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Abstract 

Humans are the most important drivers of invasive species introduction and natural habitat 

transformation globally. Ecological differences between areas of dense human habitation and 

minimally managed natural habitats were explored across an urban-to-rural gradient of land 

use in southern New England. These differences were examined through presence/absence and 

leaf functional traits for a set of invasive species; and urban and rural environmental conditions. 

Some species were more restricted to particular sites than others along the urbanization 

gradient, based on introduction history and habitat preference. A priori urban-classified species 

showed trait values associated with drought tolerance, including higher LWR, greater leaf 

thickness, higher LDMC and lower SLA. Finally, urban habitats were found to be significantly 

different from rural habitats. Urban soils were more alkaline, and had higher lead 

concentrations and sand content than rural soils. Urban habitats had more open canopies, 

impervious surface, patch forests, and induced edge habitats than rural habitats. Our findings 

suggest that urban environmental conditions contribute to an “urban drought island” syndrome 

and will favor species capable of tolerating drought.   
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Introduction 

Urbanization is a pervasive form of land-use change, characterized by increased human 

impacts, fragmentation of natural habitats, intensive land transformation and an increase in 

impervious surface land cover (Angel et al. 2011, Irwin and Bockstael 2007, Vitousek et al. 1997, 

Williams et al. 2009). Although cities cover only 0.5% of the Earth’s surface (Angel et al. 2011, 

Schneider et al. 2009) , they contain more than 50% of the world’s population (United Nations 

2011) and account for a disproportionately large amount of the world’s resources consumption 

(Kareiva et al. 2007). In the US, urban populations have grown every year as cities become 

increasingly important centers of employment, habitation, transportation, culture, and trade; 

currently 80.7% of the population of the United States lives in an urban setting (US Census 

2011). While these urban services are vital for supporting modern human life, they can have 

detrimental effects on the persistence of naturally-occurring biota. The relationship between 

urbanization and biodiversity is especially important to explore because areas of past high 

human population growth and habitation have been found to coincide with some biodiversity 

hotspots (Cincotta et al. 2000, Myers et al. 2000, Williams 2013).  

 

Historically, ecological studies have focused on more-remote, undisturbed, or minimally 

disturbed sites (Martin et al. 2012). In 1997, two urban Long-Term Ecological Research (LTER) 

centers were established in Baltimore, Maryland and Phoenix, Arizona. These sites have made 

important contributions to our understanding of urban ecological systems (Cadenasso et al. 

2006, Gagné 2013, Pickett and Cadenasso 2006). McDonnell and Pickett (1990) introduced the 

concept of an urban-to-rural ecological gradient to quantify human impact (Gagné 2013, 



 

2 

 

McDonnell and Pickett 1990). Urban ecological studies are concerned with the patterns and 

processes of biotic elements examined within the context of urbanizing or urbanized 

landscapes (Gagné 2013, Kaye et al. 2006, McDonnell and Pickett 1990, Pickett and Cadenasso 

2006, Shochat et al. 2006, Zipperer et al. 2000).  

 

Impervious surface cover is frequently used as a proxy for urban land use (Lu and Weng 2006), 

but it plays an even larger role in contributing to unique urban biogeochemical conditions in 

associated soils and streams (Arnold Jr. and Gibbons 1996, Civco et al. 2002). Some studies of 

urban soils have found them to be more acidic than rural counterparts due to acidic 

atmospheric deposits (Sukopp 2004), while others have found urban soils to be more alkaline 

due to leaching from calcareous concrete and mortar comprising built structures (Jim 1998). 

These structures, and other remnants of human activity, are worn down over time and 

contribute particulate matter to urban soils, making degraded building materials a component 

of soils in urbanized landscapes (Jim 1998, Lehmann and Stahr 2007). Heavy metal pollution 

due to outputs from traffic and industries or erosion of construction materials are notable 

differences between urban soils and natural soils (Calace et al. 2012, Lehmann and Stahr 2007). 

Atmospheric N inputs (NOx gases), and other inputs from fertilization, may also affect urban soil 

nutrients (Pickett and Cadenasso 2009), contributing to eutrophication of some urban habitats. 

Soil compaction can occur in parks, yards and urban forest remnants from trampling and 

development (Edmondson et al. 2011, Scharenbroch et al. 2005), though urban greenspaces 

may be potentially less compacted than neighboring agricultural soils (Edmondson et al. 2011). 

High densities of roads, sidewalks and buildings also contribute to changes in rainwater runoff 
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patterns into urban streams and soils. Urban riparian habitats have lowered water tables, 

causing “hydrological drought” in soils (Groffman et al. 2003) and urban soils overall tend to be 

drier than rural soils (Pickett and Cadenasso 2009). These changed hydrological regimes 

ultimately make water less available for plants, even when rainfall is plentiful (Paul and Meyer 

2001, Pickett and Cadenasso 2009). Finally, the urban heat island describes a phenomenon 

where urban regions have elevated temperatures compared to surrounding rural areas (Pickett 

et al. 2011), because solar radiation absorbed by impervious surface creates elevated nighttime 

temperatures (Parlow 2011).  

 

Williams et al. (2009) describe environmental filters specific to cities that act both to add and 

remove species from the urban species pool: (1) habitat transformation, (2) habitat 

fragmentation, (3) human species planting preferences and (4) the unique soils and climates 

associated with cities (Williams et al. 2009). To become established naturally in an urbanizing 

landscape, species must have some combination of attributes that allow them to pass through 

these filters. Habitat transformation, frequently in the form of complete destruction and 

replacement of specific natural habitats, will likely remove species associated with those 

habitats from the urban species pool. Habitat transformation may lead to landscape 

fragmentation, creating higher habitat heterogeneity in cities and surrounding areas. Exurban 

growth at the fringes of cities proliferates into natural areas, fragmenting natural habitats into 

patches and creating edges (Irwin and Bockstael 2007, Shrestha et al. 2012).  Human planting 

preferences lead to new plant introductions, frequently through the horticultural trade (Dolan 

et al. 2011), and selective removal of “undesirable” species (Walker et al. 2009). Planting 
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preferences are reflected in high species richness in wealthy neighborhoods (Hope et al. 2003, 

Kinzig et al. 2005) a pattern that carried over to the urban species pool compared to 

neighboring natural sites in Phoenix (Walker et al. 2009). Removal of undesirable species in 

wealthy neighborhoods and more abandoned land in poor neighborhoods resulted in a 

negative relationship between invasive species and income (Gulezian and Nyberg 2010).  

 

In New England, introduced plants comprise about 30% of the region’s flora; a small portion of 

those are considered invasive (Mehrhoff 2000). Invasive species are introduced species that 

overcome local abiotic and biotic obstacles upon arriving in a new region and spread into 

surrounding areas (Richardson et al. 2000), sometimes having deleterious impacts on native 

species survival, native ecosystem processes, and local economies (Pimentel et al. 2005, 

Stohlgren et al. 2011, Vitousek et al. 1997). Introduced species and invasive introduced species 

inside and outside of cities contribute to global biotic homogenization (McKinney and 

Lockwood 1999, McKinney and La Sorte 2007, Trentanovi et al. 2013, Wittig and Becker 2010), 

where species tolerant to broad ranges of human-caused environmental change thrive and 

more habitat-specialized species die out (Lizée et al. 2011, McKinney and Lockwood 1999).  

 

Given the serious impacts invasive plants can have on ecosystems, it is important to understand 

invasive plant distributions and current spread in order to predict future spread (Rejmánek and 

Richardson 1996, Stohlgren et al. 2011). Evidence suggests that invasive plant distributions are 

closely tied to anthropogenic landscape change. For example, modern invasive plant 

distributions have been found to be impacted by housing development, proximity to roads, and 
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past land-use (including agricultural history)  (González-Moreno et al. 2013, Kuhman et al. 2011, 

Lundgren et al. 2004, Mosher et al. 2009). Socioeconomics at the local and landscape scale have 

been found to affect the local species pool of invasive plant species and influence their spread 

(Martin et al. 2004, Kinzig et al. 2005, Hope et al. 2003, Allen et al. 2010, Santos et al. 2011).  In 

New England, housing, road density and mean income are positive correlates of invasive 

species richness (Gavier-Pizarro et al. 2010). The edges created by forest fragmentation during 

urban growth and development are known to promote the spread of certain woody invasive 

species in New England (Allen et al. 2013, Mosher et al. 2009), as are linear edge-creating 

features such as roads and trails, which may act as disturbed dispersal corridors (Cilliers and 

Bredenkamp 2000, Nemec et al. 2011, von der Lippe et al. 2013). Similar patterns were 

discovered in Australia and South Africa, where urban grassland edges contained higher 

invasive species cover deeper into the edge than rural grassland edges (Cilliers et al. 2008); and 

in Louisville, KY, where roadside forests contained more invasive species closer to the city 

center (Trammell and Carreiro 2011). As sites of both disturbed edge habitats and species 

introductions, urban areas seem primed to promote the spread of invasive species. 

 

Invasive species may spread from urban to undisturbed native ecosystems (Saeumel and 

Kowarik 2010, von der Lippe and Kowarik 2008); however some studies have indicated that this 

may not be the case. Invasive species that were considered the largest threat to natural areas 

around Chicago were not common in cities, suggesting that urban areas were sinks and not 

sources of these species (Gulezian and Nyberg 2010). Invasive plants introduced after 1500 CE 

in England were associated with urban habitat and were not invading surrounding natural 
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habitat. Older invasive plants appeared to move from urban to cropland habitats; however this 

trend was attributed to recovery of formerly declining species due to conservation efforts 

increasing their preferred habitat (Botham et al. 2009). Movement from urban to rural habitats 

will also depend on landscape connectivity and plant dispersal effectiveness (Schleicher et al. 

2011).  

  

Plants have physiological features that allow them to overcome or tolerate a range of 

environmental challenges that can be quantified by measuring plant functional traits (PFTs). 

PFTs are defined as any measurable aspect of a plant with some direct or indirect effect on 

plant performance and fitness (Violle et al. 2007), and can be divided into “hard” and “soft” 

traits. Soft traits are quickly and easily measured and are often correlated with “hard” traits, 

which are often more direct measures of ecological significance and plant functioning 

(Cornelissen et al. 2003). For example, the soft trait specific leaf area (SLA), the ratio of leaf area 

to leaf dry mass, is positively correlated to plant relative growth rate (RGR) and photosynthetic 

capacity (Cornelissen et al. 2003). Given complex environmental demands and limited energy 

budgets, plants must invest resources in a way that maximizes their success in different 

environmental conditions (Orians and Solbrig 1977). Suites of similar trait responses to similar 

environments have been noted— for example, leaves from arid regions tend to be thick, small, 

and tough with low photosynthetic rates (Orians and Solbrig 1977, Reich et al. 1999, Wright et 

al. 2004). Traits within a species can also be plastic, or change in response to different 

environmental conditions (Chapin et al. 1993).  
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The urban environmental filter should theoretically filter out species intolerant of urban 

conditions, leaving species with traits adaptive for urbanization (Duncan et al. 2011). A study of 

urban and rural forests in France found that urban forests were more likely to contain short-

lived species with a higher SLA (Vallet et al. 2010).  Urban areas may have higher proportions of 

wind-pollinated plants and other long distance dispersers, plants with scleromorphic leaves and 

leaves with a higher SLA and lower leaf dry matter content (LDMC), and plants that prefer warm 

climates (Knapp et al. 2008, Knapp et al. 2009). Knapp et al. 2008 described three critical filters 

in urban environments with respect to traits: the urban heat island favors drought-adaptive 

traits; intense and irregular disturbance patterns favor high SLA and low LDMC; and urban 

spatial heterogeneity favors plants with strong dispersal abilities, mostly by animals.  

 

The Invasive Plant Atlas of New England (IPANE) is a database of invasive species in the six New 

England states (Bois et al. 2011, Mehrhoff et al. 2003). Twenty-five species were selected for 

surveying across an urban-to-rural gradient in central Connecticut based on their previously 

known presence and prevalence in urban areas or their inclusion on the IPANE list of invasive 

species. Using methodology adapted from IPANE protocols, I aimed to answer the following 

questions: (1) What growing conditions does the urban environment provide to a plant in urban 

Hartford compared to a plant in rural Storrs? (2) Are there differences in invasive species 

distribution along an urban-to-rural gradient in southern New England? (3) Is there evidence for 

relationships between socioeconomic variables and invasive plant distributions? (4) Finally, are 

there differences in functional traits that could account for differences in species distribution?    

 



 

8 

 

Methods  

Study area 

This study took place in southern New England, primarily in Hartford and Tolland counties in 

Connecticut (Figure 1). The initial urban-to-rural gradient selected ranged from Hartford and 

surrounding areas to communities 30-km east, around the University of Connecticut in Storrs-

Mansfield. Most sites were located from approximately N 41° 46' to N 41° 47' latitude and W 

72° 27' to W 72° 17' longitude, however supplemental sampling extended to limited parts of 

Windham and New London counties, and a small section of metropolitan Boston, MA. Over this 

range mean annual temperature and annual precipitation (Hijmans et al. 2005) shows only 

minor variations of about 1°C and 100 mm respectively, therefore climate variation was not 

included as a variable in this study. 

 

Delineation of sampling area into urban, suburban and rural grid squares 

A grid with cell sizes of 1-km2 covering Connecticut and part of eastern Massachusetts was 

created using Geospatial Modelling Environment (Beyer 2012) and ArcGIS 10 (ESRI). Block 

group level housing, population and per capita income data from the 2010 Census 

(www.census.gov) and the 2011 5-year American Community Survey were accessed from the 

National Historical Geographic Information System (Minnesota Population Center 2011) and 

percent impervious cover information, available in a 30-meter resolution raster dataset from 

2006, was downloaded from the National Land Cover Database (Fry et al. 2011). The area-

weighted sum of the total number of housing units and total population, and the area-weighted 

mean of estimated per capita household income, were calculated for each grid cell.  
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Population values in each grid cell were used to a priori define rural, suburban, and urban land-

use. An area with less than 500 people mi-2 (193 people km-2) was defined as rural, based on 

the minimum value for inclusion in an urban cluster of blocks and tracts for the US Census. 

Urban was defined as an area with a minimum of 2,500 people mi-2 (965 people km-2), based on 

overall current population densities for the United States and previous definitions of urban 

areas (U.S. Census). Suburban grid cells had population densities that fell between those of 

urban and rural grid cells. To express urbanization in a continuous way, a GIS raster layer of 

square meters of impervious surface per person per block group for Connecticut and the 

Boston metro area was created using ArcGIS 10 (ESRI). This layer is referred to as the 

urbanization metric. Mean values of this metric peaked in suburban sites, reflecting more area 

of impervious surface cover per person in suburbs relative to densely-populated urban sites or 

lightly inhabited rural sites. Finally, UCONN’s Center for Land Use Education and Research’s 

(CLEAR) Landscape Fragmentation Tool (LFT) v2.0  

(http://clear.uconn.edu/tools/lft/lft2/index.htm) was used to create a raster layer of edge, 

patch, and core forest (Parent and Hurd 2010), with edge distance defined as 30 meters based 

on prior definitions and studies of edges in this region (Allen et al. 2013). Land use data from 

CLEAR (http://clear.uconn.edu/index.htm) and from MassGIS 

(http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-

geographic-information-massgis/) were used as LFT inputs. Proportion cover of edge, patch and 

core forest was calculated for each grid cell. See Appendix 2 for information on Census data, 

and Appendix 3 for GME code and details on the creation of the urbanization metric. 
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Grid cells were haphazardly selected to stratify sampling among the three neighborhood types 

and across the urban-to-rural gradient. A total of 110 sites were visited, of which 36 were 

urban, 40 were suburban and 34 were rural. Five points were randomly placed for plot sampling 

locations at a minimum distance of 100 meters apart in each site. These locations were visited 

over the course of the 2012 and 2013 field seasons, for ground-based data collection. 

Additional points from Boston were collected by a collaborator.  

 

Sampling Methods 

Plots were navigated to using a Trimble Juno ST handheld GPS unit and a GPS position was 

taken at the center of every plot. Plots were moved if the point fell in a location that could not 

be sampled, such as a building or road. In that case, sampling took place in the nearest available 

growing space. Opportunistic plots were also collected. These plots were not part of the 

original sampling scheme, but were collected as encountered throughout the study region. 

Opportunistic plots were included to supplement data from the original sampling scheme and 

to sample as widely as possible. The data collection approach was adapted from the IPANE 

surveying methodology. Data collected from each species at a plot included presence/absence 

data for a set of 25 nonnative species (Table 1); ordinal measures of species abundance, 

percent cover, and distribution; categorical variables of plant reproductive stage, a binary 

measure describing if a the individual was planted or “spontaneous”; and categorical measures 

of site environment, including habitat types, surrounding land use, plot canopy cover and 

neighborhood (Appendix 5). 
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Species trait sampling 

Two species of each of five growth forms, paired by observed differences across the urban-to-

rural gradient and habitat preferences (from the IPANE website), were selected from the full set 

of 25 species. One species in each pair was a priori classified as an urban-associated species, 

while the other was classified as rural based on preference for open canopy edge habitats and 

closed canopy forested habitats and observed differences in species frequency, respectively.  

 

Leaf samples for trait analysis were collected from populations in two urban sites and two rural 

sites. Locations were selected for sampling from plots that had been visited in 2012, from 

recorded IPANE point locations, or from populations found after searching likely areas of 

occurrence. The standardized procedures for measuring plant traits followed Corneslissen et al. 

(2003). At each “site”, ten individuals were selected along regular intervals. Two fully expanded, 

representative sun-exposed leaves were selected from five of these individuals. In the shade 

adapted species Ailliaria petiolata, Berberis thunbergii and Microstegium vimineum, leaves 

were selected that were obviously receiving sun exposure from canopy gaps. Leaves were 

stored in sealable plastic bags with a damp piece of paper towel inside a cooler to minimize 

water loss during storage and transport. Leaves were taken to the lab to be measured on the 

day of collection.  

 

In the lab, leaf lamina thickness was measured with digital calipers. The petiole was removed 

and wet mass was obtained. A Li-COR Model LI-3000A portable leaf area meter was used to 
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obtain leaf area, leaf length, maximum leaf width and average leaf width. Leaves were then 

oven dried to a constant dry mass. From these measurements specific leaf area (SLA), leaf 

water content (LWC), leaf mass per area (LMA), length-width ratio (LWR) and leaf dry matter 

content (LDMC) were calculated. See Appendix 9 for a list of all measurements and 

measurement units.  

 

Soil Sampling  

I collected soil samples from urban and rural sites located at extreme ends of the urban-to-rural 

gradient for additional measures of edaphic environmental difference. Sites were selected for 

soil sampling based on their accessibility, diversity of habitat types, and proximity to sampling 

locations, and were sampled according to guidelines set by the UCONN Soil Analysis Laboratory. 

Sampling took place at the end of the 2012 and 2013 field season. Two samples were taken at 

11 rural and 11 urban sites. Leaf matter and surface detritus were cleared from the sampling 

area, and a soil sample was taken at a depth of 6-8 inches with a spade, stored in sealable 

plastic bags, and transported immediately to a refrigerator to halt any soil biological processes. 

Half of the samples were taken to the Soil Analysis Lab. Soil macronutrients were measured 

using the Modified Morgan extraction technique and potassium, calcium and magnesium were 

measured using an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

machine (Spectro Ciros Vision model). A Technicon Autoanalyzer II and a Scientific AC 200 

colorimeter were used to measure phosphorus and nitrate concentrations. The lab also 

measured soil pH levels and lead content, and estimated soil texture and organic matter 

content. The other half was retained for estimation of soil nitrification rates. These were 
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bagged and incubated at room temperature for 31 days and subsequently analyzed for 

nitrogen. Net nitrification rates were calculated as the difference in soil nitrate between initial 

measurements and the incubated soils measured at the end of the 31 days, divided by the total 

amount of time passed (Robertson et al. 1999). Data from the two paired samples were 

averaged together for a t-test. Where necessary the log transformation was applied to meet 

test assumptions of normality. Categorical measures of soil texture and soil organic content 

were tested using Fisher’s exact test.  

 

Data analysis 

GPS positions were uploaded to Pathfinder Office and differentially-corrected before being 

uploaded into shapefiles, merged into one file, and each point was associated with 

socioeconomic data from the 1-km grid into which it fell. Analyses were done with R version 

3.0.0 (R Core Team 2013). I first determined if there were environmental differences between 

plots that fell in urban, suburban or rural areas using t-tests and chi-square tests. I then looked 

for differences in species frequencies across plots with chi-square tests, and then differences in 

species abundances with Kruskal-Wallis tests. Finally, multivariate methods were employed to 

examine relationships between continuous measures of urbanization and species 

presence/absence across the urban-to-rural gradient. Canonical correspondence analysis (CCA) 

was used to assess the relationships between invasive species presence/absence and 

categorical and continuous environmental variables (Palmer 1993, Ter Braak 1986) using the 

function “cca” from the R package vegan (Oksanen et al. 2013, R Core Team 2013). Categorical 

environmental variables were transformed into dummy variables for use with the cca function. 
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A matrix of plots by species presence/absences was created for entry into the function. The 

significance of the constraints used in the CCA models was assessed using permutation tests. 

Three species were selected for entry into logistic regression models to explore influences of a 

subset of environmental variables on the presences of these species using the R “glm” function. 

Model residuals were checked for spatial autocorrelation (Appendix 10).  

 

For the plant functional trait analysis principal components analysis and ANOVA models were 

employed to determine key traits and significant differences between different classification 

factors. Buffers of 1-km radii were created in ArcGIS around each of the 40 plots. Average 

values of the urbanization metric, median household income as a measure of socioeconomic 

status, and the proportion of core and edge forest in each buffer were calculated. Multiple 

linear regression models were fit for each of the five traits to relate continuous measures of 

urbanization to trait values, using log transformed income and urbanization metrics and 

untransformed proportion of core forest and proportion of edge forest as covariates. The ten 

species were also included in the model as a categorical variable with A. platanoides as the 

reference category.  

 

Results 

Environmental differences between urban and rural sites 

Soil analysis results showed differences in nutrient content between soils from urban and rural 

sites, which was tested using two-tailed t-tests. This difference was significant in lead and pH 

(Figure 2). Lead is a heavy metal that historically was commonly used as an additive component 
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in gasoline and paint. These practices were phased out in the 1970s due to lead’s toxicity to 

humans, but lead remains prevalent in urban areas. No rural site had lead levels above 100 

ppm, which is considered within the normal range of lead content for New England soils by 

UCONN’s Soil Analysis Laboratory, while urban soils ranged from 108 to 1388 ppm. According to 

U.S. EPA guidelines, soil lead levels above 400 ppm are considered of concern, while soil levels 

above 1200 are cause for soil remediation 

(http://www.epa.gov/region1/leadsafe/pdf/chapter3.pdf). 

 

While all the soils sampled in this study were acidic (pH < 7), urban soils were significantly less 

acidic than rural soils. This difference was the most likely cause of some nutrient differences 

between urban and rural soils, because soil pH impacts nutrient solubility in the soil (Jim 1998), 

and therefore nutrient availability to plants. For example, uptake rates for the essential nutrient 

phosphorus are highest at a pH level between 5.0 and 6.0 (Schachtman et al. 1998), which 

corresponds to the range of observed acidy for urban soils (Figure 2). This may be one factor in 

the higher concentration of phosphorus observed in urban soils (t = -2.7245, df = 15.866, p = 

0.01509).  

 

There were also significant differences in soil content of calcium, aluminum, iron, and zinc. 

Aluminum is not an essential element for plants and causes problems for root functioning at 

higher concentrations (Lambers et al. 2008). Aluminum becomes more soluble in more acidic 

soils, which may explain its greater concentration in the rural soil samples (t = 4.9749, df = 

12.318, p = 0.0002983). Calcium, an essential plant nutrient, was low in rural sites relative to 
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urban sites, which could also be due to the greater acidity of rural soils (t = -2.938, df = 15.065, 

p = 0.01014). Iron and zinc are heavy metals, however, unlike lead, they are essential parts of 

some plant metabolic processes. Both can become toxic to plants at higher levels. Zinc levels 

were higher in urban sites (t = -3.2619, df = 10.123, p = 0.008414), while iron levels were higher 

in the acidic rural sites (t = 3.0179, df = 10.384, p = 0.01243). Copper was also significantly 

higher in urban sites (Wilcox test, p = 0.0014). Nitrogen, a critical element for plants, was not 

significantly different between urban and rural sites, nor was the nitrification rate, the rate at 

which microorganisms in soils produce bioavailable nitrates.  

 

Fisher’s exact test was performed on a 2 x 4 contingency table with the counts of the four types 

of soil texture (high organic content, loamy sand, sand, sandy loam; Figure 2) in urban and rural 

soil samples. There was a significant difference between soil textures of urban versus rural soils 

(p = 3.42e-05). Most rural soils were sandy loams, while most urban soils were loamy sands or 

just sands, indicating a greater contribution of sandy texture in urban soils. Soil organic content 

was also estimated and tested using a 2 x 3 contingency table and Fisher’s exact test, but 

organic content was not significantly different between urban and rural sites (p = 0.4602).   

 

Grid cell level information of socioeconomic and forest cover data is presented in Figure 3. Per 

capita income and proportion of core forest declined from rural to urban cells. The number of 

housing units, percent impervious surface and proportion of patch forest in a site increased 

over the urban-to-rural gradient. The number of housing units and proportion of patch forest in 

urban sites was more variable than in suburban and rural sites. The proportion edge forest was 
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greatest in suburban sites, though the proportion of edge forest in urban sites was more 

variable. 

 

The plot level environmental information collected also revealed differing trends across the 

three urbanization zones (Figure 4), which were tested using Chi-square tests of independence. 

Land use categories for all plots were significantly different across the three zones (χ2= 

199.0988, df = 10, p < 2.2e-16). Rural plots were overwhelmingly located in and surrounded by 

areas of forested (60%) and residential (26.5%) land use. Agricultural land use was the least 

frequently encountered out of the six categories. Only 8% of rural plots were in agricultural 

areas, followed by 0.9% of suburban plots and 0.4% of urban plots. Both urban and suburban 

plots were mostly located in areas of residential land use (57% and 58%), while urban plots had 

a greater proportion of mixed use plots than suburban plots. Canopy cover was also 

significantly different across the three zones (χ2 = 82.6864, df = 6, p = 9.946e-16). Half of all 

rural plots had the highest level of canopy cover, while half of all urban plots had the lowest 

level of canopy cover. Suburban plots had the highest proportion of intermediate levels of 

canopy cover. Finally, the frequency of the four habitat types was also significantly different 

across the three neighborhood types (χ2 = 118.075, df = 6, p < 2.2e-16). The “natural habitat” 

type classification, including deciduous, evergreen and mixed forests, and wetlands comprised 

57% of rural plots. The “induced edge” classification includes patches of unmanaged wild 

vegetation persistent in small patches, created by sidewalks, roads, parking lots, walls, fences 

and rail-yards, and comprised about 50% of all urban plots.  
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Patterns of species occurrences 

Overall, the most commonly encountered invasive species across all sites was the woody vine 

Celastrus orbiculatus, followed by the shrubs Rosa multiflora and Berberis thunbergii (see 

Appendix 7). Relative occurrences of these species clearly differed across urban, suburban and 

rural plots. Celastrus orbiculatus was the most observed species overall and was the most 

frequently observed species in urban and suburban plots, whereas Rosa multiflora was more 

common in rural plots. R. multiflora was followed in frequency by plots containing none of the 

species of interest and B. thunbergii.  Suburban sites also saw spikes in observations of Acer 

platanoides, shrub Lonicera species, and Solanum dulcamara. In urban sites R. multiflora was 

observed less frequently than in rural and suburban sites, while Acer platanoides, Solanum 

dulcamara, and Ailanthus altissima made up a greater proportion of the observations.  

 

To test for significance of the frequencies of the ten most common species across the urban-to-

rural gradient, 3 x 2 contingency tables were created of the most encountered species, 

excluding those which were encountered fewer than five times. The significance of the 

frequencies of each species across urban, rural and suburban plots was tested using Pearson’s 

chi-square tests. Fisher’s exact test was employed where the contingency table contained 

zeros. For some species, neighborhood class had no effect on their frequency (Appendix 6). C. 

orbiculatus, Catapla sp., Cynanchum louiseae, Alliaria petiolata, Artemisia vulgaris, Euonymus 

alatus, Lonicera japonica, Wisteria sp., and Rhamnus cathartica were not significantly more or 

less frequent across the three neighborhood classes. Species that were not generalists include 

Acer platanoides, Ailanthus altissima, B. thunbergii, Bromus tectorum, Elaeagnus umbellata, 
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Frangula alnus, Ligustrum spp, Microstegium vimineum, Robinia psuedoacacia, and S. 

dulcamara. All of these species were most frequently encountered in urban plots. The species 

that were most encountered in rural plots were the shrubs B. thunbergii and E. umbellata and 

the grass species M. vimineum, which was never encountered in any urban plots. Only two 

species, Lonicera shrub species and R. multiflora, were more frequent in suburban sites. 49% of 

Lonicera observations were in the suburbs, while 70% of Rosa observations were evenly split 

between rural and suburban areas. 

 

Abundance categories of all species together were also assessed (Appendix 6). Plot abundances 

of all species combined for all sites were tested using a Kruskal-Wallis rank sum test. Species 

abundances across urban, rural and suburban sites were significantly different (Kruskal-Wallis χ2 

= 13.9465, df = 2, p = 0.0009366). In individual comparisons using the Wilcoxon Rank Sum test, 

rural and urban sites had significantly different species abundances (W = 116978.5, p = 

0.0003195) and so did rural and suburban sites (W = 104798.5, p = 0.003691); however 

suburban and urban sites did not (W = 186120, p = 0.4501). Species abundances tended to be 

greater in urban sites for all species. Percent plot cover of a species followed the same pattern.   

  

While using population cutoffs and categorical measures was a convenient and useful way to 

define different parts of the urban-to-rural gradient, continuous measures of development and 

urbanization were also available and examined through CCA analysis and linear models. Results 

of the CCA analysis are shown as biplots, where arrows represent the relative direction and 

magnitude of each environmental gradient and species are plotted as points with respect to 
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their relationship to the environmental gradients. The relative length and direction of the 

arrows represents their influence on sorting species occurrence patterns across plots.  

 

CCA biplots are presented in Figure 5a-f. When dummy variables for urban and rural sites 

(suburban sites as the reference category) were used as two environmental gradients, the first 

CCA axis had a species/environment correlation of 0.557 and the second was 0.327 (Figure 5a). 

The model was significant (p = 0.005) given 199 permutations. The rural and urban 

environmental gradients were separated by the first axis. B. tectorum, R. psuedoacacia, A. 

altissima and P. cuspidatum are more associated with the urban axis, while B. thunbergii and M. 

vimineum were more rural. C. orbiculatus, E. alatus and S. dulcamara appear to be unaffected 

by neighborhood type, and F. alnus, E. angustifolium, R. cathartica and Lonicera shrubs are 

negatively associated with both urban and rural sites. For habitat types, the first CCA axis had a 

species/environment correlation of 0.402 and separated induced habitat types from natural 

habitat types (Figure 5b). The second CCA axis had a species/environment correlation of 0.310 

and separated the habitat class of habitat types from edges. B. thunbergii and L. salicaria were 

most associated with the natural habitat class, while Ligustrum species and E. angustifolium 

were more associated with the induced habitat environmental gradient, which conditions 

found in yards and gardens. Finally, the induced edge category explained the frequency of 

species including C. louiseae, B. tectorum and Catalpa better than the other two categories. 

This model was also significant (p = 0.005). The canopy cover CCA model was significant given 

199 permutations (p  = 0.005, Figure 5c). The first axis had a species/environment correlation of 

0.389, while the second axis correlation score was 0.279. The first axis separated species 
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associated with high canopy cover from species associated with low canopy cover, and the 

second axis separated out median levels of canopy cover from the extremes. The arrows 

representing all levels of canopy cover are orthogonal, indicating they are uncorrelated. Species 

including B. thunbergii and E. alatus appear to be more associated with high levels of canopy 

cover, while A. altisima, L. salicaria and C. louisae are correlated by low levels of canopy cover. 

Microstegium vimineum, E. angustifolium F. alnus, R. cathartica, and L. japonica were 

associated with medium levels of canopy cover.  

 

Continuous measures of urbanization were assessed in two CCA models, one containing 

average percent impervious cover in a grid cell and average per capita income (p = 0.005, Figure 

5d), and the other containing proportion of different forest types in a grid cell (p = 0.015, Figure 

5e). The first axis differentiated impervious surface from income with an environment/species 

correlation of 0.378. The second axis had a correlation of 0.326. Impervious surface and income 

were not correlated. Species most explained by impervious surface cover include B. tectorum, 

A. altissima, S. dulcamara and L. japonica. Income was most associated with Lonicera shrubs, R. 

cathartica and E. angustifolia. The first axis of the forest fragmentation model separated edge 

forest and core forest from patch forest with an environment/species correlation of 0.323, and 

the second separated edge and patch from core forest with an environment/species correlation 

of 0.253. Species best explained by increasing proportions of patch forest are B. tectorum, A. 

altissima, Catalpa spp. and S. dulcamara. Species best explained by core forest include B. 

thunbergii, E. alatus and M. vimineum. The edge forest gradient was not very strong indicating 

that this gradient is not very important in explaining species presences compared to core forest 
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and patch forest. Finally, a CCA plot with all variables combined is presented in Figure 5f. The 

first axis separated urban-correlated variables from rural variables and has an 

environment/species correlation of 0.6560. Five distinct groups of variables emerged in this 

analysis. The first group represented rural plots with more cover of core forest and in natural 

habitats, which explained the presence of species like M. vimineum, E. umbellata, B. thunbergii, 

and L. salicaria. The second group represented low canopy cover and induced edge habitats, 

which explain the species B. tectorum, C. louisae, A. altissima, A. vulgaris, and P. cuspidatum. 

Another group contains the most urban plots, consisting of urban grid cells, impervious surface, 

and proportion cover of edge and patch forest. The species R. pseudoacacia, Ligustrum spp. and 

A. platanoides were more associated with these variables. Finally, a group of intermediate and 

high levels of canopy cover and income best explained E. alatus, and Lonicera spp. Induced 

habitats were not correlated with any other variable and explained the presence of E. 

angustifolium.    

 

Modeling  

Generalized linear regression was employed to further explore and explain the influences of 

various land use characteristics on presence and absence of invasive species across the urban-

to-rural gradient. Logistic regression models were built, using the glm function in R (R Core 

Team 2013) for the woody invasives B. thunbergii, A. altissima and C. orbiculatus. These species 

were selected for modeling as a priori representatives of rural-associated, urban-associated and 

neighborhood-indifferent species. Site-level per capita income, average impervious cover per 

person, and proportion of core forest were chosen for continuous explanatory values of the full 
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model, representing socio-economic status, degree of development intensity and population 

and forest cover, respectively. Other variables—population, housing, and two fragmentation 

variables—were excluded from the full model due to strong collinearity with either the income 

metric or other fragmentation measures. Site neighborhood classification was also included. 

Finally, plot-level information on land use, canopy cover, number of invasive species in a plot 

(excluding the response species) and habitat type were also considered. The reference category 

for grid cell classification was “suburban”; for landuse, “mixed-use”; for canopy cover, “51-

75%”; and for habitat type “natural edge”. Income and the urbanization metric were log 

transformed for entry into the model. Stepwise regression based on Aikaike’s Information 

Criterion was used to select the optimal combination of explanatory variables.  

  

Regression results are presented in Table 2. Different variables were significant for the three 

modeled species. The presence of B. thunbergii, the a priori identified rural-associated species, 

was significantly positively influenced by rural sites and natural habitats. It was also significantly 

negatively influenced by urban sites and the urbanization metric. The urbanization metric was a 

significant predictor of the a priori urban species, S. dulcamara. Distribution of this species was 

significantly positively influenced by urban grid cells and negatively influenced by rural grid cells 

compared to surburban cells, though the negative relationship with rural cells was not 

significant. Solanum dulcamara was influenced differently by all the different categories of land 

use compared to mixed-use, the base level. The strongest significant relationship was with 

agricultural land use. For the model explaining the presence of C. orbiculatus in a plot, only plot 

invasive species richness and urban sites were significant. Income was included in the model 
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and had a slight negative impact on the presence of C. orbiculatus. The number of other 

invasive species in a plot had a significant positive impact on all species, however this 

relationship was the strongest for C. orbiculatus. 

 

Trait selection and ANOVA models 

A total of 12 measurements were obtained for all leaves. For all analyses, the two leaf trait 

values from the same individual were averaged together, as suggested by Cornelisson et al. 

(2003). Measurements, units and explanations of each functional trait are presented in 

Appendix 9. Principal components analysis was applied to the trait database to explore visually 

all variables in multivariate space using the function prcomp (R Core Team 2013). Height and 

dbh were omitted because they were only collected for two of the ten species. Variables were 

scaled to unit variance for entry into the analysis. The first two components of the analysis 

explained 75% of the total variance present in the dataset (Appendix 9). The first component 

has negative loadings for area, width, length, mass, LMA and LDMC and positive loadings for 

LWR, SLA, and LWC. This axis represents investment in size versus investment in traits that help 

with regulating heat loss, resource capture, and water storage; indicating tradeoffs between 

leaf size and traits that help tolerate stressful environments. The second component separates 

area, length, width, water content and SLA from LMA, LDMC, LWR and thickness. A biplot of all 

variables was plotted for data visualization (Figure 6). Measurements from the same species are 

clearly clustered together. Some clustering in the biplot is present among growth forms, 

especially for the vine species. The species with the smallest and narrowest leaves (the two 

grasses and B. thunbergii) are clustered on the other side of the first axis. Along the second axis, 
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urban species tend to have negative scores while the corresponding rural species tends to have 

a more positive score. The vines do not show this trend.  

 

SLA, LDMC, LWR, leaf thickness and leaf area were selected from this analysis for consideration 

in analysis of variance (ANOVA) models. Trait values were subjected to two-factor ANOVA 

models to determine if the mean of an urban-classified species trait value differed significantly 

from the mean trait value of the corresponding rural species. One model was fit for each of the 

five traits. The log transformation was applied to all variables to meet assumptions of normality 

and homoscedasticity. Tukey’s honestly significant difference (HSD) was used to determine 

significance of specific comparisons while penalizing p-values for multiple comparisons. All 

means and standard deviations are presented in Appendix 9. 

 

Main effects for the first set of ANOVA analyses were the species growth form (trait, shrub, 

vine, forb and grass), and species classification (urban, rural). For the SLA model the interaction 

effect was significant (F(4, 190) = 43.23, MSE = 2.577, p =  <2e-16), as was the effect of 

urban/rural species classification (F(1, 190) = 250.23, MSE = 14.914, p =  <2e-16) and growth 

form (F(4, 190) = 103.97, MSE = 6.375, p =  <2e-16).  Post-hoc Tukey’s HSD showed significant 

differences between SLA of urban and rural-associated trees (p <0.001), shrubs (p <0.001), forbs 

(p <0.001) and grasses (p <0.001). For these growth forms the urban associated-species had a 

smaller SLA than the rural-associated species. For vines, the difference between the urban and 

rural species was slight though still significant (p = 0.047), and the urban species was the 

greater of the two.  
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The effect of urban/rural classification (F(1, 190) = 49.89, MSE = 0.2766, p =  <2.99e-11), growth 

form (F(4, 190) = 100.79, MSE = 0.5588, p =  <2e-16), and the interaction of the two factors (F(4, 

190) = 40.29, MSE = 0.2234, p =  <2e-16) on LDMC was significant. However, only urban/rural 

shrubs and urban/rural forbs were significantly different according to the post-hoc test (p = 

0.00 in all cases). In both these growth forms the urban associated species had higher trait 

values. The results from the ANOVA for LWR for the classification, growth form and interaction 

were as follows: F(1, 190) = 600.96, MSE = 16.463, p =  <2e-16; F(4, 190) = 1018.41, MSE 

=27.899, p =  <2e-16; and F(4, 190) = 96.94, MSE = 2.656, p =  <2e-16). Trees, forbs and grasses 

showed significant differences in LWR in post-hoc comparisons. The urban species had the 

higher trait values for all three pairs. There was no strong difference or pattern between shrub 

species or vine species.  

 

Leaf thickness varied significantly with species association, (F(1, 190) = 124.24, MSE = 0.07338, 

p =  <2e-16), growth form (F(4, 190) = 136.08, MSE = 0.08038, p =  <2e-16) and their interaction 

(F(4, 190) = 49.55, MSE = 0.02927, p =  <2e-16). Trees, forbs, vines and grasses show significant 

differences in thickness in the post-hoc test, with the urban species showing greater leaf 

thickness than the rural species in the trees, forbs and grasses. Shrubs were not significantly 

different in leaf thickness. For the leaf area model, species association (F(1, 190) = 30.14, MSE = 

3.84, p =  1.27e-07), growth form (F(4, 190) = 481.62, MSE = 61.29, p =  <2e-16) and the 

interaction term (F(4, 190) = 145.46, MSE = 18.51, p =  <2e-16) were significant. Tukey’s HSD 
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showed that all urban and rural species were different. For all growth forms except the shrubs, 

leaf area was smaller in the urban associated species.  

 

Trees, forbs and grasses emerge as regularly having consistent patterns between the urban and 

rural species. The urban classified species had a lower SLA, higher leaf thickness, higher LWR 

and lower leaf area. In shrubs and forbs LDMC was higher for the urban species. Vines showed 

the opposite trend for thickness and no significant trend for SLA and LWR. The urban classified 

shrub species, E. umbellata, was lower for SLA and LWR and not significantly different from B. 

thunbergii in leaf thickness. Leaf area was significantly smaller for urban associated trees, vines, 

forbs and grasses compared to the rural associated species. Another set of two-way ANOVA 

models was created to determine if there were any differences between leaf trait samples from 

urban sites and from rural sites, using growth form and site as main effects. Model results are 

presented in Appendix 9. Site was not a significant effect for any model, and post-hoc test for 

individual comparisons showed that the relevant comparisons of rural sites versus urban sites 

for each growth form were not significant. Additional two-way models were created for every 

trait for each individual growth form (Appendix 9). The species association term was always 

significant, and the site term was significant for SLA in grasses and vines, and LWR and LDMC in 

trees. Post-hoc testing showed that some species had significantly different trait measurements 

in urban versus rural sites. For example, A. platanoides in urban sites had lower LWR than in 

rural sites, B. thunbergii had lower leaf thickness in urban sites than in rural sites, and C. 

orbiculatus had a higher leaf area in rural sites. 

  



 

28 

 

  While there were significant differences between many mean trait values for paired urban and 

rural species, these differences do not appear to carry over to consistent differences between 

species trait values for samples from species that occurred in both urban sites and rural sites 

within the five growth forms most cases. Potential exceptions were for SLA in vines and grasses, 

LDMC in trees, LWR in vines, leaf thickness in shrubs and leaf area in vines. These differences 

were usually not significant in post hoc tests. Overall, these results indicate that differences 

between species and growth forms were more important than differences within species 

between sites in explaining trait values. 

 

MLR models  

Multiple linear regression (MLR) models were created to examine the effect of continuous 

measures of urbanization on trait values of the ten species. These models were intended to 

determine if the degree of development surrounding a site influenced trait values. Including 

species as a predictor in these regression models improved the overall model fit and increased 

the amount of variance in the data captured by the models from <10% in a model without a 

species term to over 80% in models with the species term. Results for models without the 

species term are presented in Appendix 9. 

 

Regression results for models including species are presented in Appendix 9. Between 83 and 

96% of the variation in leaf traits was explained by these models. Analysis revealed some 

patterns between continuous measures and trait values. The urbanization metric, square 

meters of impervious surface per person, had a very slight negative effect on leaf area and SLA 
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and a positive effect on LWR, LDMC and leaf thickness, though the effect was only significant 

for SLA and LDMC. Smaller SLA and larger LDMC in urban sites corroborates with the ANOVA 

results for urban and rural classified species. Income had small and insignificant effects on trait 

levels. Neighborhood socioeconomics may play a role in shaping local biodiversity, but any 

connection between income and leaf trait measurements would more likely be indicative of 

local wealth influencing neighborhood planting preferences. 

 

Proportion of edge forest and proportion of core forest in the 1-km radius buffer area were 

both significant and strong predictors of leaf area. Edge forest had a strong positive affect on 

leaf area, while core forest had a weaker positive impact. Core forest may have also 

encouraged larger leaves in some species due to light competition under a closed canopy. The 

proportion of edge forest had a significant negative affect on LDMC and a significant positive 

affect on SLA. Core forest did not significantly affect either of these traits. Leaf thickness was 

not impacted by either forest type.  

 

Discussion  

The urban environment 

Urban plots had more open canopy, induced habitats, and induced edges than rural plots. 

Closed canopy and natural habitats were less common, as were core forests. Induced or 

unnaturally created habitats, patch forests and open canopies reflect the forest fragmentation 

and extreme habitat conversion that native forests underwent to support higher densities of 
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human population, which is also reflected in the increasing average percent impervious surface 

cover and number of housing units from rural to urban sites (Figure 3).  

 

Lead content was significantly higher in urban soils than rural soils. While lead is no longer a 

common component of gasoline and paint products, it is clearly still persistent and pervasive in 

urban soils sampled here. A recent meta-analysis of soil lead content studies in American cities 

showed that soil lead content is positively correlated with population size, and that it is 

persistent in the soil over time (Datko-Williams et al. 2013). In the Washington D.C. area, lead 

was found to be negatively correlated with distance from the city center and there were 

negative correlations between soil lead concentration and diversity of soil biotic communities, 

indicating that lead has far reaching effects in urban soils (Santas 1986). The heavy metals zinc 

and copper were also higher in urban sites in this study, reflecting the effects of urban 

industrial pollution (Calace et al. 2012, Pickett and Cadenasso 2009).  

 

There was no evidence of higher soil N or soil nitrification in urban plots versus rural plots. This 

is in accordance with the findings of previous studies that compared urban forest soils and rural 

forest soils, and suggest that factors such as underlying bedrock, soil type and soil biotic 

communities may play an overriding role in soil nutrient dynamics (Groffman et al. 2006, Raciti 

et al. 2011). Soil N and nitrification rates are also complicated by land use history, land 

management, and urban habitat type (Scharenbroch et al. 2005).  The predominant type of 

urban habitats sampled was induced edges, or edges created by unnatural means. This included 
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roadsides, sidewalks, parking lots and railway edges, along which there could be horticultural 

plantings or small patches of spontaneous growth in small strips of growing area.  

 

Species distribution 

Many of the 25 species observed showed the greatest frequency in the urban neighborhood 

type, which was defined by population densities above 965 people per km2, and all species 

combined were more abundant in urban plots (Appendix 6). Celastrus orbiculatus was the most 

commonly encountered species in this study. This species is in part successful due to high 

population growth potential across different light conditions, high germination rates, high seed 

set, and fast growth rates (Leicht-Young et al. 2007, Merow et al. 2011). Rosa multiflora and B. 

thunbergii were also common, but were more closely associated with rural environments. Rosa 

multiflora and B. thunbergii are widely dispersed and are tolerant of many light levels (Ibáñez et 

al. 2009, Lundgren et al. 2004); so why were they more common in rural sites? The distributions 

of these two species have been shown to be strongly tied to past land use and current level of 

development (Ibáñez et al. 2009, Lundgren et al. 2004, Mosher et al. 2009). Proximity to roads 

has also been implicated in their spread (Kuhman et al. 2011, Lundgren et al. 2004). Berberis 

thunbergii’s spread is strongly associated with the wide-scale post-agricultural abandonment 

that occurred across New England within the last 100 years (Hall et al. 2002, Mosher et al. 

2009). In subsequent years forests regenerated over this species and barberry tolerated the 

encroaching shade conditions and now survives in forest understories (Silander Jr. and Klepeis 

1999). Historical dense plantings provided the seed sources that made this species prevalent 

(Brand et al. 2012). Rosa multiflora is also tied to historical land use (Lundgren et al. 2004).  
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The trees Acer platanoides, Ailanthus altissima, Robinia pseudoacacia were more frequent in 

urban sites than rural sites, while the tree Catalpa was indifferent to site neighborhood in the 

frequency analysis (Appendix 6). However, 40% of all suburban and rural observations of 

Catalpa were likely planted individuals, compared to a quarter of urban observations, so its 

current distribution is primarily determined by human planting preferences. Other urban 

species include Bromus tectorum, Cynanchum louisae, and Ligustrum shrubs. Ligustrum was 

also mostly found as planted, which is reflected in its position along the induced habitat axis in 

the habitat type biplot (Figure 5b). 

 

While not a major predictor for most distributions, income had an important affect on some of 

the plants studied. Rhamnus cathartica’s frequencies across urban, suburban and rural plots 

were not significantly different according to frequency analysis (Appendix 6). In the CCA plots, 

its presence was best explained by income and low-intermediate levels of canopy cover; this 

species was not well explained by either urban or rural site categories (Figures 5a-e). Lonicera 

shrubs are known to be associated with urbanization processes (Borgmann and Rodewald 2005, 

Pennington et al. 2010, Shustack et al. 2009). Almost half of Lonicera shrub observations were 

made in suburban plots, and also seem to be partially explained by income in CCA plots (Figure 

5). R. cathartica and Lonicera’s association with income and intermediate levels of population 

seems indicative of escape from cultivation in wealthier neighborhoods at the fringes of urban 

growth. Escape and naturalization of woody ornamentals is thought to be linked to their 

extensive planting (Pysek et al. 2009). Woody ornamental species escape in urban areas may 
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also be linked to the effect of the urban heat island, which encourages earlier leafing and 

flowering phenology in urban plants and allows plants from different functional groups to 

become established (Kowarik et al. 2013).  E. angustifolia also showed strong relationships 

between income and intermediate levels of canopy cover, however this species was observed 

very infrequently. 

 

It is possible that some species have spread from rural sites into urban sites. The trees A. 

plataniodes and Catalpa spp., for example, appeared with greater frequency as naturalized 

elements in urban plots than rural and suburban plots. While it does not seem that the species 

most common in the more natural and forested rural sites had spread from urban sites into 

rural sites, one exception may be the ornamental liana Wisteria sp. This species was planted in 

half of the six urban and four suburban occurrences, but was independently established in all 

five rural appearances. Chinese wisteria, W. sinensis, which is currently considered invasive in 

the south, also spread by horticultural plantings (Trusty et al. 2007).  

 

The continuous measures of urbanization were not adequate by themselves to explain fully the 

presence of the representative urban, rural and generalist species and they were frequently 

excluded from the best fit logistic regression model. Pseudo R2 values for the three distribution 

models ranged between 0.29 and 0.45 (Table 2). The models may be improved by including 

historical land use variables, since historic land use has been shown to be important in 

predicting the distributions of B. thunbergii and C. orbiculatus (Mosher et al. 2009).  For the 

urban classified species S. dulcamara, agricultural land use had a strong positive effect on the 
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appearance of this species, while other land use categories had negative effects. When an 

agricultural plot was visited S. dulcamara was usually present. Solanum dispersal via birds could 

account for this relationship. Forest and agricultural edges provide roosting habitats for birds, 

who deposit the seeds they consumed where they roost (McCay et al. 2009). Celastrus 

orbiculatus and Berberis thunbergii are also bird dispersed species, however agricultural land 

use was excluded from the model in the case of B. thunbergii and not significant in the case of 

C. orbiculatus, indicating that factors other than agricultural edges were more important in 

explaining the presences of these two species. The C. orbiculatus model was the only model 

where income was maintained in the model of best fit. While non-significant, income negatively 

affected the presence of this species. A negative association with income may reflect the fact 

that Celastrus occurred in unmanaged roadsides and wastelands to a greater extent than the 

other two species, which were more common in poorer areas in Chicago (Gulezian and Nyberg 

2010). Finally, plot invasive species richness was a significant predictor for all three species 

models, and the strongest for C. orbiculatus, indicating that in a plot with many invasive species 

C. orbiculatus is very likely to be one of them, reflective of its ubiquity; and reflective of the 

tendency of many invasive plants to co-occur (Kuhman et al. 2011).  

 

Leaf traits  

I expected plants affiliated with disturbed habitats to have higher SLA and lower LDMC based 

on previous findings. High SLA is positively associated with photosynthetic rates while LDMC 

correlates positively with leaf toughness, drought adaptation and defense from herbivores 

(Cornelissen et al. 2003, Pérez-Harguindeguy et al. 2013). High SLA and low LDMC are favorable 
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strategies for plants in a resource rich environment where competition is high; the expectation 

is that plants in these environments will grow quickly and reproduce early and prolifically. Many 

ruderal species tend to have this strategy (Grime 2001). However, ANOVA results showed a 

lower SLA for the urban classified tree, forb and grass species relative to the rural classified 

species, and higher LDMC for the urban classified forb and grass, suggesting tolerance to 

drought stress in an environment where light is not limiting. These results were echoed in the 

MLR models, where urbanization and impervious surface had negative effects on SLA and 

positive effects on LDMC. Shrubs and vines did not adhere to regular trends, and frequently had 

non-significant differences between the urban and rural classified species. 

 

Additional evidence pointing to drought adaptation was seen in results for LWR and leaf 

thickness. LWR is a metric measuring leaf shape. A higher ratio means the leaf is long and thin. 

Narrow leaves have a small boundary area, which helps enhance transpiration (Malhado et al. 

2009). This means that when water is available the plant is able to uptake it efficiently, without 

exposing a large surface area to the sun during warm periods when water is not available 

(Malhado et al. 2009, Yates et al. 2008). Narrow leaves may also have added benefits in low 

nutrient conditions (Malhado et al. 2009). LWR was greater for urban associated species. Leaf 

thickness is also indicative of leaf adaptation to sunny, dry and low nutrient conditions (Pérez-

Harguindeguy et al. 2013), and was greater for the urban associated tree, forb and grass 

species.  
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The regular combination of traits found for trees, forbs and grasses for SLA, LWR, and leaf 

thickness suggests that the urban-classified species of each of these growth forms is more 

drought-adapted. These results align with those of Chen et al. (2013), who found that over time 

drought- and heat-stress tolerant ruderal species in a city in China replaced ruderal species 

lacking these traits. They suggest that urban plants will tend to be stress-tolerant ruderals, 

species which employ a strategy that allows them to tolerate stress for the long term and 

reproduce quickly and prolifically (Chen et al. 2013). Bromus tectorum, for example, is an 

annual species that thrives in arid, open environments (Kostivkovsky and Young 2000). Similar 

results have also been found for woody species in urbanized riparian forests and in close 

proximity to impervious surfaces and railyards, where drought tolerant species replaced or 

were dominant to more mesic species (Pennington et al. 2010, Sung et al. 2011). Drought in 

urban areas is influenced by the well-drained sandy soils, the open-canopy habitats and the 

urban heat island effect that characterize urbanization, inducing urban drought islands. 

Additionally, impervious surface and soil compaction prevents rainwater from infiltrating urban 

soils, so that urban soils are generally less moist (Pickett and Cadenasso 2009).  

 

The traits of the shrubs and vines did not align with those of the trees, forbs and grasses. One 

possible explanation may be that both the liana Celastrus orbiculatus and the shrub Berberis 

thunbergii are both habitat generalists that are preadapted to a wide range of environmental 

conditions. Celastrus orbiculatus was observed frequently in this study across the three sites, 

and is known to be capable of colonizing many different habitats (Leicht-Young et al. 2007). B. 

thunbergii was primarily observed in shaded forested rural sites. However, barberry can also 



 

37 

 

germinate and survive in open, dry and sunny habitats (Lubell and Brand 2010). Though some 

species showed significant differences in trait values in urban versus rural plots, there was 

insufficient evidence to suggest that traits within a species varied in a consistent and significant 

way between urban and rural plots. Finally, results from the MLR models did not show regular 

trends for the effects of income and proportion of core and edge forest cover on the values of 

the five traits.  

 

Future suggestions 

The degree of “urbanness” was characterized by population thresholds, and in a combined 

urbanization metric that also depended to some extent on thresholds by using the NLCD 

percent impervious surface cover data. It is possible to gain even finer understanding of 

urbanization land cover by using spectral reflectance available from satellite data or other 

landscape measures. Spectral reflectance is used to characterize urbanization (Xian and Crane 

2005), and similar data (for example, NDVI, a vegetation index derived from satellite data) have 

also been used in urban ecological studies; as have shape metrics describing landscape 

character (Aguilera et al. 2011, Gavier-Pizarro et al. 2010, Uuemaa et al. 2009, Zhang et al. 

2013).  

 

Finally, while native species were not included in this study, they too made up some 

component of the urban flora, and they may also display drought tolerant traits compared to 

rural native species. All species surviving in urban environments should be part of a broader 
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census of urban flora to determine a true urban trait syndrome. Drought tolerance of urban 

plants can then be assessed directly in these species.  

 

Conclusions 

Urban soils were slightly more alkaline, and had higher lead concentrations and sand content 

than rural soils. Urban habitats had more open canopies, impervious surface, patch forests, and 

induced edge habitats than rural habitats, which contributed to an “urban drought island” 

syndrome. Suburban areas were a transition zone between urban and rural areas, occupying 

intermediate levels between urban and rural sites in per capita income, number of housing 

units, proportion of patch forest and proportion of core forest. This study found that a priori 

urban-classified invasive species were more drought tolerant, which allowed them to survive in 

an arid urban environmental. Drought tolerance was reflected in low SLA, high LDMC, high leaf 

laminar thickness and high LWR values in some species relative to shade tolerant rural classified 

species of the same growth form.  
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Figures 
 
Figure 1. Extent of sampling region. Clockwise from left panel: Sampling points in the region 
from Hartford to Storrs in northeastern Connecticut and in Boston, MA; population in census 
block groups in the Hartford/Storrs region; impervious surface cover from the 2006 NLCD; and 
land use cover from CLEAR. 
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Figure 2. Content, composition and texture of urban and rural soils (N = 44). Soils were only 
sampled from rural and urban sites. Lead and pH content of soil samples from rural and urban 
sites was significantly different according to the results of two tailed t-tests (lead: t = -4.033, df 
= 10.714, p = 0.002078; pH: t = -6.5837, df = 19.606, p = 2.271e-06). The outlying point for lead 
has a value of 1388 ppm. The association between soil texture and organic content and 
rural/urban grid cells were tested with the Fisher’s exact test. Significant associations were 
found for soil texture (p = 3.42e-05) but not for soil organic content (p = 0.4602). 
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Figure 3. Distribution of continuous variables across grid cells. N = 110, with 36 urban, 40 

suburban and 34 rural sites, respectively.  
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Figure 4. The proportion of urban, rural and suburban plots (n = 228, 203 and 200, respectively) 

for the six categories of land use and four categories of canopy cover and habitat type. 
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Figure 5. Biplots of canonical correspondence analysis. Arrows represent environmental 

gradients and numbers represent species. Neighborhood, habitat type and canopy cover classes 

were entered as dummy variables, with the missing variable acting as a baseline (suburban, 

natural edge and 51-75% canopy cover). Species codes are listed below. 
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1 = Acer platanoides, 2 = Ailanthus altissima, 3 = Allialaria petiolata, 4 = Artemisia vulgaris, 5 = Berberis thunbergii, 
6 = Bromus tectorum, 7 = Catalpa spp., 8 = Celastrus orbiculatus, 9 = Cynanchum louisae, 10 = Elaeagnus 
angustifolium, 11 = Elaeagnus umbellata, 12 = Euonymus alatus, 13 = Frangula alnus, 14 = Ligustrum spp., 15 = 
Lonicera japonica, 16 = Lonicera spp., 17 = Lythrum salicaria, 18 =   Microstigeum vimineum,  19 = Polygonum 
cuspidatum, 20 = Rhamnus cathartica, 21 = Robinia pseudoacacia, 22 = Rosa multiflora, 23 = Rumex acetosella, 24 
= Solanum dulcamara, 25 = Wisteria spp. 
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Figure 6. Biplot of trait measurements. The horizontal axis represents the first principal 

component and the vertical axis represents the second. Species codes are plotted against the 

arrows representing different variables. The codes are as follows, listed by growth form and 

rural/urban pairing: trees: ACPL = A. platanoides, AIAL = A. altissima; shrubs: BETH = B. 

thunbergii, ELUM = E. umbellata; vines: CEOR = C. orbiculatus, SODU = S. dulcamara; forbs: A. 

petiolata, ARVU = A. vulgaris; grasses: MIVI = M. vimineum, BRTE = B. tectorum. 
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Tables 
 
Table 1. List of information on the 25 invasive plant species selected for inclusion in the study. 
Those marked with a star (*) are not currently IPANE listed species. Information on these 
species was taken primarily from the IPANE website, the USDA Plants Database and The 
Reference Manual of Woody Plant Propogation: From Seed to Tissue Culture by M.A. Dirr and 
C.W. Heusser Jr. 
 
Scientific name Common name Growth 

form 

Life cycle Intro date Intro purpose Dispersal 

syndrome 

Native range 

Acer platanoides L. Norway maple Tree perennial 1868 horticulture wind Europe 

Ailanthus altissima (Mill.) 

Swingle 

Tree-of-heaven Tree perennial 1784 horticulture wind central China 

Alliaria petiolata (Bieb.) Cavara 
& Grande) 

Garlic mustard Herb biennial first 

recorded in 

1868 

food/medicine mechanical Europe 

Artemisia vulgaris L.* Mugwort Herb perennial mid-1800s thought to 

have many 

medicinal and 

culinary uses 

Wind, 

mostly 

vegetative 

growth 

Europe, Asia 

Berberis thunbergii DC. Japanese 

barberry 

Shrub perennial 1875 ornamental birds, 

small 

mammals 

Japan 

Bromus tectorum L. Drooping 

cheatgrass 

Graminoid annual 1860 seed lot 

contaminant, 

packing 

material 

gravity, 

wind, 

mechanical 

Mediterrane

an Europe 

Catalpa spp.* 

Includes C. speciosa and C. 

bignonoides   

Catalpa Tree perennial 1800s ornamental  wind North 

America, 

East Asia 

Celastrus orbiculatus Thunb. Oriental 

bittersweet 

Liana perennial 1860 ornamental birds China 

Cynanchum louiseae Kartesz & 

Gandhi 

Black swallow-

wort 

Herb perennial first 

recorded in 

1878 

may have 

come from 

the Harvard 

Botanic 

Garden 

wind Europe 

Elaeagnus angustifolia L. Russian olive Shrub Perennial 1800s horticulture Birds, 

mammals 

Asia 

Elaeagnus umbellata Thunb. Autumn olive Shrub perennial 1830 horticulture, 

wildlife 

birds, 

mammals 

China, Korea, 

Japan 

Euonymus alatus (Thunb.) Sieb. Winged 

euonymus 

Shrub perennial 1860 horticulture birds NE Asia 

Frangula alnus Mill. Glossy 

buckthorn 

Shrub perennial before 

1800 

ornamental, 

rehabilitation 

plantings 

birds Europe, N 

Africa, 

Central Asia 

Ligustrum spp 

includes L.  vulgare and 

obtusifolium 

Privet Shrub perennial 1700s; 

1860; 

1945; 1952 

gardening 

purposes 

birds Asia, Europe 

Lonicera spp 

Includes species  morrowii, 

Honeysuckle Shrub perennial 1898 ornamental birds central and 

northeastern 
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maackii, tartarica China, 

Manchuria, 

Korea 

Lonicera japonica Thunb. Japanese 

honeysuckle 

Liana perennial 1806 horticulture birds China, Japan, 

Korea 

Lythrum salicaria L. Purple 

loosestrife 

Herb perennial 1814 ornamental, 

medicinal 

water central and 

southern 

Europe 

Microstegium vimineum (Trin.) 

A. Camus 

Stiltgrass Graminoid annual 1919 packing 

material 

mechanical tropical Asia 

Polygonum cuspidatum Sieb. & 

Zucc. 

Japanese 

knotweed 

Herb perennial 1855 horticulture wind China, Japan, 

Korea 

Rhamnus cathartica L. Common 

buckthorn 

Shrub perennial <1880 horticulture, 

wildlife 

birds Europe, N 

and W Asia 

Robinia pseudoacacia L. Black locust Tree perennial early 1900s utilitarian 

purposes 

wind United States 

Rosa multiflora Thunb. ex Murr. Multiflora rose Shrub perennial 1886 horticulture birds Japan 

Rumex acetosella L. Sheep sorrel Herb perennial unknown: 

listed at 

worst 

weed in 

1889 

accidental 

means 

wind, 

insects 

Europe, 

Russia, the 

Middle East, 

North Africa 

Solanum dulcamara L. Bittersweet 

nightshade 

Liana perennial Became 

widespread 

in the late 

1800s 

ornamental, 

medicinal 

birds Europe, 

North Africa, 

eastern Asia 

Wisteria spp* 

Including sinensis and 

fructescens (native to south) 

Wisteria Liana perennial 1816 and 

1830 

ornamental, 

horticultural 

purposes 

water China, Japan, 

southern N. 

America 

 

 

 

 

 

 

 

 

 

 

 



 

60 

 

Table 2. Results from three logistic regression models for a rural, urban and generalist species. 

Coefficients represent log odds of finding the species of interest in a plot. Significant 

coefficients are in bold. Model fit diagnostics are listed in the last four rows of the table. These 

diagnostics include Naglekerke’s pseudo-R2, p-values from the Pearson’s goodness of fit test 

comparing the model to an empty one, and results from a likelihood ratio test comparing the 

full model to the model reduced by stepwise regression. 

Variable B. thunbergii coefficient S. dulcamara coefficient C. orbiculatus 

coefficient 

Intercept -0.6589 -9.9109  3.635332 

Income --- --- -0.523526 

Urbanization 

metric 

-0.49478 0.9237  --- 

Proportion 

core forest 

--- --- --- 

Urban -0.92667 1.2604  -1.080991  

Rural 0.93732 -0.8790 -0.472178 

Agricultural --- 2.0142  1.011030 

Commercial --- -1.5694  -1.170387  

Forested --- -1.8104  0.008802 

Industrial --- -1.4030 1.718068 † 

Residential --- 0.2858 0.428059 

26-50% --- -0.4222 --- 

0-25% --- 0.7042 † --- 

76-100% --- -0.7712 --- 

Richness 0.41612 0.7385  1.002408  

Natural 

habitat 

1.08564 --- --- 

Induced 

edge 

-0.18527 --- --- 

Induced 

habitat 

-0.23418 --- --- 

AIC 451.9 338.48 464.54 

Pseudo-R2 0.2855600 0.4187268 0.4505057 

Goodness-

of-fit 

Deviance = 435.90, df = 

474, p-value = 0.894407 

Deviance = 312.48, df = 

468, p-value = 1 

Deviance = 444.54, df = 

472, p-value = 0.81323 

Likelihood 

ratio test 

χ2 = 8.6368, p-value = 

0.1245 

χ2 = 3.9449, p-value = 

0.5574 

χ2 = 6.25882, p-value = 

0.6183 

† p-values between 0.05 and 0.1. 
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Appendix 
 
Appendix 1. Invasive species controversy and the role of citizen science in urban ecology. 
 
Some debate surrounds the role of invasive species in urban areas. Conservation and 

restoration efforts tend to focus on returning degraded or invaded habitats to historical 

reference states. Invasive species are regarded as agents of negative change due to the damage 

they do to natural systems. However, urban areas are far from natural systems, and invasive 

species comprise a large part of the urban flora. It has been argued that invasive plants that 

occur spontaneously in the neglected urban periphery provide the ecosystem services that 

extirpated native species no longer can, and therefore play an important role in urban systems; 

and that a rapidly changing world means accepting a correspondingly changed flora (Davis et al. 

2011, del Tredici 2010). Other arguments state that unique mixes of native and invasive 

vegetation that assemble without human assistance in degraded and heavily human-influenced 

environments actually comprise novel ecosystems (Hobbs et al. 2009) that deserve study and 

recognition in their own right. Other human-influenced environments can act not as novel 

habitats but as analogs of natural habitats (Francis 2011, Lundholm and Richardson 2010). All of 

these ideas run counter to traditional conservation attitudes, which assume invasive species are 

bad and degraded urban habitats are valueless and prize native species and historical habitat 

states, and have not been met without resistance from the wider scientific community 

(Simberloff 2011).     

 
Many urban ecology projects make use of citizen generated data (Gagné 2013). Citizen science 

is especially valuable in urban settings because most people live in or near urban areas. Science 

outreach efforts can therefore be maximized by focusing on places where most people live and 

work. Outreach efforts in the natural sciences are incredibly important in urban areas because 

there is an increasing lack of connection between urban people and nature (Turner et al. 2004). 

As populations become increasingly urban most people’s interactions with nature will 

necessarily be in urban areas (Fuller and Irvine 2010). Their interactions will be with a nature 

that is vastly different from the remote places ecologists used exclusively study (Collins et al. 

2000), and in areas where biodiversity and conservation efforts have been largely ignored in the 

past (Collins et al. 2000, Miller and Hobbs 2002). It is critical that ecologists and conservations 

work on understanding these changed places because of the important health benefits people 

receive from interacting with nature (Fuller et al. 2007, Kaplan 2001, Keniger et al. 2013, Ulrich 

1984), and because involving people in nature in familiar surroundings may be a way to interest 

and involve non-scientist stakeholders in conservation issues outside of cities.   
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Using citizen science in urban ecology studies is a way to integrate urban stakeholders with 

science (Cooper et al. 2007, Goddard et al. 2010, McKinney 2002). Ideally, involving urban 

dwellers with the ecology of the urban environment around them will raise an understanding 

and interest in science and ultimately result in a populace that is more aware and involved in 

conservation issues. By adding to the IPANE dataset, modifying the IPANE methods specifically 

for urban environments, and sharing these methods with an instructor at the Urban Ecology 

Institute in Boston, I hope to add to the growing body of knowledge on the relationship 

between invasive species and urbanization and also to further the goals of IPANE.    
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Appendix 2. Information on census data, and using Census 2010 versus ACS 2010 for income. 
 
There is no global and uniform standard for defining an urban area. Definitions may vary 

according the variables important to the organization making the definition and across 

disciplines (McIntyre et al. 2000), though common measures revolve around population and 

impervious surface cover (Seto et al. 2011).  

The US Census Bureau uses a combination of location and population to define urban 
geographies. The 2010 census used population to classify urban blocks and tracts into 
Urbanized Areas (UA) or Urban Clusters (UC), which are both called urban areas. UAs have 
50,000 or more people over a core of a few census tracts, while UCs contain between 2,500 and 
50,000 people. Tracts and blocks can have a minimum of 500 people per square mile and still 
be considered part of an UA or UC, as long as they are contiguous with an urban core tract or 
block. The overall urbanized area population density for the United States is 2,534.4 people per 
square mile. All blocks outside of these urban clusters and urban areas are considered rural. 
Prior to this definition, any area with at least 2,500 people was considered urban. For the 
purposes of this study a more explicit definition of urban, rural and suburban based on 
population density was more useful than the urban area and urban cluster concept. 
 
Per capita income was phased out of the decennial census data collection and is now reported 
by the 1-, 2-, and 5-year American Community Survey (ACS). The two programs collect data very 
differently. The decennial census is a complete (100%) count of the total population, while the 
ACS takes population based samples over three different time periods. About 3 million 
addresses are selected to complete the survey every year. The annual (1-year) ACS provides 
data for geographic areas with a population of 65,000 or more individuals. These geographies 
include the entire nation, all states and the District of Columbia, 800 counties, and other areas.  
 
The 3-year ACS includes data for geographies with a population of 20,000 or greater (including 
the country, all states and DC, more counties and metropolitan areas, etc.). The 5-year ACS 
includes data for all geographic areas, including smaller ones not covered in the other two 
surveys. The 5-year data is collected by combining the 1-year estimates and taking into account 
the population for each year and then calculating the margin of error values for each variable.  
 
In consultation with Michael Howser of Uconn’s  AGIC, it was determined that working at the 
5-year block group level was best because there was less error associated with the income 
estimate, but still at a smaller geographic area.  
 
Table A1-1. Various options for Census data combinations. 
Geography Housing source/date Population 

source/date 
Income source/date Pros and cons  

Block  Census 2000 
 

Census 2000 
 

Census 2000 
 

pro: all from same source; block is 
smallest possible unit for which all 
info is available 
con: outdated 
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Block group Census 2010 
 

Census 2010 
 

ACS, 5-year 2010 
 

Pro: all 2010 data, block group 
smaller than tract 
Con: different sources, ACS blck 
group is not as reliable as tract level 

Tract  Census 2010 Census 2010 ACS, 5-year 2010 Pro: 2010, ACS  
Con: tract is larger 

Block group ACS, 5-year 2010 ACS, 5-year 2010 ACS, 5-year 2010 Pro: all from same source 
Con: ACS blck group is not as 
reliable as tract level 
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Appendix 3. GME code for summarizing layers into 1-km grid, and creation of urbanization 
metric. 
 
isectpolypoly(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\CTblckgrp_pophouinc_FinalGrid_Albers.sh
p", poly="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\MACT_blckgrp_Area_Albers.shp", 
field="MRUE001", prefix="Inc", thematic=FALSE, proportion=FALSE, awm=TRUE, min=FALSE, max=FALSE, aws=FALSE); 

 isectpolypoly(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\CTblckgrp_pophouinc_FinalGrid_Albers.sh
p", poly="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\MACT_blckgrp_Area_Albers.shp", field="H7V001", 
prefix="Pop", thematic=FALSE, proportion=FALSE, awm=FALSE, min=FALSE, max=FALSE, aws=TRUE); 

 isectpolypoly(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\CTblckgrp_pophouinc_FinalGrid_Albers.sh
p", poly="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\MACT_blckgrp_Area_Albers.shp", field="IFC001", 
prefix="Hou", thematic=FALSE, proportion=FALSE, awm=FALSE, min=FALSE, max=FALSE, aws=TRUE); 

 isectpolyrst(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\CTblckgrp_pophouinc_FinalGrid_Albers.shp
", raster="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\MACT_Edges_30m1_Albers.tif", prefix="Edge", 
thematic=TRUE, proportion=TRUE, allowpartialoverlap=FALSE, medquant=FALSE); 
  
isectpolyrst(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\CTblckgrp_pophouinc_FinalGrid_Albers.shp
", raster="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\nlcd2006_CTMA.tif", prefix="Imp", 
thematic=FALSE, proportion=FALSE, metrics="MEAN", allowpartialoverlap=FALSE, medquant=FALSE); 

 isectpolyrst(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\CTblckgrp_pophouinc_FinalGrid_Albers.shp
", raster="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\SumImpSurfMSqDivbyPop_blckgrp3.tif", 
prefix="ImpCap", thematic=FALSE, proportion=FALSE, metrics="MEAN", allowpartialoverlap=FALSE, medquant=FALSE); 

 isectpntpoly(in="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\AllPoints_2012_2013_Final_102313_Albers
.shp", poly="C:\Users\Lara\Desktop\Land_Use_Data\data_layers\active_layers\MACT_1kmgrid_Final_Albers.shp", 
field=c("IncAWM", "PopAWS", "HouAWS", "ImpMN", "ImpCapMN", "EdgeV1", "EdgeV2", "EdgeV3", "EdgeV4", "EdgeV5", 
"EdgeV6", "EdgeVSUM")); 

 

Steps in continuous urban cover layer creation in ArcGIS 10 
First, the raster calculator was used to convert each grid cell of the NLCD impervious surface 
layer in meters squared, by multiplying the value of each cell by 9. Zonal statistics was used to 
obtain the average impervious surface in meters squared in each block group, and the Polygon 
to Raster tool was to create raster files of population and median household income in each 
block group. Input original clipped impervious surface layer to the cell size so the two layers 
overlap correctly and have the same 30 m cell size. The final impervious surface area layer was 
created by dividing the meters squared impervious surface per block group layer by the 
population per block group layer.  
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Appendix 4. Comparison between using GME and ArcGIS functions for grid creation and 
summarizing variables into grid cells. 
 
In exploring differences between creating the 1-km by 1-km sampling grid via the programs 
ArcGIS and GME I generated two grid layers from each method and compared population, 
housing and impervious surface estimates. The comparison was carried out for two spatial 
scales, first all grid squares created for Connecticut and Massachusetts and second in only the 
sites sampled in this study (about 110). Both programs calculated an area-weighted sum for 
housing and population and an area-weighted mean for each grid cell. The functions 
“isectpolypoly” and “isectpolyrast” were used to accomplish this task in G E, and a series of 
functions were used to accomplish this in ArcGIS.  
 
The methods used for the two sampling ranges were compared using a Wilcoxon Rank Sum 
test. Results show that for housing and population the two programs produced different results 
for all sites, while the results of impervious surface were not significantly different across 
methods. Estimates of all three variables were not significantly different in the smaller sampling 
range. Observed differences are most likely due to how the programs handled grid cells on 
edges, where the grid cell polygon only partially overlaps the block group polygon. The methods 
used by both programs to summarize a raster into a polygon were similar enough at the smaller 
spatial scale, which did not include any edge polygons. Ultimately GME was used for other layer 
summarizing needs for this project due to its simple function building capacity. 
 
Table 4A-1. Results from Wilcoxon Rank Sum test.  

 All sites Sampled sites only 

Population 
 

W = 91450723, p-value = 
5.656e-06 

W = 12114, p-value = 0.5971 

Housing 
units 

W = 93920171, p-value < 
2.2e-16 

W = 12090, p-value = 0.6188 

Impervious 
surface 

W = 89682947, p-value = 
0.06151 

W = 11864, p-value = 0.8372 
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Appendix 5. Variables collected at plots and sites.  
 
Categorical variables were collected at each plot, and continuous variables summarized at each 
1-km by 1-km site using ArcGIS and GME. Some variables were used as input to regression 
models. 
 
Table 5A-1. Plot level categorical variables.  
Name Type Description 

Species  Binary/categoric

al 

The first few letters of the species name and genus name (ex. “acerplata” for Acer 

platanoides) of the 25 species of interest, marked with a 0 if absent and 1 if present 

in each plot for frequency analysis. 

Neighborhood Categorical  Three categories; classifying the plot as urban, suburban or rural, determined by 

population size cutoffs from the 2010 Census. 

Aspect Categorical  Nine categories; describing plot aspect. Determined with a compass in the field. 1 – 

North, 2 – NE, 3 – East, 4 – SE, 5 – South, 6 – SW, 7 – W, 8 – NW, 9 – Flat 

Canopy Ordinal Four categories; describing canopy closure at the site. Visually estimated in the 

field. 1 – 0 to 25%, 2 – 26 to 50%, 3 – 51 to 75%, 4 – 76 to 100% 

Elevation Continuous Plot elevation. Data taken from Trimble Juno ST and geocorrected. 

Trailside Binary 1 if the plot was located next to or near a trail and 0 if it was not 

Moisture Categorical Four categories; describing soil moisture at the site. Visually estimated in the field. 

1 – Xeric (dry), 2 – Mesic (moist), 3 – Saturated, 4 – Inundated 

Habitat Categorical 19 categories; describing habitat at that plot. Adapted from IPANE habitat 

categories and aggregated into four habitat types (below). 

Habitat types Categorical 4 categories; Natural Edges, Natural Habitats, Induced Edges and Induced Habitats. 

These categories encompass the 19 habitats described in the Habitat1 variable 

Landuse Categorical Six categories; describing visually determined land use at the plot. These categories 

are industrial, commercial, residential, agricultural, forested, and mixed-use.  

Latitude Continuous 

(coordinate) 

Latitude, recorded in decimal degrees in the center of the plot with the Trimble 

Juno ST GPS unit and geocorrected. Measured in geographic coordinate system 

WGS84.  

Longitude Continuous 

(coordinate) 

Longitude, recorded in decimal degrees in the center of the plot with the Trimble 

Juno ST GPS unit and geocorrected. Measured in geographic coordinate system 

WGS84. 

Abundance Ordinal Five categories; describing abundance (number of individuals) of a species in a plot. 

1 – Single plant, 2 – Less than 20, 3 – 20 to 99, 4 – 100 to 999, 5 – More than 1000 

Distribution Categorical Five categories; describing distribution of a species in a plot. 1 – Single plant, 2 – 

Evenly sparse, 3 – Single patch, 4 – Multiple patches, 5 – Dense throughout  

Percent Cover Ordinal Six categories; 1 – Less than 1%, 2 – 1 to 5%, 3 – 6 to 25 %, 4 – 26 to 50%, 5 – 51 to 

75%, 6 – 76 to 100% 

Reproduction Binary  Five options describing the reproductive state of a species in each plot. Each state 

was marked with a 1 if it was true, and a 0 if it was false. The options were: 

vegetative, flowers, pollinators, fruit, seedlings present 

Spontaneous Categorical Three options describing if a species was obviously planted and maintained or if it 

existed as a wild element, establishing independently of human assistance. 0 – no, 

indicated the individual or population was planted/maintained; 1 – yes, indicated 

the individual or population was independently established 
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Table 5A-2. Site level continuous variables. 
Name Type Description 

Housing Units Continuous  Average number of housing units. Data from 2010 US Census report, shapefiles and 

data obtained from NHGIS 

Population Continuous Number of people, in people per square kilometer. Data from 2010 US Census 

report, shapefiles and data obtained from NHGIS 

% Impervious 

Surface 

Continuous Percent impervious surface occurring in a 30m grid cell into which plot fell. Data 

from 2006 USGS NLCD 

Per capita 

household 

income 

Continuous Average per capita income in 2011 for the census block groups containing the plot. 

Data from the American Community Survey. Obtained from National Historical 

Geographic Information System (NHGIS) 

Derived metric Continuous Average meter squared of impervious surface per person per block group. 

Calculated using US Census data and impervious surface data from the NLCD 

Patch Continuous Proportion of patch forest in a site, determined from CLEAR’s Forest Fragmentation 

tool 

Edge Continuous Proportion of edge forest in a site, determined from CLEAR’s Forest Fragmentation 

tool 

Perforated Continuous Proportion of perforated forest in a site, determined from CLEAR’s Forest 

Fragmentation tool 

Core Continuous Proportion of core forest in a site, determined from CLEAR’s Forest Fragmentation 

tool 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

69 

 

 
Appendix 6. Species sampling information and presence/absence data. 
 
A total of 631 plots were sampled, capturing 1659 individual species observations in 110 sites. 
146 of those plots were null plots, or plots where no invasive species relevant to this study 
were present. Half of all the null plots were in rural sites. 119 plots were opportunistic, meaning 
they were plots sampled that were not part of the original sampling schemes. Most 
opportunistic and non-opportunistic sampling sites were from the 2012 and 2013 field season 
and located along an urban-to-rural gradient from Hartford, CT to Storrs. A second set of data 
consisted of 31 plots from the Boston metropolitan area collected by volunteers from a class 
project. Finally, of the 631 plots, 228 plots were urban, 203 were suburban and 200 were rural; 
and of the 110 sites, 36 were urban, 40 were suburban and 34 were rural.  
 
Table 6A-1. Results of two-tailed Pearson’s chi-square tests and Fisher’s exact tests for a subset 
of species frequencies across the three neighborhood categories. Where the Fisher’s test was 
performed only a p-value is reported. Species frequencies are also listed by rural, suburban and 
urban sites. Tests were run on 2 x 3 tables where the first row was the number of observations 
where the species was present and the second row was the number of observations where the 
species was absent. Null plots were excluded, as were species with less than 5 observations. Of 
a total 1494 individual observations, 327 were rural, 542 were suburban and 625 were urban.  
  
Species Species frequencies Test results for species frequencies 

Acer platanoides  3; 47; 64 X2 = 27.7795, df = 2, p-value = 9.285e-07 

Ailanthus altissima  0; 7; 43 p-value = 6.334e-11 

Alliaria petiolata  15; 22; 36 X2 = 1.8877, df = 2, p-value = 0.3891 

Artemiesia vulgaris  7; 14; 22 X2 = 1.7262, df = 2, p-value = 0.4218 

Berberis thunbergii  56; 39; 27 X2 = 48.0103, df = 2, p-value = 3.756e-11 

Bromus tectorum  0; 0; 6 p-value = 0.01518 

Catalpa spp 5; 17; 23 X2 = 3.4451, df = 2, p-value = 0.1786 

Celastrus orbiculatus  76; 125; 114 X2 = 5.2285, df = 2, p-value = 0.07322 

Cynanchum louiseae 0; 1; 6 p-value = 0.101 

Elaeagnus umbellata  22; 21; 10 X2 = 16.7634, df = 2, p-value = 0.000229 

Euonymus alatus 27; 40; 37 X2 = 2.0406, df = 2, p-value = 0.3605 

Frangula alnus  3; 26; 12 X2 = 14.2371, df = 2, p-value = 0.0008099 

Ligustrum spp 0; 2; 9 p-value = 0.02244 

Lonicera spp 15; 42; 29 X2 = 6.227, df = 2, p-value = 0.04444 

Lonicera japonica 2; 5; 9 X2 = 1.5674, df = 2, p-value = 0.4567 

Microstegium vimineum  5; 2; 0 p-value = 0.002775 

Polygonum cuspidatum  4; 6; 25 X2 = 12.912, df = 2, p-value = 0.001571 

Rhamnus cathartica  3; 11; 9 X2 = 1.7342, df = 2, p-value = 0.4202 

Robinia pseudoacacia  1; 5; 24 X2 = 18.7209, df = 2, p-value = 8.606e-05 

Rosa multiflora  75; 75; 65 X2 = 23.8857, df = 2, p-value = 6.506e-06 

Solanum dulcamara  8; 29; 53 X2 = 14.4862, df = 2, p-value = 0.0007151 

Wisteria spp 5; 4; 6 p-value = 0.5288 
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Table 6A-2. Percentages of obviously planted individuals for rural, suburban and urban 
observations for twelve species. A dashed line means no observations for that species were 
planted, and an NA means the species was not observed at all in the given neighborhood 
category.  
 

 A.platanoides A. altissima B. thunbergii Catalpa sp. E. umbellata E. alatus 

Rural 100% NA 4 40 9 14.81 

Suburban 25.53% 14.29 15.38 41.18 23.81 22.5 

Urban 25% 11.63 48.15 26 40 59.46 

 

 F. alnus Ligustrum sp Lonicera sp R.pseudoacacia R. multiflora Wisteria 

Rural -- NA -- -- 1.33 -- 

Suburban -- 50 7.14 60 1.33 50 

Urban 8.33 77.77 -- 12.5 7.69 50 
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Appendix 7. Species composition of sites. 

Figure 7A-1. Total number of species observations (n = 1744) captured in all plots (n = 674), 

including opportunistic and null plots. The grey bar labeled “NoInv” represents null plots, plots 

that were visited as part of the original sampling scheme but contained no invasive species of 

interest. 
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Figure 7A-2. The proportion of each species observed in rural, suburban, and urban sites, sorted 

by rural species’ frequencies.  
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Appendix 8. Species pairs. 
 
A. altissima is a classic urban tree species, introduced for use as a street planting, and is shade-
intolerant. A. platanoides is an extremely common street and lawn planting which has a strong 
presence in urban woodlands. Norway maple is less tolerant of dry soils, but is more shade 
tolerant than A. altissima and therefore has a greater capacity to invade native mesic woods 
(Bertin et al. 2005). It appeared here in a wider variety of habitats than A. altissima. Berberis 
thunbergii is a shade-tolerant shrub which was primarily located in forested rural plots. 
Elaeagnus umbellata was also introduced as a horticultural planting, intended as erosion 
control and food for wildlife. E. umbellata tends to spread in open canopy habitats and 
roadsides. Celastrus orbiculatus is a woody vine prevalent across all sites that is tolerant of a 
wide variety of environmental conditions. The woody vine Solanum dulcamara, found largely in 
this study in urban edges, is shade intolerant. The biennial forb Alliaria petiolata was paired 
with the perennial forb Artemisia vulgaris. A. vulgaris grows in open, dry habitats; while A. 
petiolata prefers closed canopy rich woods. A. vulgaris was more strongly explained by 
impervious surface than A. petiolata in CCA plots. Only two grasses were surveyed in this 
project. Bromus tectorum was exclusively located in open urban habitats, while M. vimineum 
was exclusively located in more closed-canopy shaded habitats. 
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Appendix 9. Trait data analysis.  

Table 9A-1. List of leaf and plant measurements and corresponding units. Interpretation of 

derived trait meaning is also included according to Cornelissen et al. 2003 and Pérez-

Harguindeguy et al. 2013. 

Measurement Units Meaning 

Area cm2 One sided area of a leaf 

Length cm Leaf length 

Width cm Average and max leaf width 

Mass g Leaf wet mass 

Dry mass g Leaf dry mass 

DBH m Diameter at breast height; tree diameter measured at a 

standardized height from the base of the tree. 

Plant height m Height of highest foliage of an individual plant. Associated with 

competitive strength and overall size.   

Thickness mm Leaf laminar thickness; high values may indicate leaf toughness, 

succulence, adaptation to a hot and dry environment.  

LDMC mg g-1 Leaf dry matter content; ratio of leaf dry mass to wet mass. 

Measures leaf density. High values relative to low values 

indicate leaf investment in “toughness” and longevity. 

SLA mm2 mg-1 Specific leaf area; leaf area divided by dry mass; correlates 

positively with relative growth rate, photosynthetic rate and leaf 

nitrogen concentration. High values indicate investment in 

resource capture; low values indicate investment in longevity. 

LMA  1/SLA, inverse of SLA.  

LWC % Leaf water content; (Wet mass – dry mass)/wet mass; measure 

of leaf succulence   

LWR Unitless Length width ratio; maximum leaf width divided by leaf length. 

Measure of leaf shape. Larger values indicate a narrower leaf. 
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May be adaptive for dry and/or low nutrient conditions. 

 

Table 9A-2. Loadings and variance explained from the first two components of PCA analysis. 

 Component 1 Component 2 

Mass -0.411 0.037 

Dry mass -0.403 -0.080 

Area -0.400 0.143 

Length -0.314 0.103 

Average width -0.381 0.180 

Max width -0.378 0.200 

LMA -0.133 -0.466 

LWC 0.173 0.410 

SLA 0.111 0.468 

LDMC -0.173 -0.410 

LWR 0.167 -0.108 

Thickness 0.064 -0.323 

St. deviation 2.358 1.876 

Proportion of 

variance 

0.46 0.29 
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Table 9A-3. Mean of 5 untransformed trait values for 10 species, ± standard deviation. Species 

codes are as follows, listed by growth form and rural/urban pairing: trees: ACPL = A. 

platanoides, AIAL = A. altissima; shrubs: BETH = B. thunbergii, ELUM = E. umbellata; vines: CEOR 

= C. orbiculatus, SODU = S. dulcamara; forbs: A. petiolata, ARVU = A. vulgaris; grasses: MIVI = M. 

vimineum, BRTE = B. tectorum. 

 

Species SLA (mm
2
 mg

-1
) LDMC (mg g

-1
) Thickness (mm) LWR Area (cm

2
) 

ACPL 2.124 ± 0.651 441.864 ± 48.594 0.112 ± 0.014 0.914 ± 0.225 129.892 ± 38.713 

AIAL 1.354 ± 0.386 390.811 ± 43.973 0.198 ± 0.040 2.568 ± 0.318 41.105 ± 7.880 

BETH 2.451 ± 0.697 276.718 ± 37.611 0.237 ± 0.036 2.140 ± 0.380 2.058 ± 0.664 

ELUM 1.214 ± 0.148 397.971 ± 29.034 0.239 ± 0.022 2.299 ± 0.321 16.987 ± 4.117 

CEOR 2.856 ± 0.908 250.419 ± 45.102 0.190 ± 0.028 1.450 ± 0.258 32.810 ± 10.302 

SODU 3.676 ± 1.226 217.069 ± 33.642 0.153 ± 0.035 1.553 ± 0.344 19.008 ± 8.484 

ALPE 6.062 ± 1.584 156.532 ± 35.695 0.137 ± 0.013 1.120 ± 0.111 59.509 ± 21.223 

ARVU 1.961 ± 0.341 301.296 ± 45.471 0.189 ± 0.019 1.968 ± 0.509 23.500 ± 8.242 

MIVI 5.564 ± 1.132 314.817 ± 47.825 0.070 ± 0.007 5.846 ± 0.495 6.578 ± 2.425 

BRTE 2.646 ± 0.570 355.343 ± 

144.446 

0.158 ± 0.023 18.479 ± 5.068 2.974 ± 1.947 
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Table 9A-4. Mean of 5 untransformed trait values for the 10 species, ± standard deviation, 

broken down into samples from urban and rural sites. Species codes are as follows, listed by 

growth form and rural/urban pairing: trees: ACPL = A. platanoides, AIAL = A. altissima; shrubs: 

BETH = B. thunbergii, ELUM = E. umbellata; vines: CEOR = C. orbiculatus, SODU = S. dulcamara; 

forbs: A. petiolata, ARVU = A. vulgaris; grasses: MIVI = M. vimineum, BRTE = B. tectorum. 

Species Site SLA (mm
2
 mg

-1
) LDMC (mg g

-1
) Thickness( mm) LWR Area (cm

2
) 

ACPL R 2.130  ± 0.833 420.573 ± 55.083 0.114 ± 0.016 1.047 ± 0.239 123.982 ± 44.195 

U 2.118 ± 0.421 463.154 ± 29.303 0.111 ± 0.012 0.781 ± 0.100 135.803 ± 32.397 

AIAL R 1.500 ± 0.441 375.465 ± 45.957 0.181 ± 0.046 2.692 ± 0.343 44.278 ± 6.671 

U 1.208 ± 0.258 406.156 ± 36.895 0.215 ± 0.025 2.444 ± 0.240 37.933 ± 7.858 

BETH R 2.345 ± 0.742 272.786 ± 29.008 0.253 ± 0.039 2.250 ± 0.350 2.094 ± 0.609 

U 2.557 ± 0.651 280.651 ± 45.051 0.220 ± 0.023 2.030 ± 0.385 2.022 ± 0.730 

ELUM R 1.170 ± 0.130 402.708 ± 27.950 0.244 ± 0.021 2.189 ± 0.259 19.070 ± 4.648 

U 1.257 ± 0.155 393.235 ± 30.032 0.234 ± 0.022 2.409 ± 0.344 14.904 ± 2.014 

CEOR R 3.268 ± 0.872 231.539 ± 44.678 0.189 ± 0.024 1.557 ± 0.305 38.705 ± 10.879 

U 2.443 ± 0.758 269.298 ± 37.800 0.190 ± 0.033 1.343 ± 0.140 26.916 ± 5.131 

SODU R 3.768 ± 0.887 213.109 ± 22.502 0.150 ± 0.033 1.669 ± 0.379 14.824 ± 2.873 

U 3.583 ± 1.510 221.028 ± 42.235 0.157 ± 0.037 1.437 ± 0.265 23.193 ± 10.131 

ALPE R 6.564 ± 1.128 143.292 ± 27.630 0.137 ± 0.012 1.048 ± 0.055 60.240 ± 19.757 

U 5.561 ± 1.829 169.771 ± 38.509 0.137 ± 0.015 1.192 ± 0.105 58.777 ± 23.089 

ARVU R 1.940 ± 0.329 307.282 ± 54.649 0.186 ± 0.016 2.068 ± 0.586 23.332 ± 9.258 

U 1.981 ± 0.360 295.311 ± 34.381 0.192 ± 0.023 1.869 ± 0.408 23.669 ± 7.326 

MIVI R 5.812 ± 1.121 313.644 ± 48.096 0.068 ± 0.006 5.761 ± 0.477 5.444 ± 2.402 

U 5.066 ± 1.004 317.165 ± 48.431 0.074 ± 0.006 6.016 ± 0.498 6.948 ± 2.490 

BRTE R 2.732 ± 0.612 371.926 ± 167.918 0.152 ± 0.023 19.893 ± 5.430 3.082 ± 1.893 

U 2.560 ± 0.525 338.761 ± 118.540 0.163 ± 0.022 17.065 ± 4.361 2.866 ± 2.042 
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Table 9A-4. Results of two-way ANOVA for species association (a priori classification of rural or 
urban) and site.  
 

SLA 
     

 df SSE MSE F value P 

Association 4 25.5 6.375 33.878 <2e-16 

Site 1 0.32 0.323 1.716 0.192 

Interaction 4 0.47 0.117 0.621 0.648 

Residuals 190 35.75 0.188 
  

      LDMC 
     

 df SSE MSE F value P 

Association 4 11.852 2.9629 48.625 <2e-16 

Site 1 0.115 0.1155 1.895 0.17 

Interaction 4 0.097 0.0241 0.396 0.811 

Residuals 190 11.578 0.0609 
  

      LWR 

     
 df SSE MSE F value P 

Association 4 111.6 27.899 167.084 <2e-16 

Site 1 0.25 0.252 1.506 0.221 

Interaction 4 0.31 0.079 0.471 0.757 

Residuals 190 31.73 0.167 
  

      THICKNESS 

     
 df SSE MSE F value P 

Association 4 13.713 3.428 44.704 <2e-16 

Site 1 0.036 0.036 0.463 0.497 

Interaction 4 0.219 0.055 0.715 0.582 

Residuals 190 14.571 0.077 
  

      AREA 

     
 df SSE MSE F value P 

Association 4 245.16 61.29 114.324 <2e-16 

Site 1 0.05 0.05 0.093 0.761 

Interaction 4 0.15 0.04 0.069 0.991 

Residuals 190 101.86 0.54 
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Table 9A-4. Results of two-way ANOVA for species association (a priori classification of rural or urban) and site, for each growth form 
pair.  

             TREES 

 
SHRUBS 

SLA 

      

SLA 

     

 

df SSE MSE F value P 

  

df SSE MSE F value P 

Association 
1 1.8708 1.8708 24.268 1.88E-05 

 

Association 
1 4.527 4.527 113.908 

1.06E-
12 

Site 1 0.0444 0.0444 0.576 0.453 
 

Site 1 0.076 0.076 1.924 0.174 

Interaction 1 0.1474 0.1474 1.912 0.175 
 

Interaction 1 0.003 0.003 0.064 0.802 

Residuals 36 2.7752 0.0771 
   

Residuals 36 1.431 0.04 
  

 
            LDMC 
      

LDMC 
     

 
df SSE MSE F value P 

  

df SSE MSE F value P 

Association 
1 0.1618 0.16183 14.601 0.000506 

 

Association 
1 1.3566 1.3566 162.968 

6.27E-
15 

Site 1 0.077 0.07697 6.945 0.012323 
 

Site 1 0 0 0.003 0.96 

Interaction 1 0.0023 0.00227 0.205 0.65363 
 

Interaction 1 0.0052 0.0052 0.621 0.436 

Residuals 36 0.399 0.01108 
   

Residuals 36 0.2997 0.0083 
  

 
            LWR 

      

LWR 

     
 

df SSE MSE F value P 

  

df SSE MSE F value P 

Association 1 10.999 10.999 617.952 < 2e-16 
 

Association 1 0.0585 0.05847 3.322 0.0767 

Site 1 0.351 0.351 19.73 8.15E-05 
 

Site 1 0.0004 0.00043 0.024 0.8773 

Interaction 1 0.088 0.088 4.944 0.0325 
 

Interaction 1 0.0979 0.09793 5.564 0.0239 

Residuals 36 0.641 0.018 
   

Residuals 36 0.6337 0.0176 
  

             THICKNESS 

     

THICKNESS 

    
 

df SSE MSE F value P 

  

df SSE MSE F value P 

Association 1 3.0182 3.0182 109.585 1.80E-12 
 

Association 1 45.44 45.44 678.197 <2e-16 

Site 1 0.0856 0.0856 3.107 0.0864 
 

Site 1 0.19 0.19 2.857 0.0996 

Interaction 1 0.1167 0.1167 4.236 0.0469 
 

Interaction 1 0.07 0.07 1.113 0.2984 

Residuals 36 0.9915 0.0275 
   

Residuals 36 2.41 0.07 
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             AREA 

      

AREA 

     
 

df SSE MSE F value P 

 
 

df SSE MSE F value P 

Association 1 12.701 12.701 233.475 <2e-16 
 

Association 1 45.44 45.44 678.197 <2e-16 

Site 1 0.001 0.001 0.024 0.8785 
 

Site 1 0.19 0.19 2.857 0.0996 

Interaction 1 0.212 0.212 3.902 0.0559 . Interaction 1 0.07 0.07 1.113 0.2984 

Residuals 36 1.958 0.054 
   

Residuals 36 2.41 0.07 
  

             VINES 
 

FORBS 

SLA 

      

SLA 

     
 

df SSE MSE F value P 

 
 

df SSE MSE F value P 

Association 1 0.618 0.6182 6.52 0.0151 
 

Association 1 12.467 12.467 344.235 <2e-16 

Site 1 0.415 0.4153 4.379 0.0435 
 

Site 1 0.068 0.068 1.876 0.179 

Interaction 1 0.109 0.1087 1.146 0.2915 
 

Interaction 1 0.102 0.102 2.824 0.102 

Residuals 36 3.414 0.0948 
   

Residuals 36 1.304 0.036 
  

 
      

 
     LDMC 

      
LDMC 

     

 

df SSE MSE F value P 

  

df SSE MSE F value P 

Association 
1 0.1881 0.18812 7.309 0.0104 

 

Association 
1 4.421 4.421 141.371 

5.02E-
14 

Site 1 0.0857 0.08573 3.331 0.0763 
 

Site 1 0.049 0.049 1.554 0.2205 

Interaction 1 0.0441 0.04407 1.712 0.199 
 

Interaction 1 0.097 0.097 3.102 0.0867 

Residuals 36 0.9266 0.02574 
   

Residuals 36 1.126 0.031 
  

             LWR 

      

LWR 

     

 
Df df SSE MSE F value 

  

df SSE MSE F value P 

Association 
1 0.0372 0.03716 1.576 0.21737 

 

Association 
1 2.9037 2.9037 90.596 

2.28E-
11 

Site 1 0.1961 0.19612 8.319 0.00658 
 

Site 1 0.0032 0.0032 0.1 0.7531 

Interaction 1 0 0.00004 0.002 0.9667 
 

Interaction 1 0.1223 0.1223 3.817 0.0585 

Residuals 36 0.8487 0.02357 
   

Residuals 36 1.1538 0.0321 
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             THICKNESS 

     

THICKNESS 

    
 

df SSE MSE F value P 

 
 

df SSE MSE F value P 

Association 
1 3.39 3.39 46.613 5.54E-08 

 

Association 
1 8.628 8.628 62.218 

2.33E-
09 

Site 1 0.002 0.002 0.024 0.878924 
 

Site 1 0.003 0.003 0.02 0.887 

Interaction 1 1.377 1.377 18.94 0.000107 
 

Interaction 1 0.02 0.02 0.143 0.708 

Residuals 36 2.618 0.073 
   

Residuals 36 4.992 0.139 
  

       
 

     AREA 

      

AREA 

     
 

df SSE MSE F value P 

 
 

df SSE MSE F value P 

Association 
1 3.39 3.39 46.613 5.54E-08 

 

Association 
1 8.628 8.628 62.218 

2.33E-
09 

Site 1 0.002 0.002 0.024 0.878924 
 

Site 1 0.003 0.003 0.02 0.887 

Interaction 1 1.377 1.377 18.94 0.000107 
 

Interaction 1 0.02 0.02 0.143 0.708 

Residuals 36 2.618 0.073 
   

Residuals 36 4.992 0.139 
  

             GRASS 
       SLA 

            
 

df SSE MSE F value P 

       Association 1 5.737 5.737 173.63 2.44E-15 
       Site 1 0.186 0.186 5.628 0.0231 
       Interaction 1 0.06 0.06 1.807 0.1873 
       Residuals 36 1.19 0.033 

         
 

            LDMC 
            

 

df SSE MSE F value P 

       Association 1 0.0765 0.07653 1.13 0.295 
       Site 1 0.0007 0.00069 0.01 0.92 
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Interaction 1 0.0367 0.03672 0.542 0.466 
       Residuals 36 2.4372 0.0677 

         

             LWR 

            
 

df SSE MSE F value P 

       Association 1 13.088 13.088 525.098 <2e-16 
       Site 1 0.015 0.015 0.598 0.4445 
       Interaction 1 0.157 0.157 6.284 0.0168 
       Residuals 36 0.897 0.025 

         

             THICKNESS 

           
 

df SSE MSE F value P 

       Association 1 7.718 7.718 28.031 6.09E-06 
       Site 1 0 0 0.001 0.98 
       Interaction 1 0.405 0.405 1.47 0.233 
       Residuals 36 9.912 0.275 

         
 

            AREA 

            
 

df SSE MSE F value P 

       Association 1 7.718 7.718 28.031 6.09E-06 
       Site 1 0 0 0.001 0.98 
       Interaction 1 0.405 0.405 1.47 0.233 
       Residuals 36 9.912 0.275 
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Table 9A-7. Regression model results for trait values without including species as a predictor. 

Residual plots of these models showed some irregular patterns that were removed by including 

species as a term.  

 
SLA 

     
LWR 

    

 
Coeff. SE t p 

  
Coeff. SE t p 

Intercept 1.29 1.47 0.88 0.38 
 

Intercept 5.78 2.28 2.54 0.01 

log(Income) -0.05 0.14 0.37 0.71 
 

log(Income) -0.51 0.22 -2.30 0.02 

log(Urbanization metric) -0.05 0.03 -1.74 0.08 
 

log(Urbanization metric) -0.04 0.05 -0.94 0.35 

Proportion edge forest 0.93 0.20 4.67 0.00 
 

Proportion edge forest 0.85 0.61 1.40 0.16 

Proportion of core forest 0.29 0.19 1.50 0.13 
 

Proportion of core 
forest 0.68 0.29 2.33 0.02 

R-squared = 0.06 
     

R-squared = 0.02 
   

F(4,195) = 4.425.79,  p = < 0.002 
    

F(4,195) = 2.351, p = 0.0556 
  

           

LDMC 
     

Leaf Thickness 
   

 
Coeff. SE t p 

  
Coeff. SE t p 

Intercept 6.48 0.89 7.27 8.7e-12 
 

Intercept -4.15 1.00 -4.14 0.00 

log(Income) -0.05 0.09 -0.61 0.54 
 

log(Income) 0.22 0.10 2.28 0.02 

log(Urbanization metric) -0.00 0.02 -0.42 0.67 
 

log(Urbanization metric) 0.05 0.02 2.41 0.02 

Proportion edge forest -0.75 0.24 -3.17 0.00 
 

Proportion edge forest -0.52 0.27 -1.95 0.05 

Proportion of core forest -0.06 0.11 -0.50 0.62 
 

Proportion of core forest -0.25 0.13 -1.97 0.05 

R-squared = 0.04 
     

R-squared = 0.05 
   

F(4,192) = 79.36, p = 0.018 
    

F(4,195) = 3.733, p = 0.006 
  

           

Leaf area 
          

 Coeff. SE t p 
      

Intercept 9.35 3.51 2.66 0.01 

      

log(Income) -0.71 0.34 -2.10 0.04 

      

log(Urbanization metric) 0.10 0.07 1.47 0.14 

      

Proportion edge forest 0.83 0.93 0.89 0.37 

      

Proportion of core forest -0.04 0.45 -0.09 0.93 

      

R-squared = 0.9351 
          

F(13,186) = 221.4, p = <2.2e-16 
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Table 9A-8. Results from multiple linear regression models of SLA, LWR, LDMC, leaf thickness 
and leaf area on continuous measures of urbanization and socioeconomics, including species. 
Significant predictors are in bold. The codes are as follows, listed by growth form and 
rural/urban pairing: trees: ACPL = A. platanoides, AIAL = A. altissima; shrubs: BETH = B. 
thunbergii, ELUM = E. umbellata; vines: CEOR = C. orbiculatus, SODU = S. dulcamara; forbs: A. 
petiolata, ARVU = A. vulgaris; grasses: MIVI = M. vimineum, BRTE = B. tectorum. 
 

SLA 
     

LWR 
    

 
Coeff. SE t p 

  
Coeff. SE t p 

Intercept 0.11 0.73 0.15 0.89 
 

Intercept -0.43 0.50 -0.86 0.39 

AIAL -0.22 0.08 -2.59 0.01 
 

AIAL 1.05 0.06 18.08 < 2e-16 

ALPE 1.11 0.08 14.53 < 2e-16 
 

ALPE 0.19 0.05 3.51 0.00 

ARVU -0.04 0.07 -0.54 0.59 
 

ARVU 0.73 0.05 14.29 < 2e-16 

BETH 0.18 0.08 2.36 0.02 
 

BETH 0.81 0.05 15.60 < 2e-16 

BRTE 0.24 0.07 3.29 0.00 
 

BRTE 3.00 0.05 59.60 < 2e-16 

CEOR 0.42 0.08 5.57 0.00 
 

CEOR 0.48 0.05 9.11 < 2e-16 

ELUM -0.55 0.07 -7.46 0.00 
 

ELUM 0.90 0.05 17.55 < 2e-16 

MIVI 1.00 0.08 13.11 < 2e-16 
 

MIVI 1.80 0.05 34.02 < 2e-16 

SODU 0.48 0.07 6.40 0.00 
 

SODU 0.56 0.05 10.96 < 2e-16 

log(Income) 0.05 0.07 0.77 0.44 
 

log(Income) 0.01 0.05 0.22 0.83 

log(Urbanization metric) -0.04 0.01 -3.10 0.00 
 

log(Urbanization metric) 0.01 0.01 1.17 0.24 

Proportion edge forest 0.93 0.20 4.67 0.00 
 

Proportion edge forest 0.11 0.14 0.82 0.41 

Proportion of core forest 0.04 0.09 0.50 0.62 
 

Proportion of core 
forest 

0.28 0.06 4.52 0.00 

R-squared = 0.8356 
     

R-squared = 0.9662 
   

F(13,186) = 78.79,  p = < 2.2e-16 
    

F(13,186) = 438.1, p = <2.2e-16 
  

           

LDMC 
     

Leaf Thickness 
   

 
Coeff. SE t p 

  
Coeff. SE t p 

Intercept 6.71 0.43 15.44 < 2e-16 
 

Intercept -1.83 0.44 -4.12 0.00 

AIAL -0.25 0.05 -5.02 0.00 
 

AIAL 0.50 0.05 9.70 < 2e-16 

ALPE -1.06 0.05 -23.56 < 2e-16 
 

ALPE 0.19 0.05 3.98 0.00 

ARVU -0.40 0.04 -9.13 < 2e-16 
 

ARVU 0.53 0.05 11.68 < 2e-16 

BETH -0.48 0.04 -10.85 < 2e-16 
 

BETH 0.76 0.05 16.56 < 2e-16 

BRTE -0.38 0.04 -8.40 0.00 
 

BRTE 0.33 0.04 7.43 0.00 

CEOR -0.66 0.04 -14.82 < 2e-16 
 

CEOR 0.50 0.05 10.87 < 2e-16 

ELUM -0.07 0.04 -1.61 0.11 
 

ELUM 0.76 0.05 16.84 < 2e-16 

MIVI -0.37 0.05 -8.14 0.00 
 

MIVI -0.46 0.05 -9.84 < 2e-16 

SODU -0.67 0.04 -15.22 < 2e-16 
 

SODU 0.29 0.05 6.30 0.00 

log(Income) -0.05 0.04 -1.18 0.24 
 

log(Income) -0.04 0.04 -0.84 0.40 

log(Urbanization metric) 0.02 0.01 1.96 0.05 
 

log(Urbanization metric) 0.01 0.01 1.23 0.22 

Proportion edge forest -0.65 0.12 -5.48 0.00 
 

Proportion edge forest -0.05 0.12 -0.44 0.66 
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Proportion of core forest -0.03 0.05 -0.60 0.55 
 

Proportion of core forest -0.06 0.05 -1.09 0.28 

R-squared = 0.8386 
     

R-squared = 0.867 
   

F(13,183) = 79.36, p = <2.2e-16 
    

F(13,186) = 100.8, p = <2.2e-16 
  

           

Leaf area 
          

 
Coeff. SE t p 

      

Intercept 5.63 1.08 5.19 0.00 
      

AIAL -0.98 0.13 -7.83 0.00 
      

 ALPE -0.85 0.11 -7.49 0.00 
      

ARVU -1.77 0.11 -16.10 < 2e-16 
      

BETH -4.09 0.11 -36.48 < 2e-16 
      

BRTE -3.99 0.11 -36.76 < 2e-16 
      

CEOR -1.25 0.11 -11.10 < 2e-16 
      

ELUM -2.13 0.11 -19.32 < 2e-16 
      

MIVI -3.12 0.11 -27.43 < 2e-16 
      

SODU -2.06 0.11 -18.57 < 2e-16 
      

log(Income) -0.12 0.11 -1.09 0.28 
      

log(Urbanization metric) -0.02 0.02 -1.06 0.29 
      

Proportion edge forest 1.47 0.29 4.99 0.00 
      

Proportion of core forest 0.28 0.13 2.11 0.04 
      

R-squared = 0.9351 
          

F(13,186) = 221.4, p = <2.2e-16 
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Appendix 10. Checking spatial autocorrelation in glm models.  
 
With any data including a spatial component, spatial autocorrelation in models can lead to a 
violation of model assumptions of independence (Dormann et al. 2007). I checked for spatial 
autocorrelation in the three distribution models using bubble plots and variograms of the 
residuals, according to methods suggested by Zuur et al. Variograms were produced using the 
function variogram in the R package gstat. The residual value associated with each point was 
then exported to ArcGIS to use this programs  oran’s I function.  
 
In the bubble plots clustering of similar residuals, for example, positive residuals of similar 
magnitude appearing in the same portion of the graph, would indicate spatial autocorrelation. 
In the variograms there is clearly no spatial pattern in the C. orbiculatus model, based on the 
lack of slope in the points, but there do appear to be some small patterns in the S. dulcamara 
and B. thunbergii model (Figures A4-1, A4-2, A4-3). The  oran’s I test found no evidence of 
spatial autocorrelation at neighborhoods 4 km around each point, testing the null of randomly 
distributed residuals (C. orbiculatus:  oran’s Index = -0.22, z = -1.12 , p = 0.26, S. dulcamara: 
 oran’s Index = -0.094, z = -0.47, p = 0.64, B. thunbergii:  oran’s Index = 0.09 ,   = 0.48 , p = 
0.63). Spatial autocorrelation was also not evident at larger scales. 
 
Some of the patterns in the variograms in the “urban” and “rural” species models may be 
driven by data points in Boston. Removing those points from the two models does not remove 
the spatial pattern in the variograms, but  oran’s I statistics still indicate a lack of statistically 
significant spatial autocorrelation. The urban species variogram without Boston points shows 
increasing correlation at larger distances while the rural species variogram shows increasing 
correlation at smaller distance. These trends may be reflective of the rural distribution of B. 
thunbergii, since most rural plots were clustered towards the center of the sampling range; and 
the urban distribution of S. dulcamara, since urban plots were located towards the western and 
eastern parts of the sampling range in Hartford and Boston. A few points in the northeast near 
Putnam, CT and southeast in Norwich were also urban and may have also added to some small 
spatial patterns in the residuals.  
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Figures A10-1a, b and c. Bubble plot, overall variogram and directional variogram of the S. 
dulcamara model. 0 is north, 45 is northeast, 90 is east, and 135 is southeast. 
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Figures A10-2a, b and c. Bubble plot, overall variogram and directional variogram of the C. 
orbiculatus model. 0 is north, 45 is northeast, 90 is east, and 135 is southeast. 
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Figures A10-3a, b and c. Bubble plot, overall variogram and semivariogram of the B. thunbergii 
model. In the semivariogram directions, 0 is north, 45 is northeast, 90 is east, and 135 is 
southeast. 
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Appendix 11. Leaf nutrient content data.  

Dried leaf samples were sent to the UCONN Soil Analysis Laboratory for analysis of leaf nutrient 
content. Leaves were re-dried, ground using a mill grinder and combined to provide enough 
samples for analysis. For most species, enough plant material was available to analyze both 
nitrogen content and ppm of a suite of elemental nutrients for two rural samples and two 
urban samples. 37 samples for percent N, percent C and C:N and 24 samples for leaf parts per 
million of Al, Fe, Mn, Na, Zn, Pb, B, Cu, and percent P, K, Ca and N:P were entered into separate 
analyses. One-way multivariate analyses of variance (MANOVA) were employed for exploring 
the effect of urban /rural classified species or urban/rural sites across several leaf nutrient 
levels. Appropriateness of MANOVA was checked with histograms and boxplots of dependent 
variables and model residuals; and checking for correlations between these variables. 
Correlations were moderate between many variables (Appendix 11), and the log transformation 
ensured normality. Separate MANOVA analyses were used for %C, %N and C:N because of the 
different sample sizes. Means and standard deviations for all leaf contents, and additional 
information on leaf nutrient content, are presented in Appendix 11. 
 
The one-way MANOVA with parts per million of Al, Fe, Mn, Na, Zn, Pb, B, Cu, and percent P, K, 
Ca, N and N:P as dependent variables revealed significant effects of species association on the 
dependent variables (F(11,12) = 4.9946, p = 0.004974).  Univariate ANOVA analyses on each 
response separately showed that these results were significant for Al (p = 0.01), marginally for 
Zn (p = 0.05), Cu (p = 0.003516), and % Ca (p = 0.002275). Leaf % Ca content was higher for the 
rural associated species in all cases; while Ca content in urban soils was higher than that of rural 
soils. The same MANOVA with %N, %C and C:N also showed a significant effect of species 
association (F(3,33) = 5.0469, p = 0.005), though %C was the only significant variable (p = 
0.004). Levels of Al, Zn, Cu and Pb were higher for A. platanoides than A. altissima. Levels of Al 
and Zn were higher for A. petiolata, while levels of Cu and Zn were higher for S. dulcamara. 
Ultimately, no one unifying pattern of leaf heavy metal content emerged.  
 
The effect of site in the same sets of one-way MANOVA models did not reveal significant 
differences, though individual ANOVA analyses showed that Fe was significantly higher in leaves 
collected from urban sites (p = 0.0114). Leaf Pb content was slightly higher in urban sites, 
however this difference was not significant (p = 0.6668). Copper was significantly greater in 
urban associated species (p = 0.0035), but not significantly greater in leaves collected from 
urban sites (p = 0.2812). The forb A. vulgaris had by far the greatest leaf copper content of all 
the species tested. Iron content was greater in rural soils, greater in leaves from urban sites, 
and highest in A. petiolata.  
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Table 11A-1. Correlation matrix of the log transformed leaf nutrient measurements (N = 24). 

Untransformed means and standard deviations are also listed. Significant correlations are in 

bold.  

 Al Fe Mn Na Zn Pb Cu %P %K %Ca N:P 

Al            

Fe 0.55           

Mn -0.33 -0.26          

Na 0.62 0.65 -0.57         

Zn 0.21 0.03 0.35 -0.18        

Pb 0.15 -0.03 -0.04 -0.05 0.25       

Cu -0.04 0.3 0.09 0.05 0.26 0.23      

%P 0.47 0.49 -0.4 0.77 0.09 0.03 0.17     

%K 0.71 0.61 -0.58 0.9 0.06 0.15 0.1 0.84    

%Ca 0.49 0.3 -0.34 0.37 -0.18 -0.09 -0.64 0.19 0.3   

N:P -0.42 -0.35 0.32 -0.46 -0.1 -0.32 -0.18 -0.7 -0.68 -0.13  

Mean 80.4 83.7 142.2 75.8 47.4 2.2 13.7 0.2 1.9 2.7 13.2 

SD 64.7 41.6 119.9 38 34.5 2.1 4.8 0.1 1.1 1.5 4.1 

 

Table 11A-2. Correlation matrix of the log transformed leaf nutrient measurements (N = 37). 

Untransformed means and standard deviations are also listed. Significant correlations are in 

bold. 

 %N %C C:N 

N.perc    

C.perc 0.02   

CtoN -0.97 0.14  

Mean 3.0 45.4 16.4 

SD 0.9 2.4 4.9 
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 Table 11A-3. Means and standard deviations for leaf nutrient data. Species codes are as 

follows, listed by growth form and rural/urban pairing: trees: ACPL = A. platanoides, AIAL = A. 

altissima; shrubs: BETH = B. thunbergii, ELUM = E. umbellata; vines: CEOR = C. orbiculatus, 

SODU = S. dulcamara; forbs: A. petiolata, ARVU = A. vulgaris; grasses: MIVI = M. vimineum, 

BRTE = B. tectorum.  

 
%N %C %P %K %Ca %Mg 

 MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 
ACPL 2.61 0.30 47.23 1.09 0.17 0.02 0.9 0.20 1.855 0.69 0.17 0.05 

R 2.51 0.47 48.10 0.71 0.17 0.02 0.945 0.32 1.27 0.04 0.13 0.01 
U 2.71 0.07 46.35 0.07 0.18 0.01 0.855 0.08 2.44 0.21 0.21 0.00 

AIAL 2.78 0.36 46.25 0.70 0.18 0.02 1.0175 0.20 2.9025 1.08 0.28 0.08 
R 2.99 0.16 46.60 0.00 0.20 0.01 1.02 0.34 2.35 0.98 0.30 0.12 
U 2.57 0.42 45.90 0.99 0.17 0.01 1.015 0.02 3.455 1.15 0.27 0.04 

BETH 2.27 0.16 45.63 0.06 NA NA NA NA NA NA NA NA 
R 2.38 0.04 45.64 0.11 NA NA NA NA NA NA NA NA 
U 2.16 0.16 45.63 0.03 NA NA NA NA NA NA NA NA 

ELUM 3.78 0.29 48.56 0.25 0.22 0.03 1.4175 0.26 1.305 0.43 0.22 0.06 
R 3.59 0.30 48.38 0.12 0.20 0.03 1.325 0.36 1.235 0.56 0.22 0.01 
U 3.97 0.07 48.74 0.20 0.23 0.04 1.51 0.20 1.375 0.46 0.23 0.10 

CEOR 2.52 0.72 42.62 1.38 0.20 0.03 1.77 0.12 4.5375 0.67 0.27 0.05 
R 3.03 0.06 43.65 0.78 0.20 0.01 1.685 0.11 4.12 0.81 0.27 0.07 
U 2.01 0.71 41.60 0.93 0.20 0.06 1.855 0.06 4.955 0.09 0.28 0.06 

SODU 4.72 0.73 45.49 0.97 0.25 NA 2.17 NA 2.72 NA 0.45 NA 
R 5.21 0.67 46.17 0.13 NA NA NA NA NA NA NA NA 
U 4.24 0.47 44.81 0.99 0.25 NA 2.17 NA 2.72 NA 0.45 NA 

ALPE 3.54 0.77 40.45 0.97 0.39 0.12 3.9475 0.53 4.3825 0.51 0.51 0.09 
R 4.07 0.81 40.60 0.85 0.45 0.13 4.135 0.56 3.975 0.29 0.58 0.01 
U 3.02 0.08 40.30 1.41 0.33 0.11 3.76 0.62 4.79 0.18 0.44 0.07 

ARVU 2.18 0.49 46.58 0.48 0.29 0.08 2.4175 0.36 1.255 0.19 0.20 0.06 
R 2.24 0.79 46.40 0.57 0.31 0.07 2.395 0.09 1.285 0.32 0.18 0.04 
U 2.11 0.28 46.75 0.49 0.26 0.10 2.44 0.61 1.225 0.01 0.22 0.09 

MIVI 3.18 0.38 46.03 0.23 NA NA NA NA NA NA NA NA 
R 3.37 0.27 46.09 0.29 NA NA NA NA NA NA NA NA 
U 2.81 NA 45.92 NA NA NA NA NA NA NA NA NA 

BRTE 2.19 0.21 44.67 1.16 NA NA NA NA NA NA NA NA 
R 2.04 NA 45.49 NA NA NA NA NA NA NA NA NA 
U 2.33 NA 43.85 NA NA NA NA NA NA NA NA NA 
 C:N N:P Cu B Al Fe 
 MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 

ACPL 18.34 2.72 15.10 0.70 12.175 1.41 79.05 17.45 44.275 5.14 58.35 12.19 
R 19.58 3.99 15.12 0.93 11.65 1.20 64.25 5.73 43.15 5.30 54.4 11.88 
U 17.11 0.47 15.09 0.79 12.7 1.84 93.85 2.19 45.4 6.79 62.3 15.56 

AIAL 16.87 2.48 15.45 1.35 10.925 1.60 84.65 40.21 29 14.02 62.925 16.36 
R 15.61 0.81 15.36 1.35 11.95 1.77 66.3 58.97 18.85 12.09 57.2 16.12 
U 18.14 3.38 15.53 1.91 9.9 0.57 103 5.09 39.15 5.59 68.65 20.29 

BETH 20.21 1.53 NA NA NA NA NA NA NA NA NA NA 
R 19.18 0.39 NA NA NA NA NA NA NA NA NA NA 
U 21.23 1.62 NA NA NA NA NA NA NA NA NA NA 

ELUM 12.91 1.01 17.87 2.93 17.2 3.05 56.375 29.81 42.35 19.63 83.85 21.73 
R 13.54 1.18 18.21 4.10 14.8 1.70 53.95 24.11 30 22.91 68.25 19.16 
U 12.28 0.27 17.53 2.93 19.6 1.41 58.8 45.40 54.7 4.53 99.45 8.70 

CEOR 18.25 6.14 12.55 3.17 10.125 1.18 34.25 5.22 121.375 77.58 79.25 37.91 
R 14.44 0.56 15.17 1.39 10.35 0.78 31.9 6.93 165.9 100.13 56.55 6.29 
U 22.06 7.40 9.92 0.77 9.9 1.84 36.6 3.39 76.85 9.97 101.95 47.02 

SODU 9.80 1.44 15.64 NA 14.1 NA 66.5 NA 61.5 NA 85.5 NA 
R 8.95 1.18 NA NA NA NA NA NA NA NA NA NA 
U 10.65 1.41 15.64 NA 14.1 NA 66.5 NA 61.5 NA 85.5 NA 

ALPE 11.79 2.24 9.85 3.42 11 1.66 70.35 14.92 171.225 78.75 132.65 81.72 
R 10.21 2.25 9.86 4.80 9.9 0.28 57.55 0.78 134.95 85.91 77.6 16.55 
U 13.36 0.12 9.84 3.45 12.1 1.84 83.15 3.46 207.5 77.22 187.7 87.40 
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ARVU 22.26 5.03 8.05 2.86 20.975 6.09 57.2 20.96 78.9 10.40 85.025 12.97 
R 22.14 8.08 7.12 0.93 15.8 0.28 54.75 8.84 80.65 15.91 75.3 3.11 
U 22.37 3.23 8.97 4.50 26.15 2.05 59.65 34.86 77.15 7.71 94.75 10.82 

MIVI 14.60 1.73 NA NA NA NA NA NA NA NA NA NA 
R 13.72 1.18 NA NA NA NA NA NA NA NA NA NA 
U 16.34 NA NA NA NA NA NA NA NA NA NA NA 

BRTE 20.56 2.46 NA NA NA NA NA NA NA NA NA NA 
R 22.30 NA NA NA NA NA NA NA NA NA NA NA 
U 18.82 NA NA NA NA NA NA NA NA NA NA NA 
 Mn Zn Na Pb 

 

 MEAN SD MEAN SD MEAN SD MEAN SD 
ACPL 327.725 72.26 98.1 9.64 32.75 7.94 2.1 1.55 

R 268.8 39.46 98.55 14.92 33.81 11.24 1.5 1.13 
U 386.65 14.78 97.65 7.42 31.69 7.62 2.7 2.12 

AIAL 84.9 50.86 15.275 4.40 48.56 5.67 1.35 0.90 
R 71.35 23.69 14.2 0.57 48.28 5.97 1.55 0.92 
U 98.45 80.40 16.35 7.28 48.84 7.78 1.15 1.20 

BETH NA NA NA NA NA NA NA NA 
R NA NA NA NA NA NA NA NA 
U NA NA NA NA NA NA NA NA 

ELUM 182.025 70.57 28.875 13.94 72.355 11.81 1.85 2.50 
R 143 89.24 34.15 21.71 62.74 6.93 2.75 3.89 
U 221.05 29.77 23.6 0.71 81.97 0.58 0.95 0.64 

CEOR 64.125 17.81 23.525 10.87 76.145 4.87 2.4 3.30 
R 65.4 29.27 27.4 16.40 76.49 3.63 0.55 0.64 
U 62.85 9.40 19.65 5.02 75.8 7.58 4.25 4.31 

SODU 384.8 NA 121.2 NA 83.14 NA 1.9 NA 
R NA NA NA NA NA NA NA NA 
U 384.8 NA 121.2 NA 83.14 NA 1.9 NA 

ALPE 56.425 29.29 47.65 10.16 147.2 30.17 2.05 2.41 
R 58.25 50.56 52.6 3.96 143.18 9.11 3.45 3.04 
U 54.6 1.98 42.7 14.00 151.22 50.83 0.65 0.64 

ARVU 77.3 73.71 52.65 33.13 76.16 9.99 3.55 1.97 
R 104.05 115.89 27.4 2.40 75.85 17.10 2.05 0.21 
U 50.55 2.05 77.9 27.15 76.47 2.53 5.05 1.63 

MIVI NA NA NA NA NA NA NA NA 
R NA NA NA NA NA NA NA NA 
U NA NA NA NA NA NA NA NA 

BRTE NA NA NA NA NA NA NA NA 
R NA NA NA NA NA NA NA NA 
U NA NA NA NA NA NA NA NA 

 

For S. dulcmara, B. thunbergii and both grass species only percent nitrogen was analyzed. One 
sample of S. dulcamara was analyzed for the full suite of variables, but was not entered into 
analyses beyond %N due to lack of replication. Additionally, only one rural sample and one 
urban sample were available for B. tectorum, and both urban M. vimineum samples were 
combined together. 
 
Two-way MANOVA for both sets of variables using site and species association as factors did 
not reveal any significant interactions, or individual effects of site on leaf nutrient values. Two-
way MANOVA using growth form and species association as factors did reveal both a significant 
interaction and significant main effects (growth form: F(3,18) = 5.3342,p = 6.324e-06; 
association: F(1,18) = 4.9631, p = 0.0157; interaction: F(1,18) = 7.3799, p = 0.0044). ANOVA 
analyses for individual nutrients show that growth form has an effect on Al, Mn, Na, Zn, Cu, % 
P, %K, %Ca, and N:P. The interaction between growth form and species association was only 
significant for Mn, Na, Zn, Cu, %K, and % Ca, indicating that for these variables differences exist 
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between the urban and rural associated species. Differences are primarily driven by the trees 
and forbs, since missing data meant that species pairs for the shrubs, vines and grasses were 
missing or incomplete. The mean values of variables for trees and forms do not reveal any 
patterns.  
 
Leaf % N was also not significantly different between urban and rural site leaves, as was found 

in the soils. High leaf nitrogen content correlates positively with mass-based maximum 

photosynthetic rate and SLA, indicating fast growth and fast nutrient uptake strategies (Pérez-

Harguindeguy et al. 2013). Among species, the highest % N concentration was found in S. 

dulcamara. The lowest was found in the forb A. vulgaris. Average leaf % N was slightly higher in 

rural sites. N and P are both critical limiting elements in plant growth, and the ratio of the two 

can reveal which is most limiting in a given environment (Pérez-Harguindeguy et al. 2013). No 

significant differences between urban and rural sites or urban and rural species were found for 

this ratio. Differences do exist between species, though not between growth forms. E. 

umbellata had the highest values for this ratio, followed by the trees, then C. orbiculatus, and 

the two forb species. 
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