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ABSTRACT 

Effect of Post-Race Nutritional Intervention on Delayed-Onset Muscle Soreness and Return to Activity 
in Ironman Triathletes 
 
Jun Hashiwaki, University of Connecticut, Storrs, CT 

CONTEXT: Ironman triathletes often experience delayed-onset muscle soreness (DOMS) after races. 

Post-exercise nutritional interventions have been shown to be an effective recovery strategy for DOMS, 

however little is known on how post-race nutritional intervention affects DOMS in Ironman triathletes. 

OBJECTIVE: To examine the effect of a post-race nutritional intervention on DOMS and ability of 

triathletes to return to activity. 

DESIGN: Randomized field study. 

SETTING: 2013 Lake Placid Ironman triathlon. 

PATIENTS OR OTHER PARTICIPANTS: Thirty-six (males: n=30, females: n=6) triathletes participated 

(mean±SD; age=38±9 y, height=178±9 cm, weight=76.9±11.1 kg, body fat=12.2±5.4%, finish 

time=732±108 min). 

INTERVENTION: Subjects were randomly assigned to either an intervention or control group by finish 

time. The intervention group received recovery shakes (540 kcal, 90g carbohydrate, 40g protein, 2g fat) 

both 1-hour and 3-hours post-race. 

MAIN OUTCOME MEASURES: We used a 100mm-visual analogue scale (VAS) and 11-point global rating 

of change (GRC) to measure DOMS in standing position (static) and sitting-to-standing motion (active). 

GRC scores measured change in DOMS compared to previous time point. DOMS was evaluated at 11 

time points (pre-race, 1h, 3h, 12h post-race, and everyday for up to 7 days (1-7d) post-race) using paper-

based and online surveys. Return to activity questionnaires were used to assess days returning to 

activity, length, intensity, and composition of activities. Activity intensity was measured with a 15-point 

rated perceived exertion (RPE) scale. Subjects completed return to activity questionnaires via online 
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survey for 2 weeks post-race. Energy intake on the race day was monitored using diet log. Two-way 

ANOVA (group x time) was used to compare outcomes between groups over time and independent t-

tests were utilized for group comparisons. 

RESULTS: Static and active VAS scores significantly increased from pre-race (intervention: 3±5cm, 

2±4cm; control: 3±4cm, 3±3cm respectively) to 1-hour post-race, which represented peak static and 

active VAS values (intervention: 50±19cm, 52±23cm; control: 46±24cm, 47±26cm, P<0.001, 

respectively). Both static and active VAS values remained significantly elevated from pre-race until 4 

days post-race (intervention: 10±14, 12±16; control: 6±10, 5±11, P<0.05 respectively). Negative GRC 

values only occurred 1-hour post-race in both intervention (-4±1) and control (-3±1) and demonstrated 

improvement at all other time points. VAS and GRC showed no differences between groups any time 

point (P>0.05). No significant differences occurred for days returning to activity (intervention: 4±4d; 

control: 4±2d), activity intensity (intervention: 10±3, control: 10±4) or composition of activity between 

groups (P>0.05). However, activity length was significantly longer for intervention group (1.2±0.5h) than 

control group (0.8±0.4h, P<0.01). Although post-race energy intake revealed similar total calories 

between groups (intervention: 1862±766 kcal, control: 1959±1306 kcal, P>0.05), protein intake was 

significantly higher in intervention group (101±37 kcal) than control group (71±48 kcal) while fat intake 

was significantly lower in intervention group (33±24 kcal) than control group (78±60 kcal) (P<0.05). 

CONCLUSIONS: DOMS increased dramatically in response to the race and gradually subsided by 4 days 

post-race regardless of treatment group. Within the context of this study, the post-race nutritional 

intervention did not result in differences on DOMS and return to activity compared to control despite it 

has changed composition of macronutrient intake. 
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REVIEW OF LITERATURE 

This review of current literature consists of two sections. First, Ironman triathletes are discussed 

focusing on physiological demands of Ironman triathlon and physiological influences after an Ironman 

race. Second, recovery from Delayed-Onset Muscle Soreness (DOMS) is addressed focusing on different 

recovery strategies. Finally, nutritional intervention for DOMS is reviewed focusing on modes of 

nutritional supplements. 

 

Ironman Triathletes 

Ironman Triathlon 

Ironman triathlon is one of the most challenging worldwide endurance events. The race consists 

of three consecutive events; 3.86 km of swimming, 180.25 km of cycling, and 42.20 km of running. The 

popularity of Ironman triathlon has dramatically increased since the very first race held in Hawaii in 1978. 

About 50,000 triathletes participate in Ironman triathlon races throughout the world each year. 1 Only 

2,000 qualified triathletes are able to compete at the Ironman World Championship in Hawaii. 2 Most 

Ironman events start at 7:00am and have cut-off times, which are 2:20 hours (9:20am) for swim, 10:30 

hours (5:30pm) for bike, and 17 hours (midnight) for run. Elite triathletes take approximately 8 hours to 

finish a race while other triathletes may take as many as 17 hours. 3  

Physiological Demands of Ironman Triathlon 

Due to prolonged duration of the Ironman triathlon race, athletes are placed several 

physiological loads, including energy demands, thermal stress, hydration demands, oxidative stress, and 

muscle damage. 4 Some of these physiological demands are altered depending upon race location, race 

day weather, or seasons. 

Energy Demands 
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 To maintain optimal performance, Ironman triathletes have to sustain a high rate of energy 

expenditure for extended periods of time. 5 Athletes also need to keep their energy supply to meet the 

energy demands during a race. A previous study has described energy intake, energy expenditure, and 

the resulting energy balance during an Ironman triathlon race (Table 1). 6 Energy expenditure ratios for 

each Ironman event components were 8% for swim, 54% for bike ride, and 38% for run. 

Table 1. Energy expenditure, energy intake, and energy balance in male and female Ironman triathletes 
(mean ± SD, kcal)6 

 
Males Females 

Energy Expenditure 10,036±931* 8,570±1,014 

  Swim 768±97 737±148 

  Bike 5,384±553* 4,683±551 

  Run 3,875±585* 3,097±657 

   Energy Intake 3,940±868 3,115±914 

  Bike 2,896±836 2,233±627 

  Run 1,049±267 883±347 

   Energy Balance -5,973±1,274  -5,123±1,193 

                            *Significant difference between males and females (P<0.05) 
 

During this Ironman race, triathletes obtained approximately 40% of total energy expenditure 

from food and fluids and the other 60% from their endogenous fuel stores. Most energy consumption 

occurred during the cycling segment as opposed to the running segment, which accounted for 73% of 

total energy intake (Table 1). From the perspective of macronutrient proportion, carbohydrate (CHO) 

consisted of 94% of total energy intake while protein and fat consisted of 4% and 2% of total energy 

intake, respectively. 6  

Thermal Stress 

Environmental conditions significantly affect performances of Ironman athletes, thus 

thermoregulation is one of the most challenging aspects of Ironman race. Depending upon ambient 

temperature and humidity, triathletes could be exposed to the risk of both hypothermia and 

hyperthermia during a race.  
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Although most triathlon swim events have been held at water temperature between 13-32°C, 

optimal water temperature is between 25.5-28°C to prevent hypothermia and hyperthermia. 7 Due to 

high gradient of heat transfer in the water compared with in the air, the potential for hypothermia or 

hyperthermia increases when water temperature considerably differs from the optimal range during 

swimming. 8 In Ironman triathlon, wetsuits are permitted if water temperatures are below 24.5°C. 9 The 

use of a wetsuit in cold water attenuates body heat loss and prevents hypothermia (Figure 1). 10 With a 

cycling section following a swim in cold water (5-15°C), there is an increased risk of hypothermia, 

especially in the early stage, although body temperature may rise with continued biking. Increased 

convective heat loss, low ambient temperature, and rain while cycling may also result in hypothermia. 10 

During the running section, triathletes with dehydration and exhaustion have higher possibility of 

hypothermia when ambient temperature is low. Significant decreases in rectal temperature after a race 

are reported with athletes who significantly dropped their pace in the last segment of running due to 

fatigue or injuries.11 
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Figure 1. Change in core temperature from pre-immersion in the 20.1, 22.7, and 25.6°C trials during 

swimming and cycling. * p < 0.05 from pre; ‡ p < 0.05 from wet suit at 20.1, 22.7, and 25.6°C and swim 

suit at 25.6°C; # p < 0.05 from swim suit at 20.1 and 22.7°C10 

 

Swimming in water temperature above the optimal range results in a significant increase in body 

temperature. 12 Therefore, the use of wetsuits is prohibited in water temperatures above 28.8°C. 9 Due 

to the inability to intake fluid during the swim segment, dehydration may compromise body heat loss 

and increase risk of hyperthermia (Figure 2). 13,14 During the cycling segment, high ambient temperature 

and relative humidity can interfere with heat dissipation from the body. However, the potential for heat 
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stroke is higher during the run segment compared with swim and bike segments because triathletes are 

more likely to start the running segment dehydrated, and the run segment occurs during the hottest 

time of the day. 7 

 
Figure 2. Core body temperature throughout race (A) and submaximal trials (B) between hydration 
states. a p ≤  0.05 for the same time point between hydration states14 
 
Hydration Demands 

During exercise, repetitive muscular contractions generate heat in the body and raise body 

temperature. As body temperature elevates, venous blood flow to the skin increases to dissipate heat 

through convection, evaporation, and radiation. In hot environments, evaporation becomes the primary 

mechanism of dissipating heat. 15 Therefore, sweat production increases in order to prevent elevation in 

body temperature, which may result in dehydration and a loss of sodium. 16  

Body fluid loss during exercise is determined based on body mass, exercise intensity, and 

ambient temperature and humidity. 17 When ambient temperature is high, triathletes can lose fluid 

between 1,000-2,500 ml/h. 18 To maintain fluid balance, triathletes generally replace the fluid loss with 

water or sports drinks during a race. A previous study indicated that Ironman triathletes lost body fluid 

during the swim and run segments and gained it during the bike segment (Table 2). 19  
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Table 2. Fluid balance and weight change in Ironman triathletes. (n=18)19 

 
Median Range 

Fluid Intake (ml/h) 
    Bike 889 601 – 1,310 

  Run 632 238 – 1,129 

   

Fluid Loss (ml/h)   

  Bike 808 469 – 1,083 

  Run 1,021  404 – 1,801 

   

Weight Change (kg) -2.5 -4.0 – 1.5 

  Swim -1.0 -2.0 – 0.5 

  Bike 0.5 -1.0 – 3.0 

  Run -2.0 -3.5 – 1.5 

 
The fluid loss during swimming resulted from inability to ingest fluids while the fluid loss during 

running resulted from intolerance of athletes to drink a large amount fluid while running fast. 7 The fluid 

gain during the cycling segment occurred because athletes might attempt to recover from dehydration 

due to swimming and prevent dehydration in the subsequent running segment. In addition, the sweat 

rate tended to be lower on the bike than on the run because convective heat loss increased because of 

the greater facing wind speeds generated in cycling. 19 In order to prevent excessive dehydration, the 

hydration guideline by American College of Sports Medicine recommends that athletes should 

adequately replace fluids to keep body weight loss less than 2% of baseline body weight during exercises. 

20 The bike section is the best opportunity for Ironman triathletes to replace fluid loss during race. 

Ironman triathletes need to be cautious about not only the risks of dehydration, but also the 

risks of overhydration. The overloading of fluid and profuse sweat sodium losses during ultraendurance 

events can contribute to exercise-associated hyponatremia. 21 Athletes with low body weight, slow 

performance pace, excessive drinking behavior, use of anti-inflammatory drugs, and female sex have 

greater risks of exercise-associated hyponatremia.22 

Oxidative Stress 
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 Reactive oxygen species (ROS) are produced in the body as a result of increased oxygen 

consumption from aerobic exercises. 23 Under some circumstances, ROS can assist to repair damaged 

tissue and destroy harmful microorganisms through respiratory burst activity and phagocytosis. 24 

However, excessive ROS generated during prolonged exercise, such as Ironman triathlon, can impair 

vital cellular structures and increase oxidative stress. 25 To protect healthy cells from oxidative stress, 

human body has the antioxidant defense system consisted of antioxidant enzymes, several vitamins or 

their precursors, glutathione, and other low-molecular-weight antioxidants. 26 The capacity of the 

antioxidant defense system is relatively small, thus during ultraendurance events, oxidative cellular 

damages occur due to excessive ROS production and dysfunction of the antioxidant defense from 

inactivation or nutritional deficiency. 27 The cellular and oxidative damages by ROS have appeared in 

relevant to immune suppression, resulting in development of pathological conditions such as upper 

respiratory tract infections.28 

Muscle Damage 

 Strenuous physiological loads from prolonged periods of exercise in Ironman triathlon 

contribute to muscle damage. Two basic mechanisms are combined to explain the occurrence of 

exercise-induced muscle damage; mechanical stress and metabolic stress mechanism. 29 In the 

mechanical stress mechanism, damage to skeletal muscle fibers is caused by mechanical shear forces 

generated during race, especially the repetitive pounding that occurs while running. Eccentric exercise, 

such as downhill running, and unaccustomed exercise often result in significant muscle damage. 30 A 

previous study suggested that muscle damage in Ironman triathlon might mainly occur from the run 

segment. 16 In the metabolic stress mechanism, muscle damage resulted from disturbance in cellular 

metabolism from extensive endurance exercise. Muscle glycogen deletion and insufficient ATP 

production are the primary factors of the metabolic stresses, as well as ischemia, hypoxia, ion 
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concentration changes, and accumulation of waste products. 31 Those mechanical and metabolic stresses 

contribute to DOMS after Ironman race. 

Physiological Responses after Ironman Triathlon  

Inflammatory Responses 

Due to various physiological demands during Ironman triathlon, inflammatory responses occur 

in the body of Ironman triathletes. These inflammatory responses may last several days after race. 

Although there are several studies that investigated inflammatory responses after ultra-endurance 

events, 32-34 there is limited data observing physiological stress responses after an Ironman triathlon.  

A previous research examined systemic inflammatory responses and muscular stress for 19 days 

after an Ironman triathlon.32 The study reported that total leukocyte counts, myeloperoxidase (MPO), 

polymorphonuclear (PMN) elastase, cortisol, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, 

IL-10, and high-sensitive C-reactive protein (hs-CRP) significantly increased immediately after the race 

compared to pre-race. 35 Although CK activity, myoglobin, IL-6, and hs-CRP had decreased 5 days post-

race, they remained significantly higher than pre-race (Figure 3). After 19 days of the race, most blood 

parameters had returned to pre-race values. However, MPO and PMN elastase had significantly recused 

below pre-race values, while myoglobin and hs-CRP stayed significantly higher than pre-race (Table 3). 

These data demonstrated that the initial systemic inflammation provoked by an Ironman triathlon 

rapidly diminished within 24 hours post-race. However, a low-grade systemic inflammation lasted for at 

least 5 days after the race. Although a temporary dysfunction of the immune system was observed using 

biomarkers for systemic inflammation, pathological symptoms of infections or diseases were not taken 

into account in this study.  
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Figure 3. Changes in plasma myoglobin concentration (A) and plasma creatine kinase activity (B) 2 days 
pre-race, immediately post-race, 1 day post-race, 5 days post-race, and 19 days post-race. 
***Significantly different from pre-race values (p < 0.001) 35  

 
Table 3. Plasma values of MPO, PMN elastase, cortisol, testosterone, and ration of testosterone and 
cortisol (n=42; Mean±SD)35 

  Pre Post 1 Day Post 5 Days Post 19 Days Post Time Effect (p) 

MPO (µg/L) 57±31 253±122* 97±82* 61±58 41±25* <0.001 

PMN elastase (µg/L) 46±23 239±137* 95±104* 44±31 36±16* <0.001 

Cortisol (nmol/L) 282±112 957±696* 149±66* 249±107 273±110 <0.001 

Testosterone (nmol/L) 11.4±5.6 5.3±3.6* 5.5±2.9* 12.7±6.9 12.3±6.3 <0.001 

Testosterone Cortisol Ratio 0.040±0.037 0.006±0.009* 0.037±0.027 0.051±0.036 0.045±0.032 <0.001 

*Significantly different from pre-race values (p < 0.001) 
 

There is another study that investigated inflammatory response and oxidative stress after an 

Ironman triathlon. 36 The results showed significant increases in thiobarbituric acid levels, lipid 

hydroperoxide content, protein carbonylation, superoxide dismutase, catalase, tumor nectosis factor 

alpha (TNF-α), IL-6, and IL-10 post-race compared to pre-race. The Increases in biomarkers post-race 

indicated that oxidative stress and systemic inflammation were induced by the Ironman triathlon. 

However, this study did not observe the alterations of biomarkers following days of the race in order to 

assess recovery. 

Delayed-Onset Muscle Soreness 

DOMS is defined as the sensation of discomfort or pain in the skeletal muscles that occurs 

following eccentric or unaccustomed muscular exercise. 37 The onset occurs around 24 hours after 
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completing the exercise session, and generally peaks within 72 hours and gradually resolves in 5 to 7 

days. Common symptoms of DOMS include pain, stiffness, swelling, and loss of muscle function. DOMS 

sometimes differentiates from immediate or acute muscle soreness, which is the other type of exercise-

induced muscle soreness. 38 Despite of the frequent incidence of DOMS, the mechanism of DOMS has 

not been fully understood. There are 6 competing theories for the mechanism DOMS; lactic acid, muscle 

spasm, connective tissue damage, muscle damage, inflammation, and enzyme efflux. None of these 

theories are sufficient enough to explain the mechanism of DOMS by itself, thus it is common to name 

two or more theories to explain DOMS.39,40 

Although previous research utilized different kinds of pain scales to assess DOMS after long 

distance triathlons, 4,41-43 a 10 mm visual analogue scale (VAS) was most commonly used. 41,42 The VAS 

has been proven to be a valid and reliable tool in order to quantify pain 44 and used in many studies 

following DOMS inducing exercises. 41,42,45,46 Previous studies that measured DOMS with a VAS after 

Ironman races demonstrated that pre-race DOMS was significantly lower than immediately, 1-day, and 

2-day post-race. (Figure 4)41,42 

 
Figure 4. Visual analogue scales for delayed-onset muscle soreness after the 2011 (A) and 2012 (B) 
Ironman World Championships. * Significantly different from pre-race value (P<0.05) 41,42 



 11 

 

A study by Suzuki at al. 4 measured muscle soreness using a verbal rating scale after an Ironman 

race and indicated that muscle soreness immediately post-race and 1 day post-race were significantly 

higher than pre-race. This study also assessed biochemical markers of muscle damage and muscle 

function in relation to DOMS. Myoglobin, CK, lactate dehydrogenase, aspartate aminotransferase, and 

alanine aminotransferase were sampled as biochemical markers. The results reported that there was a 

lack of correlation between DOMS and biochemical markers. The authors explained that the lack of 

correlation might be because DOMS occurs with an inflammatory response, which may not be 

proportional to the muscle damage severity. This result is supported by a previous study that also 

examined the relationship between blood markers and DOMS. (Table 4) 47 Muscle function was 

measured with maximum isometric strength and vertical jump height in this study. Despite both 

maximum isometric strength and vertical jump height significantly decreased 1 day post-race compared 

to pre-race, there was a lack of correlation between DOMS and muscle function. In this study however, 

muscle soreness and function were not followed longer than 1 day post-race, limiting the analysis to this 

time frame. 

Table 4. Correlation between muscle soreness and other indicators of muscle damage. SOR-Pal: mean 
soreness with palpation of the elbow flexors 1-4 days post-exercise, SOR-Ext: mean soreness when 
extending the elbow joint 1-4 days post-exercise, SOR-flx: mean soreness when flexing the elbow joint 1-
4 days post-exercise, CK: plasma creatine kinase activity. *P<0.0547 

  CK peak CK D1-4 

SOR-Pal 0.06 0.01 

SOR-Ext 0.23* 0.19* 

SOR-Flx 0.22* 0.19* 

 

Ironman race results in a significant increase in inflammatory responses and DOMS. Those 

physiological changes remain for several days following race. A few studies have observed DOMS after 

Ironman races. However, to our knowledge, no study has been investigated recovery from DOMS more 

than 2 days after an Ironman triathlon. 
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Common Recovery Methods for DOMS 

Numerous treatment strategies have been introduced to alleviate symptoms of DOMS and 

recover normal muscle function as quickly as possible. Some recovery interventions include cryotherapy, 

massage, stretching, compression garment, low-intensity exercise, and nutritional supplements. The 

efficacy and impact on DOMS vary depending on the interventions. 

Cryotherapy 

 Cryotherapy is one of the most common interventions that have been used to treat DOMS. The 

superficial cold application results in decreased temperature of skin, subcutaneous tissues, muscles, and 

joints. Cutaneous receptors stimulated by the decrease in tissue temperature excite the sympathetic 

adrenergic fibers and cause vasoconstriction of local arterioles and venules. 39 In addition, cooled cells 

slow their rate of metabolism and decrease the occurrence of secondary cell hypoxia. 48 Both 

vasoconstriction and reduced metabolic rate of cells contribute to prevent further edema formation and 

decrease inflammatory processes. 

 Although several systematic reviews have been investigated the effects of cryotherapy on DOMS, 

the results have been inconsistent. Some systematic reviews supported that cyrotherapy is a beneficial 

strategy to reduce DOMS after strenuous exercise. 49-51 Conversely, the others concluded that 

cryotherapy is ineffective in the management of DOMS. 51,52 Most articles agreed that there is 

inconclusive evidence to support the use of cryotherapy for recovery in term of muscle strength, joint 

range of motion, and physiological parameters of DOMS. 49,51,52 However, methodological heterogeneity 

among studies exists regarding cooling agent, cooling duration, the frequency of cold application, and 

timing of application.  

 A previous study examined the effect of cryotherapy immediately following an Ironman 

triathlon on DOMS. 41 Immersion tubs with cold water at 10°C were used for 10 minutes as a 
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cryotherapy intervention. This research reported that cold-water immersion immediately after race 

did not attenuate DOMS in Ironman triathelets. (Figure 5) 

 
Figure 5. Delayed-Onset Muscle Soreness after 2011 Ironman World Championship between cold water 
immersion and control groups. *Significantly different from pre-race value based on all subjects.41 
 

Massage 

Massage has been used as a treatment for DOMS since antiquity. 53 It is proposed to increase 

local blood and lymph flow, decrease edema production, reduce muscle tone, enhance performance, 

and improve mood in addition to attenuation of DOMS. 54 The primary therapeutic massage strokes 

include effleurage, petrissage, friction, percussion, and vibration. 55 Combination of effleurage, 

petrissage, and vibration is often chosen as a massage intervention in research. 51,52,54 Three systematic 

reviews reported a positive evidence suggesting that massage attenuated DOMS. 51,52,54 Also, a meta-

analysis demonstrated that post-exercise massage benefited in preventing reduction of muscle strength. 

51 However, there were no evidence indicating that massage restored ROM and a conflicting evidence 

for the efficacy of massage on physiological parameters of DOMS.52 
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Stretching 

 Pre-exercise stretching had been believed as a prophylactic method for DOMS because it 

reduces muscle stiffness and makes muscle more durable to eccentric contractions, thereby resulting in 

decreasing muscle damage. 56 On the other hand, Post-exercise stretching is thought to alleviate the 

muscle spasm, which is one of the mechanisms of DOMS, consequently relieving DOMS. 52 Two recent 

meta-analyses reported that none of four stretching programs, combining of single or repeated, and 

pre- or post-exercise, showed a significant effect on muscle soreness or muscle strength. 51,57 A 

systematic review also concluded that there is little evidence that supports the effects of stretching on 

muscle soreness, muscle strength and ROM.52 

Compression Garment 

Compression has been used as one of the applications in RICE (Rest, Ice, Compression, 

Elevation) in order to reduce swelling during injury care for many years. 55 Recently, compression with 

compression garments has been used in sports. Compression garments are marketed as a means of 

performance enhancement and post-exercise recovery aid.  

A recent study that assessed the efficacy of compression tights on DOMS after 100 plyometric 

drop jumps demonstrated that compression tights group had significantly lower perceived muscle 

soreness 1, 24, 48, and 72 hours post-exercise compared with non-compression tights group. 58 Another 

study that examined perceived muscle soreness between compression tights and control groups after 6 

sets of 10 repetitions at 100% body weight followed by 5 seconds of one repetition maximum eccentric 

squat, reported no evidence that compression tights attenuated DOMS after the workout. 59 Although 

several studies have investigated using different type of compression garments, 60-63 there is a lack of 

consensus in the literature as to the effects and mechanisms of compression garments on DOMS. 

Low-Intensity Exercise 
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Low-intensity exercise after strenuous workout, as known as active recovery, has been 

considered as one of the most effective treatment for relieving DOMS. 37,64 Low-intensity exercise is 

known to promote removal of lactate and metabolic byproducts after exercises by increasing blood flow. 

64 It is also suggested that low-intensity exercise has an analgesic effect by increasing endorphin release. 

56 A systematic review concluded that low-intensity exercise had some short-term effects to attenuate 

DOMS based on three randomized controlled trials. 52 However, the results from a meta-analysis 

reported that there was no significant effect of low-intensity exercise on DOMS and muscle strength. 51 

The mode, duration, and timing of low-intensity exercises used in the studies were inconsistent. 

Therefore, further studies are necessary to provide evidences for the effects of low-intensity exercise 

intervention on DOMS.  

 

Nutritional Intervention for DOMS 

Nutritional supplementation has been one of popular interventions for DOMS. Supplements of 

carbohydrate (CHO), protein (PRO), and antioxidants (AOX), such as vitamin C and E, have been studied 

in relevance to recovery for DOMS. Prolonged strenuous exercise results in muscle damage, muscle 

protein degradation, and a depletion of glycogen stores in muscle and liver. 65 The primary purpose of 

CHO ingestion post-exercise is to restore muscle glycogen quickly and to improve the quality of the 

following exercise. 66 The magnified requirement for protein is due to increased muscle and whole-body 

turnover in addition to increased oxidation of amino acids during and after exercise. 65 AOX have been 

proposed to restrict excessive ROS generation after prolonged exercise. Excessive ROS impose oxidative 

stress on the tissue, resulting in temporary immune impairment. 28 However, the influences of ROS on 

DOMS remain unclear. 56 Studies that examined the effects of post-exercise nutritional supplementation 

on DOMS are listed on Table 5. 

 



 16 

 
Table 5. Studies examining post-exercise nutritional interventions on attenuation of DOMS

First Author Subjects Damaging Exercise 
Nutritional 

Intervention 
Mode Amount 

Frequ
ency 

Timing 
Ratio 

(CHO:PRO) 
DOMS 

Cockburn 
(2008)

67
 

24 
physically 
active 
males 

6 sets of 10 reps eccentric-
concentric knee flex on Cybex 

1) CHO+PRO 
2) CHO+PRO 
3) CHO 
4) Control 

1) Chocolate 
Milkshake 
2) Milk 
3) Sports drink 
4) Water 

1) 118g CHO+33g PRO 
2) 49g CHO+34g PRO 
3) 64g CHO 
4) Water 2 

Immediately 
and 2 h after 
exercise N/A 

No significant differences 
among treatment groups at 
any point 

Goh 
(2012)

46
 12 male 

cyclists 

Ex1) 1 h high-intensity cycling 
intervals 
Ex2) simulated 20 km time trial 

1) CHO 
2) Low CHO+High PRO 
3) High CHO+Low PRO Beverages 

1) 75g CHO 
2) 8g CHO+55g PRO 
3) 45g CHO+25g PRO 3 

Immediately 
and 2 h after 
ex1, and 
immediately 
after ex2 N/A 

No significant differences 
among treatment groups at 
any point 

Green 
(2008)

45
 

18 female 
recreationa
l athletes 

30 min intermittent downhill 
run 

1) CHO 
2) CHO+PRO 
3) Placebo Beverages 

1) 1.2 g/kg CHO (x2), 0.6 g/kg 
CHO (x1) 
2)1.2g/kg CHO+0.3 g/kg PRO (x2), 
0.6 g/kg CHO+0.15 g/kg PRO (x1) 
3) Noncaloric 3 

Immediately, 
30 min, and 60 
min after run 4:1 

No significant differences 
among treatment groups at 
any point 

Luden 
(2007)

68
 

36 NCAA 
Division I 
runner 
(11 males, 
12 females) Normal team training 

1) CHO 
2) CHO+PRO+AOX Beverages 

1) 1.46 g/kg CHO 
2) 1.46g/kg CHO+0.365g/kg 
PRO+Vit C&E 5 

within 30 min 
after each 
training section 4:1 

Significantly lower after 5 d 
with CHO+PRO+AOX 
compared with CHO 

Millard-
Stafford 
(2005)

69
 

8 runners 
(5 females, 
3 males) 

Ex1) 21 km run at 70% VO2max 
followed by RTF at 90% VO2max 
Ex2) RTF at 90% VO2max 

1) CHO+PRO+AOX 
2) High CHO 
3) Low CHO Beverages 

1) 0.8g/kg CHO+0.2g/kg PRO 
2) 1.0/kg CHO 
3) 0.6g/kg CHO 3 

Immediately 
and 1h after 
Ex1, and after 
Ex2 4:1 

CHO+PRO was significantly 
lower compared to high 
CHO. No significant 
difference between low and 
high CHO groups 

Millard-
Stafford 
(2005)

69
 

24 runners 
(9 females, 
15 males) 

Ex1) 21 km run at 70% VO2max 
followed by RTF at 90% VO2max 
Ex2) RTF at 90% VO2max 

1) CHO+PRO+AOX 
2) High CHO 
3) Low CHO Beverages 

1) 0.8g/kg CHO+0.2g/kg PRO 
2) 1.0/kg CHO 
3) 0.6g/kg CHO 3 

Immediately 
and 1h after 
Ex1, and after 
Ex2 4:1 

CHO+PRO was significantly 
lower compared to high 
CHO. No significant 
difference between low and 
high CHO groups 

Romano-Ely 
(2006)

70
 

14 males 
Bike ride to fatigue at 70% 
VO2max 

1) CHO+PRO+AOX 
2) CHO Beverages 

1) 0.6g CHO+0.15 PRO+VitC&E, 
1.49g/kg CHO+0.39g/kg PRO+Vit 
C&E 
2) 0.8g CHO, 1.96g/kg CHO 2 

During and 
after exercise 4:1 

Peak DOMS was 
significantly lower in 
CHO+PRO+AOX than CHO 

Saunders 
(2009)

71
  13 male 

cyclists 
Computer-simulated 60 km 
cycling time trials 

1) CHO 
2) CHO+PRO Beverages 

1) 132g CHO 
2) 132g CHO+ 32g PRO 12 

During (x11) 
and after (x1) 
exercise 4:1 

Post-exercise muscle 
soreness significantly 
increased in CHO group but 
not CHO+PRO group 
compared with pre-exercise 

White 
(2008)

72
 

27 
untrained 
males 

50 eccentric quadriceps 
contraction on Cybex 

1) CHO+PRO 
2) CHO+PRO 
3) Placebo Beverages 75g CHO+23g PRO 1 

1) Before 
exercise 
2) After 
exercise 
3) Neither 3:1 

No significant differences 
among treatment groups at 
any point 
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CHO Supplements 

Although it is proven that CHO ingestion immediately after prolonged exercise increases muscle 

glycogen synthesis rates and attenuates muscle protein breakdown, 73 effects of CHO ingestion on DOMS 

have not been extensively examined. A previous study observed effects of post-exercise CHO ingestion 

on muscle soreness after 30 minutes of downhill treadmill running. The results indicated no significant 

difference in muscle soreness immediately post-exercise, and 1 day, 2 day, and 3 day post-exercise 

compared with placebo ingestion (Figure 6). 45 Other studies that investigated if pre-exercise CHO 

ingestion attenuates DOMS after downhill treadmill running, found no effect of pre-exercise CHO 

ingestion on DOMS. 74,75 Therefore, further research is needed to determine the effects of CHO 

supplementation on DOMS. 

 
Figure 6. Lower extremity muscle soreness in carbohydrate (CHO), carbohydrate-protein (CHO+PRO), 
and placebo (PLA) groups at baseline (PRE), immediately after (Post-I), and on the days (Post-1d, Post-2d, 
and Post-3d) after downhill treadmill run. Inset shows data combined across groups. (mean ± SD, 
n=18)45 
 
CHO+PRO supplements 

Combined ingestion of a small dosage of PRO with CHO less than 1.0 g/kg/h has been shown to 

accelerate muscle glycogen synthesis after exercise. 73 However, the effects of post-exercise ingestion of 
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CHO and PRO on DOMS remain controversial based on previous studies. 45,46,67,72 Green et al. 45 used 30 

min downhill treadmill running to examine post-workout muscle soreness comparing 3 beverage 

interventions (CHO, CHO-PRO, Placebo). There was no significant difference on muscle soreness among 

the interventions immediately post-exercise, and 1 day, 2 day, and 3 day post-exercise. Goh et al. 46 

compared 3 calorically similar beverage interventions (CHO only, high CHO-low PRO, low CHO-high PRO), 

using two bouts of approximately 1 hour of high-intensity cycling intervals with 4 hours of recovery 

period between the bouts. The findings demonstrated no difference in muscle soreness at pre-exercise 1 

(PreEx1), pre-exercise 2 (PreEx2), and 24 hours post-exercise (24Post) among 3 interventions (Table 6).  

Table 6. Rating of muscle soreness in carbohydrate (CHO), low carbohydrate and high protein (LCHP), 
and high carbohydrate and low protein (HCLP) groups after cycling interval bouts (mean ± SD, n=12, 
mm)46 

  PreEx1 PreEx2a,b 24Postc 

CHO 10±11 36±18 25±23 

LCHP 13±10 33±15 19±12 

HCLP 16±17 39±19 25±17 
a PreEX2 > PreEx1; b PreEx2 > 24Post; c 24Post > PreEx1 
 

However, Saunders et al. 71 reported that coingestion of CHO and PRO significantly attenuated 

an increase in DOMS after a 60 km cycling time trial, while CHO ingestion showed a significant increase 

in DOMS. Therefore, additional data is required to determine if coingestion of CHO and PRO attenuate 

DOMS. 

CHO+PRO+AOX 

Isolated ingestion of CHO and coingestion of CHO and PRO do not appear to benefit to decrease 

in DOMS. However, several researchers reported that combined ingestion of CHO, PRO and AOX might 

produce synergistic effects in attenuating DOMS. 68-70 Luden et al. 68 investigated that the effects of post-

exercise CHO+PRO+AOX beverage on muscle soreness in cross-country runners. Subjects ingested CHO 

only or CHO+PRO+AOX beverage immediately after each training session for six days. The results 

showed that muscle soreness was significantly lower in CHO+PRO+AOX intervention than CHO 
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intervention after the training on Day 5. Romano-Ely et al. 70 compared the effects of two different 

beverages (CHO only or CHO+PRO+AOX) on muscle soreness after two bouts of high intensity cycling to 

fatigue. Subjects consumed the beverage every 15 minutes during exercise and immediately following 

the first bout. They found that muscle soreness was significantly lower in combined beverage than CHO 

only beverage 24 hours post-exercise. Muscle soreness returned to the baseline 72 hours after exercise 

(Figure 7). 

 

Figure 7. Median muscle soreness in Carbohydrate (CHO) and Carbohydrate-protein-antioxidant 
(CHOPA) trials at baseline, 24h, and 72h. *p < 0.05 between treatments70 
 
Timing of Supplementation 

Timing of supplementation has been studied from the perspective of muscle glycogen synthesis 

post-exercise. Muscle glycogen synthesis after exercise takes place in two different phases. The first 

phase with rapid synthetic rates lasts the first 30-60 minutes after exercise, followed by the second 

phase with significantly slower synthetic rates, 73 but still greater than the normal rates76 The rapid 

synthesis appears to be independent of blood insulin levels while the slower synthesis is characterized 
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as the insulin dependent. CHO intake within 30 minutes post-exercise is reported to increase muscle 

glycogen synthesis rates compared with 2 hours post-exercise because of higher muscle insulin 

sensitivity in the early period after exercise. 77 Therefore, it is recommended that the time to start CHO 

restoration is within the first two hours after cessation of exercise.78 

Amount/Frequency/Ratio of Supplementation 

Amount, frequency, and ratio of supplements are often suggested for the purpose of 

maximizing post-exercise muscle glycogen restoration. It is proposed that optimal amount of CHO to 

maximize muscle glycogen replenishment post-exercise is 1.2 g/kg body weight (BW) every 15-30 

minutes. 66 0.2-0.5 g/kg BW protein added to CHO has been demonstrated to increase glycogen 

synthesis compared with CHO alone. 79 However, If CHO intake reaches 1.2 g/kg BW every 15-30 minutes, 

ingestion of protein with CHO does not further enhance muscle glycogen synthesis post-exercise. 80 

Protein intake with CHO might increase muscle glycogen synthesis rates post-exercise when CHO is 

ingested less than 1.0g/kg BW. 73 To accelerate muscle glycogen synthesis, co-ingestion of CHO and PRO 

at a ratio of 3:1 (CHO:PRO) is recommended. 81 However, previous study that examined the influence of 

different ratios of CHO-PRO supplements (CHO:PRO 2:1, 3:1, 4:1) on muscle damage biomarkers and 

DOMS indicated that there was no difference between different ratios of CHO-PRO supplements on 

muscle soreness and biomarkers. Despite all 3 ratios of supplements decreased muscle damage markers 

24 hours after exercise, they did not influence muscle soreness post-exercise.82 

 Due to biochemical evidences of post-exercise nutritional intervention, it is believed that 

nutritional supplementation after exercise may attenuate DOMS. Previous findings over the effect of 

post-exercise nutritional intervention on DOMS remain inconsistent. Moreover, post-exercise nutritional 

intervention for recovery from DOMS has been often studied combined with nutritional intervention 

during exercise or between bouts of exercises, however there are only a few studies purely focusing on 
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post-exercise nutritional intervention. To our knowledge, post-race nutritional intervention for DOMS 

has not investigated in specific to Ironman triathletes. 

 

Conclusion 

 Ironman triathletes spend approximately 8,000-10,000 kcal to complete a race. Even considering 

energy intake from food and drinks during the race, total energy balance post-race becomes 

approximately negative 5000-6000 kcal. Under such circumstances, muscle damage may be accelerated 

due to insufficient muscle glycogen, in addition to muscle damage caused by substantial mechanical 

stress during an Ironman triathlon. Data has shown that blood markers indicating muscle damage and 

inflammation significantly increase after the race, and then rapidly diminish within 24 hours post-race. 

However, low level of inflammation has been demonstrated to last for at least 5 days post-race. 35 

Although Ironman triathletes often experience DOMS during this period, there is no data examining 

DOMS longer than 1 day after Ironman triathlon. 

 To attenuate DOMS after Ironman race, nutritional intervention is commonly used as well as 

other recovery interventions. Post-exercise ingestion of CHO, PRO, or both is evidenced to accelerate 

muscle glycogen and protein synthesis and prevent muscle protein breakdown. However, limited data is 

available in respect to nutritional intervention for recovery of DOMS. To our knowledge, no study has 

yet examined the effects of post-exercise nutritional intervention on DOMS in Ironman triathletes. 
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INTRODUCTION 

The Ironman triathlon is an ultra-endurance event that combines three distinct events. It 

consists of a 3.86 km swim, a 180.25 km bicycle ride, and a 42.20 km run, raced in that order without a 

break. This prolonged endurance exercise imposes substantial physiological demands on athletes’ 

bodies, including energy demands, thermal stress, hydration demands, oxidative stress, and muscle 

damage1,2 Therefore, Ironman triathletes often experience physiological repercussions such as Delayed-

Onset Muscle Soreness (DOMS) for several days after the race. 1,3 

Several studies have reported a significant increase in biomarkers for inflammation and muscle 

damage immediately after Ironman triathlon.1,3,4 The inflammatory responses rapidly diminished within 

24 hours post-race, nevertheless, a low-grade inflammation lasted for at least 5 days after the race.3 In 

correlation to increased inflammation and muscle damage biomarkers, a significant increase in DOMS 

has been observed immediately after the Ironman race and remained significantly elevated up to 2 days 

after race.1,5,6 However, to our knowledge, there is no data examining DOMS after an Ironman triathlon 

longer than 2 day post-race. 

 It is important for Ironman triathletes to recover from muscle damages induced by a race and 

return to training in order to maintain their cardiovascular abilities and prepare for a next race. Various 

interventions are used to promote a quicker recover from DOMS. Common recovery interventions 

include cryotherapy, massage, stretching, compression garments, low-intensity exercise, and nutritional 

supplements.7-9 Post-race nutritional needs are large, and as such, ingestion of carbohydrate (CHO) and 

protein (PRO) are needed by Ironman triathletes. It is evident that combined ingestion of CHO and PRO 

within few hours after exercise increases muscle glycogen and PRO synthesis and improves 

intramuscular PRO balance.10 Although it is believed that post-exercise ingestion of CHO and 

supplements attenuate DOMS, only a few studies have specifically ingested those supplements after 

eliciting muscle damage. A previous study purely focusing on the effects of post-exercise ingestion of 
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CHO and PRO on DOMS reported that supplementation of CHO, PRO, or combination of two did not 

influence on DOMS after downhill treadmill running.11 Another study demonstrated that co-ingestion of 

CHO and PRO following isokinetic eccentric exercise attenuated decreases in isokinetic muscle outputs 

and increase in blood markers for muscles damage but did not affect DOMS12 These studies only 

observed DOMS following a much shorter event compared to an Ironman, and only measured it at one 

or two muscle groups during a movement, such as standing up or stepping down. 

 The evidence for effects of post-exercise nutritional supplement on DOMS remains controversial. 

Moreover, there is limited data available observing DOMS over an extended period of time after an 

Ironman race, where physiological damage may be greater. Therefore, the purpose of this study is to 

examine the effect of post-race co-ingestion of CHO and PRO on DOMS and the ability of triathletes 

returning to activity after an Ironman triathlon. We hypothesize that nutritional intervention will 

promote recovery from DOMS and facilitate a quicker return to activities in Ironman triathletes. 
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METHODS 

Study Design 

The protocol followed a randomized counter balanced design in a field setting. Participants in 

the 2013 Ironman Lake Placid were recruited to participate. The subjects were divided into two groups; 

a control group that received no intervention, and an intervention group that received a commercial 

recovery beverage following the race. For the main outcome measures, DOMS was evaluated via a 

Visual Analogue Scale (VAS) and Global Rating of Change (GRC).  

Race 

The Ironman triathlon race took place in Lake Placid on July 28, 2013 starting at 7:00 am. The 

race consisted of a 3.86 km swim, a 180.25 km bicycle ride and a 42.2 km run. Weather was cloudy with 

occasional rain. The highest temperature was 73 °F, the lowest temperature was 57 °F, and average 

humidity was 87 %. 

Subjects 

Thirty-six triathletes (Male: 30, Female: 6) competing in the 2013 Lake Placid Ironman triathlon 

volunteered to participate in this study (Table 1). Each subject completed medical and training history 

questionnaires to ensure that they met the following criteria: 1) no chronic health problems, 2) no 

previous history of exertional heat stroke with in the past 3 years, 3) no history of cardiovascular, 

metabolic or respiratory disease, 4) no current musculoskeletal injury that limits physical activity, 5) no 

known food allergies or intolerances, including but not limited to, lactose, milk PRO, nuts, and gluten, 6) 

planned to complete the Ironman race within 13 hours, and 7) was not pregnant at the time of the race. 

Prior to participation, subjects signed an informed consent form and were familiarized with the testing 

procedures. This study was approved by the Institutional Review Board at the University of Connecticut. 

Table 1. Demographic Characteristics (mean ± SD, n=36)  
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Experimental Procedure 

Data collection began 1 day prior to the race. Anthropometric measurements (height, weight, 

body composition), VAS, GRC, and a sit-and-reach test were completed for baseline measures and to 

familiarize the subjects with study procedures. Body composition was measured with a skinfold caliper. 

On the race day, baseline measurements for VAS and sit-and-reach test were taken prior to the race. In 

addition, a diet log for the day before race was recorded by subjects. During the race, subjects were not 

stopped/interrupted for any study procedures. Upon finishing the race, subjects were randomly 

assigned to either the intervention or control group by finish time and sex, so that every other female or 

male subject was assigned to the same group. This helped to create homologous groups based on the 

ability, sex and race performance of subjects. Official finish times for the race were obtained from the 

Ironman website for statistical analysis.13 Both groups completed a diet log for food consumed during 

the race. The intervention group was asked to ingest two recovery beverages (described below) within 1 

hour post-race. In addition, subjects completed a sit-and-reach test, VAS, and GRC after which they were 

allowed to leave. All subjects were asked to return 3-hour post-race to fill out questionnaires for VAS 

and GRC. At this time, the intervention group ingested another two recovery beverages. Sit-and-Reach 

test was not performed due to an equipment issue at this time. All subjects were allowed to consume 

food and fluid ad libitum anytime. The following morning (12h post), all subjects were asked to return to 

collect VAS, GRC, sit-and-reach test measures and provide a diet log for all items consumed following 

the race. All other data collection following 12h post race was done via the online survey system 
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(Qualtrics, Provo, UT) which was used everyday up to 7 days post-race for return to activity 

questionnaires, VAS and GRC at 11 time points (1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14 days post-race). The 

schematic illustration of the testing protocol is shown in Figure 1. 

 
Figure 1. Schematic of testing protocol 
 

Nutritional Intervention 

A FDA approved recovery beverage (Gatorade Company, Chicago, IL) was used for post-race 

nutritional intervention to replenish carbohydrate and PRO stores. Per bottle (330ml), each recovery 

beverage contained 270 kcal (CHO 45 g, PRO 20 g, fat 1 g). PRO in recovery shake consisted of milk and 

whey PRO. The intervention group ingested 2 bottles of recovery beverage within 1 and also 3 hours 

post-race, for a total of 4 bottles, 1080 kcal, 180 g of CHO, 80 g of PRO, and 4 g of fat. All procedures 

took place under the supervision of the research team who also ensured that subjects were consuming 

the recovery beverage as prescribed. 

Muscle Soreness Measurement 

VAS and GRC was used to assess DOMS in a paper form for on-site data collection and digital 

form for online surveys. Paper-based VAS consisted of a 10 cm line with “no soreness” (0 cm) on the left 

end and “unbearable pain” (10 cm) on the right end. Subjects put a vertical mark on the VAS to rate 

their perceived muscle soreness. Digital VAS was identical to the paper-based VAS except subjects 

moved a pointer to rate their DOMS (Appendix A). Both paper-based and online GRC consisted of a 11 
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point scale with “very much worse” on the left, “unchanged” on the middle, and “completely recovered” 

on the right as recommended by the previous study (Appendix B).14 Subjects rated the change of 

soreness compared to baseline or the last measurement. DOMS was assessed at 5 body regions (whole 

body, anterior and posterior thighs, calves, and lower back) while standing up straight (static) and 

standing up from a chair (active). 

Flexibility Measurement 

Sit-and-reach test was used to measure hamstring, hip, and lower back flexibility following the 

standard procedures recommended by American College of Sports Medicine.15 The subject was 

instructed to remove their shoes, sit at a right angle with legs extended, feet positioned against the 

measuring box, and toes pointed upward. The subject then slowly reached forward with both hands as 

far as possible and held the position for 2 seconds. Fingertips of both hands should be in contact with 

the measuring portion. The most distant point reached with the fingertips was measured. Subjects 

performed two trials and the higher score was recorded. 

Return to Activity 

 Subjects reported their Daily physical activity, including type, length, and intensity of exercises 

for 2 weeks after race via the online survey system (Appendix C). From the data, the first day of return 

to activity and total activities during the first week after race were analyzed. 

Diet Log 

 Food and fluid intakes for the day before race and the day of race were recorded on diet log. 

Subjects were asked to keep time, type of food or fluid, and amount as detailed as possible. The 

nutrition software (The Food Processor; ESHA, Salem OR) was used to calculate consumed calories, CHO, 

PRO, and fat. 

Statistical Analysis  
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 Means and standard deviations were computed for each dependent variable. A repeated 

measures two-away ANOVA (group x time) for VAS and sit-and reach test was performed. Independent 

t-tests were used to determine differences in subject demographics, finish time, GRC, delta scores for 

the sit-and reach test, return to activity parameters, and nutritional intakes. For all analyses, the alpha 

level was set at P<0.05. Data was analyzed with the statistical analytical software (SPSS Version 21; IBM 

Corporation, Armonk, NY) Hedge’s effect size was calculated for VAS, GRC, and nutritional intakes. 
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RESULTS 

 There was no significant difference in demographic characteristics between groups (P>0.05) 

(Table 1). Both groups had similar finish times (Intervention: 712±103 mins, Control: 747±112 mins, 

Average: 732±108 mins) (P>0.05). 

Visual Analogue Scale 

The scores of VAS significantly increased 1-hour post-race compared to pre-race for both static 

and active DOMS at all body regions (P<0.05) (Figure 2 & 3). VAS 1-hour post-race at all body regions 

represented the peak value for both static (whole body: 48±22 mm, anterior thighs: 45±25 mm, 

posterior thighs: 44±28 mm, calves: 44±27 mm, lower back: 27±24 mm) and active (whole body: 49±25 

mm, anterior thighs: 56±25 mm, posterior thighs: 47±30 mm, calves: 36±24 mm, lower back: 28±24 mm) 

DOMS. After 1-hour post-race, DOMS slowly declined but still remained significantly elevated for several 

days. Static DOMS in calves and lower back returned to the pre-race value three days after race followed 

by whole body and posterior thighs (5 days) and anterior thighs (6 days) while active DOMS in lower 

back returned to the pre-race value three days after race followed by calves (4 days), whole body (5 

days), and anterior and posterior thighs (7 days). However, there was no difference in static and active 

DOMS between intervention and control groups at any time points (P>0.05). Due to none of the 

significance between groups Hedge’s effect size was performed. (Table 2) 
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 Figure 2. Visual analogue scales for static delayed-onset muscle soreness in whole body (A), anterior 

thighs (B), posterior thighs (C), calves (D), and lower back (E) after Ironman triathlon. (mean ± SD, 

n=36) *Significantly different from pre-race value in both groups (P<0.05) 
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 Figure 3. Visual analogue scales for active delayed-onset muscle soreness in whole body (A), anterior 

thighs (B), posterior thighs (C), calves (D), and lower back (E) after Ironman triathlon. (mean ± SD, 

n=36) *Significantly different from pre-race value in both groups (P<0.05) 
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Table 2. Hedge’s effect sizes for mean differences between groups for visual analogue scale 
 
VAS for Static DOMS 

 
 
VAS for Active DOMS 

 
 

Global Rating of Change 

GRC for static DOMS demonstrated negative scores only for 1-hour post-race and positive scores 

for other time points. (Figure 4) Data of GRC for active DOMS 1- and 3-hour post-race was missed. 

Significant differences in static GRC between groups occurred in anterior thighs and claves 1-hour post-

race and posterior thighs 2-day post-race while active GRC showed significant differences in whole body 

and calves 1-day post-race and anterior and posterior thighs 2-day post-race. (P<0.05) (Figure 5) Hedge’s 

effect size was shown in Table 3.  

Whole Body Anterior Thigh Posterior Thigh Calves Lower Back

Pre-Race -0.07 0.12 0.34 0.08 -0.01

I-hr Post -0.20 -0.58 -0.16 -0.87 0.25

3-hr Post 0.29 -0.49 0.09 -0.11 0.38

12-hr Post -0.27 -0.61 -0.32 -0.59 0.05

1-Day Post -0.02 -0.22 -0.10 -0.55 0.07

2-Day Post 0.11 -0.36 -0.04 -0.42 -0.24

3-Day Post -0.06 -0.31 -0.02 -0.23 0.21

4-Day Post -0.34 -0.36 0.12 -0.41 0.19

5-Day Post -0.27 -0.46 -0.27 -0.42 0.15

6-Day Post -0.52 -0.40 -0.22 -0.47 -0.04

7-Day Post -0.19 -0.24 -0.13 -0.27 -0.04

Whole Body Anterior Thigh Posterior Thigh Calves Lower Back

Pre-Race 0.16 -0.03 0.23 0.15 0.17

I-hr Post -0.21 -0.70 -0.41 -0.80 0.00

3-hr Post 0.02 -0.53 -0.06 -0.14 0.43

12-hr Post -0.30 -0.78 -0.14 -0.45 0.33

1-Day Post -0.19 -0.66 -0.29 -0.23 -0.05

2-Day Post 0.05 -0.53 -0.17 -0.22 -0.24

3-Day Post -0.16 -0.44 0.08 -0.40 0.08

4-Day Post -0.47 -0.64 -0.08 -0.29 0.07

5-Day Post -0.37 -0.39 -0.10 -0.27 0.15

6-Day Post -0.39 -0.20 -0.18 -0.26 0.11

7-Day Post -0.36 -0.39 -0.13 -0.26 0.19
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Figure 4. Global rating of change for static delayed-onset muscle soreness in whole body (A), 

anterior thighs (B), posterior thighs (C), calves (D), and lower back (E) after Ironman triathlon. (mean 

± SD, n=36) * Significantly different between groups (P<0.05) 
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Figure 5. Global rating of change for active delayed-onset muscle soreness in whole body (A), 

anterior thighs (B), posterior thighs (C), calves (D), and lower back (E) after Ironman triathlon. (mean 

± SD, n=36) * Significantly different between groups (P<0.05) 
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Table 3. Hedge’s effect sizes for mean differences between groups for global rating of change 
 
GRC for Static DOMS 

 
 
GRC for Active DOMS 

 
 

Sit-and-Reach Test 

Sit-and-reach scores were significantly lower at 1-hour post-race and 12-hour post-race 

compared to pre-race, however there was no significant difference between groups at any time point. 

(P<0.05) (Figure 6) Changes in sit-and-reach score from pre-race revealed no significant difference 

Whole Body Anterior Thigh Posterior Thigh Calves Lower Back

I-hr Post 0.54 0.90 0.45 1.03 0.01

3-hr Post -0.21 -0.12 -0.38 0.21 -0.64

12-hr Post 0.06 0.30 0.02 -0.10 -0.25

1-Day Post -0.52 -0.30 -0.20 -0.50 -0.03

2-Day Post -0.53 -0.67 -0.71 -0.44 -0.11

3-Day Post -0.23 -0.34 -0.35 -0.44 -0.18

4-Day Post -0.24 -0.28 -0.62 -0.55 -0.40

5-Day Post -0.09 0.01 -0.20 -0.31 -0.27

6-Day Post 0.15 -0.04 0.08 0.03 0.19

7-Day Post -0.19 -0.05 -0.21 -0.22 -0.10

Whole Body Anterior Thigh Posterior Thigh Calves Lower Back

1-Day Post -0.90 -0.47 -0.44 -0.67 -0.12

2-Day Post -0.42 -0.75 -0.71 -0.34 -0.23

3-Day Post -0.22 -0.16 -0.22 0.05 -0.07

4-Day Post -0.35 -0.28 -0.60 -0.66 -0.39

5-Day Post -0.12 -0.11 -0.28 -0.30 -0.24

6-Day Post 0.05 -0.08 -0.03 -0.12 0.11

7-Day Post -0.22 -0.08 -0.06 -0.25 -0.16
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between groups. (P>0.05)

 

Figure 6. Sit-and-reach test and its changes after Ironman triathlon. (mean ± SD, n=36) *Significantly 
different from pre-race value in both groups (P<0.05) 
 

Return to Activity 

For the first day of return to activity, intervention group exhibited significantly longer activity 

length than control group. (P<0.05) (Table 4) However, there were no significant differences in days for 

return to activity, RPE, and type of activities. (P>0.05) In total activities in the first week, average RPE 

was significantly higher in control group than intervention group. (P<0.05) (Table 5) There was no 

significant difference in days, length, and type of activities. (P>0.05) In addition, training history 

questionnaire revealed that there was no difference in average hours per week and type of activities. 

(p>0.05) (Table 6)  
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Table 4. First day of return to activity after Ironman race (mean ± SD, n=36) * Significantly different 
between groups (P < 0.05) 

 
 
Table 5. Total activities during the first week after Ironman race (mean ± SD, n=36) * Significantly 
different between groups (P < 0.05) 

 
 
Table 6. Training history in Ironman triathletes (mean ± SD, n=36)  

 
 

Energy Intake 

Diet record analysis calculated energy intake on day before race, race day, during race and after 

race. (Table 7) The results revealed significant differences in CHO, PRO and fat on the race day, and PRO 

and fat after race between groups. (P<0.05) Total calorie intake did not differ between groups anytime 

(P>0.05). Hedge’s effect size supported the statistical findings for energy intake. (Table 8) Intervention 

group obtained 58±15 % of total calories, 64±14 % of CHO, 74±12 % of PRO, and 17±12 % of fat from 

recovery beverage after race. The ratio of CHO to PRO in intervention group was 3:1 while that in 

control group was 4:1. Beside energy intake, energy intake per body weight was calculated, which 

demonstrated significant difference in CHO, PRO, and fat on the race day, CHO during race, and PRO and 
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fat after race. (P<0.05) (Table 9) Energy intake differences in males and females are shown in Table 10 

and energy intake per hour during race is shown in Table 11.  

Table 7. Energy intake day before race, race day, during race, and after race in Ironman triathletes 
(mean ± SD, n=36) * Significantly different between groups (P<0.05) 
 
Day Before Race 

 
Race Day 

 
During Race 

 
After Race 

 
 

Table 8. Hedge’s effect size for mean differences between groups for energy intake 

 

Total Calories Carbohydrate Protein Fat

Day Before Race 0.22 0.09 0.19 0.33

Race Day -0.36 -0.79 -0.69 0.79

During Race -0.43 -0.66 0.24 0.07

After Race -0.13 -0.48 -1.16 0.76
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Table 9. Energy intake per body weight day before race, race day, during race, and after race in Ironman 
triathletes (mean ± SD, n=36) * Significantly different between groups (P<0.05) 
 
Day Before Race 

 
Race Day 

 
During Race 

 
After Race 
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Table 10. Energy intake in male and female Ironman triathletes (mean ± SD, n=36) * Significantly 
different between groups (P<0.05) 
 
Day Before Race 

 
Race Day 

 
During Race 

 
After Race 

 

 
Table 11. Energy intake per hour during race in male and female Ironman triathletes (mean ± SD, n=36) 
* Significantly different between groups (P<0.05) 
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DISCUSSION 

The purpose of this study was to examine the effects of post-race nutritional intervention on 

DOMS and return to activity. Similar to previous studies investigating DOMS in triathletes,5,6 DOMS 

significantly increased immediately after race compared to pre-race and remained significantly elevated 

up to 2 – 6 day post-race depending on body regions. Our primary findings demonstrated that, within 

the confines of this study, the ingestion of a recovery beverage after Ironman race did not attenuate 

DOMS or result in a quicker return to activity in the intervention group. However, the nutritional 

intervention resulted in a significant increase in PRO intake and decrease in fat intake post-race.  

Physiological Effects of Recovery Beverage 

Post-race nutritional beverages aim to facilitate recovery from DOMS by replenishing 

intramuscular glycogen and improving muscle PRO balance between PRO synthesis and breakdown, 

which could enable Ironman triathletes to return to training quicker and provide longer preparation for 

the next race. Eccentric contractions during prolonged endurance exercises result in increased PRO 

breakdown rate and stimulated PRO synthesis in skeletal muscles.16,17 Without nutrient intake, muscular 

catabolism occurs because muscle PRO balance remains negative after strenuous exercises.17 Therefore, 

increasing in availability of intramuscular PRO is essential to repair damaged muscle tissues. Ingestion of 

CHO after resistance exercise has been shown to improve muscle PRO balance by suppressing muscle 

breakdown but have little effects on PRO synthesis.18 However, despite an increased muscle PRO 

balance, intake of CHO alone does not return PRO balance; the muscle is in a catabolic state.18 On the 

other hand, post-exercise PRO ingestion is shown to improve muscle PRO balance, by increasing the PRO 

synthesis rate but it does not alter muscle breakdown rate.19 A previous study reported that infusion of 

amino acids after resistance exercise amplified muscle PRO synthesis by 200%.20 Miller at al.21 

demonstrated that ingestion of combined CHO and PRO after resistance exercise had the largest net 

PRO balance followed by PRO alone and CHO alone. This increase in PRO balance with combined 
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ingestion of CHO and PRO was also due to enhanced PRO synthesis, which results from synergistic effect 

of insulin stimulation and adequate intramuscular PRO availability. This data suggests that PRO and CHO 

may have positive effects on recovery within an exercise session and timing of its ingestion. 

DOMS After Ironman Race 

Within this study observed the highest value of DOMS immediately after race, which then 

gradually subsided and returned to the pre-race value 2 to 6 days after race. A previous study that used 

downhill treadmill running as a DOMS inducing exercise showed DOMS significantly elevated 

immediately after the exercise but continued to rise and peaked 2 days post-exercise.11 This is in 

opposition to the peak value we observed for our DOMS data, but may have occurred because Ironman 

triathlon is an extremely extended exercise that causes magnificent muscle damages during race. Our 

results support previous studies reporting the height value for DOMS immediately after race in Ironman 

triathletes.5,6 Those studies used VAS to measure only static DOMS for whole body observing 77±13 

mm6 and 61±23 mm5 as the peak values, which were greater than that in this study (48±22 mm). 

Although the reason the previous studies demonstrated a higher value for DOMS remains unclear, 

potential explanations may be due to a different competition level or environmental conation. Both of 

the previous studies were conducted at the Ironman World Championships in Kailua-Kona, Hawaii in 

October. Only qualified elite triathletes are able to participate in the Ironman World Championships, 

therefore average finish time of the subjects in the previous study (663±85 min) was faster than the 

current study (732±108 min).6 Since subjects in previous studies completed the race with higher 

intensity compared to those in this study, they might report higher values for DOMS. The influence of 

exercise intensity on DOMS in Ironman triathletes needs to be addressed in future research. 

Muscle soreness was measured using VAS and GRC for static and active DOMS in this study. VAS 

for static and active DOMS demonstrated a similar trend (Figure 2 & 3). VAS scores of anterior and 

posterior thighs took 2 to 4 days longer to return to the pre-race value compared to calves and lower 
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back. Those muscles may have received more damages due to use as primary muscles during biking and 

running and have had delayed recovery due to frequent uses in activities of daily living.  Active VAS 

scores in anterior and posterior thighs and calves remained significantly elevated 1 to 2 days longer than 

static VAS scores in those body regions. This is likely because the motion standing up from a chair while 

assessing active DOMS recruited contractions of lower extremity muscles.  

Nutritional Intervention on DOMS 

Even though post-exercise ingestion of combined CHO and PRO has been shown to be beneficial 

for improving muscle PRO balance and DOMS our results did not demonstrate an effect on DOMS 

measures. One potential explanation for this finding is that subjects in the control group consumed 

extra energy on their own, which supplemented energy intake similarly to that from recovery beverages 

in the intervention group. Post-race energy intake revealed no significant difference in total calories and 

CHO between groups. (Table 5) However intervention group consumed significantly higher PRO and less 

fat than control group. This is probably due to 58±15 % of the post-race calorie intake in the 

intervention group being from the recovery beverage, containing high PRO and low fat compared to a 

general meal control group consumed.  

A study by Goh at al.22 reported that ingestions of similar caloric loads but different proportion 

of PRO and CHO did not alter attenuation in DOMS. They examined the effects of isocaloric recovery 

beverages with different proportions of CHO and PRO following cycling exercise on DOMS scores.  

Recovery beverages consisted of 2:1 ratio of CHO to PRO (45g CHO, 25g PRO) or 1:7 ratio of CHO to PRO 

(8g CHO, 55g PRO) containing an overall 285-300kcal. They found that there was no significant 

difference in DOMS between recovery beverages up through 1 day after the exercise bout. DOMS was 

not observed more than 1 day after the cycling exercise. Similarly, Sandi et al.23 compared the effect of 3 

different ratios of CHO-PRO beverages on DOMS induced by resistance exercise. CHO-PRO beverages 

with 4:1, 3:1, or 2:1 ratio of CHO to PRO were ingested before and during the exercise. The total volume 
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of CHO-PRO beverages was determined by body mass thus they were not isocaloric. Their results 

revealed no significant difference in DOMS between different ratios of CHO-PRO beverages over 2 days 

after exercise. In our study, subjects consumed 3:1 ratio of CHO to PRO for the intervention group and 

4:1 ratio for control group after race. DOMS responses were similar despite the intervention group 

ingesting a greater amount of PRO post-race. Therefore we suggest that the ratio of CHO and PRO in 

recovery beverages may not effect attenuation in DOMS, however the intake of some amount of PRO 

may still prove beneficial.  

When ingesting combined CHO and PRO post-exercise, optimal amount of PRO to maximize 

muscle PRO balance remains controversial. Beelen at al.10 suggested that ingestion of 20g of PRO is 

sufficient enough to stimulate muscle PRO synthesis within the first 2 hours after exercise. In contrast, 

some previous literature reported that PRO balance improves as energy intake increases regardless of 

the volume of PRO intake, thus energy content rather than macronutrient content of a recovery 

beverage is critical in determining muscle PRO balance.24,25 Improvement in muscle PRO balance with 

increased energy intake post-exercise may promote recovery from DOMS. However, to our knowledge, 

no study has been done to examine the effect of various caloric intakes from co-ingestion of CHO and 

PRO post-exercise on DOMS. In the present study, boluses of recovery beverage were ingested in 

purpose of amplifying post-race caloric intake with a PRO rich beverage. Despite recovery beverage 

ingestion, subjects had similar post-race energy intake between groups. This is likely because we did not 

place any restriction on subject’s food and fluid intake following the study protocols post race, and allow 

subjects to recover outside of the study as they normally would. Therefore further research is warranted 

to determine optimal amount of PRO and its effects on DOMS, especially within the Ironman population. 

Energy Intake 

 Kimber at al.26 investigated energy intake, expenditure and balance during Ironman race. The 

results showed Ironman triathletes had energy intake at 3940±868 kcal for males and 3115±914 kcal for 
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females, energy expenditure at 10036±931 kcal for males and 8570±1014kcal for females, and energy 

balance at -5973±1274 kcal for males and -5123±1193 kcal for females. Energy intake in this study 

(Males: 2972±854 kcal, Females: 1928±976 kcal) was considerably smaller than that in the previous 

study. With the assumption that subjects in this study had similar energy expenditure to previous study, 

energy intake on race (Males: 5553±1150 kcal, Females: 3930±1934 kcal) was not sufficient to replenish 

energy deficiency due to race. Thus, it is likely that Ironman triathletes restored this energy deficiency 

day after race, however more data needed to determine energy replenishment strategy in Ironman 

athletes. 

According to the American College of Sports Medicine (ACSM) position stand for nutrition and 

athletic performance, PRO intake at 1.2 to 1.4 g/kg/day or slight above is recommended for ultra-

endurance athletes and CHO intake at 6 to 10 g/kg/day is recommended for general athletes.27 

Considering energy intake day before race, subjects in this study had appropriate PRO intake 

(Intervention: 1.5±0.6 g/kg/day, Control: 1.6 ± 0.5 g/kg/day) but slightly lower CHO intake than the 

recommended amount (Intervention: 5.2±2.4 g/kg/day, Control: 5.2±2.0 g/kg/day). CHO intake at 60 to 

70 g/hr is recommended during Ironman race,28 but our findings demonstrated lower CHO intake with 

55±15 g/hr in males and 37±25 g.hr in females. Total CHO intake during race was also lower in this study 

(Males: 661±178 g, Females: 421±242 g) compared to a study by Kimber at al. (Males: 939±222 g, 

Females: 753±226 kcal).26 For post-exercise ACSM recommends to consume 1.0 to 1.5 g/kg of CHO 

during first 30 minutes, and again every 2 hours for 4 to 6 hours and 0.2 to 0.5 g/kg of PRO added to 

CHO although these recommendations are not specific to ultra-endurance athletes. In addition Millard-

Stafford at al.29 suggested 1.2 to 1.5 g/kg/hr of CHO intake within the first few hours after endurance 

exercise. To meet those recommendations the amount of CHO ingested by subjects in this study (Males: 

4.1±1.4 g/kg, Females: 3.0±2.4 g/kg) might not sufficient enough. In contrast post-race PRO intake was 

higher than the ACSM recommendation.27 
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Return to Activity 

Return to activity questionnaires were used in our study to investigate the length that it took for 

the Ironman triathletes to resume physical activity after race, what type of activities they prefer to 

perform for the first exercise sessions post-race, and how/if DOMS influenced return to physical activity. 

We hypothesized that a recovery beverage would attenuate DOMS, which would enable Ironman 

triathletes to achieve a quicker return to activity. However, we found that there was no significant 

difference in days returning to activity between groups. Although the intervention group showed 

significantly longer activity duration on the first day of return to activity, this data may not be clinically 

meaningful because both groups demonstrated similar level of DOMS and the total duration of 

individual activities did not significantly differ between groups over the recovery period examined. Total 

activities in the first week post-race also did not reveal significant differences in total days, duration, and 

types of activities between groups. Average RPE was significantly lower in intervention group but it does 

not seem related to recovery beverage ingestion. Both groups performed shorter duration of activities 

with intensity of very light to fairly light post-race exercise sessions compared to pre-race exercise 

sessions. This may indicate Ironman triathletes performed active recovery exercises in order to 

attenuate DOMS. 

Sit-and-Reach Test 

As supplemental data we measured flexibility of hamstrings and lower back with sit-and-reach 

test. A previous study reported that people with stiffer hamstrings experienced greater muscle soreness 

after an eccentric exercise.30 Therefore, we hypothesized that intervention group would have higher 

(better) sit-and-reach test score if post-race nutritional intervention attenuated DOMS. Our data 

demonstrated that sit-and-reach test scores were significantly lower 1-hour and 12-hour post-race than 

pre-race, however there was no significant difference between groups. This supported the previous 
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finding that there were negative moderate correlations (-0.41 < r < -0.51) between DOMS and muscle 

stiffness over 4 days following eccentric exercise.31 

Limitations 

There were several limitations in this study. First, we did not control diet outside of the research 

parameters. This resulted in the two groups matching energy intake, but with the ingestion of the 

recovery beverage we were able to successfully have a significantly greater PRO intake for our 

intervention group. Ideally we would have been able to completely control and match dietary intake of 

our subjects for all of the days we collected data. Therefore, our subject’s nutrition on the immediate 

days following our study may have also had an effect we did not control for. Our study did not have a 

cross over design, allowing a lot of variability within groups and lowering the statistical power, however 

we did attempt to limit this via the group assignment upon subjects crossing the finish line. The same 

protocol as this study could be performed in a laboratory setting, however that setting will be difficult to 

replicate weather conditions, and for triathletes to maintain their motivation and maximize their efforts. 

Without DOMS induced by an actual Ironman race, we are not accurately able to determine the effects 

of recovery beverages on DOMS after Ironman race.  

Second, this was not a double-blinded study since no placebo beverages were used due to 

budgetary and practicality issues (we would have had to create this beverage). We were not able to 

make non-caloric or non-PRO based beverages similar taste and texture to the recovery beverages with 

our limited budget. Also, we avoided liability for providing handmade placebo beverages under the field 

condition where data was collected.  

 Third, there were potentials that energy intake was underestimated. As discussed above 

subjects in this study had considerably less energy intake during race than that in the previous study.26 

Immediately after race subjects were asked to recall food and fluid intake during race in this study while 

the previous study collected data for race nutrient intake at 6 points on the racecourse and immediately 
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after finishing the race. In addition diet log day before race and post-race were recorded by subjects in 

this study. Thus, our energy intake data may include flaws because food and fluid portions in diet log 

may have not been recorded precisely.  

Finally, Ironman triathletes sometimes use pain medications and therapeutic intervention to 

alleviate muscle soreness during and after race. A previous literature evidenced the analgesic effects of 

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) following DOMS inducing exercise when DOMS is 

substantial. 32 Therapeutic interventions such as cryotherapy, massage, and stretching were known to 

attenuate DOMS after strenuous exercise. 7,33,34 Use of NSAIDs was not restricted in this study to allow 

subjects to compete the race with their normal routines. Indeed, 10 subjects reported use of over-the-

counter NSAIDs during the race and 13 subjects took NSAIDs following days after race. We are not able 

to discuss the effect of NSAIDs on our data for DOMS since time interval between ingestion of NSAIDs 

and DOMS measurement was unknown. Due to a lack of control, use of therapeutic interventions was 

not restricted. Twenty-six subjects reported to perform various kinds of therapeutic intervention over 

days after race. Therefore, perception of DOMS might be altered due to use of NSAIDs or therapeutic 

interventions. 

Conclusion 

Ingestion of recovery beverages has altered macronutrient composition of energy intake post-

race.  Despite the change in nutritional intake, post-race nutritional intervention did not attenuate 

DOMS or promote a quicker return to activity in Ironman triathletes. Double-blinded research that 

controls energy intake is needed in the future in order to examine effects of recovery beverages on 

DOMS. This research will eliminate placebo effects and potential bias due to recovery beverages, and 

also help to determine how increase in energy intake from post-race nutritional intervention affects 

DOMS. 
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Appendix A 

 
Visual Analogue Scale 

 
1. Have you taken any medications to reduce pain today? (circle)  YES / NO 

If yes, please list what and when you have taken and the dose. 
   

   

   

   

 
 
2. On the horizontal line below please put a small vertical line across the line that best 

describes the pain you currently feel. A vertical mark on the extreme LEFT side of the line 
would indicate that you are experiencing “no pain”; a vertical mark on the extreme RIGHT 
side of the line would indicate that you are experiencing “unbearable pain”. If your degree 
of pain is somewhere in between these two extremes, please mark it at the place that most 
accurately describes your current pain level.  

 
A. Please mark the line to indicate the pain that you are currently experiencing in the body 

part while maintaining a standing position. 

 
 
 

Whole Body 
 

Calves 
 

Anterior Thighs 
 

Posterior Thighs 
 

Lower Back 
 

No Pain Unbearable Pain 

No Pain Unbearable Pain 

No Pain Unbearable Pain 

No Pain Unbearable Pain 

No Pain Unbearable Pain 
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B. Please mark the line to indicate the pain that you are currently experiencing in the body 
part when standing up from a chair. 

 
 

  

Whole Body 
 

Calves 
 

Anterior Thighs 
 

Posterior Thighs 
 

Lower Back 
 

No Pain Unbearable Pain 

No Pain Unbearable Pain 

No Pain Unbearable Pain 

No Pain Unbearable Pain 

No Pain Unbearable Pain 
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Appendix B 

 
Global Rating of Change Scale 

 

On the horizontal lines below please circle a number that best describes how you feel compared to 

yesterday. Circling “0” means that you feel the same. Circling a positive number indicates you feel better, 

where circling a negative number indicates that your condition has worsened.  

1. Please rate the pain that you are currently experiencing in the body part while maintaining a standing 

position compared to yesterday (circle a number) 

Whole Body 

 
Calves 

 
Anterior Thighs 

 
Posterior Thighs 

 
Lower Back 
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2. Please rate the pain that you are currently experiencing in the body when standing up from a chair 

compared to yesterday (circle a number) 

 
Whole Body 

 
Calves 

 
Anterior Thighs 

 
Posterior Thighs 

 
Lower Back 
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Appendix C 

 
Return to Training Questionnaire  

 

Thank you for taking our Return to Training Questionnaire. It will take approximately 5-10 

minutes to complete this questionnaire.  

 

Your participation in this study is completely voluntary. There are no foreseeable risks 

associated with this project. However, if you feel uncomfortable answering any questions, you can 

withdraw from the survey at any point. Your survey responses will be strictly confidential and data from 

this research will be reported only in the aggregate. Your information will be coded and will remain 

confidential.  

If you have questions at any time about the survey or the procedures, you may contact the 

Korey Stringer Institute Research Team at (860) 486-0265 or by email at lakeplacidstudy@gmail.com. 

Thank you so much for your time and support. Please start with questionnaire now. 

 

What is your subject number? 

 

 

 

 

How many hours of training did you perform today?  

 

 

 

 

Of these hours, what percentage of them were comprised of swimming __________________% 

 

 

 

 

Of these hours, what percentage of them were comprised of biking_______________________% 

 

 

 

 

Of these hours, what percentage of them were comprised of running____________________% 
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Of these hours, what percentage of them were comprised of resistance 

training____________________% 

 

 

 

 

Of these hours, what percentage of them were comprised of other physical 

activity____________________% 

 

 

 

 

 

Did you encounter any set backs during your training today?  

1. Yes 
2. No 

 

Overall, how satisfied are you with your training today? 

 

 Extremely 

satisfied 

 Very 

satisfied 

 Satisfied  Unsatisfied  Extremely 

unsatisfied 

 ❏ ❏ ❏ ❏ 

 

Overall, how would you describe the intensity of your training today? (Circle a number) 

 

RATING OF PERCEIVED EXERTION SCALE 

6 

7 Very, Very Light 

8  

9 Very Light 

10  

11 Fairly Light 

12 

13 Somewhat Hard 

14 

15 Hard 

16 

17 Very Hard 

18 

19 Very, Very Hard 

20 
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