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ABSTRACT

This thesis presents the continuous polynomial adaptive estimator (CPAE) which
estimates a nonlinear parameter in nonlinearly parameterized (NLP) systems. It com-
bines the multiple region law with the companion adaptive system presented in [1] to
come up with the CPAE. Stability is discussed and a general definition of persistence-
of-excitation (PE) condition is proposed for parameter convergence. Simulation is
included to illustrate the parameter convergence using the CPAE. As an applica-
tion, the CPAE was successfully used to estimate the airspeed in presence of airspeed
sensor failure on a developed academic aircraft model. As part of Loss of Control
Prevention through Adaptive Reconfiguration project supported by NASA, the IMU
theory method, which estimates airspeed using data from the inertial measurement
unit (IMU) and the global positioning system (GPS), is presented and applied on
the generic transport model (GTM). Conclusions and future work for aforementioned
topics were presented at the end of this thesis.

vi



Chapter 1

Introduction

1.1 Motivation

The analysis for any physical or mechanical systems can be done using empirical

methods, where different input signals can be applied on the system. After this, the

response can then be studied and analyzed. If the response does not meet the desired

behavior, some factors will be adjusted or a compensator will be attached to change

the response’s behavior. However, this approach becomes limited especially when the

physical system is too complicated, too expensive, or too dangerous to apply different

input signals. Also, it requires experience which is gained through of trial and error

studies. Therefore, it is preferred to capture the physical system in a mathematical

model. This enables easy analysis, control design, and simulation.

However, mathematical models based on physical laws are usually qualitative in-

stead of quantitative. There are many factors contributing to the mismatch between

theoretical models and experimental data such as approximations and simplifications
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during the derivation, various disturbances, and omitted physical processes. Never-

theless, these qualitative models are still very valuable because they provide a rough

model structure as a starting point. This significantly reduces the set of models to

be focused on from an almost infinite number of choices. To bridge the gap between

qualitative model and experimental data, free parameters are added which gives the

model the ability to match reality while still keeping useful structures based on phys-

ical laws. Hence, the qualitative model will be transformed into a parameterized one

with the potential to be corrected to match experimental data. The next step is to

correct the model by finding approximate parameter values to match experimental

input/output data using different parameters estimations techniques.

In general, parameter estimation can be defined as the process of calculating model

parameters based on input and output data, in this thesis adaptive estimation is the

focuses.

1.2 Thesis Contribution

This thesis focuses on parameter estimation in nonlinearly parameterized (NLP) sys-

tems where the unknown parameter occurs nonlinearly. Chapter 2 will introduce the

multiple region law and combine it with the companion adaptive system in [1] to come

up with the continuous polynomial estimator (CPAE). This chapter will also intro-

duce the general definition of persistence-of-excitation (PE) condition to guarantee

parameter convergence. Those results will be submitted to System and control letters

journal. In addition, Chapter 3 successfully applies CPAE to estimate the airspeed

in the presence of a sensor failure for an academic aircraft model. Those results were
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published in SciTech 2014: Guidance, Navigation and Control conference [2]. Chap-

ter 4 estimates airspeed using data from both inertial measurement units (IMU) and

global positioning systems (GPS) in the generic transport model (GTM) provided by

NASA.

1.3 Thesis Outline

This thesis is organized as follows, Chapter 2 will theoretically introduce the CPAE

structure and discuss the stability using the Lyapunov stability criteria. Moreover,

a general PE condition will be introduced for parameter convergence along with an

example and simulation. Chapter 3 will be an application of the CPAE, where it was

applied on a developed academic aircraft model to estimate the airspeed in the pres-

ence of sensor failure. Finally in Chapter 4, a practical approach to estimate airspeed

using data from the IMU and GPS is presented and applied to the GTM as part of

Loss of Control Prevention through Adaptive Reconfiguration project supported by

NASA. Chapter 5 will state conclusions and future work.



Chapter 2

The Continuous Polynomial
Adaptive Estimator (CPAE)

2.1 Introduction

Most systems in nature can be treated as nonlinearly parameterized (NLP) systems,

where parameters occur nonlinearly. For instance, the Hill equation for modeling

system biology is highly composed of NLP functions [3], and most kinetic models

have nonlinear rates in biochemical models [4]. In addition, several dynamical models

such as friction dynamics [5], uncertainties in robot manipulators [6] and others [7]

can be treated as NLP systems.

NLP systems are an intensively explored area in today’s literatures. In adaptive

control, [8, 9] focused on designing adaptive control for nonlinear convex/concave pa-

rameterizations systems. [10] developed an adaptive control for a class of first-order

nonlinearly parameterized plants. [11] presented an error model approach which de-

4
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scribes the relation between the tuning and parameter error and uses the minmax

optimization procedure to make the error go to zero. In [12], an adaptive control

based on results in [9] is proposed, where it is extended to nth order system with tri-

angular structure. [13, 14] introduce a smooth and nonsmooth framework for global

adaptive control of a significant class of NLP systems with uncontrollable unstable

linearization. By separating the unknown nonlinear parameter from the nonlinear

function and adding a power integrator, a feedback domination design approach was

developed. [15] presented an adaptive control for a system with NLP fuzzy approxi-

mation, where the radial basis fuction (RBF) used to construct fuzzy approximation

and the adaptive control will tune all the RBF parameters to improve the control

performance by reducing approximation error. Furthermore, [16] designed a control

law by introducing a nonlinear biasing vector function into parameter estimation in

order to link both system dynamics to estimate error dynamics. That leads to a

new Lyapunov function and a set of conditions to achieve global asymptotic sta-

bility. Nevertheless, [17] designed a smooth adaptive state-feedback controller for

high-order stochastic NLP systems. [18] addressed the problem of output tracking

for NLP systems with unstabilizable linearization, by employing the idea of universal

adaptive control and adding a power integrator combined with the technique of chang-

ing supply rate for input-to-state stable (ISS) Lyapunov function systems. Also, [19]

introduced an adaptive tracking for periodically time-varying NLP systems by com-

bining multilayer neural networks (MNN) and fourier series expansions (FSE) into

a novel approximator. Then, combine the dynamic surface control (DSC) approach

and integral-type Lyapunov function (ILF) technique to design the control algorithm.

In addition, [19] focused on adaptive backstepping fuzzy-control (ABFC) approach

for NLP systems with periodic disturbances, where a novel approximator function
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based on fuzzy-logic system (FLS) and Fourier series expansion (FSE) is proposed to

approximate the unknown system functions. Then, dynamic-surface-control (DSC)

approach for strict-feedback and periodically time-varying systems with unknown

control-gain functions was developed. In [20], an adaptive observer for NLP class

of nonlinear MIMO systems is constructed under well-defined persistent excitation

condition for guaranteed convergence.

Despite of the fact that NLP is being intensively explored, most of the previ-

ous literatures focused on the control aspect of NLP system. In this chapter, a pure

parameter estimation problem is in focused. There are some literatures focused specif-

ically on parameter estimation for NLP systems. For instance, in [21] a new technique

for the adaptive parameter estimation in NLP systems was introduced, where an un-

certainty set-update approach is proposed that makes the uncertainty set around the

true value to vanish. Also [22], considers a class of systems influenced by pertur-

bations that are NLP by unknown constant parameters, and constructs an update

law to asymptotically invert a nonlinear equation. However, the previous introduced

literatures fail in some practical scenarios and subject to various restrictions.

This chapter introduces a new class of parameter estimation in NLP systems.

For this parameter estimation problem in NLP systems, all states are measured and

inputs are known. The continuous polynomial adaptive estimator (CPAE) is an ex-

tension of [23, 24] and based on the work presented in [1, 25, 26]. The CPAE consists

of two parts; a companion adaptive system and the multiple region law. The compan-

ion adaptive system can be applied on any NLP system which can be approximated

using a piecewise linear function and with all states measured. The companion adap-

tive system consists of two parts, a companion model and an adaptive law. Here,

the companion model is deterministic without any unknown information, thus, the
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multiple region approach is established to estimate the unknown nonlinear parameter.

The general structure of the CPAE can be seen in Figure (2.1.1). Nevertheless, the

scalar case for the nonlinear parameter is considered here with a potential to extend

the CPAE to cover the vector form as future work.

Figure 2.1.1: General structure of the CPAE

The rest of this Chapter organized as follow, Section 2.2 will state the problem

formulation. In Section 2.3, the CPAE algorithm and the stability analysis are dis-

cussed. In Section 2.4, general persistence-of-excitation (PE) condition is proposed.

An example along with simulation results are presented in Section 2.5. Finally, a

summary about this section is stated in Section 2.6.
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2.2 Problem Formulation

Consider the scalar case of the following system

ẏ = −αy + f(y, u, ω) (2.2.1)

Where α > 0 is a known constant, y ∈ ℜ is the state variable, u ∈ ℜm is the input

signal, ω is the unknown nonlinear parameter. Two assumptions were made:

Assumption 1: ω belongs to a compact set Ω such as Ω = [Ωmin,Ωmax] ⊂ ℜ.

Assumption 2: ∀ y(t) and u(t), the function f can be approximated by a piece-

wise linear function over Ω with reasonable approximation error, which means there

exists a constant dmax > 0.

2.2.1 Transformation Into Piecewise Linear Function

Start with dividing Ω into N equivalent exclusive small regions such as

Ω ⊆
N∪
i=1

Ωi, Ωi = [Ωi,Ωi] i = 1 . . . N, (2.2.2)

The approximation error can be defined as

|d(t)| = |mi(y, u, ω) + ri(y, u, ω)(ω − ω̄i)− f(y, u, ω)| ≤ dmax (2.2.3)

Where ω ∈ Ωi and ωi =
Ωi+Ωi

2
, and also mi and ri are defined as follow

mi(y, u) = f(y, u, ωi) (2.2.4)

ri(y, u) =
∂f(y, u, ω)

∂ω
|ωi

(2.2.5)
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Note, the reason for dividing the compact set into N small regions is because

a large class of encountered functions can be piecewise linearly approximated since

any smooth function can be linearized locally. For example, if any function f is

differentiable and its second order derivative w.r.t ω is bounded

∂2(y, u, ω)

∂ω2
≤ q (2.2.6)

The compact set Ω is divided into N regions, then

|mi(y, u, ω) + ri(y, u, ω)(ω − ω̄i)− f(y, u, ω)| ≤ q(Ωmax − Ωmin)
2

8N2
(2.2.7)

Comparing Equation (2.2.7) with Equation (2.2.3), the approximation error can

be arbitrarily reduced by increasing number of regions N .

2.2.2 Mapping The Unknown Parameter

The unknown parameter ω is mapped into a pair of parameters [θ, ζ], θ is a discrete

parameter that indicates the small regions in Ω that ω belongs to, and is defined as

θ ∈ Θ = θ1, . . . θi, . . . θN , θ = θi if ω ∈ Ωi, θi =
i−1

(N−1)Θmax
(2.2.8)

Where Θmax is an arbitrary positive number. Furthermore, ζ is a continuous variable

which indicates the offset of ω from the center of the small region, and is defined as

ζ ∈ [−ζmax, ζmax], ζ = ω − Ωi+Ωi

2
if ω ∈ Ωi, ζmax = maxi=1...N

Ωi−Ωi

2
(2.2.9)
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Using Equation (2.2.2), (2.2.3), (2.2.4), (2.2.5), (2.2.8) and (2.2.9), the problem for-

mulation in Equation (2.2.1) is equivalently transformed into

ẏ = −αy +m(y, u, θ) + r(y, u, θ)ζ + d(t) (2.2.10)

Knowing that,

m(y, u, θ) = mi(y, u)

r(y, u, θ) = ri(y, u)

i = (N − 1)Θmaxθ + 1

|d(t)| = f(y, u, ω)−m(y, u, θ)− r(y, u, θ)ζ

(2.2.11)

In Equation (2.2.10), m(y, u, θ) and r(y, u, θ) are not available since θ is unknown,

but mi(y, u, θi) and ri(y, u, θi) are available for each θi.

2.3 Continuous Polynomial Adaptive Estimator

In this section, the CPAE algorithm is introduced which contains two parts, the

companion adaptive system and the multiple region law.

2.3.1 Companion Adaptive System

Here is the companion adaptive system which consists of two parts, a companion

model and an adaptive law. The companion model is composed as follows:

˙̂y = −αŷ + ϕ0 (2.3.1)
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Here, the companion model estimates every f(y, u, ω) as ϕ0(y, u) which is deter-

ministic w.r.t y and u. Recall the problem transformation in Equation (2.2.10), note

that it has 2N freedoms, N offset values and N slope rates. That means 2N − 1

auxiliary estimates are needed which will be governed by the adaptive law which can

be seen as follows,

˙̂
θ =


0 ifỹϕi > 0 andθ̂i ≥ Θmax

0 ifỹϕi < 0 andθ̂i ≤ 0

ỹϕi otherwise

∀i = 1, · · · , N − 1

˙̂
ζ =


0 ifỹηi > 0 andζ̂i ≥ ζmax

0 ifỹηi < 0 and− ζ̂i ≤ ζmax

ỹηi otherwise

∀i = 0, · · · , N − 1

(2.3.2)

Where

ỹ = ŷ − y (2.3.3)

Φ = [ϕ0, . . . , ϕN−1] = A−1
m (Cm − ArCη) (2.3.4)

η = [η0, . . . , ηN−1] = −A−1
r Cr (2.3.5)

Cr = [r(y, u, θ1), . . . , r(y, u, θi), . . . , r(y, u, θN)]
T (2.3.6)
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Cm = [m(y, u, θ1), . . . ,m(y, u, θi), . . . ,m(y, u, θN)]
T (2.3.7)

Cη = [ζ̂0η0, . . . , ζ̂0ηi, . . . , ζ̂N−1ηN−1]
T (2.3.8)

Am is N by N matrix and defined as follows

Ar =



1 ·· ·· ··

· ·· ·· ··

1 ·· aij ··

· ·· ·· ··


where aij = θj−1

i (2.3.9)

In addition, Am is also an N by N matrix and is defined below

ai1 = 1 1 ≤ i ≤ N

aij = −gj−1(θ̂j−1 − θi) 1 ≤ i ≤ N, 2 ≤ j ≤ N

gi(x) =

 xi−1 ifi Even

kxi−1 + xi−2 ifi Odd

k = N−1
NΘmax

(2.3.10)

Stability Analysis

To consider the stability, the Lyapunov function is introduced as

V =
ỹ2

2
+

N∑
i=2

pi(θ̃i−1) +
N−1∑
i=0

θi
ζ̃2i
2

(2.3.11)

Where the polynomial function (that’s why the name has polynomial) pi is chosen
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to be

pi(x) =


xi

i
ifi Even

k xi

i
+ xi−1

i−1
ifi Odd

(2.3.12)

Note, the function gi in the definition of the Am matrix in Equation (2.3.10) is

nothing but the derivative of the function pi in Equation (2.3.12). θ̃i is defined as

θ̃i = θ̂i − θi. It can be seen that θ̃i ∈ [−Θmax,Θmax] since 0 ≤
∣∣∣θ̃i(t)∣∣∣ ≤ Θmax because

˙̂
θi ≤ 0 if

˙̂
θi ≥ Θmax

˙̂
θi ≥ 0 if

˙̂
θi ≤ 0

(2.3.13)

That means the function pi is a well-posed Lyapunov function candidate over

[−Θmax,Θmax] since

pi(0) = 0

gi(x) =
dpi(x)
dx

< 0, x ∈ [−Θmax, 0)

gi(x) =
dpi(x)
dx

> 0, x ∈ (0,Θmax]

(2.3.14)

This justifies the choice of pi.

The following lemma will show that the Lyapunov function is a non-increasing

function.

Lemma 1

For the system in Equation (2.2.10) and the companion adaptive system in Equation

(2.3.1) and (2.3.2), if dmax = 0 then

V̇ ≤ −αỹ2 (2.3.15)
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Proof: First, consider the ideal case dmax = 0, then the adaptive law in Equation

(2.3.2) can be rewritten as

˙̂
θi = ỹϕi + vi, i = 1, · · ·, N − 1

˙̂
ζ i = ỹηi + wi, i = 0, · · ·, N − 1

(2.3.16)

where


vi = 0 if

˙̂
θi ∈ (0,Θmax)

vi ≤ 0 if
˙̂
θi ≥ Θmax

vi ≤ 0 if
˙̂
θi ≤ 0

wi = 0 if
˙̂
ζi ∈ (−ζmax, ζmax)

wi ≤ 0 if
˙̂
ζi ≥ ζmax

wi ≤ 0 if
˙̂
ζi ≤ −ζmax

(2.3.17)

Knowing

θ̃i = θ̂i − θ, i = 1, · · · , N − 1

ζ̃i = ζ̃i − ζ, i = 0, · · · , N − 1
(2.3.18)

The estimation error is defined by plugging in both Equation (2.2.10) and Equation

(2.3.1) into Equation (2.3.7)

˙̃y = αỹ + ϕ0 − (m(y, u, ω) + r(y, u, ω)ζ) (2.3.19)

Combining Equation (2.3.16), (2.3.19) and (2.3.11), then
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V̇ = −αỹ2 −
N−1∑
i=1

gi(θ̃i)vi +
N−1∑
i=0

θiζ̃iwi

+ỹ

[
ϕ0 − (m(y, u, θ) + r(y, u, θ)ζ) +

N−1∑
i=1

gi(θ̃i)ϕi +
N−1∑
i=0

θiζ̃iηi

] (2.3.20)

For a well-posed Lyapunov function from Equation (2.3.14), it follows

gi(θ̃i) ≥ 0 (2.3.21)

when

θ̂i = Θmax (2.3.22)

Also, from Equation (2.3.17) it follows that,

gi(θ̃i)vi ≤ 0, θ̂i = Θmax (2.3.23)

using the same methodology

gi(θ̃i)vi ≤ 0, θ̂i = 0 (2.3.24)

it can be verified that

gi(θ̃i)vi = 0, θ̂i ∈ (0,Θmax) (2.3.25)

since vi = 0 when 0 < θ̂i < Θmax, then from Equation (2.3.13)

θ̂i ∈ [0,Θmax], ∀i = 0, · · ·, N − 1, and t ≥ 0 (2.3.26)
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combining Equation (2.3.23), (2.3.24), (2.3.25) and (2.3.26)

gi(θ̃i)vi ≤ 0 ∀i = 1, · · ·, N − 1 (2.3.27)

hence

N−1∑
i=1

gi(θ̃i)vi ≤ 0 (2.3.28)

Also, using the same methodology, it can be verified that

N−1∑
i=0

θi(ζ̂i − ζ)wi ≤ 0 (2.3.29)

Combining Equation (2.3.20), (2.3.28) and (2.3.29) it follows

V̇ ≤ −αỹ2 + ỹ

[
ϕ0 − (m(y, u, θ) + r(y, u, θ)ζ) +

N−1∑
i=1

gi(θ̃i)ϕi +
N−1∑
i=0

θiζ̃iηi

]
(2.3.30)

Rearranging Equation (2.3.5) to

−Arη = Cr (2.3.31)

that implies for any θj, where j = 1, · · ·, N − 1

r(y, u, θj) = −
N−1∑
i=0

θjηi (2.3.32)

then
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r(y, u, θ)ζ = −
N−1∑
i=0

θjηiζ ∀θ ∈ Θ, ζ ∈ [−ζmax, ζmax] (2.3.33)

Also, it can be verified for the following equation

AmΦ = Cm − ArCη (2.3.34)

in Equation (2.3.4) and from the definition of the matrix Am in (2.3.10), and

∀j = 1. · · · .N − 1 that implies

m (y, u, θ) +
N−1∑
i=0

θjηiζ̂i +
N−1∑
i=1

gi(θ̃i)ϕi − ϕ0 = 0 (2.3.35)

Combining Equation (2.3.33) and (2.3.35) it follows

ϕ0 − (m(y, u, θ) + r(y, u, θ)ζ) +
N−1∑
i=1

gi

(
θ̃i

)
ϕi +

N−1∑
i=0

θjηiζ̂ = 0

∀θ ∈ Θ, ζ ∈ [−ζmax, ζmax]

(2.3.36)

Combining Equation (2.3.33) and (2.3.36)

V̇ ≤ −αỹ2 (2.3.37)

which completes the proof. �

For the following lemma, ỹ will track y with error bound L2.
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Lemma 2

For the system in Equation (2.2.10) and the companion adaptive system in Equation

(2.3.1) and (2.3.2), if dmax = 0 then

∞∫
0

ỹ2dt ≤ V (0)

α
(2.3.38)

Proof:

From Lemma 1

∞∫
0

V̇ dt ≤
∞∫
0

−αỹ2dt (2.3.39)

Then

V (∞)− V (0) ≤
∞∫
0

−αỹ2dt (2.3.40)

Which implies

∞∫
0

αỹ2dt ≤ V (0)− V (∞) (2.3.41)

Since

V (t) ≥ 0, ∀t ≥ 0 (2.3.42)

It follows from Equation (2.3.41) that Equation (2.3.38) holds, which completes

the proof. �
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2.3.2 Multiple Region Law

Let f̂i defined as

f̂i = mi(y, u, θi) + ri(y, u, θi)(ω̂i − ω̄i)

i = 1, · · · , N
(2.3.43)

Where the initial estimates of ω̂i are defined as

ω̂i(0) =
Ωi + Ωi

2
(2.3.44)

where

ω̂i ∈
[
Ωi,Ωi

]
(2.3.45)

In the companion adaptive system, from both Lemma 1 and Barbalat’s Lemma,

ỹ approaches zero as time goes to infinity, which means ϕ0 → f (y, u, θ), then the

update law for ω̂ is giving as

˙̂ωi =


0 if ω̂i > Ωi

0 if ω̂i < Ωi(
ϕ0 − f̂i

)
ri otherwise

(2.3.46)

As it can be seen in the update law for ω̂i is based on the proportional integral

(PI) method. However, the projection in the integrator will enable one of the f̂i to

approach the value of ϕ0 and for other f̂i there will always be error which means

f̂i → ϕ0
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Figure 2.3.1: Multiple region law block diagram

2.4 persistence of excitation Condition

In this section a persistent-of-excitation condition is introduce based on [26] to guar-

antee the parameter convergence for the CPAE.

Definition 1 of PE:

Problem formulation in Equation (2.2.10) under assumptions 1 and 2, and for the

ideal case when dmax = 0. For y, u has a persistent excitation condition if in any time

t there exists a time constant T, error ϵ and a time instant t1 where t1 ∈ [t, t + T]

such

∣∣∣f (
y(t1), u(t1), θ̂

)
− f (y(t1), u(t1), θ)

∣∣∣ ≥ εmin
θ∈Θ

∥∥∥θ̂ − θ
∥∥∥ , ∀θ̂ ∈ Ω (2.4.1)

Function f here is the piecewise linear function, and θ is the true small region

where ω belongs to.
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Theorem 1

If u is subject to PE then

lim
t→∞

ϕ0(t) = f (u, y, θ) (2.4.2)

Proof:

Recall Barbalats Lemma:

Let f : ℜ → ℜ be a uniformly continuous function on [0,∞) and assume lim
t→∞

t∫
0

f (τ)dτ

exists, then lim
t→∞

f (t) = 0

Let f(t) = ỹ2 which is positive. From Lemma 2 it can be seen that

lim
t→∞

τ∫
0

ỹ2(t)dτ (2.4.3)

exists, since f(t) = ỹ2(t) is uniformly continuous then

lim
t→∞

ỹ2(t) = 0 (2.4.4)

As a result,

lim
t→∞

ỹ(t) = 0 (2.4.5)

From Equation (2.4.5)

lim
t→∞

ỹ(t) = 0 (2.4.6)

Knowing ẏ is uniformly continuous, it follows from Barbalat’s lemma

lim
t→∞

˙̃y(t) = 0 (2.4.7)
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From Equation (2.3.19) ˙̃y = αỹ + ϕ0 − (m(y, u, ω) + r(y, u, ω)ζ)

It can be seen that

lim
t→∞

ϕ0(t) = f (u, y, θ) (2.4.8)

Which proves Theorem 1. �

Theorem 2

Case 1: If ω belongs to ith region, then

lim
t→∞

ω̂i(t) = ω (2.4.9)

Proof: First, the initial value of ω̂i in Equation (2.3.44) and the projection in the

multiple region law is ω̂i > Ωi, ω̂i < Ωi
in Equation (2.3.46). Where ω̂i belongs to

the ith region. Then from the update law in Equation (2.3.46),

lim
t→∞

f̂i(u, y, ω̂i) = ϕ0 (2.4.10)

It follows from Theorem 1 that

lim
t→∞

f̂i(u, y, ω̂i) = f (u, y, θ) (2.4.11)

Then this proof will be done by contradiction, assume Equation (2.4.9) is not true,

then

lim
t→∞

ω̂i(t) = does not exist (2.4.12)
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From the PE condition

|fi(y(t1), u(t1), ωi)− f (y(t1), u(t1), ω)| ≥ εmin
θ∈Θ

∥∥∥θ̂ − θ
∥∥∥ , ∀θ̂ ∈ Ω (2.4.13)

Equation (2.4.13) clearly contradicts the statements in Equation (2.4.11). There-

fore, Equation (2.4.12) is not true. As a result,

lim
t→∞

ω̂i(t) = ω (2.4.14)

Which proves case 1. �

Case 2: If ω does not belong to ith region, then

lim
t→∞

ω̂i(t) = does not exist (2.4.15)

Proof: From the initial value of ω̂i in Equation (2.3.44) and the projection in the

multiple region law ω̂i > Ωi, ω̂i < Ωi
in Equation (2.3.46), where ω̂i belongs to the

ith region. Let ω belong to the jth region where i and j regions are mutually exclusive,

then because of the projection there will be always an error between f̂i(y, u, ω̂i) and

fi(y, u, ω) which means

lim
t→∞

ω̂i(t) = does not exist (2.4.16)

Which proves Theorem 3. �
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2.5 Simulation Results

In this section, the simulation will show the performance of the CPAE. Consider the

following system

f(y, u, ω) =



u3ω3 − y3 ω ∈ [0, 2.5)

u3 + (ω2 − 2.5)u− y3 ω ∈ [2.5, 5)

−u3ω3 − y3 ω ∈ [−2.5, 0)

−u3 + (ω2 − 2.5)u− y3 ω ∈ (−2.5,−5]

Ω = [−5, 5]

u = sin(0.5t)

(2.5.1)

For this example Ω was divided into 4 regions, N = 4. Figure (2.5.1) shows the

system response y and the estimated response ŷ

0 5 10 15 20 25 30 35
−0.5

0

0.5
System Response

time, sec

y

 

 

y
y

hat

Figure 2.5.1: Trajectory of y and ŷ

Furthermore, from Equation (2.3.19) the phi error e can be defined as
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e = ϕ0 − (m(y, u, ω) + r(y, u, ω)ζ) (2.5.2)

the error e can be seen in Figure (2.5.2)
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Error e
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Figure 2.5.2: Phi (estimation) error e

The Lyapunov function and its derivative can be seen in Figure (2.5.3) and (2.5.4)

respectively. From those figures, note that for a piece-wise continuous parameter,

the Lyapunov function is non-increasing and Barbalat’s lemma concludes that the

derivative of the Lyapunov function approaches zero as time goes to infinity.
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Figure 2.5.3: Lyapunov function
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Figure 2.5.4: The derivative of the Lyapunov function

Lastly, the multiple region law will have N estimates for ω, in this case 4 estimates

are calculated and it can bee seen in Figure (3.3.5). It can be seen that one value

converges indicating the real value of ω while other values diverges.
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Figure 2.5.5: Multiple region law

2.6 Summary

This section presents the CPAE as a class for estimation of a nonlinear parameter

in NLP systems. The CPAE transforms the NLP system into a function of piece-

wise continuous parameters over a compact set with reasonable approximation error

which can be arbitrarily reduced by increasing number of regions N . Form adaptive

law which is based on non-increasing Lyapunov function, and from Barbalats lemma

it can be concluded that the output error between the estimator and real system

approaches zero as time goes to infinity, and the multiple region law estimates the

unknown nonlinear parameter. Stability analysis was theoretically discussed using

the Lyapunov stability. A general definition for persistent-of-excitation condition is

introduced to guarantee parameter convergence. An example was introduced and the

simulation results showed that the the error approaches zero, and shows the chosen

Lyapunov function is a non-increasing function.



Chapter 3

Estimation of Airspeed Using
CPAE

3.1 Introduction

Airspeed is an essential gain-scheduling parameter for overall control performance of

an aircraft. Being able to estimate airspeed during pressure sensor (Pitot tube) failure

is crucial for safety and control performance, since most of aircraft control laws for

pitch, yaw and roll angles are dependent on airspeed. Unfortunate accidents occurred

during Birgenair Flight 301 in 1996 and Air France Flight 447 in 2009. The primary

causes of these accidents were attributed to blockages which formed within the Pitot

tube, and which greatly impaired airspeed measurements. This is mainly due to the

positioning of the Pitot tube because it is located towards the front of the aircraft and

must be partially exposed to the outside air in order to return accurate measurements.

Figure (3.1.1) highlights the positioning of the Pitot tube in relation to the aircraft.

28
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Something to keep in mind is that the Pitot tube measures the dynamic pressure

which, using Bernoulli’s equation, can be used to calculate airspeed.

Figure 3.1.1: Example of a Pitot tube position on commercial airplane.

One way to solve this problem is to design an aircraft controller which operates

independent of airspeed, or to find a way to estimate it. Since most of control laws

in the aircraft depend on airspeed, the first approach seems a lot more complicated,

and to find a method to estimate it is more preferable. A number of studies were

conducted to estimate airspeed, using GPS velocity measurements and readings from

propeller thrust to determine airspeed while statistical information used for detection

[27]. Another approach is based on solving the nonlinear equation which relates

the dynamics of the aircraft with the angle of attack. This equation can be solved

using two approaches: the first is online solving, wherein the equation is derived from

accurate knowledge of several parameters and trusted models of aircraft systems. The

second approach is offline solving, wherein parameters are estimated from previous

flight data [28]. However, the first approach depends on statistical data alone and
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the second one considers only the angle of attack and uses the least square (LS)

technique, while both of these methods are often implemented in unmanned arial

vehicles (UAVs). In this section, continuous and adaptive techniques for airspeed

estimation are desirable.

Parameter estimation is rigorously explored area due to its application in system

identification (System ID) and modeling. LS [29] and its recursive version, the re-

cursive least squares (RLS) [30, 31], are widely used to estimate linear parameters

in both static and dynamic systems. Adaptive estimators [32] based on Lyapunov

functions can be applied to estimate linear parameters in dynamic systems. Another

main approach in parameter estimation is to transform the parameter estimation into

an equivalent state estimation problem. Unknown parameters can be treated as ex-

tended states with derivatives equal to zero, and hence the extended state observer

(ESO) [33] can be applied to estimate the state. By choosing a high observer gain,

ESO can estimate time-varying parameters with the convergence rate defined by spec-

ified eigenvalues. The generalized extended state observer (GESO) [34] extends the

estimated state to higher order derivatives. Sub-space System ID [35] is a statistical

method to build dynamic models, can help in the parameter estimation problem. In

addition, the Kalman filter (KF) [36, 37, 38] can also be applied to estimate parame-

ters with its extended state formulation. However, many practical systems including

the aircraft model considered here are nonlinear in nature. Estimation of nonlinear

parameters is still an open problem in the control community. The extended (EKF)

and unscented Kalman filters (UKF) [31, 39, 40, 41], can be used to handle nonlinear

parameters. However, convergence is not theoretically proven and fails in some prac-

tical scenarios. There have been many efforts to estimate Nonlinearly Parameterized

(NLP) systems [10, 9, 24, 12, 42, 23]. However, these results are subject to various
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restrictions.

This chapter introduces an application of the continuous polynomial adaptive

estimator (CPAE), where the aircraft model was treated as NLP system and the

airspeed is the unknown nonlinear parameter. The rest of this chapter is organized as

follow, Section 3.2 will analyze the aircraft model and transformed it into piecewise

continuous parameter function and then apply the CPAE algorithm on it. Section

3.3, showes the simulation for estimation values. Lastly, Section 3.4 will summarize

the main result for this chapter.

3.2 Problem Formulation

Starting from the decoupled system dynamics for longitudinal motion [43] which can

be seen in equation (3.2.1)

 α̇

q̇

 =

 Zα

VT
1 + Zq

VT

Mα Mq


 α

q

+

 Zδe

VT

Mδe

 δe (3.2.1)

Here, α is the angel of attack, q is the pitch rate, δe in the input signal, VT is the

airspeed, Z indicates the force dimensional derivative and M indicates the moment

dimensional derivative. The derivative was taken with respect to the variable shown

in the subscript. Detailed explanation of those variables can be seen in equation

(3.2.2)
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Zα =
−1

m
(D +

∂L

∂α
)

Zq =
−1

m

∂L

∂q

Mα =
1

JY

∂mA

∂α

Mq =
1

Jy

∂mA

∂q

Zδe =
−q̄S

m
CLδe

Mδe =
q̄S

JY
Cmδe

mA = q̄ScCm (3.2.2)

Where JY is the moment of inertia, S is the cross sectional area, and c is the

length of chord. In addition, the pitch moment coefficient Cm is a function of α and

the Mach number M = VT

a
. Moreover, the drag, lift, and dynamic pressure can be

seen equation (3.2.3)

D = q̄SCD

L = q̄SCL

q̄ =
1

2
ρV 2

T (3.2.3)

Nevertheless, both the coefficient of drag CD and the coefficient of lift CL are

functions of, α, M and the Reynolds number. Understanding the aircraft model and

how each variable is dependent of VT , we can see from Equation (3.2.2) and Equation

(3.2.3), the right hand side of Equation (3.2.1) is a function of, α, q and, VT and it

is a nonlinear function in terms of VT . Based on that, the aircraft model was treated
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as an NLP system and airspeed is the nonlinear parameter.

The aircraft model in Equation (3.2.1) can be formulated into,

ẏ = −Ay + f(y, δe, VT ) (3.2.4)

The state variable y can be defined as y =

[
α q

]T
so ẏ =

[
α̇ q̇

]T
Where A

is a known Hurwitz matrix. Then the function f becomes

f(y, δe, VT ) =

 Zα

VT
1 + Zq

VT

Mα Mq

 y +

 Zδe

VT

Mδe

 δe − Ay (3.2.5)

The function f in equation (3.2.5) depends on y and δe, while Z and M are

dependent on VT nonlinearly, as a result f depends on VT as well. Here VT is the

unknown parameter which belongs to a continuous compact set Ω = [Ωmin,Ωmax] ⊂ R

and f can be approximated by a piecewise linear function over Ω, that means there

exists a disturbance dmax > 0 over N regions.

Ωi = [Ωi, Ω̄i], i = 1 . . . N (3.2.6)

mi = (y, δe) and ri = (y, δe) were designed such that,

Ω ⊆
N∪
i=1

Ωi

|d(t)| = |mi(y, δe, VT ) + ri(y, δe, VT )(VT − V T )− f | ≤ dmax, VT ∈ Ωi,∀i = 1 . . . N

VT =
Ωi + Ωi

2
(3.2.7)

Now, the unknown parameter VT ∈ Ω is being mapped into a new pair of unknown
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parameters [θ, ζ] shown below,

θ = θi if VT ∈ Ωi

θ ∈ Θ = θ1, . . . θi, . . . θN

θi =
i− 1

(N − 1)Θmax

ζ = VTi
−

Ω̄i + Ωi

2
if VT ∈ Ωi

ζ ∈ [−ζmax, ζmax]

ζmax = maxi=1...N

Ω̄i − Ωi

2
(3.2.8)

where Θmax is an arbitrary positive constant and i = 1, · · ·, N

With the unknown parameter transformation, the problem formulation for equa-

tion (3.2.4) becomes:

ẏ = Ay +m(y, δe, θ) + r(y, δe, θ)ζ + d(t)

d(t) ≤ dmax

m(y, δe, θ) = mi(y, δe), i = (N − 1)Θmaxθ + 1

r(y, δe, θ) = ri(y, δe), i = (N − 1)Θmaxθ + 1

|d(t)| = f(y, δe, VT )−m(y, δe, VT )− r(y, δe, VT )ζ (3.2.9)

After the problem formulation is transformed into piecewise linear function, the

CPAE algorithm introduced in Section 2.3 was applied to estimate the airspeed. The

following section will show simulations and results.
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3.3 Simulation and Result

For simulation purposes, an academic model was developed, and the aircraft param-

eters were taken from Aircraft Control and Simulation text book [43] and it can be

seen as follows:

Table 3.3.1: Nonlinear longitudinal small aircraft parameters

Parameter Value

Atmospheric density 2.377 ∗ 10−3 slug
ft3

Weight 2300 lbs

Wing reference area, S 175 ft2

Mean aerodynamic chord, c̄ 4.98 ft

Inertia, Iyy 2049 slug − ft2

Thrust angel, αT 0

Drag, CD 0.038 + 0.053 ∗ CL ∗ CL

Pitch, Cm 0.015− 0.75 ∗ α− 0.9 ∗ δe

Pitch damping coefficient, Cmq −12.0 per rad
Sec

Lift CL 0.25 + 4.58 ∗ α

Figure 3.3.1 shows both real and estimated angle of attack.
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Figure 3.3.1: Trajectory for real and estimated angel of attack

Figure 3.3.2 shows the estimation error e which was defined in Equation (3.3.1)

and shows that the error goes to zero

e = m(y, δe, θ) + r(y, δe, θ)ζ − ϕ0 (3.3.1)
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Figure 3.3.2: Trajectory for estimation error e

Figure 3.3.3 shows the Lyapunov function is non-increasing function indicating the

parameters convergence. In addition, Figure 3.3.4 shows that the derivative of the



37

Lyapunov function is negative which insures that the Lyapunov function is decreasing.

Moreover, it can be seen that the derivative of the Lyapunov function goes to zero as

Barbalat’s lemma indicates.
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Figure 3.3.3: Trajectory for the Lyapunov function
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Figure 3.3.4: Trajectory for the derivative of the Lyapunov function

Lastly, the multiple region law will have N estimates for the real airspeed VT ,

in this case 4 estimates are calculated and it can bee seen in Figure (3.3.5). It can
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be seen that one value converges indicating the real value of VT while other values

diverge, here the value of the estimated airspeed is 82.9876 knot while the real value

of airspeed was set to be 83 knot.
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Figure 3.3.5: Multiple region law to estimate the real airspeed

3.4 Summary

It can be seen from Equation (3.2.1), Equation (3.2.2) and Equation 3.2.3) how air-

speed is an important parameter in aircraft dynamics. These aircraft dynamics are

nonlinear functions in terms of airspeed. As a result, airspeed estimation was for-

mulated in this paper as a nonlinear parameter estimation problem. The CPAE was

introduced and successfully implemented on the decoupled academic aircraft model

for longitudinal motion for purpose of demonstration. This paper could be extended

to include literal motion as well, and further investigation can be done on the CPAE

for different cases. In the simulation, we can see one of the f̂ converged to the real f
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value which indicates the value of airspeed VT , which made the Phi error e in Equation

(3.3.1) go to zero. Being able to estimate airspeed in the presence of sensor failures

will have a big impact on the aviation industry by making it safer. The analysis

and simulation were conducted in hopes to implement it on real systems in order to

prevent future disasters.



Chapter 4

Estimation of Airspeed in the
Generic Transport Model

4.1 Introduction

Airspeed is an important parameter for aircraft control. Unlike the approach in

(Chapter 3), here a practical approach for estimating airspeed based on IMU wind

estimation theory and GPS measurements (William Premerlani, 2009) introduced

and applied on the GTM model. Starting with

S⃗ = V⃗ + W⃗ (4.1.1)

See (Figure 4.1.1). Where S⃗ is a ground speed vector obtained from the GPS. V⃗

is the airspeed vector and W⃗ is wind speed vector.

40
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Figure 4.1.1: Geometric relation between airspeed, wind speed and ground speed

Several assumptions have to be made:

Assumption 1 : The wind speed vector W⃗ between t1 and t2 remains constant,

then

S⃗2 − S⃗1 = V⃗2 − V⃗1 (4.1.2)

Assumption 2 : When a maneuver occurred between t1 and t2, that results in a

change in airspeed direction but not magnitude. Then

V⃗ ≈ V ·


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 · F⃗ (4.1.3)

Where V is airspeed magnitude, θ is residual yaw error in the direction cosine

matrix (DCM), and F⃗ is a column of DCM which represents the fuselage. Then from

equation (4.1.2) and (4.1.3), it can be seen that



42

S⃗2 − S⃗1 ≈ V ·


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 · (F⃗2 − F⃗1) (4.1.4)

As a result, the magnitude can be calculated as

V̂ =

∣∣∣S⃗2 − S⃗1

∣∣∣∣∣∣F⃗2 − F⃗1

∣∣∣ (4.1.5)

4.2 Applying IMU on the GTM Model

Before applying the IMU wind estimation theory on the GTM model, it is important

to understand how the model works and how the true airspeed (TAS) is calculated.

In the GTM model there are two main blocks. The first is the aircraft model, which

cannot be modified, and the second is an input generator where all the control work

is applied to. Basically, the input generator input wind and control commands to the

aircraft model. Then the aircraft’s response is fed back to the input generator. See

(Figure 4.2.1)

Figure 4.2.1: General structure of the GTM model
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Inside the input generator there is a function called Winds, the main task for

this function is to generate a turbulence body velocity vector and the external wind

speed vector in three directions (north, east and vertical winds) see (Figure 4.2.2).

The aircraft model receives the turbulence body velocity vector and subtracts it from

the body axis velocity obtained from the EOM block to get the TAS vector. Then

it calculates its magnitude by doting the vector by itself. Then, it multiplies it by a

constant to convert it from fps to knots.

Figure 4.2.2: Winds block inside the input generator

To calculate the speed vector obtained from the IMU unit, first the Auxiliary

Variables block within the aircraft model takes phi (roll), theta (pitch) and psi (yaw)

obtained from the EOM block and puts it into Euler DCM form. Then it multiplies

it by the body axis velocity vector and adds the wind speed vector in order to get the

ground speed vector for the IMU. After that it sends it to the sensor block to adjust

the resolution to make the data more realistic.

From (Equation 4.1.1), the challenge is to estimate the airspeed velocity V⃗ while

the wind speed W⃗ is unknown, thus it can be seen that the IMU theory can fit into this

problem. As a result, a Estimate airspeed block was created see (Figure 4.2.3) which

takes the IMU velocity vector from the Auxiliary Variables block and the orientation

vector from EOM block and estimates the airspeed. Result can be seen in (Figure

4.2.4 )
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Figure 4.2.3: Estimate airspeed block in the input generator
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Figure 4.2.4: True airspeed and estimated airspeed in the GTM model

Note in (Figure 4.2.4) the estimated airspeed is ±2 knots from the TAS, but it

becomes better when the maneuver start around 12 sec and ends at 25 sec.



Chapter 5

Conclusions

5.1 Summary of The Main Results

This thesis introduced an extension of the polynomial adaptive estimator (PAE) pre-

sented in [25] with a new choice of Lyapunov function. Also, it combined the multiple

region law with the companion adaptive system presented in [1] to come up with the

the continuous polynomial adaptive estimator (CPAE). Moreover, it introduces a gen-

eral definition of persistence-of-excitation (PE) condition for parameter convergence.

Simulation is included to illustrate the parameter convergence using the CPAE. As

an application, an academic aircraft model was developed and treated as NLP system

where the airspeed is the nonlinear unknown parameter. The CPAE was applied and

results showed that the estimated values converge correctly. These analyses and sim-

ulations were conducted in hopes to be implemented in real world systems in order

to prevent disasters during airspeed sensor failure. Furthermore, as part of Loss of

Control Prevention through Adaptive Reconfiguration project supported by NASA,
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the IMU wind theory was applied on the generic transport model (GTM) to estimate

the airspeed. Results showed that the estimated value of airspeed is better while the

aircraft is maneuvering.

5.2 Future work

For future work, the stability of the CPAE in Section 2.3 can be extended to include

approximation error as seen in Equation 2.2.3 which can be treated as disturbance.

The CPAE can be extended to cover the vector form where additional investigation

might be needed. Section 3.2 presents further opportunity for the CPAE to be more

comprehensive and covering both longitudinal and lateral motion. In addition, in

Chapter 4, the IMU method can be extended to be recursive, where several maneuvers

can be done to estimate the airspeed, see (Figure 5.2.1) and recursive estimation

theory such as Kalman filter can be implemented.

Figure 5.2.1: Airspeed estimation based on multiple maneuvers
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Appendix A

CPAE Main Program

clear all

close all

clc

beg t=cputime;

W=f(2,0,0,0); %Set the compact set

thes=f(3,0,0,0); %Set the real value

t step=0.001; %time step
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t stop=30; %Simulation time

T hist=0; %Initialize time

t hist=0; %Initialize time

con i=1; %Set counter

N=4; %Number of region

%make The max smaller, estimation faster and more accurate adn the max bigger,

%less possible that inv(A) singular

The max=1;

Theta=linspace(0,The max,N)';

kk=1/(The max+0.2);

om interval=(W(2)−W(1))/N;

om max=om interval/2;

m=zeros(N,1);

r=zeros(N,1);

Ar=zeros(N,N);

Cr=zeros(N,1);

Am=zeros(N,N);
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Cm=zeros(N,1);

Crr=zeros(N,1);

Phi=zeros(N,1);

Eta=zeros(N,1);

wh=ones(N−1,1)*The max/2;

omh=zeros(N,1);

alpha=0.2;

t=0;

y=0;

n=noise(1);

yn=y+n;

yh=0;

%estimated value

h xest=zeros(N,1);

xx est=[85; 92; 95; 100];

while t<=t stop

u=uu(t);

%get true unknown parameters

TrueInd=ceil((thes−W(1))/om interval);

w star=Theta(TrueInd);

om star=thes−W(1)−(TrueInd−1)*om interval−om max;

%using y bar to calculate Phi instead of yn

y bar=yh;
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%function approximation

%calculate m and r

for i=1:N

tau m=W(1)+(i−1+1/2)*om interval;

tau r1=W(1)+(i−1)*om interval;

tau r2=W(1)+(i)*om interval;

m(i)=f(1,y,u,tau m);

r(i)=(f(1,y,u,tau r2)−f(1,y,u,tau r1))/om interval;

end

%calculate approximation error

a error=0;

for f i=W(1):0.1:W(2)

f y=f(1,y bar,u,f i);

% approximated value

test w=floor((f i−W(1))/om interval);

test w=test w+1;

if test w>N

test w=N;

end

test om=(f i−W(1)−(test w−1−1/2)*om interval);

f yh=m(test w)+r(test w)*test om;

if abs(f yh−f y)>a error

a error=abs(f yh−f y);

end

end
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a error2=f(1,y bar,u,thes);

a error2=a error2−(m(TrueInd)+r(TrueInd)*om star);

%calculate Eta

for a i=1:N

for a j=1:N

Ar(a i,a j)=Theta(a i)ˆ(a j−1);

end

end

for a i=1:N

Cr(a i)=r(a i);

end

Eta=−inv(Ar)*Cr;

A(:,1)=ones(N,1);

for p=1:N−1

wh temp=wh(p)*ones(N,1);

if mod(p,2)==1

A(:,p+1)=(wh temp−Theta).ˆp;

else

A(:,p+1)=kk*(wh temp−Theta).ˆp+(wh temp−Theta).ˆ(p−1);

end

end

for a i=1:N

Cm(a i)=m(a i);

end

for a i=1:N

Crr(a i)=omh(a i)*Eta(a i);

end

Phi=inv(A)*(Cm−Ar*Crr);
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%Multiple region approach

alg y=Phi(1);

for a i=1:N

f hat=m(a i)+(xx est(a i)−(W(1)+(a i−1+1/2)*om interval))*r(a i);

tau r1=W(1)+(a i−1)*om interval;

tau r2=W(1)+(a i)*om interval;

if xx est(a i)<=tau r1

xx est(a i)=0.5*(tau r1+tau r2);

elseif xx est(a i)>=tau r2

xx est(a i)=0.5*(tau r1+tau r2);

else

xx est(a i)=xx est(a i)+(alg y−f hat)*r(a i);

end

end

%calculate derivative

y deri=−y+f(1,y,u,thes);

yh deri=−yh+Phi(1);

yt=yh−yn;

yte=yt;

wh deri=100*yte*Phi(2:N);

omh deri=100*yte*Eta;

%record history

if t hist>=T hist
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%calculate true unknown parameter estimates: alpha*yn+f(1,yn,u,x)=Phi(1)

for i=1:N

h xest(i,con i)=xx est(i);

end

h u1(con i)=u(1);

% h ref(con i)=u(2);

h yn(con i)=yn;

h y(con i)=y;

h yh(con i)=yh;

h thes(con i)=thes;

h phierr(con i)=f(1,y,u,thes)−Phi(1);

h aerr(con i)=a error2;

h yte(con i)=yte;

h t(con i)=t;

%Calculate Lyapunov function V

V=yteˆ2/2;

for p=1:N−1

if mod(p,2)==1

V=V+(wh(p)−Theta(TrueInd))ˆ(p+1)/(p+1);

else

V=V+kk*(wh(p)−Theta(TrueInd))ˆ(p+1)/(p+1)+(wh(p)−Theta(TrueInd))ˆp/p;

end

end

for p=1:N

V=V+Theta(TrueInd)ˆ(p−1)*(omh(p)−om star)ˆ2/2;

end
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hist V(con i)=V;

%calculate Lyapunov function derivative Vdot

Vdot=(m(TrueInd)+r(TrueInd)*om star)+Phi(1);

for p=1:N−1

if mod(p,2)==1

Vdot=Vdot+(wh(p)−Theta(TrueInd))ˆ(p)*Phi(p+1);

else

Vdot=Vdot+Phi(p+1)*(kk*(wh(p)−Theta(TrueInd))ˆ(p)+(wh(p)−Theta(TrueInd))ˆ(p−1));

end

end

for p=1:N

Vdot=Vdot+Theta(TrueInd)ˆ(p−1)*(omh(p)−om star)*Eta(p);

end

Vdot=yt*Vdot−alpha*ytˆ2−yt*a error2;

hist Vdot(con i)=Vdot;

t hist=0;

con i=con i+1;

end

%set time stepsize

t vstep=t step;

wh max=max(wh deri);

if wh max*t vstep>The max/(2*N);

t vstep=(The max/(2*N))/wh max;

end

wh max=max(omh deri);
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if wh max*t vstep>om max/4;

t vstep=(om max/4)/wh max;

end

%time advance

t=t+t vstep;

y=y+y deri*t vstep;

yh=yh+yh deri*t vstep;

wh=wh+wh deri*t vstep;

omh=omh+omh deri*t vstep;

t hist=t hist+t vstep;

%bounded wh and omh

for i=1:N

if omh(i)>om max

omh(i)=om max;

elseif omh(i)<−om max

omh(i)=−om max;

end

end

for i=1:N−1

if wh(i)>The max

wh(i)=The max;

elseif wh(i)<0

wh(i)=0;

end

end
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n=noise(1);

yn=y+n;

end

end t=cputime;

run time=end t−beg t

%Input function

function u=uu(t);

u=sin(.5*t);

%plotting function

figure(1)

axes('FontSize',16);

plot(h t,h y,'r','linewidth',2);

hold on;

plot(h t,h yh,'k','linewidth',2);

set(gcf,'Color',[1,1,1])

box on

title('Angel of Attack');

xlabel('time, sec');

ylabel('AoA, Deg');

legend('y','y {hat}');

pic='result y'
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saveas(gcf,[pic])

figure(2)

axes('FontSize',16);

plot(h t,h phierr,'k','linewidth',2);

set(gcf,'Color',[1,1,1])

box on

title('Error e');

xlabel('time, sec');

ylabel('e');

pic='Error'

saveas(gcf,[pic])

figure(3)

axes('FontSize',16);

plot(h t,hist V,'b','linewidth',2);

set(gcf,'Color',[1,1,1])

box on

title('Lyapunov function');

xlabel('time, sec');

ylabel('V');

pic='Lyapunov'

saveas(gcf,[pic])

figure(4)

axes('FontSize',16);

plot(h t,hist Vdot,'b','linewidth',2);

set(gcf,'Color',[1,1,1])

box on
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title('Lyapunov function derivative');

xlabel('time, sec');

ylabel('V dot');

pic='lyaounov dot'

saveas(gcf,[pic])

figure(5)

axes('FontSize',16);

plot(h t,h thes)

hold on

plot(h t,h xest(1,:),'g','linewidth',2);

hold on

plot(h t,h xest(2,:),'k','linewidth',2);

hold on

plot(h t,h xest(3,:),'b','linewidth',2);

hold on

plot(h t,h xest(4,:),'r','linewidth',2);

set(gcf,'Color',[1,1,1])

box on

title('Multiple region law');

xlabel('time, sec');

ylabel('y');

legend('V {T}','V {hat 1}','V {hat 2}','V {hat 3}','V {hat 4}');

pic='MRL'

saveas(gcf,[pic])
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