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Abstract 

 Various thermal energy storage (TES) systems including latent heat TES (LHTES), sensible heat 

TES and chemical TES are reviewed and analyzed with an emphasis on LHTES. LHTES is considered 

here due its high energy density which results in a significant reduction in the overall system size (volume 

and mass). However, LHTES systems have been limited in the past by the low thermal conductivity of 

most phase change materials (PCMs). A detailed experimental investigation is conducted to investigate 

the innovative combination of a heat pipe (HP) with either metal foam or foils. A cylindrical experimental 

apparatus is constructed to obtain the liquid fraction and temperature distribution histories, as well as 

obtain photographic observations during the melting and solidification processes. A relative effectiveness, 

calculated as the ratio of the liquid fraction for a distinct case to that of a base case, as well as the 

complete melting and solidification times quantify the relative performance for each configuration. A 

total of six configurations: HP-Foil-PCM, HP-Foam-PCM, HP-PCM, Rod-PCM, Foam-PCM and Pure 

PCM, are investigated for a cylindrical PCM enclosure that contains a concentrically-located HP or rod. 

In a vertical orientation (vertically oriented cylinder) without base heat transfer, improved melting and 

solidification rates are achieved for the HP-Foil-PCM case with approximately one-third of the foil 

volume fraction relative to that of the foam in the HP-Foam-PCM case. The HP-Foil-PCM case with a 

4.3% foil volume fraction was capable of improving the melting and solidification rates by a factor of 15 

and 8, respectively, relative to a Rod-PCM system. When base heat transfer was present, the effect of 

system orientation (ranging from vertical to horizontal) was shown to be negligible for the HP-Foil-PCM 

and HP-Foam-PCM configurations when compared to the overall performance of the other 

configurations. The total melting and solidification times for the HP-Foil-PCM configuration were 

reduced to 12 % and 3%, respectively, of that for a non-enhanced (only base heat transfer) Pure-PCM 

configuration when the system was oriented both vertically and horizontally.
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Chapter 1.  Review and Advances in Energy Storage Systems with an Emphasis on Thermal 

Energy Systems 

Energy storage technologies will play a key role in utilizing alternative energy solutions. Its 

implementation may provide the necessary link between the supply and demand of energy leading to 

higher efficiencies. Installation of an energy storage system may also improve the quality of the delivered 

energy, which is of particular interest for intermittent systems. The four main classifications of energy 

storage include chemical, electrical, mechanical and thermal, which are discussed in this work. When 

electricity is both present and is the desired final form of energy, chemical and electrical energy may be 

most applicable for smaller systems. However, other methods such as pumped hydro storage (PHS) and 

compressed air energy storage (CAES), as mechanical energy storage mechanisms, may also be 

implemented. Globally, PHS and CAES consist of the most utilized energy storage systems, but are 

strictly limited to select geographical locations and large scale applications. In other systems involving 

either hot or cold thermal energy, thermal energy storage (TES) is the method of choice. TES can be used 

to capture waste heat or to improve thermal management of a system. Sensible heat TES (SHTES) is 

more mature than latent heat TES (LHTES), however, it is typically limited to stationary and larger scale 

applications. Since LHTES systems utilize a phase change material (PCM), they can achieve high energy 

storage densities which allow their integration into small scale as well as portable systems, but most 

common PCMs have low thermal conductivities requiring a heat transfer enhancement. Intuitively, there 

is no single energy storage method that is ideal for all situations which establishes the need for a variety 

of approaches. Overall, further research on nearly all energy storage techniques is required to 

continuously improve the state of the art and lead to more wide-spread usage of energy storage 

applications.  

1.1 Introduction 

The demand for alternative energy solutions in recent years has increased as a means for reducing 

pollution, carbon dioxide production and consumption of petroleum products [1]. One method to attain 

these goals is to implement energy storage systems at locations where excess energy is present. Energy 
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storage techniques may be applied directly at power plants or at the location of end use, as well as 

intermediate points. The process of energy storage is achieved by three main steps (i) charging, where 

one form of energy (chemical, electrical, mechanical and thermal) is converted into another form, (ii) 

storage, where no intentional change in energy occurs (note that undesired self-discharge may occur 

during storage, such as heat loss) and finally (iii) discharging, where the stored energy is utilized at the 

time of need. Note that the storage phase is not necessary, hence charging may proceed directly into a 

simultaneous charging-discharging phase or discharging phase in some cases. Regardless of its operation 

scheme, a system must be cyclic in nature to facilitate both charging and discharging and may occur over 

a period of a few seconds to several months or even years [2,3]. While energy storage is essential to 

alleviate current power demands and better utilize intermittent power supplies, only approximately 2.5 % 

of the electric power delivered in the United States uses energy storage (mainly pumped hydro systems) 

compared to about 10 % and 15 % for Europe and Japan, respectively [4]. This is mainly due to the 

economic and political atmosphere which significantly limits the implementation of alternative energy 

systems, as well as energy storage, in the United States of America. 

Intermittent power generation systems, such as wind and solar, require energy storage techniques 

to better integrate these systems into the electric grid [5,6]. The input energy in both systems is stochastic 

in nature with a variable supplied power due to factors such as time of day, cloud cover and seasons. 

Therefore, electrical conditioning needed to meet the grid requirements or an energy storage mechanism 

that is capable of handling a variable charging rate and able to achieve a stable discharging rate. The daily 

fluctuations in demand for electricity require generation services to provide power to the consumers as the 

need presents itself. For example, energy consumption increases during the daytime which is typically 

met by inefficient generation techniques, such as gas turbines [7]. As a result, off-peak power tends to be 

much more efficiently generated due to more stable production rates and consequently lower cost per 

kilowatt. By implementing energy storage systems both at the power source and at the location of end 

use, these fluctuations may be drastically reduced thereby lowering fuel consumption and cost.  
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While it is commonplace for batteries or pumped hydro storage (PHS) to come to mind at the 

mention of energy storage, other less common methods are also available, such as ultracapacitor energy 

storage to flywheel energy storage, which will be presented later. Since thermal energy is present during 

operation of most mechanical and electrical systems, thermal energy storage (TES) may be of use. There 

are two main applications of TES which include storing thermal energy (either hot or cold energy) for 

later use, or thermal management [8]. Currently the main application of TES is sensible heat TES 

(SHTES) where a TES material experiences a change in temperature during charging or discharging, such 

as for use with solar-thermal power plants [9]. However, SHTES requires a large mass and volume of the 

storage material which limits its use to stationary systems. The main drawback of SHTES is its low 

energy density which requires a large mass and volume of storage material to reach a desired energy 

storage capacity. The other main type of TES is latent heat TES (LHTES), which utilizes a phase change 

material (PCM) that stores both sensible and latent heat during operation, generally with a greater 

contribution from the latter.  

LTHES is known for having high energy storage densities and nearly isothermal operation which 

allows for a broader range of applications relative to SHTES [10]. A few applications for LHTES is 

recent years include cooling of cell phones [11], vehicle waste heat recovery [12], building thermal 

management [13] and steam generation for electric power production [14] to name a few. In the future, 

TES, including both SHTES and LHTES, has the potential to shift the electrical consumption for heating 

and cooling from peak to off-peak power periods, which may offset the mismatch between the supply and 

demand experienced by the grid daily [15]. Currently, TES has many underutilized potential applications, 

which in the past has been limited mainly by cost and insufficient heat transfer rates (low energy density) 

in PCMs (SHTES materials).  

In this work, a review of chemical, electrical, mechanical and thermal energy storage methods is 

presented. The sub-classifications of each are discussed along with its own unique advantages and 

disadvantages. In this work, the emphasis will be on TES, including SHTES and LHTES with a greater 

focus on the latter since it is a developing technology that has received more attention in recent years. 
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Overall, the goal of this work is to increase the knowledge base for energy storage techniques thereby 

increasing awareness, development and further utilization. 

1.1.1. Energy storage types 

 In general, energy storage methods can be classified as one of the following: chemical, electrical, 

mechanical and thermal, of which can be further separated into the subdivisions seen in Fig. 1.1. Also, 

Table 1.1 presents a summary of typical parameters associated with each method. Overall, a high energy 

density, high overall efficiency (accounting for losses during the charging, storage and discharging 

periods), quick response time, low cost, little maintenance and a long lifetime are desirable in energy 

storage mechanisms [5,9,16,17]. One of the most important of the aforementioned traits is a high energy 

density, which allows for smaller volumes as well as a lesser amount of materials. A high energy density 

is desirable from both ergonomic and economic perspectives facilitating installation in existing as well as 

newly designed systems. As with any device, a compromise between the system cost, performance and 

efficiency must be made to determine if installation is appropriate. While all of the aforementioned traits 

are generally desirable, no single system comprises them all, which merits specific research tailored to 

each.  

1.1.1.1. Chemical energy storage 

 Chemical energy storage refers to the process of converting electrical energy into chemical 

potential energy, which is generally converted back into electricity at the time of need. The chemical 

potential energy is stored by forming bonds between molecules and released upon the breaking of those 

bonds. The two main types of chemical energy storage are batteries (including conventional, metal-air and 

flow varieties) and regenerative fuel cells [4,6,18]. While other methods of chemical energy storage exist, 

such as biological energy storage, they will not be discussed here since their low efficiencies (~ 1 %) limit 

their practical use [19]. 

1.1.1.1.1. Conventional batteries 

 One of the oldest and most widely known types of energy storage is batteries. A battery consists of 

electrochemical cells with a positive electrode (anode) and a negative electrode (cathode) in contact with 
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an electrolyte. In a battery, electricity is converted to chemical potential energy through chemical 

reactions at the electrodes that is later discharged by the reverse process to produce electricity on demand. 

Advantages of batteries include reversible reactions, a rapid response to load changes, the potential for 

high efficiencies, commercially availability and can be manufactured quickly [4]. However, they also 

have low energy densities, small energy capacities, small discharge capabilities and contain toxic 

materials. Conventional batteries capable for use as utility energy storage applications are lead acid, 

lithium ion, nickel cadmium, nickel metal hydride, sodium sulphur and sodium nickel chloride. Batteries 

can be combined in series and parallel to provide the desired voltage and currents to meet the 

requirements of a particular system.  

1.1.1.1.1.1 Lead acid 

 Lead acid batteries are the oldest type of rechargeable batteries that have been studied for more 

than 140 years [6,20]. This type of battery contains lead metal and lead oxide in a sulphuric acid 

electrolyte. When the battery is discharged the electrodes become lead sulphate and the electrolyte 

becomes mostly water. The chemical reactions describing a lead acid battery are:  

       
           

   (1) 

         
                        (2) 

for the anode and cathode, respectively. The main advantages of lead acid batteries are their low cost 

(about $50-310/kWh), high reliability and high efficiencies (~ 85 %) which have led to applications that 

provide up to 50 MW while the duration for lower power rating may last up to approximately 8 h [21]. 

However, their lifetime is short (3-12 years), they have a low energy density (about 40 Wh/kg) and are 

unable to function in low temperature applications which limits their use [1].  

1.1.1.1.1.2. Lithium-ion  

 Lithium-ion batteries (Li-ion) operate with metal oxides containing lithium (LiCoO2, LiMO2, 

LiNiO2, etc.) at the negative electrode and graphitic carbon at the positive electrode, while the electrolyte 

consists of lithium salts (LiPF6 for example) dissolved in organic carbonates [22]. During charging, the 

lithium atoms at the negative electrode are ionized which move through the electrolyte to the positive 
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electrode where they join with an electron provided by an external power source. The reverse occurs 

during discharge thereby supplying power. One such example of a typical reaction for a Li-ion battery is: 

                         (3)  

However, the specific reaction depends on the type of metal oxide at the cathode. Li-ion batteries have an 

increased energy density (nearly 200 Wh/kg), lifetime (10,000 cycles) and a low memory effect relative 

to lead acid batteries [1,20]. Their main drawbacks are cost ($900/kWh), vulnerability to damage from 

deep discharge and potential safety hazards if damaged. Currently, the main applications of Li-ion 

batteries are in portable electronics and the automotive industry due to their light weight and relatively 

high energy density [4]. 

1.1.1.1.1.3. Nickel cadmium (NiCd) 

Relative to lead acid batteries, nickel cadmium batteries have higher energy densities 

(approximately 65 Wh/kg), a long lifetime, low maintenance costs and a high durability [20,23]. 

However, they are bulky, contain toxic materials, are subject to self-discharge and can cost up to 

$1000/kWh. Therefore, more research efforts have been focused on Li-ion batteries due to lower costs 

and higher performance. The structure of a NiCd battery comprises a nickel hydroxide anode, cadmium 

hydroxide cathode, electrode separator and an alkaline electrolyte, which operate by the following 

reaction: 

     (  )              (  )    (  )  (4) 

A large scale example of a NiCd battery storage system is seen in Alaska which is capable of providing 

27 MW for approximately 30 min as a spinning reserve [24]. 

1.1.1.1.1.4. Nickel metal hydride (NiMH) 

 Since NiCd batteries are fairly toxic by containing cadmium, NiMH batteries provide an 

environmentally friendly alternative which has been shown to increase energy densities by about 30 % 

[23]. The energy density of NiMH batteries can reach 80 Wh/kg with 50 % longer lifecycles than lead-

acid or NiCd batteries [25]. However, they do not have as high a performance as Li-ion and are subject to 
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self-discharge limiting their use for long term storage. Since the performance is not as good as Li-ion and 

are more costly than NiCd batteries, they are not likely a strong candidate for energy storage [18]. 

1.1.1.1.1.5. Sodium sulphur (NaS) 

 In a sodium sulphur battery, liquid sulphur and sodium occupy the positive and negative 

electrodes, respectively, separated by a beta alumina ceramic electrolyte. In NaS batteries, the electrolyte 

only allows flow of positive sodium ions, which combine with sulphur through the following reaction: 

               (5) 

In order to maintain a liquid phase for its components, the temperature must remain between 300 °C and 

400 °C resulting is parasitic losses in performance [18]. Additionally, they cost about $350/kWh, operate 

with a slightly lower voltage than the aforementioned types and only one manufacturer currently produces 

these batteries [20,21]. Along with having a lifespan, energy density and efficiency of 2500 cycles, 100 

Wh/kg and up to nearly 90 %, respectively, they have a significant advantage to other types since they can 

charge with a power source of up to six times their continuous power rating for short 30 s intervals [26]. 

An example of NaS in practical use is by the city of Tokyo, Japan, containing multiple installations with 

the largest installation capable of providing 9.6 MW for nearly 7 hours of discharging for load leveling.  

1.1.1.1.1.6. Sodium nickel chloride (ZEBRA) 

 The sodium nickel chloride battery, commonly referred to as the ZEBRA battery due to its 

scientific birthplace in South Africa, is another high temperature system (about 300 °C) [4]. Nickel 

chloride is located at the positive electrode and sodium is at the negative electrode for the ZEBRA which 

operates by the following reaction: 

                    (6) 

Advantages of the ZEBRA battery include some overcharge and deep-discharge capabilities, a relatively 

higher cell voltage of 2.59V and a high degree of safety [18,20]. The energy density of the ZEBRA 

battery is about 120 Wh/kg with a cost of $100-200/kWh making it a promising candidate for energy 

storage [27]. 
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1.1.1.1.2. Metal-air batteries 

Unlike the battery types discussed above, a metal-air battery consists of a common metal such as 

lithium, zinc, or aluminum at the anode while using air at the cathode that is typically constructed of a 

porous carbon material coated with a catalyst [26]. Therefore, one unique advantage of metal-air batteries 

is that they contain the highest theoretical energy densities since the oxygen in the air, for the cathode, 

does not need to be stored. In the past, focus has been on aqueous systems such as zinc-air, however, 

lithium air batteries have the potential for much larger capacities per mass relative to the former [28]. 

Decomposition of the solution for zinc-air batteries and corrosion of lithium metals are challenges that 

must be overcome before large scale utilization can be made possible. Lithium-air batteries are still a 

maturing technology which has yet to approach its theoretical values for energy capacity, specific power, 

etc. which requires more future research. 

1.1.1.1.2. Flow batteries 

 An alternative subset of batteries that stores chemical energy in the electrolyte solution, instead of 

at the electrode, is that of flow batteries as seen in Fig. 1.2 [4]. The electrolytes are stored in external 

tanks and are pumped through the power cell containing the anode, membrane and cathode. Since flow 

batteries store their electrolyte in separate tanks, they have the advantage of large capacities, as well as 

high energy and power densities [29]. Inclusion of pumps for circulating the electrolytes induces parasitic 

losses which must be compensated for by the overall system performance. Also, toxic chemicals that are 

detrimental to the environment may be used in flow batteries and is not desirable. While a variety of flow 

batteries exist, they can be divided into two subgroups of redox (all-vanadium, vanadium-bromine, 

vanadium-cerium, iron-chromium, polysulphide-bromine, etc.) and hybrid (zinc-bromine, zinc-nickel, 

soluble lead acid, etc.) [17]. In general, flow batteries can have power ratings in the 100’s of MW with 

discharging durations of up to 20 hours and a cost between $180/kWh and $250/kWh [29]. 

1.1.1.1.4. Regenerative fuel cells (RFC) 

 While both flow batteries and fuel cells can convert chemical potential energy to electrical energy, 

the distinguishing feature of fuel cells is the consumption of a fuel. In a fuel cell, there exists an anode 
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where fuel is supplied and ionized, an electrolyte that may be in the form of a membrane, and a cathode 

where the oxidant is supplied as seen in Fig. 1.3. Various types of fuel cells exist such as hydrogen fuel 

cells, direct-methanol fuel cells and solid oxide fuel cells. However, for energy storage, a regenerative 

fuel cell (RFC) is needed which consists of (i) a unitized fuel cell which can operate in both forward and 

reverse modes, or (ii) can be used in conjunction with an electrolyzer to produce fuel when electricity is 

supplied, in which case the entire device (fuel cell and electrolyzer) is termed a RFC [6]. Hence, the 

hydrogen fuel cell is one of the main types considered for energy storage as an RFC. 

During charging, electricity can be utilized to convert water into hydrogen and oxygen, of which 

the former is stored. Since large tanks can be located on site, the capacity of a RFC can be relatively 

large. The main disadvantages are cost (more than $10,000/kW) and efficiency (about 50 %) [20,30]. In 

order to lower costs, development of unitized RFCs have been studied by multiple researchers since the 

cell has both forward (fuel consumption) and reverse (fuel production) modes, eliminating the need for a 

separate electrolyzer [31]. An additional advantage to utilizing hydrogen fuel cells as RFCs, is that 

hydrogen is a chemical commodity with a variety of other uses such as for powering transportation 

vehicles [32]. 

1.1.1.2. Electrical energy storage 

 The process of converting electricity into electrostatic energy, such as by capacitors or 

superconducting magnetic energy storage (SMES) systems, is referred to as electrical energy storage [20]. 

Electrical energy storage is most advantageous when relatively smaller amounts of energy are needed 

instantaneously for a short duration on the order of seconds to minutes [33]. 

1.1.1.2.1. Capacitors/ultracapacitors 

Ultracapacitors have high energy densities (up to 15 Wh/kg), long lifetime (20 years) and require 

no maintenance as compared to battery energy storage [27,34]. The lifecycle of ultracapacitors can be 

more than 100,000 charge/discharge cycles requiring little maintenance and have efficiencies up to 80 % 

[6]. Major problems which limit ultracapacitors to short term storage systems are the relatively high rate 

of self-discharge (around 20 % in 12 h) and the monotonically decreasing voltage during discharge 
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requiring additional electronics for conditioning. Typically capacitors are utilized for ride-through and 

bridging in power quality systems for shifting from one power source to another. 

1.1.1.2.2. Superconducting magnetic energy storage (SMES) 

 SMES consists of an inductor made of a superconducting material that allows for electrical current 

to be stored and circulated through the inductor with near negligible losses [20]. The energy stored in a 

SMES system is defined as: 

             
  (7) 

where Lcoil is the inductance of the coil and Ie is the electrical current. The system efficiency can be as 

high as 98 % and a lifetime of up to 30 years [27]. Currently, SMES systems can store up to about 10 

MW while systems reaching up to 100 MW are in research with discharge durations on the order of 

minutes [20]. The main disadvantages of SMES are their high cost and the presence of a strong magnetic 

field which could be detrimental from an environmental perspective. 

1.1.1.3. Mechanical energy storage 

 The two subsets of mechanical energy storage include kinetic and potential energy storage. Kinetic 

energy storage is only practical with flywheel energy storage (FES) for much smaller power ratings and 

capacities. Potential energy storage is utilized by pumped hydro storage (PHS) and compressed air energy 

storage (CAES) [17,35]. Both PHS and CAES are limited by their geographical locations (requiring 

reservoirs for water or air), however, currently provide the largest power ratings of all energy storage 

types [32]. 

1.1.1.3.1. Potential energy storage 

 As mentioned previously, potential energy storage comprises mainly pumped hydro storage (PHS) 

and compressed air energy storage (CAES). The main limitation to these systems is determining a suitable 

location which is more challenging than other storage systems since large reservoirs are needed for either 

water or air. 
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1.1.1.3.1.1 Pumped hydro storage (PHS) 

Worldwide, pumped hydro storage comprises a total discharge power of approximately 127 GW, 

which is about 99 % of the planet’s total energy storage capacity [4]. Hence, PHS comprises about 3 % of 

the total electric power production globally [20]. This method utilizes gravitational potential energy 

stored in water at different elevations as seen in Fig. 1.4 and described by the following equation: 

       (8) 

where m, g and h are the mass of water, acceleration due to gravity and the change in height between the 

high and low reservoirs, respectively. In a PHS system, a pump consumes electrical energy to increase the 

gravitational potential energy of water, which is then converted back to electricity by a turbine. 

 The efficiency, power density, cost and lifetime of a PHS system may reach up to approximately 

85 %, 1.5 Wh/kg, $23/kWh and 60 years, respectively [27]. The efficiency of a PHS system is determined 

by the amount of power produced upon discharging divided by the input power to run the pumps, which 

includes evaporative losses. As expected, the geographical topography requirements, including two large 

water reservoirs at different altitudes, limits its utilization. A unique advantage of PHS systems is the 

supply of freshwater for the community [36].  

1.1.1.3.1.2. Compressed air energy storage (CAES) 

 The second most utilized type of energy storage is compressed air energy storage with a total 

worldwide discharge capacity of about 440 MW [4]. CAES consists of utilizing electrical energy to 

compress air into a sealed, airtight cavern. Commonly, natural rock caverns, such as evacuated salt mines, 

gas fields or oil fields, are utilized [3]. The compressed air is then used to replace the compression stage 

of a gas turbine. Typical pressures in the CAES caverns are about 8 MPa with a power rating of 100-

300 MW with efficiencies of approximately 80 % [20]. The sizing of a CAES system depends on the 

specific application, however, for wind power applications it is typically less than 25 % of the wind farm 

capacity [37]. A main advantage to CAES systems is the capability of a quick startup, associated with gas 

turbines, allowing for power demands to be met promptly. However, since the system also utilizes natural 
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gas to heat the compressed air, CAES is considered a hybrid energy storage system. Similar to PHS, the 

availability of an evacuated airtight cavern limits the possible locations of CAES systems.  

1.1.1.3.2. Kinetic (Flywheel) energy storage 

 As mentioned previously, flywheel energy storage (FES) is the only suitable method for storing 

kinetic energy. During charging in a FES system, an electrical motor consumes electricity to increase the 

kinetic energy of a spinning mass, called a flywheel [2]. The stored kinetic energy is then converted back 

into electrical energy by the same electrical device, now acting as a generator, as seen in Fig. 1.5. The 

stored energy is described by: 

   
 

 
    (9) 

where I is the moment of inertia and ω is the angular velocity of the flywheel. Flywheel energy storage is 

characterized by low speed (ω < 10
4
 RPM) and high speed (ω > 10

4
 RPM) systems. Since the angular 

velocity is squared in Eq. (9), a small increase allows for a significant increase in stored energy. However, 

the angular velocity is limited based on the tensile strength of the flywheel material. Modern composite 

materials are used for high speed FES systems since they are lightweight and able to obtain much higher 

spinning speeds compared to metals, which are heavy. To reduce heat transfer losses, the flywheel 

enclosure may be under vacuum pressure as well as contain an active magnetic bearing [38]. The main 

advantages of FES include a long lifetime (> 200,000 cycles) and high efficiencies (90-95 %) [20]. 

Relative to the other methods, the cost is fairly high with values up to $150,000/Wh for high speed FES 

systems [27]. Also the duration of FES systems is short on the order of magnitude of seconds. FES can 

provide uninterrupted power during the transfer of one power source to another or as a smoothing device 

such as for the power output of a wind turbine among other applications. 

1.1.1.4. Thermal energy storage (TES) 

 Thermal energy storage (TES) allows for the storage of thermal energy (both hot and cold) for 

later utilization. TES may be separated into (i) sensible TES (SHTES) exhibited by a change in 

temperature (ii) latent heat TES (LHTES) by means of changing phase, (iii) chemical TES through 
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endothermic and exothermic reactions associated with the breaking of bonds between molecules, and (iv) 

sorption processes where energy is stored through Van Der Waals forces [39]. Since thermal energy is 

present in most systems, TES has numerous potential applications.  

Thermal energy storage systems have proved to be a viable method to reduce inefficiencies in 

thermal systems by the capture of waste heat including direct power production through turbines, as well 

as improve thermal management of electronics [40], buildings [41], spacecraft [42] and vehicles [43]. 

Integration of TES systems into buildings (both residential and commercial) has the ability to provide 

some or all of the heating or cooling needs by utilizing energy during off-peak hours, thereby reducing 

costs and the demand of electricity during peak periods. One relatively unique feature of TES, relative to 

the aforementioned methods, is that the end product is not almost exclusively electrical energy, expect for 

large scale thermal power production systems.  

Two types of TES systems that will only be briefly discussed here are sorption and chemical TES 

[39]. A sorption system can be either physical (physisorption) or chemical (chemisorption) in which a 

substance becomes attached to another, thereby storing energy. In a physisorption system the adsorbate, a 

flowing gas or liquid, interacts with a surface, or adsorbent, and deposits a film on top of the adsorbent. 

Energy is stored in the Van Der Waals potential between the adsorbate and adsorbent. In a chemisorption 

system, new chemical bonds are formed between the adsorbate and adsorbent, storing more energy than 

Van Der Waals forces alone can manage. In a chemical TES system, a reversible chemical reaction is 

used to store energy by inducing an endothermic reaction which separates a chemical into two 

components that are stored separately and later recombined to release heat at the time of need by an 

exothermic reaction. In a simple chemical heat pump, low grade waste heat is used to decompose a solid, 

releasing a gas, which is then condensed to release higher grade heat. Chemisorption and chemical TES 

systems are more promising due to their higher energy density, and lower heat loss than physisorption, 

however, both technologies are not quite as mature as SHTES or LHTES and will not be further 

discussed. 
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1.1.1.4.1. Sensible heat thermal energy storage (SHTES) 

Sensible heat thermal energy storage is the most established TES technology, especially for large 

scale solar-thermal power applications with existing plants capable of 7.5 h with a 50 MWe power 

capacity [44]. As previously mentioned, SHTES refers to the process of TES without a change in phase. 

This is generally associated with solids and liquids due to their much higher energy storage densities 

relative to gases. SHTES can be further classified into active, where the energy storage medium is used to 

flow (liquids only) through a heat exchanger, or passive where the energy storage medium is stationary 

(solid or liquid) [45]. Additionally, a direct active system is one in which the energy storage medium also 

serves as the heat transfer fluid (HTF). Since the materials used for SHTES have a low energy density 

without phase change, the large overall volume and mass limit its use to stationary (ground based) 

applications. 

The amount of energy stored in a SHTES system is dependent on both the density and specific 

heat of the storage media as seen in Eq. (10). For a closed system, the amount of energy stored as heat, Q, 

(neglecting work as well as kinetic and potential energy changes) in a SHTES system can be written as: 

      ∫     ( )  
  

  

 (10) 

where Ti, Tf, V, ρ and cv are the initial temperature, final temperature, volume, density and specific heat 

capacity of the TES material, respectively [46]. If cv is nearly constant over the given operating range, 

Equation (10) can be approximated as: 

       (     ) (11) 

It is clear that for fixed operating conditions (constant Q, V and (Tf – Ti), a SHTES material should be 

chosen with the higher volumetric heat capacity (ρ∙cv) for a larger energy storage capacity.  

1.1.1.4.2. Latent heat thermal energy storage (LHTES) 

 Relative to SHTES, LHTES is still a developing technology which operates by storing and 

releasing both sensible and latent heats, usually with a larger contribution by the latter, using a PCM [41]. 

LHTES systems are typically characterized by their high energy density, isothermal phase change and 
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small volume. However, most PCMs used in LHTES systems have low thermal conductivities requiring 

the use of an enhancement technique to increase overall heat transfer rates [47]. PCMs can be classified 

based on the phases (solid, liquid or gas) experienced during phase change which may be solid-solid, 

solid-liquid, solid-gas or liquid-gas [35]. While the latent heats of vaporization for solid-gas and liquid-

gas PCMs are much higher than solid-solid or solid-liquid types, the relatively low density of gases and 

storage issues related to large volume changes renders their use impractical for most LHTES applications. 

However, solid-liquid PCMs are most common in recent studies since they generally have higher latent 

heats relative to solid-solid PCMs. Further classification of PCMs into organics, inorganics and eutectics 

will be discussed in more detail in later sections of this work. 

During a complete charging process, a solid-liquid PCM, experiences three domains consisting of 

(i) sensible heating with a completely solid PCM, initially below its melting temperature, (ii) latent 

heating where both solid and liquid phases are present and (iii) further sensible heating of a completely 

liquid PCM until the final temperature of the heat source is reached, as described by: 

      ∫       ( )  
  

  

       ∫       ( )  
  

  

 (12) 

where the subscripts s and l correspond to the solid and liquid phases, respectively, while Tm and hsl are 

the melting temperature and latent heat stored during phase change, respectively [46]. If the solid and 

liquid specific heat capacities are assumed to be constant, Eq. (12) can be approximated as: 

      (    (     )           (     )) (13) 

It should be noted that during operation of a LHTES system, it is not necessary for the PCM to experience 

all three domains and complete melting may not occur if the discharging, or solidification, process begins 

during the latent heating stage.  

By comparing Eqs. (10) and (12), it can be seen that if the same operating temperature is 

observed by both a SHTES and LHTES system, the LHTES system will store a significantly larger 

amount of energy since it has an additional latent term along with the sensible term. While this statement 

is valid, it is not the method in which LHTES systems are implemented since large temperature swings 
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are not desirable as they induce additional stresses and fatigue on the enclosure. Rather, LHTES systems 

are designed to operate over a relatively small temperature range, containing the PCM melting 

temperature, for a certain energy storage capacity. In this method, the LHTES system mass and volume 

are greatly reduced relative to a SHTES system thereby increasing the potential applications that are not 

feasible for SHTES systems, such as for portable systems including handheld electronics, transportation 

vehicles and even spacecraft. 

1.2. TES properties 

Prior to the selection of a suitable TES material, the desired operating temperature range, 

enclosure function (only material storage or a storage tank with an integrated heat exchanger), system 

constraints (maximum allowable size, desired energy storage capacity, minimum required heat transfer 

rates, etc.) must be determined [48]. Once these variables are known, the selection of a given TES 

material can be chosen that meets the desired requirements. However, this may not be a simple task due to 

the overwhelmingly large number of TES materials including metal alloys, ceramics, glasses, polymers, 

elastomers and hybrids for SHTES, and paraffins, non-paraffin organics, salt hydrates, metallics and 

eutectics for LHTES [35,48]. In order to select the type of TES material, the desirable properties must be 

known. These properties will be discussed in the following sections and are separated based on thermal, 

physical, kinetic, chemical and economic aspects as summarized in Table 1.2. In general, these traits are 

all related to good heat transfer, energy storage, material safety and cost [49–51].  

1.2.1. Thermal/physical 

From a thermal perspective, a material should have a high thermal conductivity, high energy 

density per unit volume (ρ∙cv), low vapor pressure, no deterioration with cycling, and for LHTES a PCM 

must have an acceptable phase change temperature within its operation range as well as a high latent heat 

and small volume change between phases [15,49]. If these conditions are met, then the size of the 

physical system can be decreased, thereby reducing the cost associated with bulk materials. Note that for 

LHTES, a low PCM thermal conductivity may be acceptable if an enhancement is implemented which 

increases the overall heat transfer rates to an appropriate level [52].  
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1.2.2. Kinetic 

 For SHTES materials, to the authors’ knowledge, few if any kinetic limitations exist. On the other 

hand, for LHTES, a sufficient crystallization rate and negligible subcooling are desired [35]. Subcooling, 

also known as supercooling, is the phenomenon of lowering the temperature of a liquid below its melting 

temperature such as for a solid-liquid PCM. In a normal scenario without subcooling, the formation of 

crystals occurs at the PCM's melting temperature resulting in solidification. However, some materials lack 

nucleation sites thereby inhibiting phase change even as the system reaches its final system temperature. 

This is not desirable since without solidification, the PCM does not release its stored energy. It should 

also be noted that while a typical PCM may not experience subcooling at room temperature, when the 

scale is reduced to a micro-level, such as by micro-encapsulation, subcooling may occur [53]. In order to 

avoid this problem, inclusion of additives may facilitate nucleation in the PCM [54]. However, since 

subcooling is heavily dependent on the rate of cooling as well as the PCM type, an additive which is 

sufficient for a specific set of conditions may be completely ineffective in others requiring extensive 

research for a specific system [55]. 

1.2.3. Chemical 

 From a chemical perspective, the TES material should be non-toxic, non-corrosive, chemically 

compatible with all materials in contact with the TES material and be chemically stable without 

deterioration after cycling [13]. Also it should be non-flammable and non-explosive leading to a safe 

operating system. 

1.2.4. Economic 

 In order for future utilization of TES systems to be practical, a TES material should also be 

inexpensive, easily obtainable, abundant and have a long lifetime [49].  

1.3. SHTES systems  

 Research and development of thermal energy storage systems has been performed for more than 3 

decades with the main area of concern being the energy storage medium [48]. Thousands of materials are 

known which can be classified into the following categories: metal and alloys, ceramics and glasses, 
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polymers and elastomers, and hybrids consisting of composites and natural materials. As with any type of 

TES system the operating range along with desired application determines the type of TES for a given 

system.  

 While SHTES systems generally require a larger volume and mass than LHTES systems, there 

exist many potential stationary applications where these issues are not a concern. Typical materials such 

as water, stone, sand, brick, concrete etc. are inexpensive, are not detrimental to the environment and have 

large operational temperature ranges [56]. Utilization of a solid SHTES material minimizes the possibility 

of leaks, while liquids may double as the HTF. When the energy storage material also acts as the HTF, a 

higher exergy efficiency may be realized due to a reduction in the temperature differences within the 

system [45]. 

Common SHTES materials can be seen in Table 1.3. With regards to the solid SHTES materials 

in the table, cast steel and cast iron have the two highest volumetric heating capacities (ρ∙cp), yet cast steel 

costs more than 30 times that of cast iron. Therefore, cast iron is a more promising solid SHTES material. 

For the liquids, the most attractive of those listed in the table are the nitrate salts and mineral oil for their 

lower cost yet relatively high value for ρ∙cp. Solar salts are commonly used in low temperature solar 

power applications. However their small temperature range limits the amount of sensible heat that can be 

stored, meaning that a large quality of solar salt would have to be used to have an appreciable energy 

storage capacity. 

1.3.1. Types of SHTES 

 Due to the different types of SHTES materials, there are a few common system configurations 

which usually comprise a bulk energy storage medium, packed bed arrangement, solar pond or 

thermocline [20,56]. 

1.3.1.1. Bulk energy storage medium 

 The simplest form of SHTES is through a bulk energy storage medium which is in contact with a 

heat exchanger or electric power source. Heat is generally transferred to or from an energy storage 
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medium mostly by HTF tubes embedded in the medium which may be a solid or liquid. If the medium is 

a liquid it may either be considered as passive, active or direct active as discussed above [45].  

An example of a large scale active bulk energy storage system for solar power applications 

consists of two large tanks of molten salt [57]. In the two-tank system, one tank contains a cooler molten 

salt which is heated during charging and transported to a hotter tank. During discharging, thermal energy 

from the hot salt tank is transferred to the working fluid of a power plant and is subsequently sent to the 

cold storage tank. Aquifers comprise another large scale SHTES system in which water saturated 

permeable rock, located underground, may be used for seasonal thermal energy storage to reduce the 

burden of heating and air conditioning systems [58]. 

1.3.1.2. Packed beds 

Since many abundant SHTES materials are of spherical construct, such as stone, a packed bed is a 

practical configuration as seen in Fig. 1.6. During charging, a hot fluid flows through the packed bed 

which stores thermal energy. Typical HTFs such as air, water or heat transfer oils may also act as an 

additional SHTES medium [58]. The parameters which must be varied for a given rock bed include the 

size of the particles, flow rate of the fluid, inlet temperature of the fluid, particle material and fluid type. 

The material and fluid choice determines the energy storage capacity of the system. The main 

disadvantage is the large pressure drop of the HTF flowing through the porous bed. 

Packed bed systems may be utilized for low temperature residential applications as well as high 

temperature solar power applications among others [59]. For example, Hänchen et al. [60] studied a high 

temperature concentrating solar power (CSP) application of a packed bed with magnesium silicate rock 

and air as the working fluid for both the CSP and the energy storage system, thereby eliminating the need 

for expensive sealing gaskets and an additional heat exchanger since the system operated at near ambient 

pressure. 

1.3.1.3. Solar ponds 

 A solar pond is a shallow body of water that stores energy from the sun. Natural solar ponds have 

been known to exist for about one century [61] while other types such as salt gradient, partitioned, 
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viscosity stabilized, membrane stratified and shallow solar ponds exist which operate in a similar manner. 

Solar radiation is absorbed by the dark bottom of a pond which retains heat by some means of 

stratification, such as a salt or viscosity gradient. Individual layers of a solar pond may be subject to 

natural convection as depicted in Fig. 1.7 [62]. If the water from the pond is not directly utilized, heat 

extraction must be accomplished through a heat exchanger, such as embedded HTF tubes or even heat 

pipe heat exchangers [63]. An optimum value for the salt content in a solar pond is about 80 g/kg of water 

[64]. Solar ponds are generally shallow on the order of about 2 m deep and may contain temperatures up 

to 100 °C [61]. In the past, industrial applications have made use of the water obtained from solar ponds 

for process heat. The main drawback is that they require a large area in order to have a substantial amount 

of useable water. 

1.3.1.4. Thermocline  

 An alternative solution to the two-tank solar power SHTES systems is to utilize a one-tank 

thermocline design [65]. A thermocline is, to some extent, a combination of the aforementioned SHTES 

types which contains a thermal gradient due to buoyancy. However, a thermocline typically comprises an 

enclosure filled with a packed bed of a filler material saturated with a molten salt as the HTF, and both 

may act as energy storage mediums. Contrary to solar ponds, the highest temperature section resides at 

the top which diminishes with depth. During charging, cooler molten salt is removed from the bottom of 

the thermocline, heated and is then deposited at the top of the enclosure, while the reverse occurs during 

discharging. The filler material is ideally an inexpensive material with a high specific heat. Buoyancy 

forces keep the hot molten salt at the top of the tank while the cooler molten salt remains lower. Typical 

filler materials may include quartzite, marble and limestone [57]. The single tank storage in a thermocline 

SHTES system is generally slightly larger than the two individual tanks in a two-tank bulk SHTES 

system, which has the potential to reduce costs by up to 35 %.  

The two main problems facing thermocline systems are that the salt must remain in the molten 

state and the effect of thermal ratcheting with cycling [66]. Generally the salt must be maintained above 

150 °C to avoid altering its thermal and physical properties. On the other hand, thermal ratcheting occurs 
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due to the cyclic operation of system and results in plastic deformation and eventually failure of the tank, 

thereby shortening the lifetime of the system. Since large temperature gradients are experienced 

throughout its operation, expansion and contraction of the enclosure wall progressively increases its 

diameter (i.e. ratchets) to a larger size eventually leading to failure.  

1.4. Latent heat thermal energy storage systems 

As previously discussed, LHTES comprises utilizes a PCM to store and release both sensible and 

latent energies. Since a large amount of energy is needed to change phase relative to increase in 

temperature, it can be stored over a small temperature range. This can be effectively seen by comparing 

the values in Table 1.4. For example, water is commonly used for both SHTES and LHTES, however, 

more energy can be stored by changing phase than over a 50 °C temperature range. Table 1.4 clearly 

shows the advantage of a higher energy storage density for the LHTES with much less mass and volume 

required for a fixed capacity. Since LHTES has a high energy density, minimal mass and volume are 

required, facilitating its use for smaller and portable systems along with nearly any application utilizing 

SHTES. The other main advantage of LHTES is that the phase change is nearly isothermal, which is 

beneficial for improved thermal control.  

1.4.1. Phase change materials (PCMs) 

The key feature to any LHTES system is its phase change material (PCM) which stores and 

releases thermal energy by means latent heat. While solid-liquid PCMs are most common due to its 

higher latent heats, solid-solid PCMs have a unique advantage of negligible volume expansion between 

solid crystalline structures along with the elimination of leaks [49]. As previously mentioned solid-gas 

and liquid-gas phase transitions have much higher heats of fusion yet are impractical for most 

applications due to the large volume changes. 

The two main requirements regarding utilization of PCMs for a LHTES are the determination of 

an appropriate phase change temperature and the latent heat of fusion. While single-component 

substances (also commonly referred to as laboratory or analytical grade PCMs) have a distinct melting 

temperature, most commercially available PCMs, comprise a mixture of components, such as various 
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paraffins, that melts over a relatively small temperature range depending on its composition [46]. Other 

factors which are considered for a particular application are the temperature range of operation, energy 

storage density, compatibility with the enclosure, chemical and thermal stability, cost and safety [41,67–

69]. 

Generally, PCMs are classified into one of the following groups: organics, inorganics, and 

eutectics as seen in Fig. 1.8. A eutectic PCM is a minimum melting temperature composition consisting 

of two or more PCMs which may be any combination of organics or inorganics [70]. Table 1.5 shows the 

typical ranges for phase change temperatures and latent heats of fusion for commercially available PCMs 

which displays the broad ranges experienced for each subgroup. It is clear that a variety of PCM choices 

exist, as any listed in the table could apply for an operational temperature range from approximately 0 °C 

to 150 °C. Table 1.6 presents a variety of PCMs which have been studied in the past.  

1.4.1.1. Organics 

 Organic PCMs are generally non-toxic, non-corrosive, chemically stable, thermally stable, have 

little to no subcooling, good compatibility with enclosure materials and have high latent heat per unit 

mass [13]. However, organics are known for their flammability as well as having relatively lower phase 

change enthalpies as compared to inorganics. Typically, organics are further categorized into paraffins 

and non-paraffins.  

1.4.1.1.1. Paraffins 

Paraffin waxes are one of the most common types of PCMs which are comprised of hydrocarbons 

and are derived from organic materials. Paraffin waxes are generally straight chain n-alkanes where a 

higher chain length corresponds to a higher melting temperatures and latent heats of fusion [35]. 

Commercial paraffin waxes are composed of a mixture of different chain length alkanes which have a 

range of melting temperatures (typically within a range of a few degrees centigrade) while laboratory 

grades are of higher purity with a single melting temperature [68]. Paraffins have melting temperatures 

typically between -10 °C to 120 °C and latent heat of fusions between about 130 – 250 kJ/kg [71]. 

Advantages include high latent heats, low volume changes upon melting, no phase segregation, low vapor 
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pressure, long lifetime of thermal cycling, are chemically inert, safe, reliable, have negligible subcooling, 

have well established properties, are relatively inexpensive and easily obtainable [13,68]. Their 

drawbacks are a low thermal conductivity (~ 0.2 W/mK) and moderate flammability; corresponding to the 

existence of paraffin wax candles.  

1.4.1.1.2. Non-paraffins 

 Non-paraffin organic PCMs are not easily classified with common characteristics as paraffins. 

There are many different types of non-paraffin organic PCMs which are generally grouped into fatty 

acids, alcohols, glycols and esters [35]. Non-paraffins commonly have a higher latent heat of fusion and 

are inflammable. The disadvantages of non-paraffins are low thermal conductivity, possible toxicity, 

unstable at high temperatures and can be considerably more expensive (approximately twice as much as 

paraffins). 

1.4.1.2. Inorganics 

 Inorganic PCMs are classified into two main categories of salt hydrates and metallics. Inorganics 

have higher latent heats and thermal conductivities compared to organics and are also non-flammable 

[13]. However, they are plagued with subcooling, corrosion, phase separation, phase segregation and a 

lack of thermal stability after successive cycling. 

1.4.1.2.1. Salt hydrates 

 One of the oldest and most studied classifications of PCMs is salt hydrates [72]. The combination 

of an inorganic salt (denoted X(Y)n) and water consist of an aqueous solution as a liquid that is then 

hydrated to a crystalline matrix during discharging. The dehydration of the salt hydrate during melting is 

usually described by one of the following reactions [73]: 

  ( )          ( )         

 ( )         ( )           (   )    
(14) 

In the past salt hydrates have been preferred because of their high latent heat with typical values of 

approximately 300 kJ/kg. They have higher thermal conductivities than organic PCMs which are typically 

around 0.5 W/mK and undergo small volume changes during melting and solidification [35]. However, 
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salt hydrates have problems with subcooling and phase segregation, where the denser salt falls to the 

bottom and does not recombine with water, thereby degrading the system over time [74,75]. As 

previously mentioned, subcooling may be alleviated to some extent by addition of nucleating agents, yet 

it is an issue which must be addressed for a specific salt hydrate and operating temperature. While 

thickening agents may reduce the amount of phase segregation, they may also reduce the overall thermal 

conductivity. Lastly, from an economic perspective, salt hydrates are generally more expensive than 

paraffins.  

1.4.1.2.2. Metallics 

 Metals considered for low temperature PCMs (high temperature PCMs will be discussed shortly) 

generally consist of low melting temperature metals, such as gallium with a latent heat of fusion and 

melting temperature of about 80 kJ/kg and 30 °C, respectively [35]. While this heat of fusion is much 

lower than that of other PCMs considered, in general metallics have high heats of fusion per unit volume 

due to the large densities [69]. Another advantage to metallics is their high thermal conductivities. 

However, they are not generally considered as PCMs due to large weight penalties. 

1.4.1.3. Eutectics 

A eutectic PCM is a minimum melting temperature composition of multiple PCMs (any 

combination of inorganics and organics) [69]. During solidification, the crystals of each component freeze 

as a mixture and later melt congruently without separation. Eutectics may consist of purely inorganics, 

organics or a combination whose composition result in the lowest melting point of the mixture [22]. Their 

volumetric energy storage density is also slightly higher than organics. 

1.4.1.4. Solid-solid PCMs 

 Solid-solid PCMs typically change from one crystalline state to another by means of latent heat 

and usually do not experience significant volume changes. One such material which has exceptional 

qualities is high density polyethylene (hsl = 300 kJ/kg) which is achieved by treating the material to 

induce cross linking, however, the treating process induces significant cost [54]. While solid-solid PCMs 
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generally do not have as high of latent heat per unit weight, as seen in Table 1.5, they can have high latent 

heat per unit volume making them attractive for stationary applications [49]. 

1.4.1.5. High temperature PCMs 

 High temperature PCMs, typically defined in the range of 120 °C to 1000 °C, may consist of any 

of the aforementioned types of PCMs and are of particular interest for solar applications. While many 

materials have been studied for use as low temperature PCMs, this is not the case regarding high 

temperature PCMs [76]. This may be attributed to safety hazards among other reasons relative to low 

melting temperature PCMs. However, in recent years they have received more attention due to research 

geared towards solar-thermal systems. Cárdenas and León [77] as well as Kenisarin [78] have performed 

literature reviews on high temperature PCMs and may be used as a reference for various thermophysical 

properties of high temperature PCMs. In the aforementioned works, the properties for high temperature 

PCMs vary widely from one material to another. Other than potentially high costs, chemical compatibility 

with various materials is a main challenge which must be overcome. 

1.4.2. Enhancement techniques  

 Since the thermal conductivity of most PCMs is inherently low, a heat transfer enhancement is 

commonly implemented. The goal of an enhancement is to increase the overall heat transfer rates within 

the PCM and is usually achieved by the addition of a high thermal conductivity medium. Note that there 

is no single ideal enhancement method, however, the following are desired: 

 ability to achieve high heat transfer rates 

 contain minimal volume and mass 

 compatible with PCM and enclosure 

 resistant to corrosion and deterioration after repetitive cycling 

 inexpensive, abundant and easily obtainable 

Care must be taken when choosing an appropriate enhancement technique as the addition of a foreign 

material into the PCM may significantly suppress or even eliminate the positive contribution of natural 
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convection heat transfer on the melting process and could be detrimental to the overall performance [79]. 

Therefore, all domains (solid only, mixed solid and liquid, and liquid only) must be considered prior to 

the final selection of an enhancement method. 

 To achieve high heat transfer rates, a large interfacial surface area must exist between a heat 

transfer surface and the PCM. However, while the overall effective thermal conductivity increases 

proportionally to the mass of a high thermal conductivity additive, a larger mass does not guarantee 

improved heat transfer rates. Performance is also dependent on the thermal contact resistances as well as 

enhancer morphology within the PCM. If an enhancement method has insufficient thermal contact with a 

heat transfer surface, then it will not be effective. For example, Hamada et al. [80] found that carbon 

brushes with less mass outperformed carbon fiber chips due to insufficient thermal contact with the heat 

transfer surfaces for the latter. The physical construct of the enhancement technique, i.e. brushes vs. chips 

or fins vs. porous media, allows for different heat transfer pathways. For example, the heat transfer 

pathway for a fin is mainly two-dimensional while for a porous media is three-dimensional, which 

disperses heat differently. In certain applications, one type of pathway may be more desirable than 

another and the choice of an enhancement technique should be considered. 

In the past, various approaches have been implemented as enhancement techniques such as the 

addition of fins [40], foils [81], foams or other porous media [82], particles [83] , nanoparticles [84], 

carbon structures [85] and heat pipes [86]. Other enhancement methods include macro- or micro-

encapsulation [87] or a cascaded configuration [88]. In order to improve the rates of heat transfer within 

the PCM to that beyond an individual enhancer, the combination of two or more has proven to be 

effective, depending on the type of enhancement and the particular configuration [89,90]. To illustrate the 

relative improvement in performance which can be achieved by the combination of aluminum foils and a 

heat pipe as enhancement methods, Allen et al. [91] experimentally decreased the melting and 

solidification time of a rod-enhanced PCM system in a vertical cylindrical enclosure from 200 min and 

152 min to 13 and 11 min, respectively. In another study by Robak et al. [92], a 15 % reduction in capital 

costs relative to a SHTES, was reported to be achievable by the implementation of thermosyphons in a 
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LHTES, along with a reduced overall system volume for a large scale solar concentrating power CSP 

plant. Therefore, when sufficient heat transfer enhancement techniques are implemented into PCMs, 

LHTES may be both economically comparable and capable of achieving high energy storage rates 

relative to other energy storage systems.  

1.5. Applications of TES 

 While the number of potential applications for TES is practically endless, some common 

applications will be discussed here. In general, there are two main uses for LHTES systems which are 

TES (including thermal energy recovery) or thermal management as seen in Fig. 1.9 [8]. Due to the large 

temperature fluctuations during operation, SHTES systems are limited to only TES applications. Note that 

there are many overlapping applications which may be considered for both SHTES and LHTES, or 

thermal energy storage and thermal management. However, the goal of a LTHES storage system for use 

in a thermal management application may not be to utilize the stored thermal energy but rather to reduce 

thermal fluctuations of a given system or increase heat dissipation (such as PCM integrated heat sinks). A 

few recent review papers which discuss the applications of TES include [5,13,41,58,67–69,93,94]. 

1.5.1. Thermal energy storage 

When thermal energy is available, it may be stored in the form of hot or cold thermal energy by a 

LHTES or SHTES system. An advantage of LHTES relative to SHTES is that the temperature of the 

PCM may be closer to the environment temperature thereby minimizing unwanted heat loss or gain. 

Additionally, the driving temperature of a LHTES system can remain nearly constant between a heat 

transfer surface and the PCM phase change temperature during both charging and discharging which may 

vary greatly during operation for a SHTES system. These traits along with the higher energy density 

make LHTES an attractive form of TES, particularly for portable applications which is not practical for 

SHTES. Regardless, SHTES has found many applications where storage volume and mass are not 

limiting factors. Additionally, the main advantage of SHTES is the low cost of common materials 

($0.05/kg to $5.00/kg) relative to PCMs ($4.28/kg to $334/kg) [5].  
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One of the main areas for TES is the field of solar energy which include but is not limited to high 

temperature solar power systems [9,65,95,96], solar heating / cooling [59,97], solar cooking [98,99] and 

solar greenhouses [100]. Other applications include non-solar power production [101], air conditioning 

[51,52,102], fuel cells [103], food processing [50], transportation of temperature sensitive goods [93] and 

ice storage for data center cooling [104]. Another main use for thermal energy storage is for integration 

with building materials [22,70,105]. While other TES applications exist, they will not be discussed here. 

1.5.1.1. Thermal energy recovery 

 A more specific subset of TES is thermal energy recovery in either hot or cold forms. The process 

of waste heat (coolness) recovery is typically observed by the pre-heating (pre-cooling) of an incoming 

HTF by an outgoing HTF, or other medium. This usually occurs through a heat exchanger that may 

consist of segments of the same HTF at different points in a fluid line or may be two separate entities 

(comprised as a bulk solid, liquid, gas, etc.). Note that for SHTES systems, the HTF may act as the TES 

material which is stored in a separate storage tank when not in use. Without TES, a heat exchanger only 

recovers thermal energy effectively when both the hot and cold sources are active. However, if sensible or 

latent energy is stored, then the heat exchange device may have four possible operation modes: charging 

(only the hot source is active), simultaneous charging and discharging (both hot and cold sources are 

active), storage (hot and cold sources are inactive) and discharging (only the cold source is active). Note 

that for coolness recovery units, the roles of charging and discharging consist of removal and addition of 

thermal energy, respectively, which is contrary to conventional waste heat recovery terminology [93]. 

Therefore, the function of a thermal energy recovery device is to act as a thermal buffer which increases 

the overall efficiency of a system. Some examples of LHTES systems used for thermal energy recovery 

include low grade heat recovery [106], heat pipe heat exchangers [88,107], building materials [108,109], 

automotive [12,110,111], steel industries [112–114] and air conditioning [115]. 

1.5.1.2. Thermal management 

 As previously mentioned, the larger temperature fluctuations of a SHTES system renders it less 

useful relative to LHTES and consequently, will not be further discussed. By selecting an appropriate 
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phase change temperature, LHTES can be effectively used for thermal management of a system. The 

investigation of incorporating PCMs into building materials has received much interest in recent years 

[13,22,116]. Common building materials such as wallboards, cement, brick, etc. have included 

encapsulated PCM with little impact on the structural performance while contributing greatly to thermal 

comfort levels. On a summer day, energy is added to a building by both sunlight and through the building 

envelope. Without PCM the temperature of the room would increase, however, the increase can be greatly 

reduced (depending on the PCM properties, operating temperatures, etc.) reducing the demand of a 

traditional cooling system. This increase in energy is then dissipated during the night as the outdoor 

temperatures fall below the temperature within the building, and consequently discharges the PCM. 

During winter, a similar yet reciprocal behavior is observed where energy stored during the day due to 

sunlight is used to reduce the temperature drop during the night and the demand of the heating system. 

Therefore, the maximum and minimum temperatures experienced can be reduced to a more stable average 

temperature with less fluctuation, thereby increasing thermal comfort. 

 The other main area of thermal management using PCMs includes cooling of electronics. A PCM 

can be used to extend the duration in which an electronic heat generating source can operate prior to 

reaching a maximum allowable operating temperature. Many studies in the past 10 years have been 

focused on utilizing PCMs to achieve this goal through PCM based heat sinks which are cooled by 

convection to the ambient [40,117–119]. Additional thermal management studies using PCMs include but 

are not limited to integration with clothing [120], automotive [121], spacecraft [42], fuel cells [103], 

transportation of temperature sensitive goods (food, blood, organs, etc.) [93]. 

1.6. Conclusions 

In this work, different energy storage systems with their unique advantages and disadvantages 

have been presented and discussed. While energy storage may be beneficial for a variety of systems, 

intermittent systems in particular require some type of energy storage in order for more stable operation 

that provide energy with a higher quality at the time of need. Currently, mechanical energy storage is the 

most widely used type of energy storage, including PHS and CAES, yet is limited by geographical 
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topography and mainly consists of large scale systems. Other smaller scale systems such as battery energy 

storage and LHTES have great potential to be utilized in residential applications, which may help 

alleviate the daily fluctuations experienced by power plants in the future. In general, LTHES is 

underutilized since the implementation of enhancement techniques has resolved its main drawback of 

insufficient heat transfer rates stemming from the low thermal conductivity of most PCMs. The high 

energy density, nearly isothermal operation and small temperature fluctuations experienced by a LHTES 

allows its implementation into a large variety of both small and large scale systems, as well as for 

stationary and portable applications. The lower cost of SHTES relative to LHTES has allowed its use in 

large scale power plants, however, a large system mass and volume is required due to the low energy 

storage density of SHTES materials. Overall, no single energy storage system comprises an ideal device, 

which emphasizes the need for various approaches. Hence, further research is needed to overcome the 

barriers that restrict further implementation of energy storage systems. 

Nomenclature 

cv  specific heat capacity 

E  energy 

I  moment of inertia 

Ie  electrical current 

g   gravitational acceleration 

h  height 

hsl  heat of fusion 

L  length 

Lcoil  coil inductance  

m  mass 

p  numeric constant 

q  numeric constant 

Q  heat energy 

t   time 

T  temperature 

V  volume 

X(Y)n  organic salt 

Greek symbols 

ρ   density 

ω   angular velocity 
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Subscripts 

f  final 

i  initial 

l  liquid 

m  melting 

s  solid, solidification 

Acronyms 

CAES  compressed air energy storage 

CSP  concentrating solar power 

FES  flywheel energy storage 

HTF  heat transfer fluid 

LHTES latent heat thermal energy storage 

PCM  phase change material 

PHS  pumped hydro storage 

RFC  regenerative fuel cell 

SHTES sensible heat thermal energy storage 

SMES  superconducting magnetic energy storage 

TES  thermal energy storage 
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Table 1.1. Summary of recent studies on energy storage techniques. 

Type Reference Capacity 

(MWh) 

Power 

rating 

(MW) 

Duration Power 

density 

(Wh/kg) 

(Wh/m3) 

(W/m3) 

Lifetime 

(years) 

Capital cost 

($/kW) 

($/kWh) 

Cycle 

efficiency 

(%) 

Chemical         

Pb-acid battery [4,20] Up to 48 

MWh 

Up to 20 

MW 

hours 30-50 

Wh/kg 

5-15 300-600 $/kW 75-90 

Ni-Cd battery [4,20] 46 MWh Up to 40 

MW 

hours 50-75 

Wh/kg 

10-20 1000 $/kW 60-70  

Li-ion battery  [4,20] 4–24 

MWh 

Up to 10 

MW 

hours 75-200 

Wh/kg 

5-15 1800–4100 

$/kW 

90-94 

Flow batteries         

V-redox [4,20,122] 4-40 

MWh 

1-10 

MW 

hours 20 Wh/kg 20 1950-2150 

$/kW 

<85% 

Fuel Cell         

Hydrogen PEM [4,20] - Up to 50 

MW 

days 600-1200 

Wh/kg 

5-15 6-20 $/kWh 45-65 

Electrical         

Capacitors [4,20] - Up to 50 

kW 

1 hour  20000 

Wh/m3 

~5 200-400 $/kW 

500-1000 

$/kWh 

60-70 

SMES [4,20] - ~1-100 

MW 

1 hour  ~30 Wh/kg ~2.3 200-300 $/kW 

1000-10,000 

$/kWh 

~ 97 

Mechanical          

PHS [4,20] 184 

MWh 

10 MW 

to 5 GW 

days ~30 Wh/kg >60 600-2000 

$/kW 

5-100 $/kWh 

60-90 

CAES [4,20] 250 

MWh 

 

10 MW-

1 GW 

days 2200 W/m3
 

 

>40 400-800 $/kW 

2-50 $/kWh 

70-89 

FES [4,20] 25 kWh  

 

~10 kW-

1 MW 

minutes ~30 Wh/kg ~15 250-350 $/kW 

1000-5000 

$/kWh 

90-95 

Thermal         

SHTES [29,92] 450 

MWh 

100’s 

MW 

hours  10000 

Wh/m3 

20 840-1680 

$/kW 

60 

LHTES [29,92] 450 

MWh 

100’s 

MW 

hours  26000 

Wh/m3 

20 680-1620 

$/kW 

60 
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Table 1.2. Desired characteristics of a thermal energy storage system. 

Property Desired characteristics 

Thermal aspects Uniform Tm (LHTES only) 

High hsl (LHTES only) 

Small volume change with temperature or phase change 

High thermal conductivity  

High heat transfer rates 

High energy density (ρ∙cv) 

Minimal thermal degradation with time (rates and capacity) 

Minimal temperature gradients within the system 

Minimal heat loss to the environment 

Kinetic aspects Suitable TES storage container 

No subcooling (LHTES only) 

No phase segregation (LHTES only) 

Chemical aspects Completely reversible melting/solidification processes 

Nonflammable 

Non-toxic 

Non-corrosive 

Economic aspects Inexpensive 

High energy storage efficiency (charge/discharge cycle) 

Long lifetime 

Compact design 
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Table 1.3. Common materials used in SHTES systems. 

Material Reference 
Temperature 

range (°C) 

Density, 

ρ* 

(kg/m
3
) 

Specific heat 

capacity, cp* 

(kJ/kg∙K) 

ρ∙cp* 

(kJ/m
3
∙K) 

Thermal 

conductivity, 

k* (W/m∙K) 

Cost 

($/kg) 

Solids        

concrete  [27] 200-400 2200 0.9 1870 1.5  

NaCl [27] 200-500 2160 0.9 1836 7 0.05 

cast iron [27] 200-400 7200 0.6 4032 37 0.15 

silica fire 

brick 
[27] 200-700 1820 1 1820 1.5 1.00 

sand-rock 

minerals 
[5] 200-300 1700 1.3 2210 1 0.15 

cast steel [5] 200-700 7800 0.6 4680 40 5.00 

magnesia fire 

bricks 
[5] 200-1200 3000 1.2 3450 5 2.00 

Liquids        

HITEC solar 

salt 
[27] 120-133 1990 - - 0.6 - 

mineral oil [9] 200-300 770 2.6 2002 0.1 0.30 

nitrate salts [9] 265-565 1870 1.6 2992 0.5 0.50 

sodium [9] 270-530 850 1.3 1105 71 2.00 

carbonate 

salts 
[9] 450-850 2100 1.8 3780 2.0 2.40 

silicone oil [44] 300-400 900 2.1 1890 0.1 - 

lithium salt [44] 180-1300 510 4.2 2137 38 - 

Dowtherm A [44] 15-400 867 2.2 1907 0.1 - 

Therminol 66 [44] 0-345 750 2.1 1575 - - 

*Note that the values in this table are approximate as the thermophysical properties vary with temperature.  
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Table 1.4. Comparison of common SHTES and LHTES materials with ΔT = 50 °C [46]. 

Material (phase) Reference 
Density 

(kg/m3) 

Specific 

heat 

(kJ/kgK) 

Temperature 

range (Tm) 

Latent 

heat 

(kJ/kg) 

Mass required 

for 1 MJ of 

storage (kg) 

Volume required 

for 1 MJ of storage 

(m3) 

aluminum -

sensible (solid) 
[27] 2702 1.076 < 600 °C - 186 0.069 

water - sensible 

only (liquid)  
[35] 1000 4.23 0-100 °C - 47 0.047 

water - latent only 

(liquid)  
[123] 1000 4.23 (Tm = 0 °C) 334 18 0.018 

n-octadecane -

latent only (liquid) 
[46] 774 2.16 (Tm = 27.5°C) 244 28 0.035 
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Table 1.5. Typical PCM melting temperature and enthalpy ranges [72]. 

PCM type Melting temperature 

range (°C) 

Latent heat of fusion 

range (kJ/kg) 

organic: paraffins  -15 - 100 150-250 

organic: non-paraffins 5-80 125-300 

inorganic: salt hydrates 5-137 100-400 

inorganics: non-salt hydrates 0-900 125-425 

eutectics  5 - 140 100-250 

solid-solid PCMs  20-185 25-275 
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Table 1.6. Common PCM materials. 

Type References Melting temperature 

(kJ/kg) 

Latent heat 

(kJ/kg) 

Paraffins    

octadecane [95] 27.5 °C 243.5 

RT100 [9] 112 °C 213 

RT25 [41] 24°C 164 

RT20 [41] 20-22°C 172 

FM20 [41] 20-23°C 130 

Non-paraffin organics    

A164 [9] 112 °C 306 

polyglycol E400 [8] 8 °C 99.6 

dimethyl-sulfoxide [8] 16.5 °C 85.7 

polyglycol E6000 [8] 16.5 °C 190 

biphenyl [8] 71 °C 119.2 

propionamide [8] 79 °C 168.2 

naphthalene [8] 80 °C 147.7 

erythritol [8] 118 °C 339.8 

Hydrated salts    

ClimSel C 23 [8] 23 °C 148 

STL27 [8] 27 °C 213 

S27 [8] 27 °C 207 

TH29 [8] 29 °C 188 

ClimSel C 32 [8] 32 °C 212 

STL47 [8] 47 °C 221 

STL52 [8] 52 °C 201 

STL55 [8] 55 °C 242 

PCM72 [8] 72 °C n.a. 

Non-hydrated salt inorganics    

KNO3 [124] 335 9500 

NaNO3 [5] 307 172 

AlSi12 [5] 576 560 

MgCl2 [5] 714 452 

NaCl [5] 800 492 

LiF [5] 850 n.a 

Na2CO3 [5] 854 275.7 

K2CO3 [5] 897 235.8 

KF [8] 857 452 

Metallics (wt. %, alloys)    

46.3Mg–53.7Zn  [78] 340 185 

96Zn–4Al  [78] 381 138 

34.65Mg–65.35Al  [78] 497 285 

68.5Al–5.0Si–26.5Cu  [78] 525 364 
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64.3–34.0Cu–1.7Sb  [78] 545 331 

46.3Al–4.6Si–49.1Cu  [78] 571 406 

49Zn-45Cu-6Mg  [77] 703 176 

84Mg-16Ca  [77] 790 272 

83Cu-10P-7Si [77] 840 92 

56Si-44Mg [77] 946 757 

Eutectics    

KNO3–NaNO2–NaNO3 [5] 141 275 

LiNO3–NaNO3 [5] 195 252 

MgCl2–KCl–NaCl [5] 380 149.7 

Solid-solid PCMs    

n-alkyl ammonium 

tetrachlorometallates 

[54] 37-93ºC 122-340 

high density polyethylene  [54] 127 ºC 300 

polyethylene glycol 1000-

hexamethylene diisocyanate  

[125] 19 ºC (heating cycle) 

26.3 ºC (cooling cycle) 

109 (heating cycle) 

113 (cooling cycle) 

polyethylene glycol 6000- 

hexamethylene diisocyanate 

[125] 176 ºC (heating cycle) 

177 ºC (cooling cycle) 

59.9 (heating cycle) 

47.2 (cooling cycle) 

polyethylene glycol 10000- 

hexamethylene diisocyanate 

[125] 171 ºC (heating cycle) 

173 ºC (cooling cycle) 

57.7 (heating cycle) 

48.9 (cooling cycle) 

polyethylene glycol 10000-

isophorone diiscocyanate  

[125] 166 ºC (heating cycle) 

165 ºC (cooling cycle) 

57.4 (heating cycle) 

41.2 (cooling cycle) 

polyethylene glycol 10000-

isophorone diiscocyanate 

[125] 169 ºC (heating cycle) 

168 ºC (cooling cycle) 

58.8 (heating cycle) 

46.7 (cooling cycle) 

polyethylene glycol 6000- toluene 

diisocyanate  

[125] 161 ºC (heating cycle) 

164 ºC (cooling cycle) 

57 (heating cycle) 

44.1 (cooling cycle) 

polyethylene glycol 10000- toluene 

diisocyanate 

[125] 162 ºC (heating cycle) 

162 ºC (cooling cycle) 

57.1 (heating cycle) 

46 (cooling cycle) 

n.a.: not available  
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Fig. 1.1. Energy storage types.  
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Fig. 1.2. Schematic of a typical flow battery. 
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Fig. 1.3. Schematic of hydrogen regenerative fuel cell. 
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Fig. 1.4. Schematic of a pumped hydro storage system.  
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Fig. 1.5. Schematic of a flywheel energy storage system. 
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Fig. 1.7. Schematic of a packed bed SHTES. 
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Fig. 1.7. Schematic of a solar pond. 
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Fig. 1.8. Classification of PCMs. 
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Fig. 1.9. Applications of TES.  
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Chapter 2.  Challenges and Applications of Latent Heat Thermal Energy Storage Systems 

Including Enhancement Techniques: Approach and Methodology 

Latent heat thermal energy storage (LHTES) utilizing phase change materials (PCMs), has been an 

emerging technology in the past few decades that could be a pivotal solution for the utilization of 

alternative energies. LHTES is characterized by its high energy density and isothermal characteristics 

which make it suitable for both large scale terrestrial based applications as well as for small scale portable 

devices. However, the inherently low thermal conductivity of most PCMs requires the integration of heat 

transfer enhancement techniques. Heat transfer can be increased by two main methods: increasing the 

thermal penetration depth or by increasing heat diffusion. Common enhancement techniques include 

addition of high thermal conductivity extended surfaces, nanoparticles, structures and heat pipes, as well 

as utilizing encapsulation and cascaded configurations. By combining two or more of the aforementioned 

techniques, heat transfer rates can be further improved. This work reviews the various enhancement 

techniques that have been investigated in recent years including the advantages and disadvantages along 

with the challenges and unresolved issues for implementation. 

2.1. Introduction 

A renewed interest in latent heat thermal energy storage (LHTES) technologies implementing phase 

change materials (PCMs), has been observed in the last few decades due to the demand for alternative 

energy and thermal management systems [1–3]. A phase change material operates by storing latent 

energy during charging, which is later released at the time of demand. The types of phase change 

processes that are desirable for LHTES consist of solid-liquid and solid-solid, since liquid-gas and solid-

gas experience large volume changes [4]. Since solid-solid PCMs do not have as high of latent heats 

relative to solid-liquid PCMs, only the latter will be of focus here [5].  

Solid-liquid PCMs are desirable as thermal energy storage (TES) materials since they can have a 

high energy density, nearly isothermal operation and require minimal temperature differences to facilitate 

heat transfer relative to sensible heat thermal energy storage (SHTES) materials [6]. While SHTES is a 

more mature technology relative to LHTES, a large volume and mass of a SHTES material is required 
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limiting its use for mainly large scale terrestrial based applications [7]. On the other hand, the high energy 

density of LHTES allows its range of uses to extend into portable markets, such as handheld electronics 

and vehicle systems, as well as have the potential to reduce overall volume and capital cost relative to 

SHTES systems [8]. Researchers have studied implementation of PCMs in numerous applications 

including TES [2], power generation [9], solar systems [10], waste heat recovery [11], electronic cooling 

[12], heating ventilation and air conditioning [13], thermal management of buildings [14], automotive 

[15], aircraft [16], spacecraft [17], food industries [18,19] and heat exchangers [20]. Past review papers 

that discuss the different types and applications of PCMs include but are not limited to [3,13,21–24]. 

Generally, PCMs have the potential to be beneficial in systems where excess thermal or electrical energy 

is desired to be stored or dissipated and also experiences intermittent heating and cooling periods.  

However, the real-world applications of LHTES systems are limited at best [25]. The reason being 

that most PCMs have low thermal conductivities, typically falling below about 1.5 W/mK [22]. 

Therefore, PCMs require some type of heat transfer enhancement technique to facilitate faster charging 

and discharging rates [26]. In recent years, the development of various heat transfer enhancement 

techniques has been the focus of many studies, as made evident by recent review articles [27–29]. Other 

problems encountered by PCMs may include deterioration of properties (thermal, storage and chemical) 

with successive cycling, subcooling, phase segregation, corrosion, incongruent melting, large volume 

changes, and high cost [8]. While there are numerous low temperature PCMs, a limited number of 

commercially available high temperature PCMs exist which limit the technology, especially for solar 

thermal power plants [10]. Additionally, a particular PCM, enclosure, heat transfer enhancement and heat 

exchanger must all be chemically compatible. All of these issues must be overcome prior to more 

widespread usage of LHTES systems. 

In the past, numerous investigators have completed comprehensive reviews of PCM materials and 

applications [1,8,21–24,26,30] in which solid-liquid PCMs are separated into organics (such as paraffins), 

inorganics (such as salt hydrates) and eutectics. However, few have focused on the various approaches 

utilized to increase the heat transfer rates in PCMs [27,29]. In this work, recent investigations involving 
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PCM heat transfer enhancement techniques will be reviewed and each method will be thoroughly 

analyzed. As with the extensive number of PCMs for potential use, there also exist a significant variety of 

heat transfer enhancement techniques, which will be separated into several classifications. Each 

enhancement technique will be evaluated based on its performance and challenges along with its 

opportunities for improvement. However, it should be noted that there are no standard metrics for 

evaluating a specific enhancement technique which makes a direct comparison relatively difficult. 

Regardless, the reported improvements and challenges associated with the implementation of a specific 

technique will be presented. 

2.2. Numerical modeling of PCMs 

One of the major challenges associated with the mathematical modeling of a phase change process is 

to accurately represent the location of the solid-liquid interface. The moving boundary of the solid-liquid 

interface is accompanied with the latent heat absorption (during melting) or release (during solidification) 

and a sharp variation in the thermophysical properties of the liquid and solid PCM. Multi-dimensional 

configurations in real applications and the effect of natural convection in the molten PCM are additional 

physical phenomena which add to the complexity of the problem.  

Numerical modeling schemes are separated into two major categories: deforming grid and fixed grid 

schemes [31]. The deforming grid schemes utilize a transformed grid to describe the solid-liquid 

interface. The grid density may be adapted to be higher near the solid-liquid interface and lower 

elsewhere in computational domain. However, the deforming grid scheme is more challenging to 

implement than the fixed grid scheme. In the latter, a fixed grid covers the entire computational domain 

including the solid, liquid and mushy (containing solid and liquid) regions of the PCM. Additionally, the 

solid-liquid interface is accounted for using an enthalpy-temperature relation. 

There are three different methods to solve the phase change problem using a fixed grid scheme 

[31]: enthalpy method [32–34], the equivalent heat capacity method [35,36], and the temperature 

transforming model (TTM) [37–39]. It was reported that when using the enthalpy method, the 

temperature at a typical grid point may oscillate with time and that the equivalent heat capacity methods 
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suffered in selecting the grid size and time step, as well as often produced physically unrealistic 

oscillatory results. The TTM encountered inconsistencies [40] which led to unreasonable results or 

solution divergence. Also, different methods were presented to force the velocities to be negligibly small 

in the solid region of the PCM during phase change, classified as the [40–42]: source term, switch-off, 

ramped source term, ramped switch-off and variable viscosity methods. Each of these methods employed 

a large value (e.g. 10
30

) in their algebraic equations to approximate the large viscosity of a solid or to 

scale the solid velocities, which results in numerical singularities and difficulty in solution convergence 

and accuracy. Straightforward methods, such as introducing a solid velocity correction, are commonly 

used to resolve this challenge [43–45]. In one such study, Shimin et al. [46] integrated a pressure 

decoupled solid-velocity correction into the TTM and determined that it provided a more robust solution 

compared to other methods such as: source term, switch-off, ramped source term, ramped switch-off and 

variable viscosity methods. 

Advantages 

 Practical engineering correlations may be developed by the results of numerical modeling. 

 Comprehensive parametric studies may be performed by simply changing parameters and 

material properties.  

 Numerical modeling is particularly attractive for high temperatures applications since 

experiments may be more difficult to perform and have a higher potential for safety hazards. 

 Modeling is much more cost effective compared to experimental measurements. 

 User friendly software may commonly be utilized for modeling. 

In terms of detailed numerical modeling: 

 Fixed grid schemes are relatively simple to implement compared to adaptive or moving grid 

schemes. 

 The TTM does not suffer from temperature oscillation or unrealistic results compared to other 

methods such as enthalpy and equivalent heat capacity. 
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 TTM is not as sensitive as other phase change models in selecting grid size and time steps.  

 Computational times may be reduced by orders of magnitude using the TTM with the standard 

under relaxation version of the consistent update technique algorithm. 

 Integrating the TTM with the pressure decoupled solid-velocity correction [46] provides a more 

robust solution compared to the source term, switch-off, ramped source term, ramped switch-off 

and variable viscosity methods.  

Disadvantages/Challenges 

 Adaptive or moving grid schemes are relatively more difficult to implement compared to fixed 

grid schemes. 

 The enthalpy and equivalent heat capacity methods may suffer from temperature oscillation or 

unrealistic results. 

 The equivalent heat capacity method may also suffer for selecting the grid size and time step. 

 The current TTM is for pure PCM (constant phase change temperature) modeling, however, it 

must be modified for PCMs comprised of a mixture of components with varying phase change 

temperatures. 

 The enthalpy method was widely used for PCM modeling, even to solve benchmark problems, 

however, it was reported in the literature that this method suffers from temperature oscillation. 

 The current TTM is not capable of predicting the shape of the dendrites for the PCM during the 

solidification.  

 The TTM is limited for a fixed grid approach, not a moving boundary approach. 

Unresolved issues 

 For studies involving PCM melting in a 2D computational domain heated from below, most 

investigators neglected the 3D effect of Benard cellular convection flows which exists in the 

molten PCM at early stages of melting. 
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 For the fin-enhanced PCM configurations, most investigators neglected the 3D effects present at 

the fin tips, even for 2D computational domains 

 An innovative method is needed to model the PCM expansion or contraction with a fixed grid 

approach since the moving boundary method is relatively complicated. 

 In most applications, the turbulent nature of the natural convection currents is present which is 

more time consuming to model relative to laminar flows. Therefore, developed correlations are 

needed for the effects of turbulent flow. 

2.3. Enhancement techniques 

In the past, researchers have studied a myriad of enhancement techniques which aim to increase the 

overall heat transfer rates within a PCM, as reported in [1,13,21,27,29]. In this work, the various methods 

are categorized as: extended surfaces (fins or foils), nanoparticles, structures (foam, expanded graphite 

(EG)), heat pipes (HPs) or thermosyphons (TSs) (and other reflux systems), encapsulation (macro and 

micro/nano) and cascaded arrangements as presented in Fig. 2.1. The improved heat transfer mechanism 

generally consists of increasing either the thermal penetration depth or heat diffusion within a PCM. 

Increasing the thermal penetration depth is a necessity for utilizing the PCM farther from the heat source 

while thermal diffusion is more localized to the heat transfer surfaces (HTSs). Enhancement methods 

such as extended surfaces and heat pipes increase the thermal transport capabilities within the PCM to 

emulate a HTS far from the original heat sink or source. Other enhancements such as the addition of 

particles and structures affect the effective thermal conductivity of the enhancer-PCM composite, thereby 

increasing heat diffusion. Since increasing either the thermal penetration depth or the heat diffusion in a 

PCM system are each effective, their combination may allow for further improvement beyond the scope 

of each individually.  

While it is intuitive that a higher effective thermal conductivity increases heat transfer, it does not 

guarantee improved performance. This is due to the morphology of the enhancement method which may 

include fins, foils, foam, EG, matrices or nanoparticles which is not taken into account into calculation of 

the effective thermal conductivity [47]. Therefore, if the same high thermal conductivity material is 



62 

 

implemented as two different forms into a PCM, the improvement in heat transfer performance may be 

drastically different. For example, Hamada et al. [48] observed that including carbon brushes was more 

effective at increasing the overall heat transfer rates than adding fiber chips, even though the effective 

thermal conductivity using the chips was larger than that of the brushes. It was determined that the carbon 

fiber brushes had superior contact with the HTS relative to the chips which allowed for better 

performance.  

It should be noted that integration of foreign objects into the PCM may significantly suppress the 

positive contribution of natural convection on the melting process and has the potential to actually 

decrease the melting rates. For example, Zhao and Wu [49] found that while porous materials (high 

thermal conductivity foams, EG, etc.) can increase conduction heat transfer during melting, it may not 

outweigh the suppression of natural convection in a completely liquid domain, thereby decreasing the 

performance of the PCM system post melting. Therefore, care must be taken when choosing an 

enhancement technique to ensure that all domains of energy storage (completely solid PCM, presence of 

both solid and liquid PCM, and completely liquid PCM) are considered. Regardless of the enhancement 

method, it is of the upmost importance that the thermal contact resistance at the interface between the 

HTS and an enhancer be maintained at a minimum. If separation occurs between the enhancer and HTS 

after successive cycling, system failure may transpire. However, during solidification, natural convection 

has negligible impact, hence, any type of enhancement technique increases the solidification rate. Overall, 

the ideal enhancement technique would most effectively utilize the mass of the enhancer while occupying 

a minimal volume to maintain a high storage density of the LHTES system.  

2.3.1. Extended surfaces 

The addition of extended surfaces, including fins and foils, is one of the simplest methods used to 

increase the surface area of the HTSs in thermal systems. Fins typically comprise geometries such as 

rectangular, cylindrical (pin fins), or cones and are relatively thicker and more rigid compared to foils. 

Foils on the other hand, are defined here as thin fins with thicknesses (t) on the order of magnitude of a 

few microns to below approximately t = 0.1 mm. The flexibility of foils also resolves the stress related 
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problems induced by the PCM volume expansion and contraction with phase change [50]. Another main 

difference between foils and fins arises from the method of attachment to a HTS. Annularly shaped foils 

may be easily manufactured and installed with existing technologies, such as a press-fit method. This is 

contrary to fins which are generally fixed by a more permanent means, such as welding or adhesive 

epoxies. While it is possible to attach foils to a planar surface, it increases the cost and difficulty of 

installation which may not be desirable. The final major attribute which distinguish the two enhancement 

techniques is that foils can have a much smaller pitch for the same metal volume fraction, thereby 

changing the intended form of enhancement, from increasing the thermal penetration for fins to increasing 

the thermal diffusion with foils. 

As previously discussed, the effective thermal conductivity of foils and fins may be calculated to 

be identical if the same material and porosity are implemented [31]. However, different melting and 

solidification rates would occur due the varying heat transfer mechanisms of each method. The smaller 

foil pitch would result in mainly conduction-dominated heat transfer, while the relatively larger fin 

spacing results in some degree of natural convection between fins for a fixed enhancer volume. Hence, 

fins are preferred for increasing the thermal penetration depth while foils are preferred for increasing heat 

diffusion.  

2.3.1.1. Fins 

In LHTES, the role of different fin configurations in enhancing performance has been studied 

extensively by various researchers. The two main devices for transferring heat between a PCM are a heat 

transfer fluid (HTF) (used in water heaters, power plants, waste heat recovery systems, etc.) or a hot or 

cold boundary wall (electronic cooling, etc.). The location of the fins in systems where there is no HTF is 

obviously on the PCM side. But if the PCM transfers heat with a HTF, the location of the fins is generally 

based on the relative heat transfer coefficient. This is because, the efficiency of a fin increases with a 

decrease in the heat transfer coefficient [51]. In most systems, the heat transfer coefficient on the PCM 

side is less than that on the HTF side, and thus it is a general practice that fins are on the PCM side. 

However, it is important to understand whether or not the presence of fins actually provides an 
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appreciable performance enhancement. This improvement depends on the fin properties, PCM properties, 

fin-PCM configuration and thermal boundary conditions. Fins should have high thermal conductivity and 

good corrosion resistance as well as occupy minimum volume and mass. Moreover, the heat transfer 

mechanisms during phase change depend upon the configuration as well as the orientation of the system 

and fins. The proceeding discussions in this section deal with the heat transfer mechanisms and the role of 

fins in determining the modes of heat transfer during melting and solidification separately. A summary of 

experimental and numerical investigations involving fins in recent years are presented in Table 2.1 and 

Table 2.2, respectively. The advantages, disadvantages and unresolved issues for fin type systems are as 

follows: 

Advantages 

 Fins are a simple yet effective method to provide a significant degree of thermal penetration into 

a PCM.  

 The techniques regarding the implementation of fins in both experiments and modeling are well 

established. 

 The manufacturing techniques for fins are well established. 

 Fins are available to be constructed from a wide variety of materials. 

Disadvantages/Challenges 

 Typically requires some type of attachment method, such as welding or a thermal adhesive, which 

increases the manufacturing costs. This may also induce undesired thermal contact resistances. 

 The presence of fins may significantly suppress natural convection in the molten PCM. 

 The fin efficiency decreases as the length of the fins increase. This issue becomes more 

exaggerated for fins with lower thermal conductivity such as those typically used in higher 

temperature LHTES systems (stainless steel or more expensive nickel and super alloys). 

Unresolved issues 
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 Stress issues related to PCM expansion and contraction during phase change may cause fractures 

at the location of attachment, especially for high temperature systems in which the fin itself also 

expands and contracts. 

 In high temperature environments, common high thermal conductivity materials such as copper 

and aluminum may not be used and lower thermal conductivity materials must be utilized. 

 While a greater fin thickness can achieve higher heat transfer rates, it also occupies more volume 

and mass which is detrimental to the overall energy storage capacity. Therefore, optimization 

should be carried out to obtain the preferred fin specifications. 

2.3.1.2. Foils 

As discussed previously, foils are thin (t < 0.1 mm) flexible fins which generally have a smaller 

pitch. Since melting in a foil-PCM composite is mainly conduction dominated, the enhancement in heat 

diffusion must outweigh the suppression in natural convection. Hence, the attachment method of the foils 

to the HTS must maintain contact after successive cycling to ensure that a minimal thermal contact 

resistance exists. Since a press-fit method is most likely the most economical approach to attach foils to a 

tubular surface, this consideration would need to be extensively studied for a foil-PCM system. Since 

PCMs may undergo significant volume changes, foils may experience movement along the HTS. This 

movement is not ideal as it may result in a larger contact resistance after successive cycling and may be 

detrimental to long term system performance. One proposed method to mitigate this problem is to 

implement a foil shape with a cutout at the foil root where it contacts the HTS to act as a pressure relief 

slot. This would facilitate a pathway for liquid PCM to flow between foils along the HTS towards the 

location of lowest pressure, such as compressible air at the top of an enclosure (which is common in PCM 

systems). Methods such as this may be essential to avoid PCM leaching into the contact joint between the 

HTS and the foil and expanding, thereby creating a gap between the foil root and the HTS which would 

increase the thermal contact resistance. Therefore, further study regarding the structural analysis of foil-

PCM systems is suggested for optimal foil design.  
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A summary of studies involving foil-PCM systems can be seen in Table 2.3. An incredible 

improvement in heat transfer was achieved for solidification of water as a PCM by Sugawara et al. [52]. 

The authors studied the effect of adding copper foils (t = 0.035 mm) onto a HTF tube and found that the 

total solidification time can be reduced to an eighteenth that without the foils. It was also reported that the 

foils had a larger impact on melting than on solidification, however, this was most likely attributed to the 

lower thermal conductivity of the liquid water vs. ice. As the thermal conductivity of a PCM decreases, a 

higher achievement in performance is capable of being achieved by a specific enhancer. In another study 

by Sugawara et al. [53] copper foils of the same thickness were utilized in a different manner in which the 

foils were not in direct contact with a HTF tube for all but one case studied. However, this is an 

ineffective manner to utilize foils as a large thermal resistance is introduced by the PCM filling the space 

between the HTF tube and foil root.  

From a fundamental heat transfer perspective, a fin, or foil, may not be useful if the resistance of 

the fin is greater than that of the base [51]. While the other studies presented in the table specify the 

enhancement as a “foil”, the “foil” thickness encountered in each is 0.5 mm or greater which is too thick 

to be flexible, therefore they are more like fins and will not be further discussed here. The advantages, 

disadvantages and unresolved issues for PCM systems involving foils are as follows: 

Advantages 

 Foils are effective at increasing the effective thermal conductivity (heat diffusion) within the 

PCM. Only a small volume fraction of foils (~1%) is needed to significantly increase the melting 

and solidification rates. 

 Relative to other enhancement techniques which increase thermal diffusion within the PCM, foils 

may be the most effective since it comprises the most direct heat transfer pathway that is 

relatively orthogonal to the HTS. 

 Similar to fins, the technologies for manufacturing foils are well developed and the installation 

methods such as press-fitting may be achieved in a cost effective manner for tubular surfaces 

compared to other methods. 
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 A large variety of inexpensive high thermal conductivity materials are available for production of 

foils. 

 With the same effective porosity, foils affect a much larger volume of PCM due to a larger 

surface area density than fins. 

 Foils minimize the stress issues arising from the PCM volume expansion and contraction during 

phase change. 

Disadvantages/Challenges 

 With a press-fit method of installation, a thermal contact resistance between the HTF and foil root 

may present itself after successive cycling. 

 Difficulties may arise for installation on non-tubular surfaces. 

 Foils may significantly suppress natural convection due to a small foil pitch with a small spacing 

between foils. 

 Relative to fins, foils have low structural strength which may limit their practical length. 

 The effectiveness of a foil decreases with length due to its relatively thin structure. 

 Due to small thicknesses, foils may be susceptible to corrosion. 

Unresolved issues 

 Optimal foil shapes as well as long term structural and thermal stability is yet to be investigated. 

 In high temperature environments, common high thermal conductivity materials such as copper 

and aluminum may not be used and lower thermal conductivity materials must be utilized.  

2.3.2. Nanoparticles 

The addition of high thermal conductivity nanoparticles to PCMs has attracted much attention for 

increasing the effective thermal conductivity in the last decade. Numerous nanoparticle types including 

graphite nanofibers, multi-walled carbon nanotubes, and graphite nanoplatelets, metals such as Al, Cu, 

Ag, and metal oxides including Al2O3, CuO, MgO and TiO2, among others, have been explored. Four 

major factors affect the increase in heat diffusion by the addition of high conductivity nanoparticles to the 
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PCMs and consist of: type, concentration, geometry and long term stability within the PCM. Addition of 

nanoparticles to the PCM forms a mixture whose thermophysical properties are different than those 

related to the base PCM. For example, the addition of nanoparticles results in an increase (decrease) in the 

effective thermal conductivity and viscosity (latent and specific heats) of the nanoparticle-enhanced PCM. 

Therefore, the enhancement in conduction within the nanoparticle-enhanced PCM must outweigh the 

reduction in natural convection and heat storage capacity. 

As shown in Fig. 2.2 and adopted from Valan Arasu et al. [54], nanoparticle dispersion has a much 

more profound effect on heat transfer enhancement during the solidification as compared to melting. This 

is expected regarding the suppression of natural convection within the molten PCM due to the increased 

viscosity of the liquid PCM. Hence, the improvement in conduction heat transfer must outweigh the 

suppression in natural convection in order for the addition of nanoparticles to be viable enhancement 

technique. As the nanoparticle concentration increases, the viscosity also increases in which case this 

issue is of greater importance.  

The most important challenge associated with nanoparticle-enhanced PCMs is the long-term 

stability of the suspension after multiple charge-discharge cycles. Most of the investigations on 

nanoparticle-enhanced PCMs are performed for a relatively short period of time and a limited number of 

melting-solidification cycles; hence, the long-term stability of these nanoparticle-enhanced PCMs has not 

yet been addressed. Moreover, most of the investigations to date are concerned with low temperature 

PCMs, mainly paraffin and deionized water, and the effect of nanoparticle addition to high temperature 

PCMs remains to be addressed. A recent review of the theoretical and experimental studies on 

nanoparticle-enhanced PCMs for LHTES applications has been presented by Khodadadi et al. [55]. 

Recent investigations involving the addition of nanoparticles into PCMs are presented in Table 2.4. To 

summarize, the advantages, disadvantages and unresolved issues involving LHTES systems with 

nanoparticle-enhanced PCMs are as follows: 

Advantages 

 Increases the effective thermal conductivity (heat diffusion) of the nanoparticle-enhanced PCM. 
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 May be easily added to any LHTES without adding complexity to the storage unit. 

 Nanoparticles serve as nucleating agents during solidification which may significantly reduce the 

degree of subcooling.  

 Nanoparticle addition comprises a high surface area density with the PCM.  

Disadvantages/Challenges 

 Long-term stability of nanoparticle-enhanced PCMs is questionable, especially pertaining to 

agglomeration and sedimentation of particles.  

 Relatively high thermal resistances exist between distinct particles as well as with the HTSs, 

hence farther from the HTSs, the addition of nanoparticles may not be effective. 

 Addition of nanoparticles may significantly increase the viscosity of the nanoparticle-enhanced 

PCM relative to the pure PCM. Hence the increase in the effective thermal conductivity should 

outweigh the suppression in natural convection heat transfer. 

 The latent heat of fusion of the nanoparticle-enhanced PCM is usually reduced relative to the pure 

PCM. However, this decrease may be small as the mass fraction of nanoparticles is usually less 

than 10 wt%. 

Unresolved issues 

 Performance of the nanoparticle-enhanced high temperature PCMs has not been addressed in 

literature. 

 More research is required to identify the effect of nanoparticle addition on the PCM properties 

such as melting temperature, viscosity, and latent heat of fusion. 

 The appropriate combination of particle thermal conductivity and particle mass fraction is 

important and needs to be investigated to enhance the performance of the LHTES system. 

2.3.3. High thermal conductivity structures 

Relative to adding particles that may experience agglomeration after time, addition of rigid 

structures made from materials of high thermal conductivity, such as copper, aluminum and carbon, can 
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resolve this problem while also increasing heat transfer rates within PCMs [56]. While there exist many 

high thermal conductivity structures which have been studied in the past, such as carbon brushes [57], 

only those studied in more recent years will be presented here. Typical structures that have been utilized 

for enhancing heat transfer within PCMs are presented in Table 2.5 and include porous media (matrices, 

foams, expanded graphite, wools) and metal matrices. In general, structures are relatively rigid, 

constructed to form one piece and usually contain larger enhancer volume fractions than other 

enhancement techniques such as nanoparticles.  

In all the structures discussed here, an increase in the effective thermal conductivity of the 

enhancer-PCM composite is achieved along with a high surface area density. The performance 

enhancement is dependent on both the porosity and material, relating to the effective thermal conductivity 

of the matrix. Although lower porosity values lead to a higher effective thermal conductivity, it also 

reduces the contribution of natural convection in the molten PCM on the overall melting rate. As 

previously discussed, the calculation of effective thermal conductivity is not dependent on the structure 

morphology, therefore, one structure made from the same material may be more effective than another. 

The main disadvantages of structures include the difficulty of attachment to an HTS and the random 

orientation of the struts or fibers as opposed to straight fins. Hence, in numerical studies the thermal 

conductivity is commonly estimated by assuming that approximately 1/3 of the struts are oriented in any 

orthogonal direction [58]. This is not beneficial as the pathway for heat transfer consists of a tortuous 

structure which increases the effective length of a strut as well as significantly suppressing natural 

convection. In order to minimize the thermal resistances within the structure, the metal structure is desired 

to be distributed uniformly and aligned parallel to the desired direction of heat flow [27]. 

Due to non-planar surface of most high thermal conductivity structures, attaching the device to an 

enclosure may be more difficult. If the attachment method fails for some reason then both natural 

convection and conduction would be suppressed and may cause system failure. Other factors which 

should be noted for high thermal conductivity structures integrated into PCMs is that (i) the efficiencies of 

the structure decreases with distance from the HTS [51], (ii) as pore sizes decrease in a porous media, the 
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entrapment of gases may occur thereby decreasing the storage capacity and (iii) anisotropy and structural 

discontinuities may exist potentially resulting in hot spots, such as for EG [59]. The advantages, 

disadvantages, and unresolved issues for embedding high thermal conductivity structures into PCMs are 

as follows: 

Advantages 

 High thermal conductivity structures increase the effective thermal conductivity (heat diffusion) 

in PCM systems. 

 High surface area densities may be achieved with porosities reaching up to 0.98. 

 Structures may be manufactured to unique geometries which may be difficult for extended 

surface type enhancements. 

Disadvantages/Challenges 

 Structures may significantly suppress or even eliminate natural convection in the PCM depending 

on the effective pore size of the structure. 

 The attachment method of a structure to a HTS may be difficult, especially for non-planar 

morphologies. Hence, a thermal contact resistance may exist at the location of attachment.  

 For structures with small pore sizes, such as foams and EG, air entrapment may arise which 

decrease the performance of the storage system. 

 Manufacturing costs may be significantly higher relative to other methods, and the choice of 

materials may be limited. 

 The effectiveness of the structure decreases with increasing distance from the HTS. 

 The tortuous morphology of structures, such as foams, may result in less effective heat transfer 

with relative to other methods such as foils. For typical structures, heat transfer is three-

dimensional relative to two-dimensional heat transfer for foils. 

Unresolved issues 
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 The appropriate methods for attaching distinct structures to a HTS, such as EG, to effectively 

transfer heat from a HTS to the PCM remain to be determined.  

2.3.4. Heat pipes, thermosyphons and reflux systems 

It is well known that heat pipes (HPs) and thermosyphons (TSs) can have high effective thermal 

conductivities which have led to their use in LHTES systems. HPs, TSs (also known as wickless HPs) and 

other reflux systems operate by utilizing a working fluid which undergoes evaporation and condensation 

at the hot and cold sections, respectively. Reflux systems differ from HPs and TSs in that the evaporation 

and condensation of an internal working fluid occurs directly on the HTF tubes, which are located within 

the reflux system, rather than within a HP or TS and subsequently transferred to the HTF. Since the 

internal working fluid is maintained in a reduced pressure environment, the liquid-vapor phase change 

process can occur at reduced temperatures, allowing use of fluids like water at or below room temperature 

[60]. The presence of a wick in a HP or reflux system allows the liquid working fluid to be pulled towards 

an evaporator which is located away from the pool of working fluid (that is typically positioned at the 

lowest region of a HP due to gravity). The integration of an internal working fluid within a HP, TS or 

reflux system allows for efficient operation in which the thermal conductivity may greatly exceed that of 

similarly-dimensioned solid materials [60]. 

Utilizing HPs is one approach to reduce the relatively high thermal resistance posed by the PCM. 

Sharifi et al., 2012 [37] numerically simulated the melting of a PCM that is contained in a vertical 

cylindrical enclosure, heated by a concentrically-located HP. The melting rate for the HP-enhanced case 

is compared to that induced by heating from an isothermal surface and with a solid rod or a hollow tube 

with the same exterior dimensions. The melting effectiveness was defined as the ratio of the PCM liquid 

fraction induced by an isothermal surface, HP or tube to the liquid fraction of a rod-enhanced system. 

Figure 2.3 shows the time histories of the effectiveness for isothermal condition, the HP, and the tube for 

one case study. As can be seen from this figure, the effectiveness for the HP case is above unity, 

indicating an improved heat transfer performance relative to the rod-enhanced case. The upper limit of 

performance is represented by an isothermal surface (with identical temperature to that of the HP 



73 

 

evaporator) while the lower limit for an ineffective HP is a tube which has slightly lower performance 

relative to the rod-enhanced case. 

Overall, HPs make excellent candidates for improving heat transfer in PCMs. The only main 

disadvantage of adding HPs/TSs to PCMs is the cost and the possibility of failure, however, the cost of a 

HP or TS may be less than that of a typical extended surface due to the lesser amount of bulk material 

needed for the HP or TS. Also, the failure of a single HP or TS has little effect on the overall performance 

of an LHTES with many HPs/TSs. Some studies involving HPs, TSs or other reflux systems are presented 

in Table 2.6 and Table 2.7 while typical advantages, disadvantages, and unresolved issues are as follows: 

Advantages 

 Heat pipes and thermosyphons are by far the most effective means to increase the thermal 

penetration depth in PCM systems. The effective thermal conductivity of a HP or TS can greatly 

exceed that of a similarly dimensioned solid material. 

 Large amounts of heat can be transferred through a small cross sectional area over great 

distances. 

 A variety of HP/TS shapes are available. 

 A large variety of materials for the HP wall, wick and working fluid allow for a vast range of 

operating conditions. 

 HPs/TSs are highly reliable, durable and have long lifetimes. The failure of individual HPs/TSs 

has little impact on the overall system performance. HPs have been reported to show negligible 

deterioration after 13+ years [61]. 

 Relative to extended surfaces, their performance does not significantly deteriorate by increasing 

their length. 

 The presence of a wick allows HPs to effectively operate in any orientation. 

 If TSs are implemented, then one directional heat transfer may be utilized which may be 

advantageous for certain systems. 



74 

 

Disadvantages/Challenges 

 The method for attaching a HP/TS to a HTS or enclosure may be challenging which may induce 

thermal contact resistances. 

 Selecting compatible materials for the HP wall, wick and working fluid, as well as the PCM, heat 

source and sink and the enclosure is an issue which must be addressed for each system. This may 

be a more challenging for high temperature LHTES systems. 

 Performing both melting and solidification with only one set of TSs is challenging. Hence, TS-

assisted LHTES systems require either multiple HTF channels or sets of TSs (for charging and 

discharging). 

 If a HP/TS fails it may need to be replaced. 

 The limitations pertaining to HPs/TSs, such as the sonic and boiling limits among others, may 

limit the performance of a PCM system involving HPs/TSs.  

 Frozen startup, referring to an initially solid HP/TS working fluid, may cause some problems 

during the onset of operation with an initially cold HP/TS. 

Unresolved issues 

 The utilization of a thermal network model for a HP/TS-enhanced PCM system requires the effect 

of the vapor pressure drop to be considered for a more comprehensive analysis. 

 Suitable HP/TS working fluids for intermediate temperature applications in the range of 200 °C 

to 400 °C remain to be adequately identified. 

 Since welding of HPs/TSs is challenging due to the superior heat dissipation of HPs/TSs, 

alternative technologies for assembling HP/TS-enhanced LHTES systems must be developed. 

2.3.5. Encapsulation 

Encapsulation, or enclosing, a PCM inside a shell material has been extensively studied for LHTES 

systems due to its characteristically large surface area density. Length scales for encapsulation are 

classified as macro ( >1mm), micro (1 μm – 1 mm), and nano (1 nm – 1 μm) [62]. While the main 
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purpose is to encase the PCM, encapsulation can resolve the problem of PCM expansion and contraction 

by allowing for it to occur in a minimum volume [29]. For lower temperature (< 200 °C) applications, a 

flexible shell material (typically plastic) may be utilized. However, as the operating temperature increase, 

the available materials may be more limited, in which a rigid shell is general implemented. When a non-

flexible shell is implemented, the fill ratio of PCM should not exceed 80% in order to withstand the 

pressure variation during phase change [63]. 

Typically, encapsulation is achieved by either physical or chemical manufacturing methods as 

described in [64]. However, chemical methods are required for smaller capsule sizes and may contain 

more consistent shell structures. The shapes of the encapsulated PCMs can vary including spheres, 

cylinders and rectangular prisms among others, however, spheres are more common for micro- or nano-

encapsulation.  

Encapsulation may provide a rather simple design solution that can be applied to a wide range of 

PCMs and operating temperatures by selecting chemically compatible PCMs and shell materials. 

Important design factors for macro-encapsulated systems include the effect of capsule size, HTF inlet 

temperature, HTF mass flow rate and the thermal conductivity of the materials [62]. Generally, as the 

diameter of the capsule decreases, heat transfer rates increase since the interfacial surface area between 

the HTS and PCM increases. Likewise, as the temperature difference between the HTF and the PCM 

melting temperature as well as the mass flow rates increase, the heat transfer rates also increase. In a 

numerical study by Karthikeyan et al. [65], the HTF inlet temperature was reported to have a greater 

effect than the latter and is presented in Fig. 2.4. In the figure, it may be deduced that an increase in the 

HTF temperature from 67 °C to 80 °C can reduce the charging time by approximately 60%. 

While it is ideal to have a metal shell due to high thermal conductivity and strength, manufacturing 

processes limit its use as the size decreases generally resulting in non-metallics used for micro- or nano-

encapsulation. One of the major challenges is the high cost of encapsulation for PCMs, while others 

include the reduction in performance over successive thermal cycles, change in properties as length scale 

decreases and a completely sealed shell to eliminate leaks.  
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Common building materials have been used for both macro- and micro-encapsulation such as 

masonry, concrete, gypsum and others. By encapsulating PCM into the walls of a building, energy 

savings and improved thermal management can be achieved such as reducing maximum room 

temperatures and humidity by approximately 4 °C and 16%, respectively in Shenzhen, China [66]. For 

example, Foran and Wu [67] reported that microencapsulation of PCMs into gypsum wallboards is one of 

the more attractive and efficient methods for utilizing microencapsulation of PCMs. Another common 

area of study, which is still in the development stage, is direct use of microencapsulated PCMs into an 

HTF, referred to as a slurry [68]. In this way, the heat exchanger between the PCM and HTF is eliminated 

and a high surface area density is achieved. With regards to macro-encapsulation, the most common 

configuration is a packed bed in which the PCM is contained in spherical capsules over which an HTF 

flows [69]. The relevant experimental and theoretical investigations concerning the encapsulated PCM 

systems are presented in Table 2.8 and Table 2.9, respectively. Advantages, disadvantages, and 

unresolved issues for the encapsulation of PCMs include: 

Advantages 

 A high degree of thermal penetration into a packed bed may be achieved by encapsulation. 

 High surface area densities may be achieved, especially for micro-encapsulation. 

 A large variety of sizes (with length scales on the order of a few micrometers to a few 

centimeters), shapes (spherical, cylindrical, etc.) and materials may be utilized. 

 Encapsulation may minimize the problems related to PCM expansion and contraction. 

Disadvantages/Challenges 

 Compatibility between the PCM, shell material and any other secondary medium may be 

challenging. 

 If the thermal resistance within the PCM itself is large, encapsulation may not significantly 

increase heat transfer rates, especially for larger capsule sizes. 

Macro-encapsulation 
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o Higher possibility of leaks. 

o High pressure drops for the HTF along flow direction. 

o The driving temperature decreases with HTF flow direction. 

o Systems generally have lower porosities for a packed bed of PCM-filled capsules which 

increases the overall system volumes. As the porosities decrease, the total volume and 

pressure drop also increase. 

Micro- and nano-encapsulation 

o Micro- and nano-encapsulation may weaken the structural properties of a substrate 

material. 

o Subcooling may present itself as the length scale decreases for some PCMs. 

Unresolved issues 

 Erosion of the thin walls in micro-encapsulated PCMs may reduce the system lifetime. 

 Manufacturing of micro- and nano-encapsulated PCMs may be difficult, particularly for 

controlling the internal void fraction and PCM mass. 

 Thermal stresses exist in the tank wall and capsule shell due to system temperature gradients 

along the tank. 

2.3.6. Cascaded 

In systems involving HTFs, employing a single PCM results in both a monotonically decreasing 

HTF temperature and heat flux between the HTF and PCM in the direction of flow. This undesirable trait 

may be resolved by cascading multiple PCMs so that the melting temperatures decrease (increase) in the 

direction of flow during melting (solidification). The underlying idea is to maintain a more uniform 

spatial temperature difference between the HTF and the PCM. Thus, during melting (solidification) the 

PCMs with relatively higher (lower) melting temperature are positioned in an upstream region. It has been 

postulated that a more uniform temperature difference between the HTF and the PCM in a cascaded 

configuration improves the exergy efficiency and heat transfer rates in LHTES systems. However, 

contradicting results have been reported with regard to the possibility and the extent of exergy efficiency 
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and heat transfer enhancement achieved by using cascaded configuration [70–72]. In general, it can be 

said that the heat transfer and exergy efficiency enhancements achieved by using multiple PCMs in a 

cascaded configuration are not as significant as suggested by some early lumped capacitance models. 

Moreover, any potential improvement in heat transfer and/or exergy efficiency strongly depends on the 

precise selection of the melting point and relative portion of each PCM in the cascaded system. This poses 

another limitation to this method as identification of a practical PCM to match the calculated optimal 

melting temperature may be challenging. Regardless, cascaded PCM configurations allows for a more 

favorable heat flux between the PCM and the HTF. As shown in Fig. 2.5 and adopted from Shabgard et 

al. [72], the performance of a cascaded LHTES system lies between that of two single-PCM LHTES 

systems with the lowest and highest melting temperatures of the cascaded system. Table 2.10 presents the 

recent investigations on utilizing a cascaded PCM configuration into LHTES systems while some pros 

and cons as well as unresolved issues include: 

Advantages 

 Cascaded PCM configurations allow for a more favorable heat flux along the direction of the 

HTF flow.  

 Potentially, less fluctuation for the HTF outlet temperatures over time can be provided by a 

cascaded PCM configuration. 

 The amount of PCM that melts and solidifies during consecutive charging-discharging cycles can 

be increased in cascaded LHTES systems. This can potentially reduce the size and mass of the 

storage system by more effective use of the latent heats of fusion of PCMs. 

Disadvantages/Challenges 

 Accurate numerical simulation is required to identify the number of PCMs, size of each segment 

and melting temperatures for an optimal cascaded configuration.  

 The optimal design conditions are dependent on the hot and cold HTF inlet conditions and any 

change in the HTF inlet conditions may result in less than optimal operation. 
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 Challenges may arise in determining practical PCMs to match those acquired by numerical 

simulation. 

 The potential enhancement achieved by using cascaded configurations may not be enough to 

offset the additional cost, as well as the higher probability of leaks, related to multiple PCM 

container/tanks. 

Unresolved issues 

 There are contradicting results related to the effect of cascaded configurations on the exergy 

efficiency and heat transfer rates.  

 The operating and design parameters causing the different energy and exergy performances 

reported in the literature need to be identified.  

2.4. Combined enhancement 

In this review it is made evident that of all the PCM enhancements, there is no perfect method to 

enhance heat transfer in PCM systems. It is clear that each is limited by some factors whether it is cost, 

difficulty in implementation or only allowing for thermal transport. While the latter may not seem like a 

significant disadvantage, an increase in both thermal transport and thermal diffusion are necessary for a 

PCM system to maximize heat transfer rates. A simple approach for achieving this feat is to implement a 

combination of the aforementioned techniques. For example, Liu et al. [73] reported that to further 

increase the heat transfer rates in a HP heat exchanger integrated with PCM, an additional enhancement 

technique in the PCM was needed for practical use in solar applications. 

 The combination of two or more enhancers allows for an increase in performance beyond the scope 

of a single technique. This is achieved by exploiting the individual improvements for each enhancer. An 

effective combination implements at least one enhancement to increase thermal transport within the PCM 

while another technique increases diffusion. A particularly attractive method to enhance PCMs including 

a combined enhancement of HPs with aluminum foils (0.017 mm thickness) was investigated by Sharifi 

et al. [74]. The combination of a HP with foils (with a porosity of 0.987) was reported to achieve an 
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increase in heat transfer rates by 3 and 9 times relative to a similar rod-enhanced PCM system during 

melting and solidification, respectively. In a further study, Allen et al. [75,76] investigated the effect of 

porosity on the combined HP and foil and combined HP and foam configurations and determined that a 

HP and foil (HP and foam) case with a porosity of 0.957 (0.890) was able to increase the melting and 

solidification rates by nearly 15 and 7 times that of the rod-enhanced case with minimal variation with a 

change in inclination angle. Other studies involving a combination of heat transfer enhancement 

techniques for PCM systems can be seen in Table 2.11. The advantages, disadvantages and unresolved 

issues for combined enhancement techniques are as follows: 

Advantages 

 The combination of an enhancement technique which increases the thermal penetration depth 

with one that increases the effective thermal conductivity 

 Combined enhancement techniques may increase the overall melting and solidification rates 

much more than is possible with a single heat transfer enhancement technique. 

 A large variety of combinations may be achieved using the aforementioned techniques. 

Disadvantages/Challenges 

 The overall cost increases as additional enhancement techniques are included. 

 The addition of multiple enhancement techniques that are made from different materials may 

increase the concerns regarding material compatibilities due to a greater number of interfaces. 

 The optimization of systems involving combined enhancement techniques is more difficult than 

for a single enhancement technique. 

Unresolved issues 

 The long term structural and thermal properties are yet to be determined for combined 

enhancement techniques. 
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2.5. Comparison of various techniques 

A schematic for many of the heat transfer enhancement techniques that have been implemented into 

PCM systems and reviewed in this work are presented in Fig. 2.1. It is clear from the figure that the 

mechanisms for heat transfer may vary widely depending on the utilized enhancement method. Some 

important considerations for selecting a specific enhancement technique include: the desired improvement 

in heat transfer (thermal transport, diffusion or both), thermal contact resistance and heat transfer 

pathway. In each section above, the advantages, disadvantages and unresolved issues for each type of 

enhancement is provided, and is also summarized in Table 2.12, which help to determine the extent of 

which an enhancer can affect heat transfer in an LHTES system. Again it should be noted that there is not 

an ideal enhancement technique which makes the combination of multiple enhancements an attractive 

solution especially for larger scale systems, yet some methods may be preferred compared to others.  

In general, a compromise must be made between the performance (increase in heat transfer rates) 

and cost (including the material, manufacture and installation) of an enhancer. It should also be noted that 

as the operating temperature of a LHTES system increases (such as above 800 °C), it becomes more 

difficult to determine both an appropriate material and enhancement technique. Fins are one of the most 

commonly investigated methods since they are well established, yet manufacturing and installation costs 

(machining, welding, etc.) may be high. Foils are an attractive option since they require minimal mass and 

volume and can be manufactured by cost effective means, such as die stamping. The press-fit method of 

installation is cost effective for tubular structures, such as HPs, TSs, HTF tubes or pin-fins, however, 

installation of foils on planar or other non-tubular geometries may be challenging. Of the methods 

investigated, it seems that foils may be the most attractive at increasing heat diffusion in PCM systems as 

they provide a relatively orthogonal heat transfer pathway from a HTS, which is more effective than 

others such as foams which comprise undesirable morphologies for heat transfer. With regards to high 

thermal conductivity structures, some may be expensive and less effective compared to more traditional 

extended surface type enhancements while the method of attachment is also more difficult. While the 

addition of high thermal conductivity particles can increase the effective thermal conductivity, other 
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thermophysical properties are also affected which may be detrimental to the overall performance 

enhancement. The high surface area density between the HTSs and the PCM in encapsulation is setback 

by the high costs associated with the encapsulation process. Relative to solid materials, HPs/TSs, which 

utilize the latent heat transport of an internal working fluid, comprise significantly higher thermal 

conductivities, yet the additional costs may make some hesitant to implement them. While cascaded 

arrangements allow for more favorable heat transfer rates between a PCM and a HTF, it may increase the 

cost and chance of leaks.  

In order to determine the effect of utilizing a single enhancement technique relative to a 

combined technique, Fig. 2.6 and Fig. 2.7 are adopted from Allen et al. [76] which is also presented in 

Table 2.11. A vertical cylindrical enclosure contained n-octadecane while heat transfer was ultimately 

driven by an underlying HTF (water) that was in contact with a copper disc at the base of the cylinder as 

well as a HP or rod. In Fig. 2.6, the liquid fraction histories for cases involving a HP, rod or aluminum 

foam (φ = 0.95, 20 PPI) individually as an enhancement techniques are compared to a non-enhanced 

PCM system. From the figure, the necessity for a heat transfer enhancement technique in PCM systems is 

clearly evident by the long duration required for phase change, particularly during solidification. Since the 

system includes base heat transfer, the effect of natural convection is significant during melting which 

accounts for the drastic difference in the complete melting and solidification times, even though the liquid 

PCM thermal conductivity is lower than that of the solid PCM. Hence, in Fig. 2.6, the improvement in 

heat diffusion within the foam-PCM composite indeed outweighs the suppression in natural convection 

heat transfer. For the range of conditions studied, the HP-enhanced case has the highest melting and 

solidification rates followed by the rod- and then foam-enhanced systems.  

Further, Allen et al. [76] also investigated the effect of combining a HP with either aluminum 

foils (t = 24 μm) or foam (20 PPI) where the foil-PCM and foam-PCM composites each had a porosity of 

φ = 0.95. In Fig. 2.7, the combined enhancement techniques were able to achieve significantly higher heat 

transfer rates than the HP or foam individually. It can also be inferred from the figure that the foils are 

preferred relative to the foam. This was also determined in the previous work by Allen et al. [75], in 
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which the foils combined with the HP were able to achieve higher heat transfer rates than the combined 

HP and foam case using only one-third of the foil volume relative to the foam volume. The combined HP 

and foil system was able to reduce the complete melting and solidification times from approximately 150 

min and 500 min, respectively to approximately 15 min, which is an incredible achievement [76]. 

Regardless of the type of enhancement technique, it is clear at this point that the combination of two 

or more methods is a key concept to effectively utilizing LHTES systems. Each individual enhancement 

method has its own limitations which must be addressed and in general, the performance decreases as 

length scales increase (except for nano-particles which are independent of the system size). In order to 

circumvent this decrease in performance, the combination of a technique which allows for an increase in 

the thermal penetration depth combined with another that increases thermal diffusion is necessary to 

significantly increase heat transfer rates in an effective manner for large scale systems. If this is achieved, 

then heat transfer rates can be increased by more than an order of magnitude and the melting and 

solidification times can be reduced to a fraction of that for non-enhanced PCM systems.  

2.6. Conclusions 

In this paper, various enhancement methods for improving heat transfer rates within PCMs have 

been presented. Since first implementation of PCMs, the methods of enhancement have been ever 

improving to better suit the desired capabilities of LHTES systems with current technologies ranging 

from thermal management of handheld electronic devices to electric power production. Since each type of 

enhancer has its own limitations, the combination of multiple methods is a vital concept for substantially 

increasing heat transfer rates in PCM systems. It seems that the past limiting factor of low thermal 

conductivity is no longer an issue as simple and innovative enhancement techniques are capable of 

increasing heat transfer rates by more than an order of magnitude relative to pure PCM systems. In the 

future, new materials and improved methods of implementation for heat transfer enhancements must be 

developed for successful operation of LHTES systems, especially in harsher environments.  
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Nomenclature 

d diameter (m) 

h height (m) 

L length (m) 

m mass (g) 

N number of fins 

r radius (m) 

T temperature (°C) 

t  time (s), thickness (mm) 

V volume (m
3
) 

Greek symbols 

φ  porosity 

ω  pore density (PPI) 

Subscripts 

a adiabatic 

c condenser 

e evaporator 

fiber fiber 

i inner 

in in 

mat mat 

m melting 

o outer 

out out 

p pore 

pcm phase change material 

s solidification 

wall wall 

wick wick 

Acronyms 

CSP concentrating solar power 

DSC Differential Scanning Calorimetry 

EG expanded graphite 

EXP experimental 

FD finite difference 

FE finite element 

FV finite volume 

HP heat pipe 

HTF heat transfer fluid 

HTS heat transfer surface 
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LHTES latent heat thermal energy storage 

NUM numerical 

PCM phase change material 

PPI pores per inch 

SHTES sensible heat thermal energy storage 

TES thermal energy storage 

TS thermosyphon 

TTM temperature transforming model 
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Table 2.1. Experimental investigations involving fin enhanced PCM systems. 
Reference PCM properties Fin properties Operation mode and 

applications 

Configuration Conclusions 

[77] 

 

 

• n-eicosane (Tm = 

36.5 °C, m = 0.05 

kg) 

 

• aluminum  

• flat fin (thickness,  

t = 2 mm) 

• number, N = 0-7 

• porosity,  

φ = 0.79-1.00 

• melting 

• electric heater 

• electronic cooling 

applications 

A rectangular heat 

sink with vertical fins 

is filled with PCM and 

heated from below.  

The operational time of the heat sink (until a 

temperature of 55 °C) was extended by a factor of 3 

using a finned relative to non-finned heat sink. 

[78] •  T82  

(Tm = 77-85°C, m 

= 5.6 kg) 

• copper 

• flat fin (t = 1 mm, 

length, L = 42 mm) 

• N = 8 

  

• melting / solidification 

• HTF (water) 

• solar TES applications 

A triple tube heat 

exchanger has the 

PCM contained in the 

middle section and the 

HTF in the inner and 

outer sections. 

The melting time was decreased to 58% as the HTF 

increased from 8 kg/min to 16 kg/min. As the inlet 

temperature increased from 85 °C to 100 °C, the 

melting time was reduced to 86%. 

  

[79] • n-eicosane 

(Tm =36.5 °C) 

• paraffin wax 

(Tm =53-57 °C, m 

= 39-50 g) 

• aluminum  

• pin fin 

• N = 0 - 120  

 

 

• melting / solidification 

• electric heater 

• electronic cooling 

applications 

A rectangular heat 

sink with vertical pin 

fins is filled with PCM 

and heated from 

below. 

  

The time for the heat sink to reach a set point 

temperature was increased by a factor of 24 with N = 

72 relative to without the fins. An optimum 

configuration was obtained based on the PCM volume 

fraction and the modified dimensionless temperature 

utilizing an artificial neural network genetic 

algorithm. 

[80] • n-eicosane 

(Tm = 37 °C) 

• 1-hexadecan-ole  

(Tm = 49 °C, 

m ≈ 0.15 kg) 

• aluminum  

• flat fin (t ≈ 2 mm, 

L ≈ 40 mm) 

• N = 4 

 

• melting / solidification 

• electric heater 

• electronic cooling 

applications 

A rectangular 

aluminum cavity is 

filled with PCM and 

heated from below. 

PCMs with higher melting temperatures were 

reported to extend operation times until a set point 

temperature was reached. For the conditions 

considered, the maximum temperature rise was 

reduced by up to 10 ºC for the finned heat sink. 

[50] • 6 PCMs 

comprising 

hydrated salts, 

organics or 

mixtures  

• 29 °C < Tm < 41 

°C 

• Vpcm = 25 ml  

• aluminum 

• flat fin (t = 2 mm) 

 

• melting  

• electric heater 

• electronic cooling 

applications 

A rectangular cavity 

with vertical fins is 

filled with PCM and 

heated from below. 

Six heat sink 

arrangements were 

investigated. 

Adding fins reduced the heat sink peak temperature 

relative to that without the fins. A honeycomb heat 

sink made from aluminum foils (t = 0.060 mm) 

showed comparable performance to the fin cases.  

The PCM with the lowest Tm had the longest 

operation time and lowest heat sink temperature.  

 

[81] •  T 21  

(Tm =19-22°C) 

 

• copper 

• axial fin 

(t = 3 mm, 

L = 240 mm,  

height, h = 10-26 mm) 

• solidification  

• HTF (air) 

• electronic cooling 

applications 

A vertical double tube 

heat exchanger with 

the HTF in the inner 

tube and the PCM with 

axial fins between the 

tubes. 

A finned heat sink was able to provide a 22% 

reduction in the complete solidification time relative 

to that without the fins with h = 20 mm (≈ 60% length 

of the annular gap the outer section).  
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Table 2.2. Numerical investigations involving fin enhanced PCM systems. 
Reference Method PCM properties Fin properties Operation mode 

and application 

Configuration Conclusions 

[38] • 2D 

• finite volume 

(FV) 

• TTM 

(including natural 

convection) 

• n-octadecane  

(Tm = 30 °C)  

• copper 

• flat fin 

(dimension-less) 

• melting 

• constant side 

wall temperature 

• solar TES 

applications 

 

A rectangular 

enclosure is filled with 

PCM and horizontal 

fins extend outward 

from the heated wall 

into a portion of the 

PCM domain.  

A rapid melting regime is initially present due to 

the finned region followed by a slow melting 

regime as the solid-liquid interfaces advance to the 

non-finned regions. New correlations were 

developed to predict the melting rates for both 

regimes. A dimensionless total melting time was 

reduced by 60% with 6 fins that were 80% of the 

length of the enclosure.  

[82] • FLUENT 

• 2D 

• FV 

• enthalpy-

porosity 

(including natural 

convection) 

•  T82  

(Tm = 77- 85 °C) 

 

• copper, 

aluminum and 

steel 

• axial fin  

(t =1-4 mm, 

L=10-42mm) 

• N = 0-8 

• melting  

• HTF (water) 

• solar TES 

applications 

A triple tube heat 

exchanger has the 

PCM contained in the 

middle section and the 

HTF in the inner and 

outer sections. 

The effect of fin thickness during melting is small 

compared to the fin length and number. With N = 8, 

the complete melting time was reduced to 34.7% 

relative to that of the case without fins. 

 

[83] • FLUENT 

• 2D 

• FV 

• enthalpy-

porosity 

(including natural 

convection) 

•  T82  

(Tm=77-85°C, m 

= 5.6 kg) 

 

• copper 

• axial fin 

(t = 0.5-4mm, 

L=10-42mm) 

• N = 0-8 

• solidification  

• HTF (water) 

• solar TES 

applications 

A triple tube heat 

exchanger has the 

PCM contained in the 

middle section and the 

HTF in the inner and 

outer sections. 

The effect of fin thickness during solidification is 

small compared to the fin length and number. The 

complete solidification time was decreased to 35% 

of the pure PCM case with N = 8 and t = 1 mm.  

 

 

 

[84] • 2D 

• finite element 

(FE) 

• enthalpy-

porosity 

(including natural 

convection) 

•  T25  

(Tm = 26.5°C, m 

≈ 2.35 kg) 

• aluminum  

• flat fin 

(t = 4 mm) 

• melting  

• solar irradiation 

• solar panel 

applications  

  

 

A rectangular cavity is 

filled with PCM and 

horizontal fins. 

Integration of a PCM with a solar panel can help to 

maintain its temperature below 40 °C for 80 min 

with constant solar irradiation. 

  

[85] • ANSYS 

software 

• 2D and 3D 

• FV 

 

• paraffin 

 

 

• copper  

• pin fin  

(d = 3-9 mm, 

L=20-40mm) 

• radial  

(d=52-92mm,  

t = 0.3-1 mm) 

• solidification 

• HTF (water 

with dissolved 

ionic solids) 

 

A vertical shell (PCM) 

and tube (HTF) heat 

exchanger utilizes 

horizontal fins in the 

PCM. 

The finned tube with annular fins achieved 25% 

faster phase change duration relative to that with 

pin fins. Yet both annular and pin finned tubes 

achieved better performance relative to without 

fins.  
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Table 2.3. Recent investigations involving foil enhanced PCM systems. 
Reference Method PCM properties Foil properties Operation mode 

and application 

Configuration Conclusions 

[53] EXP 

NUM 

• PHOENICS 

code commercial 

software 

• 3D  

• water  

(Tm = 0°C) 

 

• copper 

• radial  

(t = 0.035 mm) 

• porosity,  

φ = 0.925 

 

• solidification 

• HTF (aqueous 

glycol solution) 

A rectangular cavity 

with a horizontal HTF 

tube is surrounded 

with PCM and foils 

without tube contact. 

While foils are not in thermal contact with the HTF 

tube, a small foil volume fraction (0.5%) has a 

significant impact on solidification. The 

solidification rate can be doubled with φ = 0.925. 

[52] EXP 

NUM 

• 2D 

 

• water  

(Tm = 0°C) 

 

• copper  

• radial 

(d = 94 mm, 

t =0.030 mm) 

• φ = 0.975 

• solidification 

• HTF (aqueous 

glycol solution) 

A rectangular cavity 

with a horizontal HTF 

tube is surrounded by 

the PCM and foils. 

The solidification time reduced to an eighteenth 

(tenth) compared with that of a bare tube, even with 

a small copper volume fraction of φ = 0.95 (φ = 

0.975). Foils were reported to increase melting rates 

greater than the solidification rates. 

[50] EXP • 6 PCMs 

comprising 

hydrated salts, 

organics or 

mixtures of 

both. 

• 29 °C < Tm < 

41 °C 

• Vpcm= 25 ml 

• aluminum 

• honeycomb 

structure (cell 

size = 6 mm,  

t = 0.06 mm,  

h = 12 mm) 

 

• melting / 

solidification 

• electric heater 

• electronic 

cooling 

applications 

A rectangular cavity 

with vertical fins is 

filled with PCM and 

heated from below. 

Six heat sink 

arrangements were 

investigated. 

Honeycomb inserts show a similar thermal 

performance as a machined finned heat sink with 

less weight, greater ease of assembly and reduced 

cost.  

[86] EXP 

NUM 

• 1D 

• KNO3/ NaNO3 

eutectic mixture  

(m = 2100 kg) 

• expanded 

graphite (EG)  

• rectangular  

(t = 1 mm) 

 

• melting / 

solidification 

• HTF 

(water/steam) • 

solar power 

applications  

A horizontal shell 

(PCM) and tube (HTF) 

heat exchanger utilizes 

vertical foils in the 

PCM. 

The thermal conductivity was increased from 0.5 

W/mK for the pure PCM to approximately 8 W/mK 

for the EG foil-PCM composite. 

 

 

 

[87] NUM  

• FLUENT 

• 2D  

• enthalpy-

porosity method 

• FV 

• KNO3/ NaNO3 

eutectic mixture  

(Tm = 220 °C) 

• aluminum  

• radial  

(do = 56 mm,  

t = 0.5-4mm) 

• solidification 

• HTF 

(water/steam) 

• solar power 

generation 

A horizontal shell 

(PCM) and tube (HTF) 

heat exchanger utilizes 

vertical foils in the 

PCM. 

The thermal conductivity of the PCM increased 

from 0.5 W/mK for the pure PCM to 10 W/mK for 

the foil-PCM composite. The complete 

solidification time decreased to approximately 25% 

by increasing thickness from 0.5 mm to 4 mm or 

decreasing foil pitch from 10 mm to 2.5 mm. 

[88] NUM  

• FLUENT 

• 2D 

• enthalpy-

porosity method 

• FV 

• eutectic salt 

(Tm = 5-9 °C) 

• aluminum  

• radial  

(do = 46 mm,  

t = 0.5-4 mm) 

 

• solidification 

• HTF (air) 

• cold TES and 

building 

applications 

A horizontal shell 

(PCM) and tube (HTF) 

heat exchanger utilizes 

vertical foils in the 

PCM. 

Foils can greatly reduce solidification time by 

thermally penetrating the PCM. Also, as the heat 

flux was doubled, the complete solidification time 

was reduced by nearly 50%. 
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Table 2.4. Studies involving nano-particle enhanced PCMs. 
Reference Method PCM Particle 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[89] NUM 

• FLUENT 

• 2D 

•  T58  

(Tm = 55-59 °C) 

• Cu 

(L < 50 nm) 

• 0-20 wt% 

• melting 

• HTF (water) 

A vertical shell 

(PCM) and tube 

(HTF) heat 

exchanger is 

studied. 

Both the heat transfer rate and exergy efficiency are improved by 

adding nanoparticles. Up to 21% decrease in the total melting time 

was obtained for 20 vol% nanoparticle. 

[90] NUM 

• 2D 

• CaCl2-6H2O 

(Tm = 30 °C) 

• Cu 

• Al2O3 

• CuO 

• 0-20vol% 

• melting 

• HTF (water) 

A horizontal shell 

(PCM) and tube 

(HTF) heat 

exchanger is 

studied. 

Entropy generation and melting duration were decreased by 43% 

and 42%, respectively, by adding 20 vol% nanoparticle. Adding 

nanoparticles to the PCM is much more advantageous compared to 

adding them to the HTF. The reduction of specific heat and latent 

heat of the PCM due to addition of nanoparticles was more than 

compensated by increase in heat transfer rate. 

[91] EXP 

NUM 

• COMSOL 

• 2D 

• n-octadecane 

(Tm = 28 °C) 

• CuO 

(L = 9 nm) 

• 0-5 wt% 

• melting 

• electric heater 

A square cavity is 

heated from the 

side. 

The heat transfer rate increases with increasing the weight fraction 

of nanoparticles due to the improvement of the thermal conductivity. 

A 9% reduction in melting time was achieved by addition of 5 wt% 

nanoparticle. 

[92] EXP 

NUM 

• COMSOL 

• 2D 

• n-octadecane 

(Tm = 28 °C) 

• CuO 

(L = 9 nm) 

• 0-5 wt% 

• melting 

• electric heater 

A horizontal tube 

is heated from the 

curved wall. 

About 13% reduction in melting time was achieved by the addition 

of 5 wt% nanoparticles. The rate of increase of heat transfer due to 

the addition of nanoparticles decreased with increasing 

concentration of particles due to intensified effects of viscosity, 

agglomeration and sedimentation. 

[93] EXP • n-octadecane 

(Tm = 28 °C) 

• Al2O3 

• 0-10 wt% 

• melting 

• electric heater / 

cold HTF (water) 

A vertical square 

enclosure is heated 

from one side and 

cooled from 

opposite side. 

For a cold wall temperature close to the melting temperature of the 

PCM, the average Nusselt number decreased by about 60% for a 

particle concentration of 10 wt%. The suppression of natural 

convection heat transfer due to the addition of nanoparticles is even 

greater when the cold wall is maintained at temperatures lower than 

the PCM melting temperature. 

[94] NUM  

• 2D 

• water 

(Tm = 0 °C) 

• Cu 

(L=100nm) 

• 0-4 vol% 

• melting 

• inner cylinder at 

constant 

temperature 

A concentric and 

non-concentric 

horizontal shell 

(PCM) and tube 

(HTF) system are 

investigated. 

In general, the melting rate was increased by increasing the volume 

fraction of nanoparticles in the range of conditions studied. 

Quantitatively up to 11% more melt volume fraction was achieved 

by the addition of 4 vol% nanoparticle at a time instant 

corresponding to about 60% melt volume fraction in base system. 

The increase in the melting rate was more profound when the hot 

inner cylinder was positioned in the upper region of the shell. The 

reason is the more important role of conduction in this configuration. 
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Table 2.4. Studies involving nano-particle enhanced PCMs, cont. 
Reference Method PCM Particle 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[95] EXP • water 

(Tm = 0 °C) 

• multiwall 

carbon 

nanotubes 

• 0.1 wt% 

• solidification 

• HTF bath 

(aqueous glycol 

solution) 

The PCM is 

contained in a 

spherical enclosure 

immersed in an 

HTF bath. 

A 25% reduction in the complete solidification time was achieved 

using water enhanced with nanoparticles as a phase change material. 
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Table 2.5. LHTES systems involving high thermal conductivity structures. 
Reference Method PCM properties Structure 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[47] EXP 

NUM  

• 2D 

• FV 

• enthalpy method  

• paraffin  

(Tm = 46-60 °C) 
foam 

• copper 

• φ = 0.9-0.98 

• ω = 10-40 

pores per inch 

(PPI) 

• melting 

• electric heater 

• electronic 

cooling 

applications 

A rectangular cavity is 

heated from the side. 

The average hot wall temperature was reduced by 

30 °C with the copper foam compared to only 

PCM. 

[96] EXP • CaCl2∙6H2O 

(Tm = 29-37 °C) 
expanded 

graphite (EG) 

• 10-50 wt%  

• thermal 

conductivity 

measurement  

A cylindrical disk is 

heated from below for 

thermal conductivity 

measurement using the 

transient plate source 

method. 

The effective thermal conductivity was increased 

by 14 times from 0.6 W/mK of pure PCM to 8.8 

W/mK with a 50 wt% EG. The addition of 

surfactant increases the bonding energy between the 

PCM and EG. Differential Scanning Calorimetry 

(DSC) and thermal gravimetric analysis show good 

thermal stability and energy storage properties. 

[97] EXP • paraffin 

(Tm = 60 °C) 
foam 

• nickel, copper 

• φ = 0.97 

• ω =5-25PPI 

• thermal 

conductivity 

measurement 

 

A rectangular foam-

PCM sample is used 

for thermal 

conductivity 

measurement using the 

transient plate source 

and steady-state 

methods. 

 

The effective thermal conductivity was increased 

by a factor of 3 and 15 for the nickel and copper 

foam, respectively, compared to the pure PCM. 

Degassing the PCM by melting under vacuum 

pressure increases the impregnation of PCM into 

foam by about 7%. A slight shift in the phase 

change temperature (~1 °C) was observed. Also the 

latent heat of the composite is about 22-30% less 

than the paraffin for the composite. 

[98] EXP • Na2SO4  

(Tm = 888 °C)  
foam  

• SiC ceramic  

• thermal 

conductivity 

measurement  

• high 

temperature TES 

applications  

This work determined 

the foam-PCM 

composite thermal 

conductivity using 

DSC. 

The Na2SO4 / SiC composite thermal conductivity 

was around 5.5 W/mK (from about 0.55 W/mK 

[14] for the pure PCM). 

[99] NUM  

• 2D 

• FV 

• enthalpy method 

• paraffin metal matrix  

• aluminum, 

nickel, stainless 

steel, copper 

• φ = 0.85-0.95 

• melting  

• constant 

temperature 

 

A rectangular 

enclosure contains 

PCM with a hot side 

wall that is held at 

constant temperature. 

Metal matrices with higher thermal conductivities, 

lower porosities, and lower pore diameters have 

faster melting times. The complete melting time 

was reduced to one fourth when φ =0.95 was 

reduced to φ = 0.80. The complete melting time 

with the copper matrix is one half of that for the 

stainless steel matrix. 
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Table 2.5. LHTES systems involving high thermal conductivity structures, cont. 
Reference Method PCM properties Structure 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[100] EXP • n-eicosane (Tm 

= 36.5 °C, ) 
foam  

• copper  

• φ = 0.86 

• ω = 10 PPI 

• melting 

• electric heater 

• electronic 

cooling 

applications 

A rectangular 

enclosure contains the 

PCM and foam while 

heated from the 

bottom. The entire 

system may be tilted.  

The orientation was shown to only slightly alter the 

complete melting time from about 100 min to 120 

min. After 90 min, each orientation has a 

temperature within 0.5 °C of one another. Similar 

performance is repeated for aluminum foam. 

[12] EXP • paraffin  

(Tm = 47-59°C) 
foam  

• copper  

• φ = 0.90-0.98 

• ω = 5-20 PPI 

• melting 

• electric heater 

• electronic 

cooling 

applications 

A rectangular 

enclosure filled with 

PCM and foam is 

heated from below and 

cooled with external 

fins from above. 

Lower surface temperatures are observed for lower 

porosities and pore densities while the former has a 

greater effect. Natural convection was suppressed 

by at least 55.3% relative to the pure PCM heat sink 

without foam.  

[101] EXP 

NUM 

• FLUENT 

• 3D  

• FV 

•cyclohexane 

(Tm ≈ 6.5 °C) 

 

foam  

• graphite  

(pore diameter,  

dp = 400 μm) 

• φ = 0.75 

• melting 

• electric heater 

 

A rectangular 

enclosure is filled with 

PCM and heated from 

below.  

The graphite foam-PCM composite had a highest 

reported thermal conductivity of approximately 30 

W/mK while the pure PCM was 0.13 W/mK. 

Natural convection in foam was negligible. 

[102] EXP 

NUM  

• 2D  

• FV 

• enthalpy method 

• water 

(Tm = 0 °C) 
wool mats  
• aluminum  

• radial disk- or 

roll-types 

(dfiber=120μm 

tmat = 6 mm) 

• φ = 0.9-0.95 

• solidification 

• HTF (brine) 

 

A rectangular 

enclosure with a 

horizontal HTF tube is 

filled with PCM.  

After 3 hours of operation the mass of ice is twice 

that of the system without wool mats with a 

porosity of φ = 0.95. The disk type arrangement 

was far superior to the method of wrapping the 

wool around the HTF tube. The model predicted the 

disk-type fairly well, yet under-predicted the roll 

type by 25% 

[103] EXP •  T50 

(Tm = 49 °C) 

•  T60  

(Tm = 59 °C) 

 

EG 

• φ = 0.25 

• thermal 

conductivity 

measurement 

A disc shaped EG-

PCM composite is 

used for thermal 

conductivity 

measurement. 

The thermal conductivity was increased by a factor 

of 5.76 and 2.24 for RT50 and RT60, respectively 

with EG relative to without it.  

 

[104] NUM 

• FLUENT 

• 3D 

• FV 

• enthalpy method 

• NaNO3 

(Tm = 306 °C) 

 

metal matrix  

• copper 

• ideal cube 

shaped 

• φ=0.90-0.95 

• ω=5-30 PPI 

• melting / 

solidification 

• constant 

temperature 

sidewall 

• solar 

applications 

A cuboid matrix 

structure is embedded 

in PCM and heated on 

two sides. 

The heat transfer coefficient can be increases by up 

to 28 times in the solid phase with the copper 

matrix relative to that without it. The complete 

melting and solidification times are reduced to 20% 

and 4% of that for the pure PCM with φ = 0.90. 
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Table 2.5. LHTES systems involving high thermal conductivity structures, cont. 
Reference Method PCM properties Structure 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[105] EXP • paraffin  

(Tm = 48-59 °C) 
fiber felt  

• stainless steel 

(dfiber = 100-200 

μm) 

• φ=0.80-0.90 

 

• melting 

• constant surface 

temperature 

• thermal 

management 

applications 

A rectangular fiber 

felt-PCM composite 

heated on one side. 

As the porosity increased from 0.80 to 0.90, the 

dominant mechanism shifted from combined 

conduction and convection to natural convection 

only. A lower surface temperature was observed for 

a smaller fiber diameter at a fixed porosity due to a 

higher interfacial surface area. A higher porosity of 

0.90 resulted in a larger surface temperature but 

also a greater amount of PCM melting due to 

natural convection. 

[106] EXP • paraffin  

(Tm = 48.7 °C) 
EG  

• φ=0.95-0.99 

• melting / 

solidification 

• electric heater / 

cold HTF (water)  

A vertical shell (PCM) 

and tube (HTF) is 

studied with EG 

embedded in the PCM. 

The melting point changed by 1.2 °C. The total 

melting and solidification time was reduced by 

48.9% and 66.5%, respectively, with a porosity of 

0.95. Also the thermal conductivity was increased 

by more than a factor of 10. 
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Table 2.6. Experimental investigations involving heat pipes and reflux systems integrated with PCMs. 
Reference Method PCM properties Enhancement 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[7] EXP • paraffin wax 

(m ≈ 1 kg) 
HP 

• copper-water  

(L = 0.2 m, 

d = 6 mm) 

• melting / 

solidification  

• HTF (water) 

• solar 

applications 

A vertical cylinder 

with PCM has five 

vertical HPs that 

extended into an 

underlying HTF. 

The heat transfer rates were increased by 60% and 

100% by use of five heat pipes during charging and 

discharging, respectively. 

[107] EXP • lauric acid 

(Tm ≈ 43 °C) 

• palmitic acid  

(Tm ≈ 60 °C) 

• tricosane  

(Tm ≈ 45 °C) 
 

HP 

• copper-water 

(L = 120 mm, 

d = 6 mm) 

• melting / 

solidification 

• electric heater / 

cold HTF (air) 

• electronic 

cooling 

applications 

A horizontal HP 

extends through a 

rectangular PCM 

enclosure. The HP is 

heated on one side and 

is subject to forced 

convection on the 

other.  

The HP-enhanced PCM system can reduce fan 

power consumption up to nearly 46% while 

reducing the average heater temperature by about 

12.3 °C compared to without the PCM. 

[73] EXP (Tm = 52.1 °C) HP  

(L = 1 m) 

 

• melting / 

solidification  

• HTF (water) 

• heat exchanger/ 

solar applications 

A HP extends though 

the PCM and is also in 

contact with the HTF. 

A HP heat exchanger with integrated PCM is 

investigated to study the charging, discharging, and 

simultaneous operation modes. A thermal resistance 

network analysis is performed for the system. 

[9] EXP • Zn (70)-Sn(30) 

eutectic mixture  

(Tm=200-370°C, 

m = 210 ton)  

reflux 

• water 

• melting / 

solidification 

• HTF (water) 

• solar 

applications 

The PCM is positioned 

in between the HTF 

channels of a reflux 

system. 

The proof of concept was experimentally tested and 

was able to provide up to 12 MW for about 20 min.  

[108] EXP • water  

(Tm = 0 °C) 
loop HP  

• helical 

evaporator 

• copper-R22 

(Lpcm = 15m, 

do=12.7 mm, 

di=10.2 mm) 

• solidification  

• HTF (water) 

• ice storage, air 

conditioning 

applications  

A helical HP 

evaporator is placed in 

an ice storage tank 

while a helical 

condenser is placed 

inside a helical HTF 

tube. 

A charge and discharge rate of up to 3.5 kW can be 

achieved with the proposed ice storage system. A 

latent and sensible capacity of 25MJ and 10MJ are 

present with a total of 35 MJ. An outlet air 

temperature into the room of about 8-9 °C. An 

outlet water temperature from the tank of about 5 

°C was achieved. 
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Table 2.7. Numerical studies on LHTES systems utilizing heat pipes and reflux systems. 
Reference Method PCM properties 

(wt%) 

Enhancement 

Properties 

Operation mode 

and applications 

Configuration Conclusions 

[37] • 2D 

• FV 

• TTM 

(including 

natural 

convection) 

  

• NaNO3 

(Tm=307 °C) 

 

HP  

• stainless steel-

potassium 

(Le = 25mm,  

La =20mm, 

Lc=23-70mm, 

do=9-14mm, 

twall = 1mm, 

twick = 1mm)  

• melting 

• HP is in contact 

with HTF 

(constant wall 

temperature) 

 

A vertical cylinder is 

filled with PCM with a 

concentrically-located 

HP that is also in 

contact with an HTF. 

The melting rate induced by the HP was 

significantly higher than that of a similarly 

dimensioned rod or tube. The average HP 

effectiveness (ratio of the liquid fraction relative to 

that of the rod case) over the duration of complete 

PCM melting could attain a value greater than 2. 

The HP was also the most effective for heating 

from above the PCM relative to the rod or tube.  

[109] • 1D 

• thermal 

network 

(including 

natural 

convection) 

• KNO3 

(Tm=335 ºC) 

 

HP  

• stainless steel-

mercury 

(Le =100 mm,  

La = 60 mm, 

Lc =140 mm, 

do =18 mm, 

twall = 1mm, 

twick = 1mm) 

• melting / 

solidification 

• HP is in contact 

with HTF 

(Therminol VP-1) 

• CSP 

applications 

A shell and tube is 

investigated with HPs 

embedded in the tube: 

• shell (PCM) and tube 

(HTF) 

• shell (HTF in cross 

flow) and tube (PCM) 

HPs significantly improved the thermal 

performance compared to a non-HP configuration 

for both melting and solidification. The charging 

(discharging) effectiveness was increased by 

approximately 60% (40%) compared to a case 

without the HPs. 

[110] • FLUENT 

• 2D 

• FV 

• enthalpy-

porosity method 

(including 

natural 

convection) 

• KNO3 

(Tm=335 ºC) 

 

TS  

• stainless steel-

Therminol VP-1 

(Le =100 mm, 

La = 60 mm,  

Lc = 140mm, 

do = 9 mm, 

twall = 2 mm) 

• melting / 

solidification 

• TS is in contact 

with hot HTF 

(Therminol VP-1) 

• CSP 

applications 

A shell and tube is 

investigated with HPs 

embedded in the tube: 

• shell (PCM) and tube 

(HTF) 

• shell (HTF in cross 

flow) and tube (PCM) 

The energy stored / retrieved and the effectiveness 

was presented for both modules and different TS 

arrangements. The Configurations that lead to 

improved effectiveness and energy storage / 

retrieval rates per unit cost of TSs are identified.  

[111] • FLUENT 

• 2D 

• FV 

• enthalpy-

porosity method 

(including 

natural 

convection) 

 

• KNO3 

(Tm=335 ºC) 

 

HP  

• stainless steel-

Therminol VP-1 

(Le = 100mm,  

La = 60 mm,  

Lc = 140mm, 

do = 18 mm, 

twall = 1 mm, 

twick = 1 mm) 

• melting / 

solidification 

• HP and tube 

ARE in contact 

with hot HTF 

(Therminol VP-1) 

• CSP 

applications 

A shell and tube is 

investigated with HPs 

embedded in the tube: 

• shell (PCM) and tube 

(HTF) 

• shell (HTF in cross 

flow) and tube (PCM) 

The energy stored/retrieved and effectiveness were 

presented for both modules and different HP 

arrangements. Configurations that lead to improved 

effectiveness and energy storage/retrieval rates per 

unit HP cost are identified. 
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Table 2.7. Numerical studies on LHTES systems utilizing heat pipes and reflux systems, cont. 
Reference Method PCM properties 

(wt%) 

Enhancement 

Properties 

Operation mode 

and applications 

Configuration Conclusions 

[112] • 1D  

• FV 

• enthalpy 

method 

(conduction 

only) 

 

• Li2CO3 (35)-

Na2CO3 (65) 

(Tm=505 °C) 

• Li2CO3
 (32)-

K2CO3 (35)-

Na2CO3 (33) 

(Tm=397 °C) 

• K2CO3 (51) -

Na2CO3 (49) 

(Tm=710 °C) 

HP  

• stainless steel-

sodium  

(Le = 200mm, 

La = 42 mm,  

Lc = 800mm, 

d = 10 mm, 

twick = 1 mm) 

 

• melting / 

solidification 

• HTF (NaNO3-

KNO3 or KCL-

MgCl2) 

• CSP 

applications 

HPs extend through a 

rectangular PCM 

enclosure with HTF 

channels above and 

below PCM. 

 

The cost and performance of a HP-enhanced PCM 

system and encapsulated PCM system were 

investigated. Optimum designs of the storage 

system were based on the minimum levelized cost 

of electricity, maximum exergetic efficiency, and 

maximum capacity factor are reported and 

compared with the results of two-tank molten salt 

storage systems. The cost should be less than $4 per 

unit HP to meet SunShot Initiative 2020 

requirements. 

  



107 

 

Table 2.8. Studies involving encapsulation of PCMs. 
Reference Method PCM 

properties 

Encapsulation 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[113] EXP • water  

(Tm = 0 °C,  

m = 500 kg) 

macro  

• polyolefin 

• sphere  

(do = 77 mm,  

t= 2 mm) 

• melting / 

solidification  

• HTF (aqueous 

glycol solution) 

• cold TES 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

A significant degree of subcooling is observed. 

Increased solidification rates were observed for 

lower inlet coolant temperature and higher flow 

rate. 

[114] EXP • shape 

stabilized 

paraffin (85)- 

styrene-

butadiene-

styrene (15) 

(Tm = 27 °C) 

macro  

• concrete 

• cylinder  

(d = 2.5 cm, 

l = 28 cm) 

• melting / 

solidification 

• electric heater 

• building 

material 

applications  

A rectangular concrete 

slab had horizontal 

cylinders filled with 

PCM. 

The PCM allows for a reduced rate in which the 

surface temperature increases. Also a thermal lag of 

about 3.7 hours to reach the maximum surface 

temperature is observed with the PCM relative 

without it.  

[115] EXP • hydrated salt: 

HS 29 (Tm = 

28-30 °C) 

macro 

(d = 75mm) 

• melting / 

solidification  

• TS heat 

exchanger 

• electronic 

cooling 

applications 

A tank contains a 

packed bed of 

spherical PCM 

capsules saturated with 

water are in contact 

with TSs that are not 

in direct contact with 

the capsules. 

The total system capacity was 7462 kJ which 

operates passively by the thermal diode effect of 

TSs with the diurnal temperature variation thereby 

discharging energy at night. 

 

 

 

[116] EXP • palmitic acid  

(Tm = 66 °C) 
micro  

• AlOOH  

• sphere 

(d = 200 nm) 

• building 

material 

applications 

The thermal properties 

of a micro-

encapsulated PCM 

were investigated 

using DSC. 

Tm is reduced by more than 50 °C from about 66 °C 

to 14 °C due to the strong interfacial interactions. 

The thermal storage capacity of the micro 

encapsulated material is approximately 20% of that 

of the pure PCM. 

[117] EXP •  T 27  

(Tm = 25-28 

°C) 

micro  
• arabic gum, 

gelatin, arag-agar  

(d = 4-12μm) 

nano  
• arabic gum, 

arag-agar  

(d = 104 nm) 

- Microcapsule 

production was 

investigated. 

Two methods are utilized to obtain microcapsules 

of PCMs with two different shell materials with an 

encapsulation ratio of nearly 50%. Both shell 

materials and methods are recommended for use in 

TES systems. 
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Table 2.8. Studies involving encapsulation of PCMs, cont. 
Reference Method PCM 

properties 

Encapsulation 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[118] EXP • paraffin  

(Tm =11-16 °C)  
micro  

(d = 7.29 μm) 

 

• melting / 

solidification  

• HTF (air)  

 

A rectangular high-

density polyethylene/ 

wood composite was 

embedded with PCM 

microcapsules. 

 The composite is 

heated (cooled) with a 

convective oven 

(refrigerator). 

The addition of microencapsulated PCMs was 

found to be thermally stable and the physical 

properties of the fiberboard were unaltered. By 

including graphite particles (38 μm and 8.8 wt%) 

into the fiberboard, the thermal conductivity was 

increased by 17.7%. A small fraction of micro-

encapsulated particles had ruptured after successive 

cycling as observed by SEM photographs. Also 

subcooling was observed for about 6 °C below the 

melting temperature range.  
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Table 2.9. Numerical studies investigating the encapsulation of PCMs. 
Reference Method PCM properties Encapsulation 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[65] • 1D 

• FD 

• enthalpy method 

(conduction only) 

 

• paraffin wax 

(Tm = 56-67 °C) 

 

macro 

• sphere  

(d =60-100 mm) 

 

• melting 

• HTF (air) 

• solar air heating 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

Increasing (decreasing) the HTF initial temperature 

and flow rate (diameter) decrease the overall 

charging time. The HTF inlet temperature has a 

greater influence than the mass flow rate. 

Increasing the thermal conductivity beyond 1W/mK 

had a minimal effect as the major thermal resistance 

was between the spheres and the HTF for the 

conditions studied. 

[119] • 1D 

• FD 

• equivalent heat 

capacity method 

(conduction only) 

• organic  

HS-2 

(Tm = 8.5 °C) 

macro 

• sphere 

(d = 74 mm) 

• solidification 

• cold HTF 

(water) 

• air conditioning 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

Increasing the HTF inlet mass flow rate or 

temperature increased the total storage capacity. 

However, the influence of the mass flow rate is not 

as appreciable as the HTF inlet temperature. 

Melting was 36% faster when the inlet temperature 

was increased from 12 °C to 16 °C. 

[120] • 1D  

• FD 

• enthalpy method 

(conduction only) 

• CaCl2 ∙ 6H2O  

(Tm=29.9 °C) 

• paraffin wax 

C18 (Tm=28.2 

°C) 

macro 

• rectangular  

(L = 20 mm,  

W = 10 cm,  

t = 2 cm) 

• melting / 

solidification 

• HTF (air) 

 

A rectangular capsule 

was filled with PCM 

subject to forced 

convection with the 

HTF.  

The paraffin wax mass takes approximately three 

times the melting time and provides 1.2 times the 

thermal storage capacity compared to a similar 

mass of CaCl2 ∙ 6H2O.  

[121] • 1D 

• FD  

• enthalpy method 

(conduction only) 

- 

(dimension-less) 
macro  

• sphere  

(d=0.5-5mm) 

• melting / 

solidification 

• HTF (solar salt) 

• CSP 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

Decreasing the capsule radii by approximately 80% 

increases the total utilization by 45% and latent 

utilization by ~50% with Reh=50000. A parametric 

study on maximizing the total energy and latent 

utilizations was performed. 

[122] • 1D 

• FV  

• enthalpy method 

(conduction only) 

• organic PCM 

(Tm=3-7 °C) 

 

macro 

• sphere 

(d = 3.6 mm) 

• melting / 

solidification 

• HTF (water) 

• industrial and 

domestic TES 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

 

Three different Nusselt correlations found in the 

literature were analyzed and compared. For a low 

HTF flow rate, natural convection becomes 

important and the Brinkman equation may be useful 

in mathematical modeling. 
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Table 2.9. Numerical studies investigating the encapsulation of PCMs, cont. 
Reference Method PCM properties Encapsulation 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[123] • FLUENT 

• 2D 

• FV 

• enthalpy-

porosity and 

front-tracking 

methods 

(including natural 

convection) 

• NaNO3 

(Tm= 307 °C) 

 

macro  

• stainless steel  

• cylinder 

(d=76.2 mm, 

l=508 mm) 

• melting  

• HTF (air or 

Therminol VP-1) 

• CSP 

applications 

A cylindrical shell is 

filled with PCM and is 

subject to HTF flow in 

two arrangements: 

cross flow and axially 

flow. 

The solid-liquid interface dynamics, temperature 

distribution and the time of energy storage and 

retrieval predicted by the front-tracking method 

agrees well with enthalpy-porosity method. The 

heat transfer process inside the capsule is affected 

by the capsule size and HTF.  

 

[112] • 1D  

• FV 

• enthalpy method 

(conduction only) 

 

• Li2CO3(35)- 

Na2CO3 (65)-

(Tm=505 °C) 

• Li2CO3(32)-

K2CO3(35)-

Na2CO3(33) 

(Tm=397 °C) 

• K2CO3(51)-

Na2CO3(49) 

(Tm=710 °C) 

macro 

• sphere 

(d =10-160 mm) 

 

• melting / 

solidification 

• HTF (NaNO3-

KNO3 or KCL-

MgCl2) 

• CSP 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

A HP-enhanced PCM system with a packed bed of 

PCM filled capsules was optimized based on the 

minimum levelized cost of electricity, maximum 

exergetic efficiency, and maximum capacity factor 

are reported and compared to that of a two-tank 

molten salt storage system. Smaller capsule sized 

reduce cost, have higher exergetic efficiency and 

lowest levelized cost of electricity. 

 

 

[124] • 1D  

• finite difference 

(FD) 

• enthalpy method  

 

• NaNO2 

• (solid-solid 

transition 

temperature is 

277.32 ºC,  

Tm = 304 ºC) 

macro 

• sphere 

(d =5-45 mm) 

• melting 

• HTF (molten 

salt mixture: 

NaNO3 and 

KNO3) 

• high 

temperature TES 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

A numeric-dispersion model for a packed bed 

system can successfully predict the system 

performance for a packed bed system. Increasing 

the inlet velocity by 27 times reduces the phase 

change time by 41%.  

[125] • 2D 

• FV  

• TTM 

• conduction 

model with an 

effective thermal 

conductivity to 

include natural 

convection  

(Tm = 330 ºC) macro 

• stainless steel 

• sphere  

(d = 40 mm) 

• solidification 

• HTF (molten 

salt: mixture 

NaNO3 (60) and 

KNO3 (40)) 

 • CSP 

applications 

 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

A packed bed thermocline can save 35% of the 

capital cost compared to the two-tank system. The 

discharging efficiency can be increased from 36% 

to 97% by increasing the phase change temperature 

from 330 °C to 380 ºC, respectively. The efficiency 

decreases from 98 % to 73% by increasing the HTF 

inlet velocity from 5.55×10-5m/s to 1.295×10-2 m/s, 

respectively. Increasing the capsule diameter from 

0.02 m to 0.1 m decreases the efficiency from 98% 

to 73.78%, respectively.  
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Table 2.9. Numerical studies investigating the encapsulation of PCMs, cont. 
Reference Method PCM properties Encapsulation 

properties 

Operation mode 

and applications 

Configuration Conclusions 

[126] • 1D  

• equivalent heat 

capacity method 

• conduction only 

• KCl-KBr-

KNO3  

• NaCl-KCl-

LiCl  

(dimension-less) 

macro  

• sphere 

(dimension-less) 

• melting 

• HTF (air) 

• high 

temperature TES 

applications 

A vertical cylindrical 

tank is packed with 

spherical PCM 

capsules through 

which a HTF flows. 

The effect of pressure drop on fractional exergy 

destruction is about 2-6%. The analysis reveals that 

under identical conditions, a sensible heat packed 

bed has a higher exergy recovery relative to one 

including PCM capsules.  

[127] • 1D 

• FD 

•  T27 

(Tm= 28 °C) 

 

micro  

• sphere 

(d = 30-500 µm) 

• solidification 

• constant wall 

temperature 

• solar heating 

applications 

A single sphere is 

filled with PCM and 

subject to a constant 

wall temperature. 

The particle size has a significant effect on the 

solidification time even with small Stefan numbers. 
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Table 2.10. Recent studies involving cascaded PCM systems. 
Reference Method PCMs (wt%) Operation mode and 

applications 

Configuration Conclusions 

[128] NUM 

• analytical finite-

time 

thermodynamics 

two hypothetical PCMs: 

• 527 °C < Tm < 1227 °C 

• 127 °C < Tm < 727 °C 

• melting / 

solidification 

• HTF (air) 

• CSP applications 

A HTF collects thermal energy 

from a solar reciever which 

then flows through two PCM 

containers. 

Using two PCMs instead of a single PCM can increase the 

overall exergetic efficincy by up to 53.8%. 

[129] NUM 

• FLUENT 

• 2D 

• FV 

• enthalpy method 

• K2CO3(51)-Na2CO3 (49)  

(Tm = 710 °C) 

• Li2CO3 (20) -Na2CO3(60)-

K2CO3 (20) (Tm = 550 °C) 

• Li2CO3 (32) -K2CO3(35)-

Na2CO3 (33) (Tm = 397 °C) 

• melting 

• HTF (air) 

• CSP applications 

A horizontal shell (PCM) and 

tube (HTF) heat exchanger 

contains three PCM sections 

along the HTF flow. 

The melting times for each PCM section decreases with 

increasing the air inlet temperatures. The optimal length for 

each PCM segment should be determined in such a way 

that the total melting time for each PCM is similar. 

However, no comparison is made with a single-PCM 

configuration. 

[130] NUM 

• COMSOL 

• 2D 

• FE 

• effective heat 

capacity method 

paraffin mixtures: 

• (Tm = 7 °C) 

• (Tm = 9 °C) 

• (Tm = 11 °C) 

• melting / 

solidification, 

simultaneous 

• cold TES 

applications 

A vertical finned tube with 

three PCM segments. The 

PCMs with the highest Tm and 

lowest Tm are at the top and 

bottom of the TES module, 

respectively.  

The heat transfer rates of a cascaded LHTES may be 

improved by 10% to 40% compared to a single-PCM 

system during complete melting and solidification 

domains. At the midway point during melting and 

solidification, the cascaded LHTES does not show a 

significant improvement in the performance relative to the 

single-PCM TES. 

[71] EXP • KNO3 (Tm = 335 °C) 

• KNO3(95.5)- KCL(4.5) 

(Tm = 320 °C) 

• NaNO3 (Tm = 306 °C) 

• MgCl2(60)- KCl(20.4)-

NaCl(19.6) (Tm = 380 °C) 

• melting / 

solidification 

• HTF (oil) 

• solar power 

applications 

A vertical shell (PCM) and 

tube (HTF) heat exchanger is 

separated into three PCM 

sections. 

A cascaded LHTES can utilize a higher percentage of its 

storage capacity (57.2%) relative to a non-cascaded system 

(44.9-53.4%). 
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Table 2.11. LHTES systems utilizing combined enhancement techniques. 
Reference Method PCM properties Enhancement properties Operation mode 

and applications 

Configuration Conclusions  

[74] EXP  

NUM  

• 2D 

• FV 

• TTM 

• n-octadecane  

(Tm = 28 °C,  

m = 72-90 g) 

HP  
• copper-water 

(L=175 mm,  

Lpcm=72-90 mm, do=6mm) 

foils  

• aluminum 

• radial (do=39mm,  

t = 17 μm) 

• φ = 0.987 

• melting / 

solidification 

• heat transfer 

driven by a HTF 

(water) in contact 

with a HP 

A vertical cylindrical 

enclosure is filled 

with PCM and 

contains a 

concentrically-

located HP or rod. 

The HP has 

horizontal radial foils 

installed. 

The melting and solidification rates could be 

increased with the combined HP and foils (φ 

=0.987) by 3 and 9 times that of a similarly 

dimensioned rod-enhanced system. The system 

performance was reported to increase as the ratio 

of the HP embedded in the PCM increased.  

[75] EXP • n-octadecane 

(Tm = 28 °C,  

m = 80 g) 

HP 
• copper-water 

(L =175mm, Lpcm = 82mm,  

do =6mm) 

foils  

• aluminum 

• radial (do=39mm,  

t=17-24 μm) 

• φ = 0.957-0.987 

foam  

• aluminum 

• annular (do = 39 mm) 

• φ = 0.870-0.957 

• ω=5-40 PPI 

• melting / 

solidification 

• heat transfer 

driven by a HTF 

(water) in contact 

with a HP 

A vertical cylindrical 

enclosure is filled 

with PCM and 

contains a 

concentrically-

located HP or rod. 

The HP has 

horizontal radial foils 

installed. 

 

Melting and solidification rates were increased by 

about 15 and 7 times that of a rod-enhanced 

system. The melting and solidification times were 

reduced from 200 (152) min to as low as 13 (11) 

min during melting and solidification for a 

combined HP and foil case with φ = 0.957. The 

combined enhancement was able to increase the 

melting rates by a factor of 10 relative to the HP-

enhanced PCM configuration. 

[76] EXP • n-octadecane  

(Tm = 28 °C,  

m = 60 g) 

HP 
• copper-water 

(L = 175mm,  

Lpcm = 60mm,  

do = 6mm) 

foils  

• aluminum 

• radial (do= 39 mm,  

t= 24 μm) 

• φ = 0.948 

foam  

• aluminum 

• annular (do = 39mm) 

• φ = 0.948 

• ω = 20 PPI 

• melting / 

solidification 

• heat transfer 

driven by a HTF 

(water) in contact 

with a HP and 

copper base 

A cylindrical 

enclosure is filled 

with PCM and 

contains a 

concentrically-

located HP or rod. 

The HP has radial 

foils installed. The 

effect of system 

inclination angle is 

investigated. 

The complete melting and solidification times 

were reduced from about 150 min and 400 min to 

as low as 16 min and 13 min with φ = 0.948. The 

effect of system inclination angle was found to 

have minimal impact on the system performance 

for the combined HP and foil and the combined 

HP and foam configurations relative to the others 

studied. The melting rate for the combined HP 

and foam case increased by a factor of 

approximately 9 compared to that of a non-

enhanced PCM system. 
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Table 2.11. LHTES systems utilizing combined enhancement techniques, cont. 
Reference Method PCM properties Enhancement properties Operation mode 

and applications 

Configuration Conclusions  

[131] EXP • n-eicosane 

(Tm ≈ 37 °C) 
micro-encapsulation  
(d =3-20μm) 

EG 

• φ = 0.80-0.95 

• 0-20 wt% 

Mechanical and 

thermophysical 

property 

measurement 

Micro-encapsulated 

PCM and EG were 

embedded in a high 

density polyethylene 

matrix. 

The thermal conductivity of the composites with 

20 wt% EG loaded could be enhanced by 22 times 

compared to polyethylene matrix-MPCM 

composites without EG. Thermal conductivity of 

the composite could be increased by 10 times at a 

loading of 10 wt% EG. 

[132] EXP • n-eicosane 

(Tm ≈ 37 °C) 
Fins 

• brass 

• flat  

(t = 0.8 mm) 

foam  

• copper 

• φ = 0.96 

• melting 

• electric heater 

• electronic cooling 

applications 

Rectangular 

enclosure contains 

vertical fins and foam 

which is heated from 

below. 

A fin is used to increase the thermal penetration 

and then dispersed through the foam. The 

inclusion of the foam more than doubles the 

thermal conductivity relative to the fins alone. 

The most uniform temperature distribution is 

observed with both the fins and foam. 

[133] EXP 

NUM  

• COMSOL 

• 2D 

 

• water  

(Tm = 0 °C) 
macro-encapsulation  

• polyolefin 

• sphere  

(d = 98 mm) 

graphite flakes or EG  

• solidification 

• HTF (aqueous 

glycol solution) 

• building cooling, 

solar water heating 

applications 

Single spherical PCM 

capsule cooled by a 

variable temperature 

bath. 

The storage and discharge durations were reduced 

by up to 35% and 58%, respectively, with 13 wt% 

of EG. It was determined that the EG had slightly 

improved performance relative to graphite flakes 

but were not as easy to implement and may be 

more costly.  

[134] NUM  

• 1D 

• enthalpy 

method 

• (Tm = 61 °C) 

• (Tm = 51 °C) 

• (Tm = 43 °C) 

macro-encapsulation 

• polycarbonate 

• sphere 

(d = 55 mm) 

cascaded  

• melting 

• HTF 

(water)  

• solar collector 

applications 

A vertical cylindrical 

tank containing PCM 

filled spheres with a 

flowing HTF. 

The cascaded configuration had a shorter melting 

time, higher energy transfer efficiency and lower 

exergy transfer efficiencies during melting 

compared to a single PCM system. However, 

once complete melting occurred, a higher exergy 

transfer efficiency is observed.  

[135] EXP • paraffin  

(Tm = 57-61 °C) 
EG  

• 6.7 wt%  

HP  

(L =150mm, 

do =6mm) 

• melting / 

solidification  

• electric heater 

• electronic cooling 

applications 

A rectangular EG-

PCM composite is in 

contact with a HP’s 

condenser section 

and a finned heat 

sink. 

The thermal conductivity of the EG-PCM 

composite was about 4.7 W/mK. The times for 

melting and solidification were reduced by 63% 

and 26%, respectively, with EG. The overall heat 

transfer coefficient for the heat sink with the EG-

PCM composite was increased by up to a factor of 

3 relative to without it. 
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Table 2.11. LHTES systems utilizing combined enhancement techniques, cont. 
Reference Method PCM properties Enhancement properties Operation mode 

and applications 

Configuration Conclusions  

[136] EXP 

NUM  

• FLUENT 

• 3D 

• enthalpy 

method 

• formic acid  

(Tm = 7 °C) 
macro-encapsulation 

• high density polythene 

• cylinder  

(d = 40 mm,  

h =150 mm) 

• sphere (d = 70 mm) 

fins  

• copper 

• axial (t = 1 mm) 

• melting / 

solidification  

• HTF (aqueous 

glycol solution) 

• building cooling 

applications  

The cylindrical 

(sphere) capsule 

contains axial 

(vertical) fins and is 

filled with PCM and 

heated by a HTF bath 

with a controlled 

temperature.  

A cylinder has 38% more surface area than a 

sphere and solidified in approximately 53 % of 

the time for the latter. The melting and 

solidification time for the cylinder could be 

further reduced by up to 72% and 51%, 

respectively, with internal fins.  

 

[137] EXP • d-sorbitol  

(Tm ≈ 95 °C,  

m = 19 kg) 

• paraffin  

(Tm ≈ 37 °C,  

m = 15 kg) 

macro-encapsulation 

• cylindrical  

(d = 80 mm, 

h = 100 mm) 

cascaded 

 melting 

 HTF (castor oil) 

 exhaust gas 

waste heat 

recovery 

applications 

Two cylindrical tanks 

contain cylindrical 

PCM capsules in 

which the HTF flows. 

 

The cascaded (single PCM) storage system 

recovered about 20% (15%) of the thermal energy 

of the exhust gas. However, the overall PCM 

mass was significatly less for the single PCM than 

the cascaded system which does not provide an 

ideal comparison. 

[138] NUM 

• 2D 

• FV 

• TTM 

(conduction 

only) 

 

• NaCl 

(Tm=800 ºC) 
HP  
• stainless steel-sodium 

(Lpcm = 1000 mm,  

do = 20 mm, 

twall = 2 mm, 

twick = 2 mm) 

fins 

• nickel 

• radial (t = 0.15 mm) 

• φ = 0.93 

• melting / 

solidification, 

simultaneous 

• hot HP in contact 

with radiation 

source / cold HP in 

contact with 

Stirling engine 

• TES for solar 

dish-Stirling 

systems 

The PCM is 

contained in between 

two vertical sets of 

HPs (for charging 

and discharging).  

Radial fins in contact 

with both sets of HPs 

are embedded in the 

PCM. 

The system with the greatest (smallest) heat pipe 

spacing was found to have the greatest (smallest) 

temperature drops across the LHTES, as well as 

the maximum (minimum) amount of PCM 

melting and solidification. The exergy efficiency 

for all cases was greater than 97%, with the 

maximum exergy efficiency associated with the 

system having the minimum HP spacing.  

[72] NUM 

• 1D 

• thermal 

network 

(including 

natural 

convection) 

(m ≈ 70,000 kg) 

• NaOH (73.3) - 

NaCl (26.7)  

(Tm = 370 °C) 

• KCl (22.9) -  

MnCl2 (60.6) - 

NaCl (16.5) 

(Tm = 350 °C) 

• NaOH (65.2) -  

NaCl (20) - 

Na2CO3 (14.8) 

(Tm = 318 °C) 

TS 

• stainless steel-biphenyl 

(L = 1000 mm, 

do = 20 mm, twall = 2 mm) 

Cascaded 

• melting / 

solidification 

• TS is in contact 

with HTF 

(Therminol VP-1) 

and PCM 

• CSP applications 

TSs extend through a 

rectangular PCM 

enclosure with HTF 

channels above and 

below PCM.  

LHTES with the lowest melting temperature PCM 

yields the highest exergy efficiency. However, a 

cascaded LHTES recovers the largest amount of 

exergy during a 24 h charging / discharging cycle. 

The cascaded LHTES recovers about 10% more 

exergy during a 24 h charging / discharging cycle 

compared to the best non-cascaded LHTES 

considered in this work. 
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Table 2.11. LHTES systems utilizing combined enhancement techniques, cont. 
Reference Method PCM properties Enhancement properties Operation mode 

and applications 

Configuration Conclusions  

[139] NUM 

• 2D  

• enthalpy 

method 

single-PCM 

•  T55  

(Tm = 55 °C) 

cascaded  

•  T31 

(Tm=31 °C) 

•  T50 

(Tm = 31 °C) 

•  T82 

(Tm = 31 °C) 

foam  

• copper 

• φ = 0.85-0.95 

• ω = 10-30 PPI 

cascaded 

 

• melting 

• HTF (water) 

• solar applications 

A rectangular 

enclosure is filled 

with foam embedded 

in PCM and is 

contained between 

two HTF channels. 

Heat exchange and exergy rates of a single-PCM 

LHTES is improved by a cascaded LHTES 

system up to 30% and 23%, respectively, and is 

further improved by adding metal foam by 2-7 

times. The exergy efficiency of a single-PCM 

LHTES cannot be significantly improved by 

cascaded LHTES, nor by metal foam cascaded 

LHTES.  

 

 

[140] NUM 

• 1D  

• FV 

Eight sets of three 

hypothetical PCMs 

• 300 °C < Tm < 

600 °C 

macro-encapsulation 

• sphere 

(d = 10 mm) 

cascaded 

• melting / 

solidification 

• HTF (NaNO3 

(60)-KNO3 (40)) 

• CSP applications 

A thermocline tank is 

filled with a packed 

bed of spherical PCM 

capsules over which 

the HTF flows. The 

PCM capsules are 

cascaded with three 

sections. 

Thermocline tanks filled with a single PCM show 

a similar performance to rock-filled tank of equal 

size in terms of the annual storage or plant output. 

A three-stage cascade structure of the bed 

potentially yields a 9.7% increase in the annual 

power output and a 16% decrease in the 

thermocline tank diameter relative to a rock-filled 

tank, provided that the melting temperatures of 

PCMs are tuned precisely. 
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Table 2.12. Advantages, disadvantages, challenges and unresolved issues for each enhancement technique. 
Enhancement 

method 

Advantages Disadvantages/challenges Unresolved issues 

Fins  Increase thermal penetration depth 

 Well established methodology for experiments 

and modeling  

 Well established manufacturing techniques 

 Available from a wide variety of materials 

 Requires attachment method on HTS (e.g. 

welding, thermal adhesive)  

 Cost of machining 

 Thermal contact resistances may exist 

 May suppress natural convection 

 Performance decreases as the length of the fins 

increase 

 Possible deformation or cracks during PCM 

expansion or contraction especially in high 

temperature applications in which the metal 

itself expands 

 May be difficult to find suitable materials 

for high temperature environments 

 Optimization is needed to find a suitable 

compromise between the fin thickness, heat 

transfer rates, and overall energy storage 

capacity 

Foils  Increase heat diffusion 

 Large increases in heat transfer rates with small 

foil volume fractions (~ 1%)  

 Direct 2D heat transfer pathway  

 Well established methodology for experiments 

and modeling  

 High surface area density 

 Low costs for materials and manufacturing  

 Low cost for installment on tubular surfaces using 

a press-fit method 

 Flexible (eliminates stress issues arising from 

PCM expansion or contraction ) 

 Thermal contact resistances may exist  

 May be difficult to install on non-tubular 

surfaces 

 May significantly suppress natural convection 

 Structural strength may limit its practical length 

 Performance decreases as the foil length 

increases 

 Corrosion may be an issue due to the small 

thickness of foils 

 Optimal foil shapes and long term structural 

and thermal stability are yet to be 

investigated 

 May be difficult to find suitable materials 

for high temperature environments 

 

Nanoparticles  Increase heat diffusion  

 Implementation is unproblematic and does not add 

complexity to the system 

 Nanoparticles act as nucleating agents during 

solidification which may reduce subcooling 

 High surface area density 

 

 Agglomeration and sedimentation of particles 

may occur after time 

 Relatively high thermal resistance between 

particles and HTSs 

 May significantly suppress natural convection 

due to an undesired increase in viscosity of the 

particle-PCM composite 

 May decrease the overall storage capacity per 

volume by decreasing the effective latent and 

specific heats of the particle-PCM composite 

 Performance of the nanoparticle dispersion 

in high temperature PCMs has not been 

addressed in the literature 

 More research is required to identify the 

effect of nanoparticle addition on the PCM 

properties such as melting temperature, 

viscosity, and latent heat of fusion 

 The appropriate combination of particle 

thermal conductivity and mass fraction must 

be investigated 
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Table 2.12. Advantages, disadvantages, challenges and unresolved issues for each enhancement technique, cont. 
Enhancement 

method 

Advantages Disadvantages/challenges Unresolved issues 

Structures  Increase heat diffusion 

 High surface area density 

 May be manufactured for unique geometries 

 May significantly suppress natural convection 

 May be difficult to attach to HTSs which may 

subsequently present thermal contact resistances 

 Air entrapment may occur for smaller pore sizes 

 Relatively expensive to fabricate 

 Limited material selection 

 Performance decreases with distance from the 

HTS 

 The tortuous morphology of most structures 

results in 3D heat transfer which may be less 

effective than foils  

 The preferred methods to attach certain 

structures to a HTS, such as EG, remain to 

be determined 

 

 

 

 

Heat pipes/ 

Thermosyphons 
 Increase thermal penetration depth more than any 

other method since HPs/TSs may have much 

higher thermal conductivities than solid materials 

 Large amounts of heat can be transferred through 

a small cross sectional area over great distances 

 Variety of shapes available  

 Variety of operational conditions 

 High reliability / lifetime / durability 

 Failure of an individual HP/TS has little impact on 

overall system with many HPs/TSs  

 Unlike fins / foils, performance does not 

significantly deteriorate by increasing length 

 HPs can effectively operate regardless of 

orientation 

 The thermal diode feature of TSs may be 

advantageous for one-directional heat transfer 

 May be difficult to attach a HP/TS to a HTS 

 Thermal contact resistances may exist  

 Material compatibility issues between HP wall, 

wick and working fluid, as well as PCM, PCM 

enclosure and HTF 

 More than one set of TSs is required to perform 

both melting and solidification requiring two 

HTF channels 

 HPs/TSs may fail and require replacement  

 TSs require two separate HTF channels 

 Performance limitations for HPs/TSs also apply 

in PCM systems involving HPs/TSs 

 Frozen startup, referring to an initially solid 

HP/TS working fluid, may cause some 

problems during the onset of operation with an 

initially cold HP/TS 

 The utilization of a thermal network model 

for a HP-enhanced PCM system requires the 

effect of vapor pressure to be considered for 

a more comprehensive analysis 

 Suitable HP/TS working fluids for 

intermediate temperature applications in the 

range of 200 °C to 400 °C remain to be 

adequately identified 

 Since welding of HPs/TSs is challenging 

due to the superior heat dissipation of 

HPs/TSs, alternative technologies for 

assembling HP/TS-enhanced LHTES 

systems must be developed 
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Table 2.12. Advantages, disadvantages, challenges and unresolved issues for each enhancement technique, cont. 
Enhancement 

method 

Advantages Disadvantages/challenges Unresolved issues 

Encapsulation  Increase thermal penetration depth in a packed bed 

system 

 High surface area density 

 High thermal penetration into packed bed 

 Variety of sizes and shapes from a few 

micrometers to a few centimeters 

 Variety of materials may be utilized for shell 

material 

 Minimizes problem of PCM expansion and 

contraction 

 Chemical compatibility must exist between 

PCM, capsule shell and any other secondary 

medium 

 If the PCM thermal resistance is large, 

encapsulation may not significantly increase 

heat transfer rates 

Macro-encapsulation 

 Possibility of leaks 

 High HTF pressure drop 

 Driving temperature decreases with HTF flow 

direction 

 Relatively lower porosities require the greatest 

overall system volumes for the same thermal 

storage capacity 

Micro- or nano-encapsulation 

 May deteriorate structural properties of the 

substrate material 

 Subcooling may present itself in the PCM 

 Erosion of the thin walls in micro-

encapsulated PCMs would reduce the 

lifetime of the PCM system 

 Manufacturing of micro- and nano-

encapsulated PCMs may be difficult, 

particularly for controlling the internal void 

fraction and PCM mass 

 Thermal stresses exist in the tank wall and 

capsule shell due to thermal gradients and 

phase change  

 

 

 

 

 

Cascaded  Provide nearly constant heat flux along HTF flow 

direction 

 Reduce the outlet HTF temperature fluctuations  

 A larger amount of PCM may undergo phase 

change relative to a non-cascaded PCM system 

resulting in a higher overall utilization of energy 

 

 Accurate numerical simulation is required to 

identify the optimal cascaded configuration 

 Actual conditions may differ from design 

conditions limiting the actual increase in 

performance 

 Determination of practical PCMs to match the 

design conditions 

 The increase in performance must offset 

additional costs related to PCM partitions and 

the higher probability of leaks 

 There are contradicting results related to the 

effect of cascaded configurations on the 

exergy efficiency and heat transfer rates 

 The operating and design parameters 

causing the different energy and exergy 

performances need to be identified  
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Table 2.12. Advantages, disadvantages, challenges and unresolved issues for each enhancement technique, cont. 
Enhancement 

method 

Advantages Disadvantages/challenges Unresolved issues 

Combined 

enhancement 
 May increase both thermal penetration and 

thermal diffusion 

 Overall performance may be significantly 

increased relative to a single enhancement 

technique 

 Variety of combinations are possible using the 

aforementioned techniques 

 The overall cost increases as additional 

enhancement techniques are included 

 The addition of multiple enhancement 

techniques that are made from different 

materials may increase the concerns regarding 

material compatibilities due to a greater number 

of interfaces 

 The optimization of systems involving 

combined enhancement techniques is more 

difficult than for a single enhancement 

technique 

 The long term structural and thermal 

properties are yet to be determined for 

combined enhancement techniques 
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(a) Fins (b) Foils (c) Nanoparticles (d) Foam 

    

 (e) Honeycomb (f) Porous media (g) HP  (h) Macro-encapsulation 

    
 (i) Micro-encapsulation (j) Cascaded (k) Combined: macro-

encapsulation and fins 

(l) Combined: fins and foam 

Fig. 2.1. Various heat transfer enhancement techniques implemented in PCM systems. 
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Fig. 2.2. Effect of nanoparticle concentration on the melting and solidification of a PCM (adopted from 

[54]). 
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Fig. 2.3. Effectiveness histories for isothermal, HP and tube cases (adopted from [37]). 
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Fig. 2.4. Effect of the HTF inlet temperature on charging time (adopted from [65]). 
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Fig. 2.5. Energy storage and recovery during charging–discharging cycles with charging periods of 8 and 

12 h (adopted from [72]). 
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(a) melting (b) solidification 

Fig. 2.6. Comparison between enhancement techniques for a vertical cylindrical PCM system (d = 41 

mm, h = 60 mm) with heat transfer through the base using a HP (copper-water, d = 6 mm), rod (solid-

copper, d = 6 mm) and aluminum foam (φ = 0.95, ω = 20 PPI) during (a) melting and (b) solidification 

(adopted from [76]). 
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(a) melting (b) solidification 

Fig. 2.7. Comparison of enhancement techniques in a vertical cylindrical PCM system (d = 41 mm, h = 60 

mm) with heat transfer through the base using a HP (copper-water, d = 6 mm) alone or combined with 

aluminum foils (φ = 0.95, t = 24 μm) or foam (φ = 0.95, ω = 20 PPI) during (a) melting and (b) 

solidification (adopted from [76]). 
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Chapter 3.  Robust Heat Transfer Enhancement during Melting and Solidification of a PCM using 

a Combined Heat Pipe-Metal Foam or Foil Configuration 

Experiments are performed to analyze melting and solidification of a phase change material (PCM) 

enclosed in a vertical cylinder by a concentrically-located heat pipe (HP) surrounded by either aluminum 

foam or foils. The liquid fraction, temperature distribution, melting (solidification) rates and effectiveness 

are reported to quantify the improvement in performance relative to a base case, a Rod-PCM 

configuration. Parameters of interest include the porosity of the PCM-metal composite, the foil thickness, 

the number of foils and the foam pore density. The main contributor to enhanced performance is shown to 

be the porosity for both the HP-Foil-PCM and HP-Foam-PCM configurations. Both of these 

configurations improve heat transfer rates relative to either the HP-PCM or the Rod-PCM configuration. 

However, the HP-Foil-PCM configuration is shown to have approximately the same performance as the 

HP-Foam-PCM configuration with one third of the metal mass, for the range of porosities studied here 

(0.870 to 0.987). The HP-Foil-PCM configuration, with a porosity of 0.957 using 162 foils of thickness 

0.024 mm, attained an overall rate of phase change that is about 15 times greater than that of the Rod-

PCM configuration and about 10 times greater than that of the HP-PCM configuration. The greatest 

degree of enhancement was achieved with the HP-Foil-PCM configuration (with porosity 0.957) yielding 

an average effectiveness during melting (solidification) of 14.7 (8.4), which is an extraordinary 

improvement over the base case. 

3.1. Introduction 

Latent heat thermal energy storage (LHTES), utilizing phase change materials (PCMs), is 

characterized by high energy density, relatively small storage volume, and nearly isothermal operation 

compared to sensible heat thermal energy storage [1–5]. LHTES can be utilized in applications ranging 

from cooling of portable electronic devices [6,7] to energy storage for large scale solar power production 

[8–13].  

More widespread usage of LHTES technology has been limited by the low thermal conductivity of 

many PCMs [1–5]. In order to circumvent this limitation, various approaches have been taken such as 
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adding high thermal conductivity enhancers to the PCM, thereby increasing the effective thermal 

conductivity of the enhancer-PCM composite. Other strategies include but are not limited to using fins, 

honeycomb structures, Lessing rings or porous media (such as metal or graphite foams) [3,14,15]. 

Nanoparticles, PCM encapsulation and heat pipes (HPs) have also been used to increase heat transfer 

rates in PCMs [1,2,4,9].  

The concept of incorporating HPs into PCMs to reduce thermal resistances has been patented by 

Faghri [16,17]. HPs have been shown to increase phase change rates by 40 % relative to comparably-

sized solid fins embedded in a PCM [12,18–20]. Alternatively, high porosity, open-celled metal foams 

that are infiltrated with a PCM have the potential to improve LHTES heat transfer rates due to the 

relatively large metal-PCM interfacial surface area [21]. The morphology of metal foam is typically 

described by its porosity, φ, or pore volume fraction, and pore density, ω, which describes the number and 

size of its pores. Metal foams typically have porosities greater than 0.85 with surface area densities 

exceeding 1000 m
2
 / m

3
 [21]. Rather than specify the surface area density, metal foam manufacturers 

report the pore density, defined as the number of pores per inch (PPI) [22]. Foams can be constructed 

from a wide variety of solid materials to yield various combinations of porosity and pore density. Foams 

of the same porosity can have different pore densities, where a smaller porosity corresponds to larger 

interconnecting solid strut thicknesses.  

Table 3.1 includes a brief literature review of heat transfer investigations involving metal foam-PCM 

composites. All of the studies have shown that decreasing the porosity reduces the melting (solidification) 

time. However, a lower porosity reduces the energy storage capacity for a fixed LHTES system volume. 

Natural convection, which can enhance melting, may be suppressed when foams are used, depending on 

the type of PCM and the foam pore density. In all cases, metal foams can increase the melting and 

solidification rates, compared to rates involving a pure PCM system due to the higher percentage of the 

available energy being stored or released as latent heat rather than sensible heat (even for constant heat 

flux conditions). However, use of metal foams may decrease the overall heat transfer performance relative 

to pure PCM if the enhancement of conduction does not outweigh the suppression of natural convection.  
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Among the studies presented in Table 3.1, only one work considered the combination of two 

distinctive enhancement techniques. Xie et al. [23] investigated use of brass fins (0.8 mm thickness, 75 

mm length and 25 mm height) in conjunction with copper foam (φ = 0.96) embedded in eicosane (Tm = 

36.8 °C). The combination of fins and foam in a rectangular container reduced the temperature gradient 

within the PCM in both horizontal and vertical orientations relative to systems without the fins and foams. 

With this combination, the fins promote deeper thermal penetration into the PCM (compared to foam 

alone) and the foam promotes diffusion of thermal energy into the PCM (compared to fins alone). The 

effective thermal conductivity of the fin-and-foam enhanced LHTES was increased by a factor of 2.6, 

compared to that of the PCM enhanced with only foam. 

Similarly, Sharifi et al. [34] performed an experimental and numerical investigation of the melting 

and solidification of n-octadecane in a vertically-oriented cylindrical configuration which included a 

vertical HP that penetrated through an overlying, horizontally-layered set of aluminum foils. The bottom 

of the HP extended into a heat transfer fluid (HTF) which was held at a constant temperature to induce 

heat transfer to or from the PCM. An effectiveness was defined which enabled comparison of the melting 

rates to those using a conventional PCM enhancement approach utilizing a solid copper pin fin (rod). 

Melting (solidification) rates increased by 3 (9) times compared to a Rod-PCM configuration with a foil-

PCM porosity of 0.987 (1.3 % solid foil volume fraction). 

Results reported in [34], along with those obtained by infiltrating metal foams with PCM as 

summarized in Table 3.1, motivate this study. To the authors’ knowledge, phase change in a HP-Foam-

PCM configuration has not been previously reported. More specifically, melting and solidification in 

systems involving the HP-Foil-PCM, HP-Foam-PCM, HP-PCM and Rod-PCM configurations are 

investigated experimentally in a vertically-oriented cylindrical system. The objective is to determine the 

effectiveness of each approach by comparing the thermal performance of each configuration to that of a 

base case, the Rod-PCM system. The influence of the porosity and pore density (or foil thickness) is also 

reported. 
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3.2 Experimental Apparatus 

Experiments were performed to quantify the thermal performance of a PCM system enhanced by the 

combination of a HP and either foils or foam. N-octadecane of 99 % purity (Tm ≈ 28 °C) was used as the 

PCM; a list of its thermophysical properties is presented in Table 3.2. As is well known, this particular 

PCM has been employed in many heat transfer studies.  

The experimental apparatus is shown in Fig. 3.1 and consists of a PCM housed within a vertical 

cylindrical enclosure that is heated (cooled) by a concentrically-located HP or rod. Foam or foil can be 

embedded in the PCM, while heat transfer to or from the PCM is ultimately driven by a HTF passing 

through an enclosure that includes the bottom section of the HP or rod. The enclosure is constructed of 10 

mm thick welded aluminum plates with overall dimensions of 140 mm × 100 mm × 100 mm, using water 

as the HTF. A HP (or rod) of 175 mm length and 6 mm diameter transfers heat between the HTF and the 

PCM. The lower section of the HP (or rod) is immersed in the HTF which, in turn, is housed in the 

rectangular enclosure. The PCM enclosure is formed by (i) an acrylic cylinder with an inner (outer) 

diameter of 41 mm (50 mm) and height 125 mm, (ii) a bottom acrylic disc of 5 mm thickness and 50 mm 

diameter and (iii) an upper aluminum plate of 10 mm thickness. 

An air gap of 2 mm thickness exists between the acrylic disc and an underlying acrylic plate to 

minimize heat transfer through the bottom of the enclosure. The combination of a hermetically-sealed 

HTF chamber and placement of the HTF inlet / outlet below the bottom of the acrylic plate results in an 

additional insulating air gap with a measured thickness of approximately 20 mm between the plate and 

water surface. The enclosure mating surface between the cylinder and upper aluminum plate was sealed 

using a combination of a synthetic rubber O-ring and vacuum grease. Silicone aquarium sealant was used 

to seal and secure the HP (rod), acrylic disc and acrylic cylinder in place. The entire apparatus was 

compressed using four all-threaded rods and wing nuts. Fiberglass insulation was wrapped around the 

acrylic cylinder, and the entire system was placed in a box constructed of 37 mm thick extruded 

polystyrene boards. 

During melting, the PCM (mpcm = 0.080 kg) expands, causing a reduction in the air volume above the 
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PCM, thereby increasing the air pressure. The differential air pressure was measured with a pressure 

transducer (Sper Scientific, model PS100 – 2 BAR) mounted on the upper aluminum plate, and was 

recorded using Lutron801 software. The measured pressure change, in conjunction with the measured air 

temperature, allows for the determination of the PCM liquid volume fraction as described in [34]. A total 

of 12 K-type thermocouples (TCs) were installed in the enclosure (10 in the PCM, 2 in the air) by 

inserting them into the pre-drilled (1.6 mm diameter) acrylic cylinder (and foam for the HP-Foam-PCM 

system) at the proper radial distance. The TC insertion holes were subsequently filled with silicone 

sealant. In addition, two TCs (T13 and T14) were installed on the bottom section of the HP, one TC (T15) on 

the HP tip, and one TC each within the HTF flow (T16 and T17). The TC locations are shown in Table 3.3. 

Heat transfer to and from the PCM occurs through either a solid copper rod or copper-water HP 

(Enertron, model HP-HD06DI17500BA, groove wick). The length of the HP (or rod) exposed to the 

PCM, Lpcm, is fixed at 82 mm. The adiabatic section of the HP (or rod), La, is considered to be the 28 mm 

distance measured from the top of the acrylic disk to the water surface and the remainder of the HP (or 

rod), Lhtf, extends 65 mm into the HTF. 

In order to compare the performance of the HP-Foil-PCM and HP-Foam-PCM configurations, the 

porosity of the enhancer-PCM composite should be the same. For each configuration, the level of PCM 

when completely solid is slightly below the top surface of the metal enhancer (foam or foil), while when 

completely liquid, the level is above the enhancer. Since for all cases the PCM mass is fixed and all of the 

solid PCM lies within the region occupied by the metal enhancer, the porosity used here is defined for 

both melting and solidification by the following relationship: 

  
     
      

 
    

        
 

           
                   

 (1) 

Note that if the liquid density replaces the solid density in Eq. (1), the calculated porosity differs by 

approximately 0.3 %. The preceding definition allows for a consistent method to compare the foam and 

foils as metal enhancers. 
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To study the HP-Foam-PCM configuration, Duocel® aluminum foam (alloy 6101-T6, with 98 % 

aluminum content) was utilized. The foam samples were obtained from K.R. Reynolds Company [35] as 

102 mm × 102 mm × 12.5 mm rectangular samples that were fabricated into annular discs of inner 

diameter 5.9 mm, outer diameter 39 mm and thickness 12.5 mm. The foam discs were stacked six pieces 

high (axially) around the HP to achieve a total height of approximately 75 mm. The commercially-

available foam samples are available within a range of foam porosities, rather than an exact value, due to 

variability in the manufacture of the foam. Since the foam is of rigid construction, its porosity is fixed. 

The influence of pore density is studied using four aluminum foam samples with reported pore densities 

of 5, 10, 20 and 40 PPI and reported (measured) porosities in the range of 0.94 to 0.96 (0.943 to 0.957). 

The effect of porosity is determined for a pore density of 20 PPI with measured porosities between 0.870 

and 0.957. 

In this study, foil (alloy 8011) containing approximately 98 % aluminum is used in the HP-Foil-PCM 

configuration allowing for an appropriate comparison with the HP-Foam-PCM configuration. Two foil 

thicknesses are considered here: t1 = 0.017 mm and t2 = 0.024 mm with an outer diameter of 39 mm, 

allowing sufficient clearance to overlay the acrylic cylinder during test cell assembly. The foils were cut 

to form, with an inner diameter of 5 mm which results in an overlap onto the exterior of the HP (6 mm 

outer diameter) with a press-fit installation method. Unlike the foam, the porosity of the foil-PCM 

composite, in a fixed annular volume, can be easily adjusted by changing the foil thickness (t) and 

number of foils (N). The number of foils for a particular case is specified to match the porosity of the foil-

PCM composite to that of the foam-PCM composite allowing for appropriate comparison. The range of 

porosity studied here for the foil-PCM composite is 0.957 to 0.987. 

3.3. Experimental Procedure 

Solidification and melting were investigated for the Rod-PCM, HP-PCM, HP-Foil-PCM and HP-

Foam-PCM configurations. As previously described, a press-fit installation method was used to install the 

foils and foam, while a thin layer of thermal paste (Arctic Silver 5) was applied to the HP in the HP-

Foam-PCM configuration to ensure sufficient thermal contact. A fixed PCM mass of 80 ± 0.2 g was de-



134 

 

gassed by exposing the liquid PCM to a reduced pressure environment for approximately 2 hours before 

filling the enclosure. Prior to the onset of solidification, the system was shaken to remove any air voids 

within the foils or foam.  

During melting (solidification) the initial temperature of the PCM was set to a value of 24 °C (31 °C) 

by circulating the HTF with a Lauda Brinkmann RM5 water bath circulator with a flow rate of about 0.1 

kg / s. Once the system was equilibrated at the initial temperature (with all TCs in the PCM being within 

0.2 °C of the desired initial temperature) the experiment was initiated by flowing water at a temperature 

of 45 °C (11 °C) which is about 17 °C above (below) Tm. Throughout each experiment, the TC and 

pressure transducer measurements are recorded. The liquid fraction can be determined by using the 

analysis of [34] wherein a PCM volume change is correlated to a change in the air volume as determined 

by the measured air pressure and temperature, assuming the air behaves as an ideal gas. Each experiment 

is concluded when all of the PCM melts (solidifies) as indicated by a constant air differential pressure. 

3.4. Results and discussion 

The main figure of merit reported here is the PCM volumetric liquid fraction (fℓ) which is the ratio of 

the liquid PCM volume to the total PCM volume. The liquid fraction is determined in the same manner as 

in [34], utilizing a combination of the measured air pressure and air temperature to calculate the change in 

air volume which correlates to a PCM volume change. The same uncertainty analysis is used, as in [34], 

and will not be discussed in detail here. The resulting uncertainty of the liquid fraction in these 

experiments ranges from ± 0.1 to ± 0.15. The uncertainty is calculated based on the sequential 

perturbation method utilizing a root-sum-squares calculation at each time instant. An effectiveness for 

melting or solidification provides a direct comparison of various configurations relative to the base case, 

subscript “bc”, the  od-PCM configuration: 

   ( )  
  ( )

     ( )
 (2) 

   ( )  
  ( )

     ( )
 

    ( )

       ( )
 (3) 
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Also by averaging the effectiveness over the duration of phase change, εm,avg and εs,avg are defined. The 

complete melting (solidification) time, tm (ts), is defined as the time when the liquid fraction reaches 0.95 

(0.05) during melting (solidification).  

3.4.1. Temperature distribution within the PCM 

Representative temperature histories during melting and solidification are shown in Fig. 3.2 and Fig. 

3.3, respectively, for the (a) HP-Foil-PCM, (b) HP-Foam-PCM, (c) HP-PCM and (d) Rod-PCM 

configurations. A high degree of symmetry was observed about the centerline of the enclosure. As such, 

each of the five sets of data points shown represents the average of two symmetrically-placed TCs. 

Melting and solidification phenomena can be inferred from the measured temperatures. A sharp increase 

(decrease) in the slope of the temperature history indicates the completion of melting (solidification) at 

that TC location.  

The PCM temperature distribution in the HP-Foil-PCM configuration is presented in Fig. 3.2 (a) with 

an order of melting occurring at locations T1, T4, T5, T2 and lastly T3. Since T1 and T4 experience melting 

at nearly the same time, and are located at two different axial locations but at the same radial location, 

conduction-dominated melting is inferred. Note that the vertical distance between foils is too small for 

any significant amount of natural convection to occur, and therefore the outer radii TC locations T2 and T5 

also melt at a similar time. While it would be expected that the order of melting would occur at locations 

with increasing radius, this was not observed for T3. Most likely, the manual press-fit method of 

installation resulted in a larger than desired foil spacing, with a higher local porosity at that axial location. 

The HP-Foam-PCM configuration in Fig. 3.2 (b) exhibits an order of melting as T4, T1, T3, T5 and T2. 

The solid-liquid interface progresses mainly in the radial direction however, some degree of buoyancy-

induced flow is apparent since upper locations have slightly higher temperatures and melt sooner than in 

the vicinity of lower TCs. Regardless, T2 and T5 melt at nearly the same time, confirming that the process 

is mainly conduction-dominated. 

The PCM temperatures during melting for the HP-PCM and Rod-PCM configurations are presented 

in Fig. 3.2 (c) and (d), respectively. Each exhibits the same order in which the TC locations experience 
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melting (T4, T5, T3, T1 and T2) suggesting similar melting phenomena for the two configurations. The 

absence of foils or foam results in natural convection-dominated heat transfer, with the uppermost regions 

melting first, followed by a downward propagating melting front. Consequently, a large axial temperature 

gradient is displayed in the figure. 

The temperature distribution histories during solidification for the (a) HP-Foil-PCM, (b) HP-Foam-

PCM, (c) HP-PCM and (d) Rod-PCM configurations can be seen in Fig. 3.3. Since natural convection is 

insignificant during solidification, each case is conduction-dominated. Hence, for all cases the solid-liquid 

interface progresses primarily in the radial direction. The higher effective thermal conductivity of a HP 

relative to the rod results in more axial uniformity for each case involving a HP. On the other hand, the 

rod case exhibits a slightly conical solidification front since the lower outermost location is the third 

location to experience phase change. This phenomenon can be attributed to the large temperature drop 

experienced by the rod.  

3.4.2. Temperature drops along the HP / Rod 

The temperature drop along the HP or rod is defined using the temperatures at the TC locations in 

Fig. 1 as: 

           |       (       )| (4) 

where the second term represents the average temperature of the HP embedded in the HTF. The 

temperature drop is presented in Fig. 3.5 for the HP-Foam-PCM, HP-PCM and Rod-PCM configurations 

during (a) melting and (b) solidification. Note that for all cases studied, the temperature of the HP or rod 

embedded in the HTF (second term of Eq. (4)) is similar to that of the HTF, and the major variations of 

ΔTHP/rod are attributed to the HP or rod temperature within the PCM (T15).  

The ΔTHP/rod histories for the HP-PCM and Rod-PCM cases of Fig. 3.4 (a) display an initially 

conduction-dominated regime, followed by a natural convection-dominated heat transfer regime with a 

nearly constant value of ΔTHP/rod,m, as similarly observed previously [18,19]. For the HP-Foam-PCM 

configuration, the HP experiences a significantly larger temperature drop relative to the HP-PCM 

configuration that is attributed to its higher melting rate. In Fig. 3.4 (b), all cases experience a 
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monotonically decreasing temperature drop since solidification is conduction-dominated. During 

melting(solidification) in the HP-PCM configuration, the HP is nearly isothermal with a temperature drop 

of about 1 °C (2 °C) due to its high thermal conductivity relative to a rod. However, when foam is 

implemented with the HP, the improved thermal conductivity of the foam-PCM composite brings the HP 

temperature in the PCM closer to Tm, resulting in a larger temperature drop along the HP for the HP-

Foam-PCM configuration relative to the HP-PCM configuration. 

3.4.3. Effect of foil number and thickness on the HP-Foil-PCM configuration performance 

As noted previously, the porosity of φ = 0.957 for the foam-PCM composite is fixed (with ω = 20 

PPI), so the foil number and thickness must be adjusted for the foil-PCM composite to match the 

porosities of the two configurations. Additionally, the effect of the porosity will also be studied by 

considering the 0.987 case for the foil-PCM composite used in [34]. Two foil thicknesses (t1 = 0.017 mm 

and t2 = 0.024 mm) are also considered here to determine its effect on performance.  

The measured liquid fraction and effectiveness histories for the HP-Foil-PCM configuration are 

reported in Fig. 3.5 for (a) melting and (b) solidification. By comparing the open and filled square 

symbols, it can be seen that for a fixed porosity (φ = 0.987), similar melting (and solidification) rates are 

observed, even though the foil number and thickness are changed. The complete melting (solidification) 

time for the HP-Foil-PCM configuration with φ = 0.987 is about 30 min (22 min) which is close to the 

results reported in [34] for a similar PCM mass. The effectiveness is increased from about 6.5 to 14.5 (5 

to 8.5) during melting (solidification) as the porosity is decreased from 0.987 to 0.957. While 

solidification occurs faster for each case compared to melting due to the higher solid PCM thermal 

conductivity, the solidification effectiveness is lower than that of melting due to the smaller liquid 

fraction for the base case during melting at any given time. The complete melting (solidification) time for 

the HP-Foil-PCM configuration, with φ = 0.957, is around 13 min (11 min), which is much faster than for 

the Rod-PCM configuration, approximately 200 min (150 min). For the range of parameters considered 

here, porosity is observed to have the most important influence on the heat transfer rates for the HP-Foil-
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PCM configuration. It can be seen in Fig. 3.5 that as the porosity is decreased by adding more foils, the 

melting and solidification rate can be increased substantially. 

3.4.4. Effect of pore density and porosity for HP-Foam-PCM performance 

The liquid fraction behavior during both melting and solidification for HP-Foam-PCM cases with 

reported pore densities of 5, 10, 20 and 40 PPI and measured porosities ranging from 0.943 to 0.957 are 

displayed in Fig. 3.6. As evident, all cases yield similar behavior and the complete melting (solidification) 

time and average melting (solidification) effectiveness are 29 (24) min and 7.4 (4.2), respectively. There 

is no clear indication as to whether a higher or lower pore density induces a faster rate of phase change for 

either melting or solidification. Therefore, the pore density is not very significant in the HP-Foam-PCM 

configuration for the range of pore densities considered here. 

The effect of porosity on the (a) melting and (b) solidification processes in the HP-Foam-PCM 

configuration can be established from Fig. 3.7. The measured porosities range from 0.870 to 0.949 with a 

constant reported pore density of 20 PPI. It can be observed that an increase in the melting and 

solidification rate occurs for the lower porosities. The average effectiveness (from lowest to highest 

porosity) is εm,avg = 11.2, 9.3 and 7.9 (εs,avg = 6.4, 5.7 and 4.2) during melting (solidification). Since the 

effective thermal conductivity of the foam-PCM composite increases with metal mass, a lower porosity 

promotes a higher rate of phase change in a fixed volume. 

3.4.5. Comparison between the HP-Foam-PCM and HP-Foil-PCM configuration performance 

At this point, it is clear that, for the range of conditions considered here, the porosity is the most 

influential parameter contributing to the effectiveness, while the pore density of the foam (or the foil 

number and thickness) has a negligible impact, for a fixed porosity. Both the HP-Foil-PCM and HP-

Foam-PCM configurations lead to significantly enhanced melting and solidification rates relative to the 

Rod-PCM and HP-PCM cases. However, it is important to compare the two configurations when they are 

of the same porosity to determine which can best improve the overall heat transfer rates. Even though the 

porosity of the foil-PCM and foam-PCM composites in the HP-Foil-PCM and HP-Foam-PCM cases is 

the same, the morphology of the metal enhancer affects performance. The thin metal struts that comprise 
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the foam have a small contact area with the HP, which is on the order of 10 % of the HP surface area 

[36,37]. Since a large number of foils are installed and a slight overlap exists between adjacent foils at the 

HP-foil interface, a larger contact area is achieved with the HP relative to the foam case. Additionally, the 

effective thermal conductivity of the foam is more isotropic than that of the foil which also affects how 

heat is transferred in each metal enhancer.  

In Fig. 3.8, the HP-Foil-PCM and HP-Foam-PCM cases are compared. It is clear that with a fixed 

porosity of φ = 0.957, the HP-Foil-PCM case melts (solidifies) in less than half of the time of the HP-

Foam-PCM case. Also by comparing the open squares and filled circles, the HP-Foil-PCM case has a 

similar melting and solidification rate as the HP-Foam-PCM case with only one third of the metal 

volume. When the porosity of the foam-PCM composite is decreased to φ = 0.870, the HP-Foam-PCM 

does not perform as well as the HP-Foil-PCM case with φ = 0.957 (which also has approximately one 

third the metal volume). Therefore, the combination of the HP and foils is the preferred method of 

enhancement relative to all others studied here. 

Table 3.4 is a summary of all the cases considered here. The table displays the complete (95 %) phase 

change time (tm, ts), the average effectiveness (εm,avg, εs,avg) and the average rates of phase change (rm,avg, 

rs,avg) during both melting and solidification. The average melting (solidification) rate, rm,avg (rs,avg), of 

phase change is defined as the total PCM mass divided by the time corresponding to complete melting 

(solidification): 

        
    
  

 (5) 

        
    
  

 (6) 

The most effective configuration to enhance phase change rates is the HP-Foil-PCM case (φ = 0.957) 

due to its highest melting (solidification) rate of 6.15 g / min (7.27 g / min) and average effectiveness of 

14.74 (8.43) with the lowest melting (solidification) time of 13 (11) min. Due to the small separation 

distance between foils, less than 1 mm, natural convection is essentially eliminated and both phase change 

processes are conduction-dominated. The time required for complete phase change is smaller for 



140 

 

solidification since the solid PCM has a higher thermal conductivity than the liquid PCM. Since phase 

change rates of the base case during solidification are significantly higher than during melting, the 

effectiveness during solidification is lower than during melting. These results show that the melting and 

solidification rates for the HP-Foil-PCM configuration can be increased by about 15.4 and 13.8 (9.7 and 

9.3) times, respectively, compared to the Rod-PCM (HP-PCM) case. The complete melting and 

solidification times for the HP-Foil-PCM configuration are reduced to 6.5 % and 7.2 % (10.3 % and 10.7 

%), respectively, of the time for the Rod-PCM (HP-PCM) configuration, which is an extraordinary 

improvement. 

3.5. Conclusions 

An experimental investigation of melting and solidification in HP-Foil-PCM and HP-Foam-PCM 

configurations was conducted to determine average melting rates and a relative effectiveness compared to 

a base case configuration consisting of a Rod-PCM system. Overall, both types of enhancement 

techniques, for all conditions studied, significantly improved the melting and solidification rates relative 

to those of the Rod-PCM and HP-PCM configurations. In the HP-Foil-PCM or HP-Foam-PCM 

configurations, the HP acts to thermally penetrate the PCM while the foils or foam allow for improved 

thermal diffusion within the PCM. The influence of the foam pore density and foil thickness was shown 

to be negligible compared to the effect of porosity for both configurations. The largest average 

effectiveness, εm,avg = 14.7 (εs,avg = 8.4) during melting (solidification), was achieved for the HP-Foil-PCM 

configuration (φ = 0.957) which outperformed the HP-Foam-PCM configuration (φ = 0.870) with a lower 

porosity. The melting and solidification rates for the HP-Foil-PCM configuration were about 15 (10) 

times larger than that of the Rod-PCM (HP-PCM) configurations. 
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Nomenclature 

cp specific heat ( /kg∙K) 

fℓ liquid fraction 

hsl latent heat (kJ/kg) 

k thermal conductivity (W/m∙K) 

L length (mm) 

m mass (kg) 

N number of foils 

r radial coordinate direction (mm) 

rm melting rate (g/min) 

rs solidification rate (g/min) 

T temperature (°C) 

ΔT driving temperature between HTF and PCM (°C) 

ΔTHP/rod temperature drop along the HP or Rod (°C) 

t  time (min), thickness (mm) 

tm time for 95 % complete melting (min) 

ts time for 95 % complete solidification (min) 

V volume (m
3
) 

z axial coordinate direction (mm) 

Greek symbols 

εm melting effectiveness 

εs solidification effectiveness 

μ dynamic viscosity (Pa∙s) 

ρ density (kg/m
3
) 

φ  porosity 

ω  pore density (PPI) 

Subscripts 

a adiabatic 

avg average 

bc base case  

htf heat transfer fluid 

l liquid 

m melting 

me metal enhancer 

pcm phase change material 

s solidification, solid 

total total 

void void 

Acronyms 
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EXP experimental 

HP heat pipe 

HTF heat transfer fluid 

LHTES latent heat thermal energy storage 

MF metal foam 

NUM numerical 

PCM phase change material 

PPI pores per inch 

TC thermocouple 
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Table 3.1. Summary of studies on PCMs enhanced with metal foams. 

Ref., date 

Nature of 

work: EXP/ 

NUM 

System geometry, 

boundary conditions 

PCM type 

(M: melting, 

S: solidification) 

Enhancement 

technique 

Parameters 

studied 
Observations 

[24] 

2013 

Numerical 

(NUM), 

Experimental 

(EXP) 

validation 

Rectangular, 

convective boundary, 3 

PCM cascaded, 

enthalpy method, 

exergy analysis 

M: Paraffin 

RT31, RT50, 

RT82 (31 °C < 

Tm < 82 °C) 

Copper foam (10 

< ω < 30 PPI, 

0.85 < φ < 0.95) 

Addition of metal 

foam (MF)  

Adding metal foam to a cascaded system can increase the 

heat exchange and exergy transfer rates by 2-7 times. The 

exergy efficiency is not significantly improved by adding 

MF.  

[23] 

2013 

 

 

EXP Rectangular, heated 

base  

M: Eicosane (Tm 

= 36.8 °C) 

Brass fins (0.8 

mm thick), 

copper foam (φ = 

0.96) 

Effect of 

combining fins 

with MF 

Combining fins and foam more than doubled heat transfer 

rates compared to the MF alone. A more uniform 

temperature distribution is observed with both. 

[25] 

2013 

NUM Shell and tube, HTF in 

the tube, enthalpy 

method 

M: RT58 (48°C < 

Tm < 62°C) 

Copper foam 

(0.85 < φ < 0.95, 

10 < ω < 60PPI) 

Effect of adding 

foam 

Effect of pore density is minimal and reducing porosity 

increases the melting rate. Addition of foam can increase 

heat transfer rates by more than 7 times. 

[26] 

2012 

NUM, EXP 

validation 

Rectangular, heated 

wall, constant heat 

flux, enthalpy method 

M: Paraffin (46.5 

°C < Tm < 60.4 

°C) 

Copper foam (10 

< ω < 40 PPI, 

0.90 < φ < 0.98) 

Effect of pore 

density and 

porosity 

A lower wall temperature is observed for a lower porosity 

and higher pore density. Porosity is dominant relative to 

pore density.  

[27] 

2012 

EXP Vertical cylinder, 

concentrically located 

HTF tube 

M: PS58 Copper foam (ω 

= 20 PPI, φ = 

0.96) 

Effect of adding 

MF 

MF promotes more uniform temperature distribution. The 

heat transfer was enhanced by 36 % during melting. 

[28] 

2012 

EXP Rectangular, PCM-

heat sink, heated from 

base, constant heat flux 

M: Paraffin 

(47°C < Tm < 

59°C) 

Copper foam (5 < 

ω < 20 PPI, 0.90 

< φ < 0.98) 

Effect of pore 

density, porosity 

and orientation 

Lower surface temperatures are reported for lower 

porosities and pore densities. Effect of porosity is greater 

than pore density. Natural convection heat transfer was 

reported to be suppressed by at least 55.3 % with foam. 

[29] 

2011 

NUM, EXP 

validation 

Rectangular, heated 

base, constant heat 

flux, enthalpy method 

M: Paraffin RT58 

(48°C < Tm < 

62°C) 

Copper foam (10 

< ω < 30 PPI, 

0.85 < φ < 0.95) 

Effect of pore 

density and 

porosity 

Addition of MF to PCM increased the heat conduction 

rate while suppressing natural convection. Smaller 

porosities and pore sizes result in higher conduction heat 

transfer rates. 

[30] 

2011 

EXP Vertical cylinder, 

heated base, constant 

heat flux  

M/S: NaNO3 

(solid-solid phase 

change 

temperature = 

276°C, Tm = 

306°C) 

Steel alloy foam 

(20 < ω < 30 PPI, 

0.90 < φ < 0.95) 

Effect of adding 

MF, effect of 

corrosion 

 

MFs can reduce phase change times by about 25 % to 

30 %. After complete melting, the enhancement in 

conduction should compensate for the suppression of 

natural convection by the addition of foam. Corrosion of 

MF in PCM may eventually limit performance. 
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Table 3.1. Summary of studies on PCMs enhanced with metal foams, cont. 

Ref., date 

Nature of 

work: EXP/ 

NUM 

System geometry, 

boundary conditions 

PCM type 

(M: melting, 

S: solidification) 

Enhancement 

technique 

Parameters 

studied 
Observations 

[31] 

2011 

EXP Vertical cylinder, 

heated from below or 

above, constant heat 

flux 

M/S: NaNO3 

(solid-solid phase 

change 

temperature 

276°C, Tm = 

306°C) 

Steel alloy foam 

(20 < ω < 30 PPI, 

0.90 < φ < 0.95) 

Effect of adding 

MF, heating from 

below or above, 

MF can enhance conduction heat transfer by 120 %. 

Porosity is the dominant factor. Natural convection heat 

transfer could be reduced by half in the liquid region by 

addition of MF. 

[32] 

2011 

EXP Rectangular, heated 

base, constant heat flux 

M: paraffin RT27 

(25 °C < Tm < 28 

°C) and CaCl2 · 

6H2O (29 °C) 

Copper foam (ω 

= 30 PPI, φ = 

0.825) 

Effect of adding 

MF 

Total melting time is reduced to one quarter (third) for 

RT27 (CaCl2 · 6H2O) by adding MF. Inclusion of MF 

can reduce the effect of subcooling by one half for CaCl2 

· 6H2O. 

[33] 

2010 

NUM Inclined rectangular, 

solar irradiation from 

above, equivalent heat 

capacity method 

M: Paraffin 

(70°C < Tm < 

80°C) 

Aluminum foam 

(φ = 0.90) 

Effect of adding 

MF 

MFs significantly improve heat transfer performance in 

LHTES systems. The more uniform temperature also 

facilitates lower heat losses from the solar collector.  

[14] 

2010 

EXP Rectangular, heated 

base, constant heat 

flux, top and side walls 

subject to ambient 

M/S: Paraffin 

RT58 (48°C < Tm 

< 62°C) 

Copper foam (10 

< ω < 30 PPI, 

0.85 < φ < 0.95) 

Effect of pore 

density and 

porosity 

The temperature difference from the base to 8 mm into 

PCM was reduced from 30 °C for pure PCM to less than 

1°C with foam. MFs can increase conduction heat 

transfer rates by 3-10 times. The solidification time was 

reduced by more than one-half. 
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Table 3.2. Thermophysical properties of n-octadecane [19]. 

Parameter Value 

Melting point, Tm [K]
 

301  

Latent heat, hsl [kJ/kg] 243.5  

Liquid thermal conductivity, kl [W/m·K]  0.148  

Liquid density, ρl [kg/m
3
] 770 

Liquid specific heat, cp,l [J/kg·K] 2160 

Dynamic viscosity, μ [Pa·s] 3.09  10
-3

 

Solid thermal conductivity, ks [W/m·K]  0.358  

Solid density, ρs [kg/m
3
] 800  

Solid specific heat, cp,s [J/kg·K] 1912  
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Table 3.3. Location of thermocouples. 

Thermocouple r-coordinate (mm) z-coordinate (mm) 

T1,T6 9 105 

T2,T7 19 105 

T3,T8 14 120 

T4,T9 9 145 

T5,T10 19 145 

T11,T12 19 195 

T13 3 25 

T14 3 55 

T15 3 165 
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Table 3.4. Phase change time (tm, ts), average effectiveness (εm, εs), average melting rate (rm,avg) and 

solidification rate (rs,avg) for 95 % completion of phase change. 

Enhancement φ  ω 

(PPI) 

N, t Fig. tm 

(min) 

εm,avg rm,avg 

(g/min) 

ts 

(min) 

εs,avg rs,avg 

(g/min) 

Rod 1.00 - - - 200 1.0 0.4 152 1.0 0.53 

HP 1.00 - - - 126 1.4 0.63 102 1.5 0.78 

HP-Foil 0.987 - 62, t1 5 28 6.7 2.86 23 4.8 3.48 

HP-Foil 0.987 - 49, t2 5 31 6.4 2.58 21 5.2 3.81 

HP-Foil 0.957 - 162, t2 5 13 14.7 6.15 11 8.4 7.27 

HP-Foam 0.943 5  - 6 29 7.4 2.76 24 4.2 3.33 

HP-Foam 0.957 10  - 6 30 6.9 2.67 26 4.0 3.08 

HP-Foam 0.949 20  - 6 29 7.6 2.76 23 4.5 3.48 

HP-Foam 0.948 40  - 6 29 7.9 2.76 25 4.2 3.20 

HP-Foam 0.870 20  - 6 21 11.2 3.81 14 6.4 5.71 

HP-Foam 0.912 20  - 7 23 9.3 3.48 18 5.7 4.44 
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Fig. 3.1. Schematic of the experimental apparatus. 
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(a) HP-Foil-PCM (b) HP-Foam-PCM 

  

(c) HP-PCM (d) Rod-PCM 

Fig. 3.2. Temperature distribution histories during melting for the (a) HP-Foil-PCM (φ = 0.957, N = 162, 

t2 = 0.024) (b) HP-Foam-PCM (φ = 0.949, ω = 20 PPI), (c) HP-PCM and (d) Rod-PCM configurations. 
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(a) HP-Foil-PCM (b) HP-Foam-PCM 

  

(c) HP-PCM (d) Rod-PCM 

Fig. 3.3. Temperature distribution histories during solidification for the (a) HP-Foil-PCM (φ = 0.957, N = 

162, t2 = 0.024) (b) HP-Foam-PCM (φ = 0.949, ω = 20 PPI), (c) HP-PCM and (d) Rod-PCM 

configurations. 
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(a) melting 

 

(b) solidification 

Fig. 3.4. Temperature drop along the HP (or rod) in the Rod-PCM, HP-PCM and HP-Foam-PCM 

(φ = 0.912, ω = 20 PPI) configurations during (a) melting and (b) solidification. 
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(a) melting 

  

(b) solidification  

Fig. 3.5. Volumetric liquid fraction (left) and effectiveness (right) for the HP-Foil-PCM cases for various 

porosities, foil numbers and foil thicknesses during (a) melting and (b) solidification. 
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(a) melting 

  

(b) solidification  

Fig. 3.6. Volumetric liquid fraction (left) and effectiveness (right) for HP-Foam-PCM cases with a 

similar porosity (0.943 < φ < 0.957) during (a) melting and (b) solidification. 
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(a) melting 

  

(b) solidification  

Fig. 3.7. Volumetric liquid fraction (left) and effectiveness (right) for HP-Foam-PCM cases for various 

porosities with ω = 20 PPI during (a) melting and (b) solidification. 

 

  

Figure XX - HP-Foam-PCM effect of porosity 
melt fl

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

f ℓ
,m

t (min)

ε = 89.4 %

ε = 92.5 %

ε = 95.5 %

φ=0.870

φ=0.912

φ=0.949

Figure XX - HP-Foam-PCM effect of porosity 
melt eff

0

5

10

15

20

0 10 20 30 40

ε m

t (min)

ε = 89.4 %

ε = 92.5 %

ε = 95.5 %

φ=0.870

φ=0.912

φ=0.949

Figure XX - HP-Foam-PCM effect of porosity 
solid fl

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

f ℓ
,s

t (min)

ε = 89.4 %

ε = 92.5 %

ε = 95.5 %

φ=0.870

φ=0.912

φ=0.949

Figure XX - HP-Foam-PCM effect of porosity 
soldi eff

0

2

4

6

8

0 10 20 30

ε s

t (min)

ε = 89.4 %

ε = 92.5 %

ε = 95.5 %

φ=0.870

φ=0.912

φ=0.949



157 

 

   

(a) melting 

  

(b) solidification  

Fig. 3.8. Comparison of volumetric liquid fraction (left) and effectiveness (right) for the HP-Foil-PCM 

and HP-Foam-PCM configurations during (a) melting and (b) solidification. 
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Chapter 4.  Effect of Inclination Angle during Melting and Solidification of a Phase Change 

Material using a Combined Heat Pipe-Metal Foam or Foil Configuration 

Experiments are performed to analyze the impact of system inclination angle (ranging from 0° to 

90°) on the melting and solidification of a phase change material (PCM) in a cylindrical enclosure. Heat 

transfer occurs through a concentrically located heat pipe (HP) or rod and an underlying copper disc. The 

HP may also be combined with aluminum foils and foam. Six configurations are investigated: HP-Foil-

PCM, HP-Foam-PCM, HP-PCM, Rod-PCM, Foam-PCM, and non-enhanced PCM. The PCM liquid 

fraction histories, temperature distribution, and photographs provide insight into the varying performance 

with inclination angle and three-dimensional melting. Experimental measurements indicate that the 

system orientation is insignificant during solidification, except for two HP-Foil-PCM cases, since it is 

conduction-dominated. When the HP-Foil-PCM was oriented vertically during solidification, the HP 

evaporator was above its condenser which reduced the value of the liquid fraction up to 0.11 relative to 

the horizontal orientation.  

System orientation was observed to have a significantly larger impact during melting which may 

be attributed to (i) varying three-dimensional natural convection currents for systems without foils and 

foam, and (ii) the HP operation for cases involving the combination of a HP with foils or foam. The HP-

Foil-PCM and HP-Foam-PCM configurations achieved a slightly higher liquid fraction by about 0.03 and 

0.05, respectively, for a vertical relative to horizontal orientation. This minor variation is negligible 

relative to the overall performance of each configuration. During melting for the HP-PCM configuration, 

the horizontal case resulted in higher liquid fractions by approximately 0.09 (0.20) relative to the vertical 

cases with (without) heat transfer through a copper disc until the remaining solid PCM was below the HP 

or rod. Overall, the time for complete melting and solidification for the HP-Foil-PCM configuration was 

reduced to 12 % and 3 % that of a non-enhanced system, respectively regardless or orientation. Further, 

the minor variation in performance due to orientation for systems involving the combination of HPs and 

foils or foam renders them an attractive heat transfer enhancement techniques for phase change materials. 
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4.1. Introduction 

As the increase in the demand of alternative energies, such as solar power production, utilizing 

energy storage may play a pivotal role in economically cost competitive and efficient systems. Of the 

various approaches, latent heat thermal energy storage (LHTES) using a phase change material (PCM) is 

attractive for thermal systems. While sensible heat thermal energy storage is more common in current 

application, LHTES has a higher potential utilization due to its higher energy density, lower operating 

temperatures, isothermal operation and reduced size [1]. However, most PCMs have low thermal 

conductivities which limit the use of LHTES systems [2]. Therefore, various enhancement techniques 

have been proposed and implemented such as: heat transfer fins [3,4], foils (fin thickness less than 0.5 

mm) [5], micro-encapsulation [6], macro-encapsulation [7], nanoparticles [8], porous media (such as 

metal foams and expanded graphite) [9] and heat pipes (HPs) [10,11]. 

The implementation of HPs into PCMs has been patented by Faghri [12,13], as they can 

efficiently transfer large amounts of heat passively through small cross-sectional areas [14]. The impact 

of HPs on the melting and solidification of a PCM has been investigated by [1,10,11,15–18]. As 

enhancers, HPs allow for deeper thermal penetration into the PCM which increases the effective thermal 

conductivity of the HP-PCM composite. Other approaches, such as embedding foam or foils into the 

PCM, increase the effective thermal conductivity of a PCM-enhancer composite. For example, Zhao et al. 

[19] reported that the overall heat transfer rates can be increased by up to 10 times with the inclusion of 

metal foam depending on the choice of foam and PCM. Similarly, Sugawara et al. [5] reported that 

installing 0.03 mm thick copper foils onto a heat transfer fluid (HTF) tube embedded in PCM can 

decrease the complete melting (solidification) time to a tenth (eighteenth) of that for a pure PCM system 

using a foil volume fraction of only 5 %. Other studies involving metallic heat transfer enhancers have 

shown comparable results which will not be discussed here. 

However, embedding metal enhancers, such as foam or foils, into PCMs may significantly 

suppress the positive contribution of natural convection during melting. Hence, the increase in the overall 

heat transfer rates must be substantial. Since the rate of heat transfer due to conduction decreases with an 
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increasing distance from the heat transfer surface, the improvement in heat transfer by adding a metal 

enhancer decreases as the solid-liquid interface advances. Since many studies of Foam-PCM systems 

have been focused towards electronic cooling, small length scales perpendicular to the heat source in the 

range of about 15 mm to 50 mm is acceptable [19–24]. However, as the length scale from the heat source 

increases for larger scale systems, foams or foils may be ineffective, hence the need to increase the 

thermal penetration depth within the foam. 

The combination of HPs and aluminum foils was first proposed by Sharifi et al [25]. The authors 

experimentally and numerically investigated the solidification and melting in a vertical cylindrical 

enclosure heated / cooled by a concentric HP which penetrated an array of horizontal foils within the 

PCM enclosure. Heat transfer rates were increased with a HP-Foil-PCM configuration by 3 and 9 times 

compared to a similar Rod-PCM system during melting and solidification, respectively, with a foil 

volume fraction of 1.2 %. 

A similar system was further investigated by Allen et al. [26] which included the combination of 

a HP and aluminum foam where the foam porosities ranged from 0.870 to 0.987. The HP-Foil-PCM 

configuration was reported to have improved performance relative to the HP-Foam-PCM configuration. 

The HP-Foil-PCM configuration was capable of reducing the complete melting and solidification times 

from 200 min and 150 min for a Rod-PCM configuration to 13 min and 11 min, respectively. The heat 

transfer rates for the HP-Foil-PCM and HP-Foam-PCM configurations were increased by nearly 15 and 7 

(8 and 6) times relative to the Rod-PCM configuration during melting (solidification), respectively, with a 

porosity of approximately 0.957 for the foil-PCM and foam-PCM composites. 

At this point, the combined HP and foam or foil systems were only studied in the vertical 

orientation. However, if an enhancement technique is to be implemented into systems which experience 

varying inclination angles, such as portable electronics, it must operate regardless of its orientation. For 

example, Sandia National Laboratories investigated the use of a HP assisted-LHTES for use with a dish-

Stirling system [27]. The authors propose attachment of the LHTES directly onto the dish which will 

impose a varying inclination angle with the time of day, as the dish is designed to follow the trajectory of 
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the sun. Further investigation by Shabgard et al. [28] revealed that exergy efficiencies greater than 97% 

could be achieved with finned-HPs. 

In conduction-dominated systems, orientation is mainly insignificant. However, for systems 

involving HPs, the internal evaporation and condensation processes vary depending on the HP 

orientation. Also, natural convection strongly depends on the respective locations of the hot and cold 

mediums. Therefore, melting rates may change significantly with different orientations. 

Ye et al. [29] numerically investigated the effect of system inclination angle on the melting of a 

paraffin (Tm ≈ 27 °C) in a quadrantal cavity heated from the curved wall. Without any type of heat 

transfer enhancement within the PCM, the complete melting time for the system heated from below was 

about 13 % of that compared to heating from above. In a related study, Kamkari et al. [30] experimentally 

melted a paraffin (Tm ≈ 45 °C) in a rectangular enclosure with varying tilt angles, with 0° corresponding 

to heating from below. The complete melting time was reduced by approximately 35 % and 53 % for the 

0° and 45° orientations, respectively, relative to 90° with side wall heating. Hence, orientation angle alone 

may significantly alter the heat transfer rates in PCM systems due to changing natural convection flow 

patterns. Similar observations have been reported by [31–34]. 

With regards to HP-PCM systems, few have considered HP orientation with the exception of 

Nithyanandam and Pitchumani [35–37] and Shabgard et al. [16]. These works numerically investigated 

the effects of the orientation and number of HPs in a shell and tube PCM system. In [35], a case with two 

horizontal HPs penetrating the tube on opposite sides took about 30 % longer to melt relative to vertical 

HPs. While Shabgard et al. [16] observed improved heat transfer with vertical heat pipes, hence the need 

for a more fundamental study containing a single HP. 

The improved heat transfer rates in PCM systems obtained for a combined enhancement 

including a HP and foam or foils in [25,26], and the contradictory results regarding the orientation of a 

HP-assisted PCM system motivate this work. Furthermore, in order to compare the effect of adding a HP 

vs. aluminum foam to a PCM, heat transfer through the base that secures the HP is essential and is 

implemented here. In this study, the orientation of the HP-Foil-PCM, HP-Foam-PCM, HP-PCM, Rod-
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PCM, Foam-PCM and non-enhanced PCM configurations are experimentally investigated. The PCM 

temperature distribution, volumetric liquid fraction and photographs are acquired, while the complete 

phase change times and melting rates allow for a relative comparison between cases. 

4.2. Experimental apparatus 

A layout of the experimental apparatus is shown in Fig. 4.1. The PCM (n-octadecane, properties 

in Table 4.1) is contained in an acrylic tube (41 mm inner diameter, 60 mm height, and 4.6 mm wall 

thickness) and is subject to heat transfer from a copper disc (63 mm outer diameter, 5 mm thickness) at 

the base of the tube, as well as a concentrically located HP or rod further enhanced with either foam or 

foils. To further investigate the HP-PCM configuration without heat transfer through the base of the tube, 

the copper disc was replaced with the combination of an acrylic plate (5 mm thickness) and acrylic disc 

(50.2 mm diameter, 5 mm thick) with a 2 mm recess for air insulation were implemented in a manner 

consistent with [26]. 

A Lauda Brinkmann RE107 water bath circulator is used to circulate water as a HTF to provide 

the driving potential for heat transfer. The HTF is contained in an enclosure fabricated from 10 mm thick 

acrylic plates with overall dimensions of 140 mm × 100 mm × 100 mm. A HP (Fujikura: copper-water, 

grooved wick) or rod of length 150 mm and outer diameter 6 mm, and a copper disc of thickness 4 mm 

and diameter 65 mm facilitate heat transfer between the HTF and the PCM. Additionally, 25 copper foils 

(39 mm outer diameter, 5 mm inner diameter and 0.025 mm thickness) were press-fit onto the HP within 

the HTF. 

The acrylic tube contained the PCM between the underlying disc (copper or acrylic) and an 

acrylic plate of thickness 25 mm. The acrylic plate contained a fabricated pathway leading to a network of 

aluminum pipes, with an outer diameter (thickness) of 14 mm (2 mm), which constructs an air chamber to 

accommodate the volume change of the PCM due to different solid and liquid densities. At each interface, 

silicone aquarium sealant was used to seal and secure each device, while four all-threaded rods compress 

the entire system. After assembly, the entire apparatus is placed in an acrylic enclosure of dimensions 200 

mm × 130 mm × 300 mm to thermally insulate the system from the environment as well as allow for 
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visual observation of the melting and solidification processes. Additionally, fiberglass insulation (80 mm 

thick) was wrapped around the network of aluminum pipes which extended beyond the acrylic enclosure. 

In this study, Duocel® aluminum foam (alloy 6101-T6 containing about 98 % aluminum) with a 

porosity (φ) of 0.945 (0.948) and a pore density of 20 pores per inch were utilized for the HP-Foam-PCM 

(Foam-PCM) configuration. Aluminum foils (alloy 8011, also with approximately 98 % aluminum 

content) with outer diameter 0.39 mm and thickness 0.024 mm were used in the HP-Foil-PCM 

configuration with φ = 0.945. The foils and foam, of annular construction, had an inner diameter of 5 mm 

to maintain thermal contact with a concentric HP after a press-fit installation. In order to secure and 

thermally bond the foam to the copper disc, a thin layer of Omegabond® 101 thermal epoxy was 

implemented [38]. 

Upon melting, expansion of the PCM (mass, m = 60 ± 0.2 g) causes a reduction in the air volume 

within the aluminum pipe network thereby increases the air pressure. To measure the air pressure change, 

a Sper Scientific (model PS100 – 2 bar) differential pressure transducer is attached to the air expansion 

chamber, collected with a pressure meter (Sper Scientific, Model 840065) and recorded using Lutron801 

software. 

During assembly, a total of 18 Teflon-coated, 254 μm diameter chromel-alumel (K-type) 

thermocouples were inserted into through-holes in the acrylic tube at the proper radial (r1 = 9 mm, r2 = 15 

mm), axial (z1 = 15 mm, z2 = 30 mm, z3 = 45 mm) and polar (θ1 = 0°, θ2 = 90°, θ3 =180°) coordinates 

within the PCM domain with an estimated placement accuracy of ± 1 mm, and then secured with silicone 

sealant as seen in Fig. 4.1. Thermocouples were also installed on the HP in the PCM (z = 55 mm), on the 

HP in the HTF (z = -20 mm and z = -80 mm) and on the copper disc (two on both the PCM and HTF sides 

at r = 12 mm with θ1 = 0° and θ3 = 180°) using a small drop of thermal epoxy (Omegabond® 101) and 

aluminum foil tape. A thermocouple was also installed in the air chamber and at the water inlet and outlet. 

Each thermocouple was calibrated using the freezing and boiling points of distilled water, and were also 

constructed from the same spool of wire to minimize bias errors. The thermocouple temperature 
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uncertainty was estimated as ± 1 °C while a National Instruments data acquisition (NI CDAQ-9172) 

system and LabVIEW software were used to collect and record data at 1 sec intervals, respectively. 

In order to set the system inclination angle, a protractor angle finder is utilized to ensure that it is 

within ± 2° of the desired angle. The following system inclination angles are considered: α = 0°, 30°, 60° 

and 90°, with α = 0° denoting the vertical orientation as seen in Fig. 4.1. To quantify the performance of 

each configuration, the volumetric liquid fraction is calculated using the measured air temperature and 

pressure change as described in [25]. To further analyze the effect of tilting, photographs were taken 

periodically, using a Panasonic Lumix (model: DMC-FH24) camera. 

For a valid comparison between the HP-Foil-PCM and HP-Foam-PCM configurations, the 

porosity of the foil-PCM and foam-PCM composites must be held constant. Since the porosity of the 

metal foam is fixed, the mass of the foils must be adjusted to that of the foam which results in a similar 

metal enhancer-PCM porosity, calculated by: 
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Note that individual foils are not porous as they are fabricated from common household aluminum foil, 

and the PCM occupies the region between foils.  

4.3. Experimental procedure  

Melting and solidification of the HP-Foil-PCM, HP-Foam-PCM, Foam-PCM, HP-PCM, Rod-

PCM and non-enhanced PCM configurations were investigated in this study. As previously mentioned, 

the HP and rod were secured using silicone sealant, the foils and foam were press-fit onto the HP while 

thermal epoxy was used to secure the foam to the copper disc. A fixed mass of 60 g of PCM was degassed 

in a reduced pressure environment before filling the enclosure. The entire system was also shaken to 

remove any entrapped air within the foam or between foils. In the study, the foil-PCM and foam-PCM 

composites for the HP-Foil-PCM and HP-Foam-PCM configurations had a porosity of about 0.95. As 

previously described, the entire assembly was placed into an acrylic enclosure to isolate the system from 

the ambient environment and then the network of aluminum pipes (containing air) were wrapped with 
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fiberglass insulation. Finally, the desired system inclination angle is established using a protractor angle 

finder and then securing the entire system. 

The initial temperature of the PCM was set as 24 °C (31 °C) during melting (solidification) for all 

cases by using a Lauda Brinkmann RE107 water bath circulator to provide flow and control the 

temperature of the HTF. After equilibration at the set point temperature, solidification (melting) was 

initiated by flowing water at 11 °C (45 °C) to establish a nominal driving temperature of ΔT = 17 °C 

between the PCM melting temperature and the HTF temperature. Two additional driving temperatures of 

ΔT = 8 °C and ΔT = 25 °C were also studied which correspond to inlet HTF temperatures of 20 °C and 3 

°C (36 °C and 53 °C), respectively, during solidification (melting). Each experiment is terminated once a 

constant differential air pressure is observed, indicating complete melting or solidification. The 

thermocouple and pressure transducer measurements were recorded during each experiment which 

allowed for determination of the liquid fraction as described in [25]. In the analysis, a PCM volume 

change correlates to a change in air pressure and temperature assuming that the air acts as an ideal gas and 

is well mixed within the aluminum pipe. 

To ensure repeatability, each experiment was conducted twice with minor (approximate 1 %) 

differences in the liquid fraction between two distinct cases. Hence, the average measured values obtained 

from two experiments are presented here. 

4.4. Results and discussion 

 The temperature distribution, photographs, liquid fraction (fl), and time for 95 % complete melting 

(tm) and solidification (ts) are the main figures of merit used to quantify the performance of each system. 

Of these parameters, the liquid fraction is defined based on the change in air pressure and temperature in 

the same manner as [25]. An uncertainty analysis [39] is carried out in a similar manner as [25] and will 

not be repeated in detail. The uncertainty analysis is based on a sequential perturbation method at each 

time instant. The average uncertainty in liquid fraction ranged from approximately ±0.10 to ±0.15. From 

the liquid fraction histories, a few additional parameters may be defined including a relative effectiveness, 

melting rate and time ratio for 95 % complete phase change. 
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With respect to the base case of the non-enhanced PCM configuration, the relative effectiveness 

at 95 % complete phase change is defined as:  

 
   

  (  )

     (  )
 (2) 
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 (3) 

Similar to [26], the period pertaining to 95 % phase change provides a more relevant time instant since 

the outer diameter of the foils and foam is slightly less than that of the inner diameter of the acrylic tube 

containing the PCM and end effects are not of interest. 

An additional figure of merit is the melting rate. Since the liquid fraction histories are fairly linear 

for the range of conditions studied, with the exception of the HP-PCM, Rod-PCM and Foam-PCM cases 

with α = 90°, the melting rate may be defined as: 

    
    
  

 (4) 

Note that a solidification rate could be similarly defined as Eq. (5), however, it is not a good measure of 

performance as the liquid fraction history is non-linear due to the conduction-dominated heat transfer, as 

will be shown later. 

The final figure of merit which will be used in this work is the time ratio (t/tbc) for 95 % complete 

phase change. This value can be compared between each configuration and the base case defined as:  
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The magnitude of the time ratio indicates the percentage of time in which a particular configuration melts 

or solidifies relative to the non-enhanced PCM case. Overall, the liquid fraction, temperature distribution, 

effectiveness, phase change rates and time for 95 % complete phase change allow for comparison to 

determine which configuration and orientation is preferred. 
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4.4.1 Temperature distribution in the PCM 

The measured local temperatures are presented in Fig. 4.2 through Fig. 4.4. In these figures, the 

open and filled markers represent the temperature at a radius of r1 = 9 mm and r2 = 15 mm, respectively. 

Note that in the following figures, the dashed line represents the HP temperature at z = 55 mm, and the 

solid line represents the average temperature between two thermocouple measurements on the copper disc 

at θ1 = 0 ° and θ3 = 180° on the PCM side at r = 12 mm. During melting with α = 0° and all cases of 

solidification, a high degree of symmetry was observed and each (r, z) location in Fig. 4.2 and Fig. 4.3 

and each value presented represents the average value between the 3 polar (θ) locations as seen in Fig. 4.1 

(b). 

The temperature distribution during solidification is presented with α = 0° for the Foam-PCM, 

HP-PCM and HP-Foam-PCM cases in Fig. 4.2. The Foam-PCM configuration in Fig. 4.2 (a) displays a 

one-dimensional solidification front that advances axially from the copper disc, as indicated by the 

convergence of the inner and outer radii locations at the same axial location. In the HP-PCM case, the HP 

acts to increase the available heat transfer surface area in contact with the PCM as observed by the similar 

temperature between the HP and copper disc in Fig. 4.2 (b). The effect of heat transfer through the copper 

disc is observed by the sooner indication of solidification for the thermocouple locations at z1 = 15 mm 

(square symbols) at the r2 = 15 mm prior to the other axial locations. However, heat transfer through the 

HP is shown to be dominant as the last two thermocouple locations infer solidification at a similar time. 

When foam is added onto the HP for the HP-Foam-PCM configuration in Fig. 4.2 (c), a similar 

solidification phenomenon is observed as for the HP-PCM case except that the higher thermal 

conductivity of the enhancer-PCM composite results in a faster solidification rate. 

Representative temperature histories during melting for the Foam-PCM, HP-PCM and HP-Foil-

PCM cases with α = 0° are presented in Fig. 4.3. The Foam-PCM case exhibits a one-dimensional melting 

front that advances axially from the copper disc, as seen in Fig. 4.3 (a). Natural convection-dominated 

heat transfer for the HP-PCM case is inferred from Fig. 4.3 (b) since the uppermost thermocouple 

locations (circles) melt prior to those at the mid-height (triangles); especially since melting occurs at (r2 = 
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15 mm, z3 = 45 mm) prior to (r1 = 9 mm, z2 = 30 mm). For the HP-Foam-PCM case, a conduction-

dominated melting process is inferred from the temperature distribution in Fig. 4.3 (c). Natural convection 

is severely suppressed in the foam, since the thermocouple locations infer melting with increasing axial 

and radial locations rather than the uppermost thermocouple locations melting prior to the lower 

locations. The combination of the HP with foam allows for the HP to transfer heat further into the PCM 

which is then dispersed in a conduction-dominated manner within the foam-PCM composite.  

In Fig. 4.2 and Fig. 4.3 with α = 0°, the average values for each (r, z) position are displayed since 

symmetry about the central axis was present. However, when α = 90°, three-dimensional melting is 

present. In Fig. 4.4, the temperature distribution for the HP-Foil-PCM (left) and HP-Foam-PCM (right) 

cases with α = 90° are presented at (a) z1 = 15 mm, (b) z2 = 30 mm and (c) z3 = 45 mm.  

 In Fig. 4.4, a few key distinctions can be noted for both configurations. First, the temperature 

gradient at each axial location is approximately 3 °C for the HP-Foil-PCM case and may be greater than 

10 °C for the HP-Foam-PCM case. Another discrepancy is noted by comparing the solid and dotted lines 

for the temperature of the copper disc and the HP within the PCM, respectively. These values are similar 

for the HP-Foam-PCM case with the temperature of the copper disc being slightly less (within 1 °C after 

the first 10 min) than the HP temperature in the PCM, indicating a greater amount of heat transfer from 

the disc. Yet, for the HP-Foil-PCM configuration the opposite is observed, indicating higher heat transfer 

through the HP. Also, the order in which each (r, z) location surpasses the melting temperature indicates 

that heat transfer through the HP is dominant relative to the disc for the HP-Foil-PCM.  

As mentioned previously, there are two distinct methods in which heat transfer rates are improved 

for PCM systems that consist of increasing thermal penetration or thermal diffusion. By combining a HP 

with foils or foam, heat transfer rates are shown to be drastically improved relative to each enhancement 

individually. Since solidification is many conduction-dominated, orientation is rather insignificant, 

however, orientation may significantly affect melting due to varying natural convection currents. 

However, inclusion of metal enhancers, such as foils or foam, may significantly suppress natural 

convection which renders orientation as less significant.  
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4.4.2 Photographic observations 

Photographic observations during solidification and melting allow for a fundamental 

understanding of each process. The influence of system inclination angle during melting is observed in 

this section for the HP-PCM, Rod-PCM and non-enhanced PCM configurations. Each photograph is 

taken from the right side view as indicated in Fig. 4.1 (b) and is parallel to the cross section view 

containing the plane of symmetry in Fig. 4.1 (a). It should be noted that the brightness and contrast of 

each black-and-white photo has been adjusted to provide a clear distinction between the white solid PCM 

and transparent liquid PCM. The silicone that was used to seal and secure the thermocouples at θ2 = 90° 

on the back of the acrylic tube also appear somewhat white in each photograph. However, upon 

inspection, the solid-liquid interface is more distinct and is easily discernible for most of the photographs. 

Lastly, the aluminum foil tape utilized to secure the TCs to the HP after the application of the thermal 

epoxy also appears in the photographs at the tip and base of the HP and rod. The original intent was to 

measure the temperature at the base of the HP or rod, however, problems relating to that specific 

thermocouple location resulted in omission of the measurements at that location.  

Photographs during solidification for the (a) HP-PCM, (b) Rod-PCM and (c) non-enhanced PCM 

cases at t = 15 min (left) and t = 30 min (right) with α = 0° are seen in Fig. 4.5. Experimental 

measurements indicate that the orientation has minimal influence during solidification, therefore, only the 

vertical orientation is presented for brevity. The solidification front which advances from the copper base 

is shown to be relatively similar for each case which indicates a similar degree of heat transfer. Therefore, 

the increase in heat transfer surface area by adding the HP or rod, results in a greater amount of 

solidification relative to the non-enhanced PCM case. It can also be seen that the HP is superior to the rod 

by the larger, more uniform radius of solid PCM at all axial distances for the HP in Fig. 4.5 (a), while the 

rod has a conical shape that slightly decreases in diameter at increasing axial locations in Fig. 4.5 (b). As 

time progresses from t = 15 min (left) and t = 30 min (right), both solidification fronts independently 

advance in the HP-PCM and Rod-PCM configurations, as seen in Fig. 4.5 (a) and (b). 
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In Fig. 4.6, photographs during melting are presented for the (a) HP-PCM, (b) Rod-PCM and (c) 

non-enhanced PCM configurations at t = 60 min with α = 0° (left) and α = 90° (right). The inclination 

angle is shown to influence the shape of the solid-liquid interface in each case due to the complex three-

dimensional natural convection currents. The effect of symmetry about the center of the tube is seen for 

the vertical cases, however, for all non-vertical cases, only symmetry about the plane of Fig. 4.1 (a) is 

observed. It is interesting to note that the solid-liquid interfaces closest to the copper disc is similar for the 

Rod-PCM and non-enhanced PCM cases with α = 0° and α = 90° in Fig. 4.6. Inclusion of the HP or rod 

increases the rate of melting by increasing the overall heat transfer surface area in contact with the PCM 

and allows for natural convection to provide an additional downward melting front relative to the non-

enhanced case. 

The effect of system inclination angle during melting for the HP-PCM configuration can be seen 

in Fig. 4.7 with 30 min intervals. For each case, natural convection significantly alters the solid-liquid 

interfaces. The accumulation of warmer PCM at the top of the enclosure results in an additional 

downward melting front which is not present during solidification. This interface is clear for each case by 

the upper horizontal solid-liquid interface. For α = 0° (left), melting is symmetric about the center of the 

HP as observed by the similar axial height of each upper and lower solid liquid interface while for all 

other inclination angles, only plane symmetry is observed through the plane containing the cross section 

in Fig. 4.1 (a). This figure clearly emphasizes the need for investigating the influence of system 

inclination angle as each orientation experiences a unique three-dimensional solid-liquid interface.  

It is common knowledge that base heated PCM systems are preferred relative to side heated 

systems. Therefore, the enhancement in natural convection from the heated disc is most beneficial when it 

is located below the PCM with α = 0° as perceived by the completion of melting by t = 90 min and not for 

α = 90°. On the other hand, heat transfer from the HP, and also rod, may be more beneficial when in a 

horizontal orientation by a resulting thinner thermal boundary layer. However, in Fig. 4.7 (b), it can be 

seen that after about t = 60 min for each non-vertical case, all the remaining solid PCM resides below the 

HP. Therefore, the HP is less effective as it cannot provide natural convection currents which aid further 
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melting. Further, in Fig. 4.7 (c), these regions are shown to be melted by the copper disc that is in a 

relatively lower position compared to the location of the solid PCM. Yet, for the horizontal orientation, 

neither the HP nor the copper disc can effectively melt the PCM and the remaining PCM melts in a 

conduction-dominated manner. 

4.4.3 Liquid fraction histories 

While temperature profile histories and photographs aid the explanation of the physical 

phenomena that occurs during phase change, they cannot provide detailed information as to the actual 

amount of PCM which has melted or solidified until complete phase change occurs. Hence the need to 

determine the liquid fraction histories is of the upmost importance to investigate PCM systems, since it 

can be related to the stored latent energy. By monitoring the change in air pressure and temperature and 

assuming it acts as an ideal gas, the liquid fraction can ultimately be calculated in a similar manner as 

[25]. Again, the sequential perturbation method [39] is utilized to quantify the uncertainty in liquid 

fraction, which was less than approximately ±0.15 for all cases in this experiment. 

The effects of system inclination angle and heat transfer through the copper disc during 

solidification and melting for the HP-PCM configuration with ΔT = 17 °C are presented in Fig. 4.8. As 

expected, system inclination angle during solidification is insignificant with an average variation in liquid 

fraction of less than Δfl = 0.03. Heat transfer through the copper disc decreased the average time for 95 % 

complete solidification (for each α) from ts = 112 min with an acrylic disc to ts = 82 min with a copper 

disc. However, during melting, natural convection may significantly change the melting rates depending 

on the respective locations of the heated base and solid PCM. With heat transfer through a copper disc 

(open symbols), the liquid fraction with α = 90° reached a liquid fraction that was approximately Δfl = 

0.09 higher than with α = 0° until all the solid PCM remained below the horizontal HP. Also note that for 

α = 30° and α = 60°, the liquid fraction histories lie between the two extreme cases with α = 0° and α = 

90°. Therefore, the cases with α = 30° and α = 60° will not be further presented for brevity. 

When the copper disc was replaced with an acrylic disc to minimize heat transfer, the liquid 

fraction with α = 90° was higher than α = 0° by a value of Δfl = 0.20 (filled symbols) as seen in Fig. 4.8. 
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Therefore, the underlying principle here is that as the HP length increases, the effect of heat transfer 

through the medium securing the HP, such as a plate or tube, becomes insignificant. Therefore, when a 

HP is embedded in a PCM without any additional enhancer, such as foils or foam, it may be beneficial in 

a horizontal rather than vertical configuration. 

 By comparing the HP-PCM cases with the same inclination angle in Fig. 4.8, the copper disc 

achieves a liquid fraction that is higher than an acrylic disc by approximately Δfl = 0.35 with α = 0° and 

only Δfl = 0.12 with α = 90° at the time corresponding to fl = 0.80. Hence, the effect of heat transfer 

through the copper disc during melting is very significant for the vertical case and has a lower impact on 

the overall melting rate for the horizontal case. 

In Fig. 4.9, the liquid fraction histories during solidification for the HP-Foil-PCM, HP-Foam-

PCM, HP-PCM, Rod-PCM, Foam-PCM and non-enhanced PCM cases with vertical and horizontal 

orientations are presented. The effect of driving temperature between the HTF and PCM is investigated 

with the triangle, square and circle symbols representing values of 8 °C, 17 °C and 25 °C, respectively. 

The solid and open symbols for each driving temperature represent the vertical (α = 0°) and horizontal (α 

= 90°) orientations, respectively. 

A quick observation of Fig. 4.9 reveals that nearly all cases have a similar overall shape where 

the solidification rate decreases with time. The decreasing solidification rate for all configurations is the 

result of the constantly increasing distance between the heat transfer surfaces (disc and HP or rod) and the 

solid-liquid interface which renders the overall (95 %) solidification rate meaningless. For the most part, 

the effect of orientation is negligible during solidification except for the HP-Foil-PCM case with ΔT = 17 

°C and ΔT = 25 °C. For all other configurations and driving temperatures, the convergence is explained 

by the conduction-dominated nature of solidification. However, the non-converged liquid fraction 

histories for these two HP-Foil-PCM cases may be attributed to the performance of the HP, mainly its 

heat transfer throughput and orientation.  

The rate of heat transfer through the HP is identified since it only appears for the HP-Foil-PCM 

configuration with the two fastest solidification times of all cases studied. Yet, the same configuration 
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with ΔT = 8 °C (triangles) exhibits converged solidification liquid fraction histories with a lower 

solidification rate.  

The second attribute affecting the non-converged liquid fraction is the specific orientation of the 

HP and its resulting operation. During solidification with α = 0°, the HP evaporator is situated above its 

condenser causing the capillary forces within the wick to act in opposition to gravity. At higher heat 

transfer rates, the pumping requirement of the internal wick increases which may ultimately reach its 

capillary limit. This argument is justifiable since solidification is conduction dominated and the horizontal 

orientation has an appreciably higher performance of Δfl = 0.09 (Δfl = 0.06) with ΔT = 25 °C (ΔT = 17 

°C). While the capillary forces in the horizontal HP with α = 90° do not oppose gravity, they do not act 

against it either, which would result in less flow resistance for the return of the working fluid to the HP 

evaporator, and therefore higher performance compared to α = 0°. 

The liquid fraction histories during melting are shown in Fig. 4.10 for each configuration with ΔT 

= 17 °C. Unlike solidification, most cases do not have a converged liquid fraction since the system 

orientation affects the natural convection currents during melting. The HP-Foil-PCM and HP-Foam-PCM 

configurations show a similar trend during melting where a slightly higher liquid fraction of Δfl = 0.03 

and Δfl = 0.05, respectively, is observed with α = 0° compared to α = 90°. Since natural convection is 

greatly suppressed for these two configurations, this difference is most likely attributed to gravity 

assisting the return of the internal working fluid of the HP with α = 0° as the HP evaporator is situated 

below its condenser.  

 A similar overall profile is observed in Fig. 4.10 for the liquid fraction history for the HP-PCM 

and Rod-PCM configurations during melting. At each driving temperature, the horizontal case has a 

higher liquid fraction history by approximately Δfl = 0.09 until a liquid fraction of about fl = 0.8 where it 

suddenly decreases and is surpassed by the vertical case. Once the liquid fraction reaches this critical 

value, all the remaining solid PCM resides below the HP or rod when α = 90°, as seen in Fig. 4.7 (b). As 

previously stated, the effect of natural convection no longer aids the melting process after fl = 0.80 since 

the higher temperature PCM rises further away from the solid PCM.  
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 The Foam-PCM configuration has a similar liquid fraction history during solidification (melting) 

for each orientation as seen in Fig. 4.9 (e) (Fig. 4.10 (e)). The rate of phase change monotonically 

decreases with time. Note that for all cases except the Foam-PCM case with α = 0°, the system is first 

solidified and subsequently melted in the same orientation angle. However, for this specific case, the lack 

of air pressure change observed by the pressure transducer during melting was circumvented by 

solidifying the system with α = 90° prior to melting with α = 0°. This approach allowed for a small air gap 

to form at the top of the horizontal tube with α = 90° as the PCM solidified which provided a pathway for 

the liquid PCM to occupy as the overall PCM volume expands during melting with α = 0°. Therefore, this 

case is not entirely consistent with all other configurations, yet, its results indicate that the orientation has 

little effect since it is mainly conduction-dominated. Note that a slightly higher liquid fraction is expected 

for α = 0° since heating from below is beneficial to side wall heating for α = 90°, however, the difference 

would be insignificant relative to all other configurations. 

The liquid fraction histories for the non-enhanced PCM configuration can be seen in Fig. 4.10 (f). 

Throughout the entire domain for α = 0°, buoyancy induced natural convection circulates liquid PCM 

between the heated disc and the cooler solid PCM, causing a favorable heat transfer gradient. Side wall 

heating, on the other hand, for α = 90° is not as effective since conduction-dominated melting follows the 

natural convection-dominated regime due to an unfavorable buoyancy induced temperature gradient. This 

configuration demonstrates the improvement in performance, which can be achieved by a proper design 

that effectively utilizes natural convection by heating the PCM from below. 

4.4.4 Performance comparison for each heat transfer enhancement technique 

The liquid fraction histories for each configuration are presented with α = 0° and α = 90° in Fig. 

4.11 with ΔT = 17 °C. For the conditions considered here, examination of Fig. 4.11 reveals that the degree 

of enhancement can be separated into three main regions: (i) non-enhanced, (ii) single enhancement and 

(iii) combined enhancement. The inherent need for a heat transfer enhancement technique in PCM 

systems can be seen for the non-enhanced PCM configuration, particularly for solidification. When a HP, 

rod or foam is implemented to increase heat transfer rates, phase change occurs faster with the highest 
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performance for the HP-PCM configuration. When the HP was combined with the foils or foam, the 

degree of enhancement can be further increased by a considerable amount.  

While these same conclusions were obtained for the vertical orientation in [26], the Foam-PCM 

and non-enhanced PCM configurations as well as the effect of system orientation are also considered 

here. The liquid fraction histories for the Foam-PCM configuration are shown to be similar to the Rod-

PCM configuration in Fig. 4.11. Therefore, the contribution of foam on the enhancement in melting rates 

is not nearly as significant as reported by others which may be attributed to the larger length scale than 

many which have been studied previously. Its degree of enhancement during melting is also improved for 

the α = 0° case relative to the α = 90° case since heating from below is considerably effective for melting 

PCM. It is interesting to note that a nearly converged liquid fraction history is obtained for the HP-PCM, 

Rod-PCM, and Foam-PCM cases with α = 90° with an average variation of about Δfl = 0.05 during 

melting. 

In general, the effect of heat transfer through the copper disc is more significant for the HP-

Foam-PCM configuration relative to the HP-Foil-PCM configuration with α = 0°. This is attributed to the 

orientation of the foils being parallel to the disc resulting in highly two-dimensional (r, θ) heat transfer, 

while the foam is more accommodating to three-dimensional heat transfer from both the base and HP. 

During the initial 5 min of operation, especially for ΔT = 25 °C in Fig. 4.10 at α = 0° (filled circles), the 

HP-Foam-PCM configuration has a higher liquid fraction than the HP-Foil-PCM configuration with the 

same driving temperature and orientation. This may be attributed to either superior operation of the HP in 

the vertical orientation as discussed previously, or that natural convection within the foam is somewhat 

significant at the onset of melting which decreases shortly due to the high flow resistance within the foam.  

4.4.5 Average melting rates 

 As previously mentioned, the solidification rates do not merit comparison between distinct cases 

since the liquid fraction histories are non-linear, as observed in Fig. 4.9. On the other hand, the liquid 

fraction histories during melting with α = 0°, and melting rates for the HP-Foil-PCM, HP-Foam-PCM and 

non-enhanced PCM configurations with α = 90° are fairly linear up to fl = 0.95. These melting rates are 
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calculated with Eq. (4) and the results are summarized in Table 4.2. It may be seen that the melting rate 

for the HP-Foil-PCM cases are 8.5 and 9.5 times that of the non-enhanced PCM cases with α = 0° and α = 

90°, respectively. 

4.4.6 Effectiveness at 95 % complete phase change 

In the previous studies regarding the HP-Foil-PCM configurations [25,26], the base case was the 

Rod-PCM configuration. However, in this work, the base case is the non-enhanced PCM configuration 

which has longer overall melting and solidification times. Using the non-enhanced PCM configuration 

rather than the Rod-PCM configuration as the base case increases the uncertainty in effectiveness since 

the time duration of the HP-Foil-PCM configuration is only a small fraction compared to the non-

enhanced PCM configuration. Therefore, rather than displaying the effectiveness as a function of time, 

the effectiveness (εm and εs) will only be presented at the time of 95 % complete phase change (tm and ts), 

and is presented in Table 4.2 and Fig. 4.12 (circle symbols). 

The highest effectiveness is achieved for the HP-Foil-PCM configuration with a value of 5.7 and 

11.9 (5.3 and 9.4) with α = 0° (α = 90°) during melting and solidification, respectively. Therefore, the 

combination of the HP and foils are approximately 70 %, 370 %, 450 % and 670 % (45 %, 150 %, 180 % 

and 220 %) more effective during melting (solidification) for each orientation than the HP-Foam-PCM, 

HP-PCM, Rod-PCM and Foam-PCM configurations, respectively.  

The effectiveness during melting is seen to be considerably larger than during solidification and 

can be understood by examining Eqs. (2) and (3) along with Fig. 4.11. The liquid fraction for the non-

enhanced PCM configuration during melting is much lower than during solidification since it is initially 

conduction-dominated and the liquid PCM has a lower thermal conductivity. For example, the liquid 

fraction for the HP-Foil-PCM and non-enhanced PCM configurations with α = 0° during solidification 

(melting) is approximately 0.05 and 0.80 (0.95 and 0.08) at t = 13 min (t = 16 min), respectively. Hence, 

the solidification and melting effectiveness is 5.7 and 11.9, respectively, for the HP-Foil-PCM 

configuration with α = 0° and ΔT = 17 °C. Overall, for the range of conditions studied here, an increase 

(decrease) in driving temperature increases (decreases) the effectiveness as expected. 
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4.4.7 Time ratio for complete phase change 

An additional figure of merit to compare distinct cases is the ratio of times for each case to reach 

95 % phase change (tm, ts) relative to that of the non-enhanced PCM case defined in Eqs. (5) and (6). In 

Fig. 4.12, the square markers denote the time ratio during melting (t/tbc)m and solidification (t/tbc)s with ΔT 

= 17 °C for each case. The figure shows that (t/tbc)m and (t/tbc)s are approximately 0.11 and 0.03 for the 

HP-Foil-PCM case regardless of orientation. Therefore, the complete melting and solidification times for 

the HP-Foil-PCM configuration are approximately 11 % and 3 % of the total time for the non-enhanced 

PCM (HP-PCM) configuration, respectively, regardless of orientation. The values for each configuration 

may be seen in Table 4.2. 

4.5. Conclusions 

 Experiments were conducted to investigate the effect of system inclination angle for a cylindrical 

PCM system with heat transfer through both an underlying copper disc and a HP or rod, while the HP was 

further enhanced with aluminum foam or foils. Experimental results for the liquid fraction, temperature 

distribution and photographs are presented to analyze both melting and solidification. A total of 6 

configurations and 28 case studies were investigated with varying orientation and driving temperatures. 

During solidification, orientation was insignificant, with the exception of the HP-Foil-PCM configuration, 

due to conduction-dominated heat transfer. The orientation of the HP-Foil-PCM configuration was 

dependent on the internal operation of the HP in which a capillary limit was most likely being 

approached. This variation is due to the HP evaporator being positioned above its condenser during 

solidification with α = 0°, which increases with an increase in the heat transfer throughput. 

During melting for the HP-PCM, Rod-PCM and non-enhanced PCM configurations, varying 

natural convection currents with orientation significantly change the melting rates. A notable finding for 

the HP-PCM and Rod-PCM configurations is that the liquid fraction in a horizontal case was increased by 

Δfl = 0.09 (Δfl = 0.20) relative to a vertical case with (without) heat transfer through the copper disc until 

the remaining solid PCM resided below the horizontal HP or rod.  
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For the HP-Foil-PCM and HP-Foam-PCM configurations, the average variation in liquid fraction 

between the vertical and horizontal orientations is Δfl = 0.03 and Δfl = 0.05 (Δfl = 0.07 and Δfl = 0.01) 

during melting (solidification), respectively. This variation is mostly attributed to the operation of the HP, 

which is preferred to be vertical to allow for gravity to assist in the return of the internal HP working fluid 

to the HP evaporator. However, when the complete melting and solidification times of each configuration 

are considered, the improvement in performance of the HP-Foil-PCM and HP-Foam-PCM significantly 

outweigh the slight variation due to orientation which makes these combinations promising heat transfer 

enhancement methods for use in LHTES systems. In this study, the HP-Foil-PCM configuration with 

porosity 0.945 and driving temperature of 17 °C was capable of increasing the melting rates by about 9 

times and reducing the total solidification and melting times to about 3 % and 11 % percent that of the 

non-enhanced PCM configuration regardless of orientation.  

 

Nomenclature 

cp specific heat (J/kg·K) 

fl liquid fraction 

Δfl difference in liquid fraction  

hsl latent heat of fusion (kJ/kg) 

k thermal conductivity (W/m·K) 

L length (mm) 

m mass (g) 

r radial coordinate (mm) 

rm melting rate (g/min)  

T temperature (°C) 

ΔT driving temperature: the temperature difference between the heat transfer fluid and the 

phase change material (°C) 

t time (min) 

tm time for 95 % complete melting (min) 

ts time for 95 % complete solidification (min) 

z axial coordinate (mm) 

Greek symbols 

α  inclination angle measured from vertical (°) 

φ  porosity 

εm melting effectiveness at fl = 0.95 
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εs solidification effectiveness at fl = 0.05 

θ  polar coordinate angle (°) 

ρ density (kg/m
3
) 

μ dynamic viscosity (Pa·s) 

Subscripts 

l liquid 

m melting 

s solidification, solid 

bc base case  

pcm phase change material 

Acronyms 

HP heat pipe 

HTF heat transfer fluid 

LHTES latent heat thermal energy storage 

PCM phase change material 
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Table 4.1. Thermophysical properties of n-octadecane at T = 301.5 K [10]. 

Parameter Value 

Melting point, Tm [K]
 

301  

Latent heat of fusion, hsl [kJ/kg] 243.5  

Liquid thermal conductivity, kl [W/m·K]  0.148  

Solid thermal conductivity, ks [W/m·K]  0.358  

Liquid density, ρl [kg/m
3
] 770 

Solid density, ρs [kg/m
3
] 800  

Liquid specific heat, cp,l [J/kg·K] 2160 

Solid specific heat, cp,s [J/kg·K] 1912  

Dynamic viscosity, μ [Pa·s] 3.09  10
-3
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Table 4.2. Time, effectiveness and melting rates for 95 % complete phase change (min). 

Configuration ΔT ts (min) εs tm (min) εm rm (g/min) 

  α = 0° α = 90° α = 0° α = 90° α = 0° α = 90° α = 0° α = 90° α = 0° α = 90° 

HP-Foil-PCM 8 °C 21 23 - - 30 34 - - 2.00 1.76 

HP-Foil-PCM 17 °C 13 11 5.7 5.3 16 18 11.9 9.4 3.75 3.33 

HP-Foil-PCM 25 °C 13 9 - - 12 14 - - 5.00 4.29 

HP-Foam-PCM 17 °C 26 28 3.7 3.8 34 38 7.2 5.4 1.76 1.58 

HP-Foam-PCM 25 °C 22 20 - - 22 24 - - 2.73 2.50 

HP-PCM 8 °C 164 168 - - 204 244 - - 0.29 - 

HP-PCM 17 °C 84 72 2.3 2.1 78 106 2.2 2.3 0.77 - 

HP-PCM 25 °C 72 70 - - 56 74 - - 1.07 - 

Rod-PCM 17 °C 102 98 1.9 2.0 96 118 2.0 1.9 0.63 - 

Foam-PCM 17 °C 112 112 1.7 1.7 106 104 1.3 1.5 0.57 - 

Non-enhanced  17 °C 398 428 1.0 1.0 136 172 1.0 1.0 0.44 0.35 
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(a) central cross section parallel to the right side view (plane of symmetry) 

 

(b) top view 

Fig. 4.1. Schematic of the experimental apparatus (a) central cross section parallel to the right side view 

(plane of symmetry) and (b) top view. 
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(a) Foam-PCM  

 
(b) HP-PCM 

 
(c) HP-Foam-PCM 

Fig. 4.2. Temperature distribution during solidification with α = 0° and ΔT = 17 °C (r1 = 9 mm, r2 = 15 

mm, z1 = 15 mm, z2 = 30 mm, z3 = 45 mm) for the (a) Foam-PCM, (b) HP-PCM and (c) HP-Foam-PCM 

configurations. 
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(a) Foam-PCM 

 
(b) HP-PCM 

 
(c) HP-Foam-PCM 

Fig. 4.3. Temperature distribution during melting with α = 0° and ΔT = 17 °C (r1 = 9 mm, r2 = 15 mm, z1 

= 15 mm, z2 = 30 mm, z3 = 45 mm) for the (a) Foam-PCM, (b) HP-PCM and (c) HP-Foam-PCM 

configurations. 

  

20

25

30

35

40

45

0 30 60 90 120 150
T

( 
C

)

t (min)

Foam-PCM 0V 60g melt 1 when solidified in 90V.lvm

Foam-PCM

averageΔT = 17 °C

z1 z2 z3

r1

r2

Disc

20

25

30

35

40

45

0 25 50 75 100 125

T
( 

C
)

t (min)

Figure  left HP PCM V 60g melt 2 6-28-2013.lvm

z1 z2 z3

r1

r2

HP

Disc

averageΔT = 17 °C Vertical

HP-PCM

20

25

30

35

40

45

0 10 20 30 40 50

T
( 

C
)

t (min)

Figure HP-Foam-PCM 0V 60g melt 1.lvm

ΔT = 17 °C

HP-Foam-PCM

average

z1 z2 z3

r1

r2

HP

Disc



188 

 

  

(a) z1 = 15 mm 

  
(b) z2 = 30 mm 

  
(c) z3 = 45 mm 

Fig. 4.4. Temperature distribution during melting for the HP-Foil-PCM (left) and HP-Foam-PCM (right) 

configurations with ΔT = 17 °C and α = 90° (r1 = 9 mm, r2 = 15 mm, θ1 = 0°, θ2 = 90°, θ3 = 180°) for (a) 

z1 = 15 mm (b) z2 = 30 mm and (c) z3 = 45 mm. 
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(a) HP-PCM 

  
(b) Rod-PCM 

  
(c) non-enhanced PCM 

Fig. 4.5. Photographs during solidification with α = 0° and ΔT = 17 °C for the (a) HP-PCM, (b) Rod-

PCM, and (c) non-enhanced PCM configurations at t = 15 min (left) and t = 30 min (right). 
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(a) HP-PCM 

 

 

(b) Rod-PCM 

 
 

(c) non-enhanced PCM 

Fig. 4.6. Photographs during melting at t = 60 min with α = 0° (left), α = 90° (right) and ΔT = 17 °C for 

the (a) HP-PCM, (b) Rod-PCM and (c) non-enhanced PCM configurations. 
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α = 0° α = 30° α = 60° α = 90° 

(a) t = 30 min 

 

 
 

 

α = 0° α = 30° α = 60° α = 90° 

(b) t = 60 min 

 

 
 

 

α = 0° α = 30° α = 60° α = 90° 

(c) t = 90 min 

Fig. 4.7. Photographs progression during melting with α = 0° (left), α = 0° (left-middle), α = 0° (right-

middle), α = 90° (right) and ΔT = 17 °C for the HP-PCM configuration at (a) t = 30 min (b) t = 60 min 

and (c) t = 90 min. 
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(a) solidification (b) melting 

Fig. 4.8. Liquid fraction histories for the HP-PCM cases with ΔT = 17 °C using a copper disc (open 

symbols) and an acrylic disc (solid symbols) during (a) solidification and (b) melting. 
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(a) HP-Foil-PCM (b) HP-Foam-PCM 

  
(c) HP-PCM (d) Rod-PCM 

  
(e) Foam-PCM (f) non-enhanced PCM 

Fig. 4.9. Liquid fraction histories during solidification with varying ΔT and orientation for the (a) HP-

Foil-PCM, (b) HP-Foam-PCM, (c) HP-PCM, (d) Rod-PCM, (e) Foam-PCM and (f) non-enhanced PCM 

configurations. 
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(a) HP-Foil-PCM (b) HP-Foam-PCM 

  
(c) HP-PCM (d) Rod-PCM 

  
(e) Foam-PCM (f) non-enhanced PCM 

Fig. 4.10. Liquid fraction histories during melting with varying ΔT and orientation for the (a) HP-Foil-

PCM, (b) HP-Foam-PCM, (c) HP-PCM, (d) Rod-PCM, (e) Foam-PCM and (f) non-enhanced PCM 

configurations. 

  

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

f l

t (min)

Figure All relevent data and effectiveness.xlsx

HP-Foil-PCM

α = 0° α = 90°ΔT

8 °C

17 °C

25 °C

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

f l

t (min)

average

HP-Foam-PCM

ΔT = 17 °C

α = 0° α = 90°ΔT

17 °C

25 °C

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300

f l

t (min)

Figure EE (b) HP PCM relevent data.xlsx

average

HP-PCM

α = 0° α = 90°ΔT

8 °C

17 °C

25 °C

0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

f l

t (min)

Figure EE (a) Rod PCM relevent data.xlsx

averageΔT = 17 °C

Rod-PCM

α = 0° α = 90°ΔT

17 °C

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

f l

t (min)

Foam-PCM

α = 0° α = 90°ΔT

17 °C

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

f l

t (min)

Figure  Pure-PCM relevant data.xlsx

averageΔT = 17 °C

Pure-PCM

α = 0° α = 90°ΔT

17 °C



195 

 

  
(a) solidification, α = 0° (b) melting, α = 0° 

  
(c) solidification, α = 90°  (d) melting, α = 90° 

Fig. 4.11. Liquid fraction histories for each configuration with ΔT = 17 °C (a) solidification, α = 0°, (b) 

melting, α = 0°, (c) solidification, α = 90° and (d) melting, α = 90°.  
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(a) solidification, α = 0° (b) melting, α = 0° 

  
(c) solidification, α = 90°  (d) melting, α = 90° 

Fig. 4.12. Time ratio and effectiveness for each configuration at 95 % complete phase change with respect 

to the non-enhanced PCM case with ΔT = 17 °C (a) solidification, α = 0°, (b) melting, α = 0°, (c) 

solidification, α = 90° and (d) melting, α = 90°. 
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