

 1 2
2 2

1 2

1
, ,

1
c c  

 
 

    (B3) 

and  is the mean resultant vector and   is the mean direction of the Wrapped Cauchy distribution [Eq. 

(2.29) and Eq. (2.30), respectively]. 

We can then substitute Eq. (B3) into Eq. (B1) to obtain 

 

2 2
1 2

1 2

11
~ .

2 1 cos sin
Z

z z

 

  

 

    
(B4) 

We then substitute Eq. (B2) into equation Eq. (B4) to yield: 

2 2

2 2

2 2

2 cos 2 sin
1

1 11
Z ~

2 cos cos 2 sin sin2
1

1 1

z z

   

 
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 

   
        

 
    

 . 
(B5) 

     

  In the numerator of Eq. (B5) we can factor out 2and get common denominators for 

the terms in the denominator: 
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(B6) 

We can then use the trigonometric identities cos
2
(x)+ sin

2
(x) =1  and  cos(x  )= cos(x)cos()    

sin(x)sin()  to further simplify Eq. (B6) yielding 
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We can rewrite the numerator of Eq. (B7) as   
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After further simplification of the numerator of Eq. (B8), we obtain 
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We note that  
2 
is less than 1, thus Eq. (B9) can be rewritten as 
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Eq. (B10) is the PDF of the wrapped Cauchy distribution [Eq. (2.27)]. 
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APPENDIX C 

To show that Eq. (2.32) and Eq. (2.34) are equivalent, we begin by defining the parameters 

 1 2
2 2

1 2

1
, ,

1
c c  

 
 

    (C1) 

1 1 2 2and ,c c    
 

(C2) 

where and are defined in Eq. (B2). 

By substituting Eq. (C2) into Eq. (C1), we obtain : 
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   We can then rewrite Eq. (C3) as 
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     Solving for c yields 
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APPENDIX D 

To derive the PDF of the absolute value of the zero mean  Wrapped Cauchy distribution with mean 

resultant vector , |WC(0,)| we let   exp ( )fullphZ Arg A j f x . If we define y=|z|, variable 

transformation [38] can be used to find the distribution of y: 
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where   is the absolute value of the Jacobian of transformation,  1d
g y

dy


, with  1g y

being 

the inverse function of the transformation of z,  .g z  

We also note that : 

2

20
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1 2 cos(y)
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
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Thus, Eq. (D1) is a valid PDF. 
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APPENDIX E 

The QR code is a 2D barcode created by D. Wave [76],[77]. The advantage of a QR code is 

that it can be scanned regardless of scanning direction or if the QR code is damaged. Online QR 

Code generators can be used to generate QR codes including the level of error correction and 

version number [76]. The QR code itself is a binary image consisting of black squares known as 

modules placed on a white background, shown in Fig. E.7(a), where each module represents 

some information about the input text. The QR code can be read by a QR reader built into 

Smartphones [78] to retrieve the text. However, as the number of characters stored in the QR 

code increases, the size of the modules decreases. As a result, if too much information is stored 

in a QR code, as shown in Fig. E.7(b), the module size will fall below the resolution limit of the 

camera used in Smartphones making it difficult for the QR reader to scan. 

 

Fig. E.7 (a) QR code with 10 characters and (b) QR code with over 400 characters. 

 

 

 

 

 

 

(a) (b)
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