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ABSTRACT 

 

The relative inaccessibility of aquifers and co-occurrence of denitrification contribute to 

difficulties in assessing anammox contribution to total environmental N2 production in this 

system.  Anaerobic ammonium oxidation (anammox) is an autotrophic microbial process that 

converts NO2
- and NH4

+ into nitrogen gas (N2), an alternate to denitrification in the nitrogen 

cycle.  This process may be important in attenuating fixed nitrogen in groundwater prior to 

discharge into coastal systems.  Nitrogen isotope enrichment factors have proven useful in 

identifying dominant processes within the overall nitrogen cycle in various environments, but the 

approach has not yet been directed at anammox outside of a pure culture setting.  The influence 

of anammox on the nitrogen isotope dynamics of DIN species and N2 was assessed through 

controlled laboratory incubations using groundwater and sediment from a nitrogen-contaminated 

groundwater plume with characterized anammox activity.  These were conducted under 

conditions of varied anammox contribution to total N2 production.  Experimentally observed 

enrichment factors associated with nitrate (NO3
-) and nitrite (NO2

-) reduction ranged from -17 to 

-25‰ regardless of treatment.  A finite time stepping model modified from Böhlke (2001) and 

Böhlke et al. (2002) was then used to determine a set of enrichment factors for the natural 

abundance incubations representing “best fits” for concentrations and isotope evolution of DIN 

species, N2, and N2O concentration.  The modeled isotopic effects in the NO2
- and NO3

- pools 

were on a similar scale to that of denitrification and all greater than -30‰.  This finding was 

consistent with results from separate 15N tracer experiments that suggested anammox accounts 

for up to 8 or 28% of N2 production, depending on weighting of denitrification within treatments.  

NH4
+ fractionations could not be clearly discerned from observed or modeled data likely because 
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of low rates, a large NH4
+ pool, and isotopic exchange between aqueous and sediment NH4

+ 

pools.  Nitrogen isotope systematics appeared to be dominated by denitrification, and good 

modeled fits to experimental data could be attained within the range of published denitrification 

enrichment factors with or without anammox.   This work highlights the challenges in 

interpreting in situ patterns of δ15N as unique indicators of anammox. 



10 
 

INTRODUCTION 

 

Human activities have almost doubled the rate of nitrogen input to terrestrial systems 

(Vitousek et al. 1997).  Watershed export of fixed nitrogen by rivers and streams ultimately 

deposits into the nitrogen-limited coastal ocean.  This region, which accounts for half of the 

global ocean’s primary production (Paerl 1997), is disproportionally affected by the nitrogen 

input (Galloway et al. 2003), resulting in eutrophication, harmful algal blooms (Paerl 1997; 

Vitousek et al. 1997; Howarth and Marino 2006), ecological shifts towards lower trophic levels 

(Deegan et al. 2002), and changes in species composition (Hillebrand et al. 2000). 

Increased delivery of watershed nitrogen to the continental margin can be offset by the 

removal of reactive N from surface and groundwater during transport.  Only two known 

processes in the nitrogen cycle return fixed N to the form of N2:  denitrification and anaerobic 

ammonium oxidation (anammox; Dalsgaard et al. 2005; Seitzinger et al. 2006; reviewed by Song 

and Tobias 2011).  Both reactions are microbially catalyzed and require anaerobic conditions. 

Denitrification has been historically considered the primary mechanism of N2 production.  

Denitrifying bacteria use oxidized nitrogen species (NOx) (Seitzinger et al. 2006; Eq 1) as 

terminal electron acceptors during respiration.  A wide diversity of bacteria can perform 

denitrification either obligately or facultatively (reviewed by Robertson et al. 1989; Seitzinger et 

al. 2006) in anoxic water columns and/or sediments.  Nitrate (NO3
-) is reduced to nitrite (NO2

-) 

via the dissimilarity nitrate reductase (NaR).  Nitrite reductase (cytochrome cd1) (NiR) reduces 

NO2
- to nitric oxide (NO), which is itself reduced to N2O via nitric-oxide reductase (NOR).  

Finally, N2O reductase (NOS) converts N2O to N2 (Körner and Zumft 1989).   
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Eq. 1)  OC + NO3
-    NO2

-    NO    N2O    N2 (g) 

           

        NaR         NiR       NOR       NOS 

 

Denitrification can terminate at N2O in limited electron environments and/or under trace 

oxygen conditions (Seitzinger et al. 2006) which can affect total N2O emissions in terrestrial and 

aquatic systems (Bouwman et al. 1995; Huang et al. 2008).  In surface water and terrestrial 

environments, organic carbon (OC) is the ultimate electron donor for all reaction steps, while OC 

and mineral phase electron donors (e.g. reduced sulfate) can also support denitrification in 

groundwater (Böhlke and Denver 1995; Appelo and Postma 2005).  The oxidized nitrogen NO3
- 

and/or NO2
- can be supplied from the aqueous phase (e.g. diffusion from the water column), or 

denitrification can be tightly coupled to sedimentary sources of NOx produced locally from 

nitrification in adjacent oxic microzones (Risgaard-Petersen 2003, Seitzinger et al. 2006). 

Anammox, which also requires an anoxic environment, uses ammonium (NH4
+) as the 

source of electrons to reduce NO2
- to N2 (Eqs. 2, 3).  Unlike denitrification, which is 

heterotrophic, anammox bacteria are chemolithotrophic and capable of fixing inorganic carbon 

with electrons afforded by ammonium (Sliekers et al. 2002).  Only a few species of bacteria have 

been identified that are capable of performing the anammox reaction (Candidatus Brocadia 

anammoxidans, Candidatus Brocadia brodae, Candidatus Scalindua wagneri, Candidatus 

Scalindua sorokinii, Candidatus Anammoxoglobus propionicus) (Strous et al. 1999; Schmid et 

al. 2003; Dale et al. 2009; Kartal et al. 2008).  NO2
- is initially reduced to NO via nitrite 

reductase (NiR).  The NO then reacts with ammonium (NH4
+) through the hydrazine 

oxidoreductase (HZO) enzyme to form a short-lived hydrazine (N2H4) intermediate (Schalk et al. 

1998).  Breakdown of the unstable N2H4 forms N2 which contains one N from NO2
- and the other 
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from NH4
+.  All reactions take place within an organelle specific to annamox bacteria called the 

annamoxosome, where ladderane lipids make up a membrane that protects the reaction from 

trace amounts of O2 (Strous et al. 2006, Dalsgaard et al. 2005; Kalvelage et al. 2011).   

 

Eq. 2)  NO2
-  NO + NH4

+  N2H4  N2 + H2O 

           

          NiR                 HZO    

 

Simplified, the reaction is as follows: 

 

Eq. 3)  NH4
+ + NO2

-  N2 + 2H2O   

 

For anammox, the NH4
+ serves as the electron donor and no external source of organic 

carbon is required for the redox reaction, although there is evidence that anammox can use low 

molecular weight organic carbon substrates such as formate (Smith et al. 2001; Kartal et al. 

2007), but with little significant influence on overall rate of N2 production.  Anaerobic 

degradation of organic matter supplies NH4
+ in anammox amenable environments, as does 

anthropogenic waste disposal.  The NO2
- substrate appears in the water column as an 

intermediate from aerobic ammonium oxidation (e.g. nitrification; Mulder et al. 1995; Siegrist et 

al. 1998; Third et al. 2005; Lam et al. 2007), and/or following the nitrate reduction step of 

denitrification (Song and Tobias 2011; Trimmer et al. 2005; Dalsgaard et al. 2005), and/or 

dissimilatory nitrate reduction to ammonium (DNRA; Giblin et al. 2013).  The common NO2
- 

substrate shared between anammox, denitrification, and nitrification, as well as potentially NH4
+ 

between anammox and DNRA, provide challenges to studying anammox in situ. 
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Denitrification has been exhaustively measured in terrestrial soils (Seitzinger et al. 2006), 

groundwater (Mariotti et al. 1988; Smith et al. 1991, 2001; Schmidt et al. 2011), wetlands 

(Seitzinger et al. 2006; Burgin et al. 2010; Harrison et al. 2011), and coastal zones (An and Joye 

2001; Risgaard-Petersen 2003).  Anammox measurements in surface water environments have 

similarly been carried out with increasing frequency since the reaction’s discovery (Dalsgaard et 

al. 2005; Hamersley et al. 2009).  N2 production previously attributed solely to denitrification has 

proven to be a mixture of N2 produced by both processes (Risgaard-Petersen et al. 2003) in 

various settings.  Anammox has been identified in locations such as anoxic water columns of the 

Black Sea (Kuypers et al. 2003; Lam et al. 2007) and Golfo Dulce (Dalsgaard et al. 2003), Arctic 

sea ice (Rysgaard and Glud 2004), coastal sediments such as those of the Thames estuary 

(Trimmer et al. 2003), lake sediments (Souza et al. 2012), and oxygen minimum zones of the 

ocean water column (Thamdrup et al. 2006).  Except for a handful of studies in contaminated 

aquifers (Clark et al. 2008, Moore et al. 2011; Robertson et al. 2012), quantification of 

groundwater anammox has largely escaped attention. 

Groundwater acts as a long term repository for terrestrial nitrogen and represents both a 

significant water resource and a delivery route for nitrogen loads that ultimately deposit in the 

coastal ocean, either directly or by discharge to streams and rivers (Giblin and Gaines 1990; 

Lyngkilde and Christensen 1992; Valiela et al. 1997, 1999; Cole et al. 2006; Swartz et al. 2006; 

Robertson et al. 2012).  While aquifers vary widely in redox state and speciation of dissolved 

nitrogen concentration, much of the organic carbon is typically respired soon after recharge and 

thus tends to be organic-carbon poor relative to their surface water counterparts.  Those aquifers 

that are N-rich, anaerobic, and carbon poor should be favorable for anammox (Clark et al. 2008).   
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Recent global estimates of in-aquifer conversion of reactive N to N2 are based on organic 

carbon proxies for denitrification.  Because these estimates (20% of global N2 production from 

denitrification in freshwater) were derived using organic carbon as a proxy (Bouwman et al. 

2002; Seitzinger et al. 2006) and anammox does not require an external source of OC, it is 

conceivable that current groundwater global N2 production values are underestimating the 

contribution of anammox.   

Biogeochemical reactions in general, and anammox and denitrification in particular, are 

difficult to study in aquifers due to relative inaccessibility of reaction sites.  Molecular 

approaches have been useful for identifying genes of free living bacteria in groundwater, but 

these measurements do not necessarily correlate with activity, and Quantitative PCR (qPCR) 

approaches for anammox gene expression are only now maturing (Song and Tobias 2011) and 

have yet to be calibrated as proxies for rates.  In order to derive these reaction rates, 

hydrogeologists and geochemists have approached this problem by examining changes in 

chemical ratios (e.g. N2/Ar) along flow paths, and also by turning to in situ tracer experiments 

coupled to advection-dispersion models to derive reaction rates (Garabedian et al. 1991; Tobias 

et al. 2001; Smith et al. 2004; Böhlke et al. 2006; Roberston et al. 2012; Jahangir et al. 2013).  

One such approach used to identify numerous different nitrogen cycle reactions, including 

denitrification in aquifers in situ, is natural abundance 15N stable isotopes (δ15N). 

All natural abundance isotopic values are expressed in the delta notation (δ15N) in units 

of per mille according to:  

 

Eq. 4)  δ = [(Rsample/Rstandard) – 1] x 1000‰  
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Where R is the ratio of the heavy to the light isotope, and the nitrogen standard is set at 

0‰ for atmospheric nitrogen. 

The distribution of stable isotope ratios has been used previously in other groundwater 

studies involving denitrification (Mariotti et al. 1982, 1988; Böhlke et al. 2004, 2009; Green et 

al. 2010), and has more recently been applied to infer anammox activities in aquifers.  For 

example, Clark et al. (2008) examined an aquifer with a history of ammonium contamination 

from nearby chemical and fertilizer companies.  Using well surveys across the downstream 

flowpath and mixing curves, the study concluded that that the enrichment of δ15NO3 and δ15NH4
+ 

indicated a reactive loss of both substrates.  Combined with an overpressuring N2 gas increase, 

anammox was suggested as the mechanism of N loss.  Similarly, during an in situ experiment, 

Robertson et al. (2011) found enrichment in δ15NH4
+ over a gradient at a site abundant in 

anammox bacteria, correspondent with NH4+ attenuation, suggesting anammox as a possible 

active process.  In a laboratory incubation experiment using two sites with anammox bacteria 

present, Moore et al. (2011) found up to 18 and 36% of groundwater N2 production attributable 

to anammox.  Studies such as these show the usefulness of stable isotope distributions in 

inferring the contribution of individual reactions to the extant N pools.  However, these 

groundwater anammox studies only represent a start.  A more robust use of natural abundance N 

isotopes to assess the relative prevalence of anammox in aquifers where denitrification may also 

be present requires a refined understanding of how each of these reactions fractionate the various 

DIN species in each of the reaction pathways.  Many of these fractionation factors (α) have been 

studied for steps in denitrification pathways in cultures (Granger et al. 2008; Kritee et al. 2012) 

and in the environment (Mariotti et al. 1981; Voss et al. 2001; Böhlke et al. 2006, Perez et al. 

2006; Sutka et al. 2008;).  The lack of widely available pure anammox cultures has until recently 
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hampered estimation of anammox fractionation factors in culture (Brunner et al. 2013), though 

there are estimates from the environment based on localized 15N enrichment of ammonium in 

anaerobic marine sediments (Prokopenko et al. 2013).  

The fractionation factor (α) describes the relative difference in the reaction rates of heavy 

and light isotopologues during a unidirectional reaction, and here is defined by the ratio of the 

rate constants (k) for a reaction regarding 15N and 14N (Mariotti et al. 1981) (Eq 5).   

 

Eq. 5)  α = 15kN/14kN 

Eq. 6)  ε = (α – 1) x 1000 

 

The term α is often reported as the enrichment factor (epsilon, ε), reported in per mille 

(‰) units; Eq 6, the proportion by which the product of the reaction is enriched by the heavier 

isotope in relation to the substrate (Mariotti et al. 1981).   

Here we describe a series of experiments designed to establish enrichment factors 

associated with the production and/or consumption of the DIN species participating in the 

anammox reaction, as manifested in a nitrogen contaminated shallow coastal aquifer.  Anammox 

activity has been detected at this aquifer, co-occuring with variable amounts of denitrification.  

The overarching objective of this study was to determine whether specific N isotope 

fractionations are unique to anammox, and can serve as a diagnostic for anammox when applied 

to broader aquifer-scale surveys of δ15N-DIN. 
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MATERIALS AND METHODS 

 

STUDY SITE 

A series of natural abundance isotope fractionation incubation experiments and a single 

15N tracer experiment were conducted using aquifer sediments collected from a nitrogen 

contaminated wastewater groundwater plume located on Cape Cod, MA (Figure 1).  Though the 

sewage disposal via infiltration beds was discontinued in 1995, the legacy plume still exists at 

dimensions of 6 km long, 1 km in width, and 23 m in thickness.  Two locations in the plume – 

upper and lower plume – were chosen for the study.  The upper plume location (F575; 

41°38'11.74"N, 70°32'31.52"W) is located 300 m from the infiltration beds.  The lower plume 

location (F168; 41°37'1.64"N, 70°32'56.24"W) is located 2 km downgradient in the Ashumet 

Valley (USGS Cape Cod Toxics 2013).  These two locations were chosen as sites sufficiently 

suboxic to support anammox, and whose potential activity was confirmed by 15N tracer and the 

presence of the HZO functional gene (Song et al. 2010).  Denitrification has been reported at 

both sites, with higher rates at F575 closer to the infiltration beds, and lower rates at F168 where 

denitrification is thought to be limited by the availability of labile DOC (Thurman et al. 1986; 

Smith and Duff 1988; Smith et al. 1991; Barbaro et al. 2013).  Aquifer sediments and 

groundwater were collected From F575 in 2011 and 2012, and from F168 in 2012 and 2013.   
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Figure 1.  Map of the Cape Cod groundwater plume study site.  The orange delineates the plume 

boundaries and green arrows indicate groundwater flow direction.   
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Figure 2.  Depth profiles of selected chemical gradients at sites F575 and F168.  Arrows denote 

depths from which sediments and water were collected (Barbaro et al. 2013; Smith et al. per. 

Com). 
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Table 1.  Experimental treatments by year, depth, and amendment.  #MI indicates a nonacetate 

treatment, and CMI indicates an acetate treatment, with C as the notation for carbon. 
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At the upper plume site (F575), sediments from 2 aquifer depths (Deep-D; -2.1 to -3.6 m 

alt NAVD88, and Middle-M; 7.6 to 6.1 m alt NAVD88) were collected in 2011 and 2012, 

respectively.  Sampling depths that aligned with areas of the geochemical gradient likely to 

support anammox were chosen (Figure 2).  These zones were characterized by a transition in N 

speciation and/or where denitrification or nitrification had been previously documented that 

might supply NO2
- for anammox (Barbaro et al. 2013).  The F575 middle depth (M) collected in 

2012 had previously shown anammox activity measured during an in situ 15NO2 tracer injection 

experiment.   

A single depth was sampled at the lower plume site (F168; -7 to 8 m alt NAVD88) in 

2012 and 2013.  This zone contained high NO3
- (255 μM) and NH4

+ (451 μM), but non-

detectable NO2
-, and denitrification was reported to be severely limited by a lack of degradable 

organic carbon.  An in situ 15NO2
- tracer experiment performed nearby at the same aquifer depth 

indicated a dominance of anammox over denitrification.   

All sediments were collected using a drilling rig equipped with a sand auger and split 

spoon sampler.  After collection, sediments were stored in headspace free mason jars at 4° C 

until use in the incubation experiments. 

 

EXPERIMENTAL APPROACH 

Natural Abundance Incubations - To determine enrichment factors for various N species 

involved in anammox and denitrification, we conducted a series of aquifer sediment and 

groundwater slurry incubations.  All incubations were designed as anaerobic.  Amendments were 

made with two primary high concentration combinations (+ NO2
-, NH4

+, with/without acetate) 
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and designated as CMI (+ acetate) and #MI (nonacetate) in order to create environments that 

favored different amounts of anammox vs denitrification.  Downgradient amendments did not 

include NH4
+ due to an already existing high background in the groundwater at that site.  

Groundwater used in the slurry natural abundance incubations was collected in 

headspace-free 1 L glass brown bottles from the same plume location and depth as the aquifer 

sediment.  Approximately 10 g of sediment wet-weight was placed into 60 ml serum vials, 

capped, and immediately evacuated by vacuum to remove any atmosphere introduced during the 

transfer.  The remaining space in the serum bottles was filled with groundwater that had been 

previously amended according to the treatment and sparged with a gas mixture of argon (1%), 

nitrogen (80%), and helium (19%).  Serum bottles were then crimped with thick butyl stoppers 

and placed in a roller incubator to continuously mix the slurry during the incubation and 

minimize any diffusion limitation effects on isotope fractionation.   

Time series samples were collected by sacrificing individual serum slurry bottles in 

triplicate at each time point and analyzed for concentrations and isotopic composition of the 

NH4
+, NO3

-/NO2
-, and N2 fractions.  Aliquots for different analytes and isotopic analyses were 

distributed using a peristaltic pump. DIN (frozen), 15NH4
+ (frozen), and 15NO3

-/NO2
- (KOH 

preserved to pH 12) were 0.2 um filtered.  The aliquot for δ15N2 analysis and N2 production was 

not filtered, but was pumped directly into a helium-flushed 30 ml serum vial containing 200 μl of 

2N potassium hydroxide (KOH).   

Tracer Incubations - 15NO2
-
 tracer incubations were performed to complement and further 

investigate the results of the natural abundance fractionation experiments.  They were done 

specifically for three reasons: 1) to further isolate and verify the rates of anammox in the natural 

abundance set; 2) to determine the efficacy of acetate additions for enhancing denitrification 
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relative to anammox; 3) to examine the magnitude of DNRA as a potential constraint on 

interpreting natural abundance changes in NH4
+ from the natural abundance experiments.  

Slurries were prepared as described for the fractionation incubations except that 20 g of 

sediments were used and incubations were done in larger (130 ml) serum bottles.  Bottles were 

incubated for 7 days prior to tracer injection to ensure removal of trace oxygen from the matrix 

and create a reducing environment.  Two treatments were done: 1) 15NO2
- only; and 2) 15NO2

- + 

acetate.  Target concentrations for NO2
- and acetate were 200 μM and 250 μM, respectively.  The 

15N isotopic enrichment of 15NO2
- was at >99 At%.  Individual vials were sacrificed at intervals 

to measure concentrations and isotopic composition of the NH4
+, NO3

-/NO2
-, and N2 and N2O 

fractions during the course of the incubations.    

 

ANALYTICAL METHODS 

Both natural abundance and tracer incubations used the same analytical methods with 

respect to N concentrations and isotopic analyses.   

 NH4
+ concentrations were measured using the phenol-hypochlorite method 

(Weatherburn 1967), and NO3
- and NO2

- were measured by N-Napthylethylene-diamine azodye 

formation with and without cadmium reduction, respectively as described by the Greiss Test 

(Armstrong et al. 1967).  N2O was analyzed on a Gas Chromatograph-Electron Capture Detector 

(GC-ECD).  

15N2 was measured using continuous flow isotope-ratio mass spectrometry (IRMS).  The 

δ15N2 IRMS analysis used the Gas Bench (GB) interface equipped with a molecular sieve 5A GC 

column and analyzed at 32° C.  δ15N2 was measured, as well as N2, O2, and Ar.  Air calibrations 

of 50, 75, and 120 μl air, were run each day of analysis, and permitted calibration of N2 area and 
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N2/Ar ratios to changes in N2 mass.  All of δ15N2 were normalized to air δ15N values using the air 

standards. 

15NH4
+ was measured using an ammonia acid trap diffusion method (Holmes et al. 1999) 

where ammonium was converted to ammonia gas at pH >11 and trapped as ammonium sulfate 

on a K2SO4 acidified glass fiber filter.  The filter was then combusted in a Costech elemental 

analyzer (EA) and the δ15N analyzed in a coupled IRMS.  All δ15NH4
+ data were two-point 

normalized to air δ15N using known reference materials USGS 40 and 41 L-glutamic acid run 

concurrently with the ammonium filters.   

15N enrichments from the tracer experiments are expressed as 15N mole fractions or, for 

N2, individually as the mass of the individual 29 and 30 N2 isotopologues. 

 

DATA SYNTHESIS 

Natural Abundance – The concentration and δ15N data from the natural abundance 

experiments was used to determine the effective net enrichment factor (epsilon = ε) according to 

the Rayleigh model (Eq. 7). 

 

Eq. 7)  δs = δs0 + ε ln C/C0 

 

Where C is the molar concentration of the substrate at time t, with C0 being at t = 0, δs is 

the isotopic composition at t, with δs0 being at t = 0, and ε is the isotopic enrichment factor.  

(Mariotti et al. 1988).   

When δs is plotted against the natural log of C, ε in per mille (‰) can be estimated from 

the slope.  Because ε potentially represents the net effect of isotopic changes due to the input and 
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output in several pools, we also used a finite difference time stepping model, modified from 

Böhlke (2001) and Böhlke et al. (2002), to assess the nitrogen isotope dynamics in the 

incubations.   

The purposes of this modeling effort were to specifically investigate enrichment factors 

for anammox, examine the relative effects of varying amounts of anammox, denitrification, and 

DNRA on the δ15N values of NO3
-, NO2

-, NH4
+, and N2, and to help assess the utility of in situ 

distribution of these δ15N values as a diagnostic indicator of contributions from these reactions to 

overall aquifer N-cycling.  At each time step of the model, an individual N pool (Nt) mass 

balance was calculated with respect to total N mass, and individually for 14N and 15N.  In 

addition to calculating the micromolar N concentration at each time step, δ15N values are also 

calculated at each time step from the individual 14N and 15N concentrations.   

The total N in an individual pool (e.g. NO2
-, or NH4

+, or N2) at each time step (Nt) was 

calculated from N at the previous time-step (Nt-1) and the difference between the masses of N 

entering the pool (Nin) from various sources, and N leaving the pool (Nout) over the time interval 

(Eq. 8). 

 

Eq. 8)  Nt = Nt-1 + Σ Nins – Σ Nouts   

      

 Michaelis Mention kinetics was used to parameterize input and output terms, Nin and 

Nout, based on: 

 

Eq. 9)  
𝑉𝑚𝑎𝑥 • [  ]𝑡−1

𝐾𝑠 + [  ]𝑡−1
 × ∆t                 
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Where Vmax and Ks are the maximum rate and half saturation constant, respectively.  

Brackets denote concentrations either for donor species importing N into the pool of interest, or 

in the case of reactions removing N, the concentration of the pool of interest.  The 14N and 15N 

inventories at each time step were calculated from equations 10 and 11. 

 

Eq. 10) 14𝑁𝑡 =  14𝑁𝑡−1 + [
𝑁𝑖𝑛,𝑡

(∝𝑖𝑛𝑝𝑢𝑡∙
15𝑁𝑑𝑜𝑛𝑜𝑟,𝑡−1
14𝑁𝑑𝑜𝑛𝑜𝑟,𝑡−1

+1)
] − [

𝑁𝑜𝑢𝑡,𝑡

(∝𝑜𝑢𝑡𝑝𝑢𝑡∙
15𝑁𝑡−1
14𝑁𝑡−1

+1)
]   

Eq. 11) 15𝑁𝑡 =  15𝑁𝑡−1 + {
𝑁𝑖𝑛,𝑡

[(∝𝑖𝑛𝑝𝑢𝑡∙
15𝑁𝑑𝑜𝑛𝑜𝑟,𝑡−1
14𝑁𝑑𝑜𝑛𝑜𝑟,𝑡−1

)
−1

+1]

} − {
𝑁𝑜𝑢𝑡,𝑡

[(∝𝑜𝑢𝑡𝑝𝑢𝑡∙
15𝑁𝑡−1
14𝑁𝑡−1

)
−1

+1]

}   

 

Finally, at each time step the 14N and 15N inventories are used to calculate a δ15N value 

for each N species:  

 

Eq. 12) 𝛿15𝑁 = 1000 ∙ [(
15𝑁𝑡

14𝑁𝑡
) ∙ 272 − 1]                  

  

Best model fits to measured concentration and δ15N data for NO3
-, NO2

-, NH4
+, and N2 

were achieved by adjusting Vmax, Ks, and α values for each reaction. These parameters were 

constrained by literature values and by the following additional constraints established from the 

tracer incubations and/or field tracer injections: 1) the DNRA to (amammox + denitrification) 

ratio was ≤ 0.25; 2) the anammox to denitrification ratio was ≤ 0.4; 3) all alphas were ≥ 0.970 

and ≤ 1.0. 
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Tracer – The following equations were used to calculate anammox (Eq. 13), 

denitrification (Eq. 14), and DNRA (Eq. 15) from data generated in the tracer experiments 

(Thamdrup and Dalsgaard 2002). 

 

Eq. 13)  N2 anammox = [29N2 + 2 x (1 – (1/MFNO2)) x 30N2]/MFNO2   

Eq. 14)  N2 denitrification = 30N2/(MFNO2)
2  

Eq. 15)  DNRA = [(MFNH4 - R) x NH4
+

tot]/MFNO2 

 

Where MF denotes the mole fraction of 15N in NO2
- or NH4

+ pools.  NH4
+

tot refers to 

mass of all NH4
+ present in the incubation.  29N2 and 30N2 refer to the production rates of mass 29 

and 30 N2 isotopologues, respectively. 
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RESULTS 

 

NATURAL ABUNDANCE FRACTIONATION EXPERIMENTS 

Upgradient F57 Site - The F575 experiments were performed with sediments collected 

from two depths: 1) the zone of -2.1 - -3.6 m alt NAVD88 (D) characterized by moderate NH4
+ 

elevation; and 2) the zone of 7.6 – 6.1 m alt NAVD88 (M) located at the base of the NO3
- region.  

During the 2011 F575 D zone sediment incubations, the nonacetate #MI treatment (NH4
+ and 

NO2
-) showed NO3

- drawdown prior to that of NO2
- (Figure 3.a).  Complete NO3

- and NO2
- 

removal occurred by day 18 and day 31, respectively.  The NH4
+ concentration also decreased 

initially from 80 μM to a minimum of 55 μM at day 31, and then increased to 67 μM by day 47.  

The net total loss of NH4
+ during the incubation was 13 μM, or about 20% of the initial aqueous 

concentration (Figure 3.a).  The δ15N of all DIN species steadily increased during the incubation.  

Large enrichments (up to 30‰) were measured in δ15NO3
- and δ15NO2

-, with a 4‰ increase in 

δ15NH4
+ over the same duration (Figure 3.b).  The end product of denitrification and/or 

anammox, N2, showed a net increase of 66 μM in 47 days.  The rate of production was greatest 

between days 0 and 18 (2 μM/day).  The pattern of δ15N2 was characterized by an initial δ15N2 

depletion of 0.5‰, followed by a rise in the δ15N2 as the enriched NO2
- found later in the 

incubation was converted to N2 (Figure 3.c).  

The addition of acetate (CMI) to the D zone sediments induced removal rates of NO3
- and 

NO2
- that appeared at least 2-3 times faster than those of the #MI treatment.  Similar to the 

nonacetate treatment, NO3
- consumption preceded NO2

- loss.  Similarly, NH4
+ also showed an 

initial rapid drop to a minimum of 58 μM at day 7.  Unlike the nonacetate treatment, this 

occurred in the presence of trace O2.  This was followed by a leveling out of ammonium, 
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amounting to a loss on the order of 25% of the initial NH4
+ concentration (Figure 3.d).  Isotopic 

enrichments in CMI showed similar patterns to those of #MI, in δ15(NO3+2) and δ15NO2
-  

initial ‰, and in terms of the magnitude of enrichment in the NO3
- and NO2

- over time, but the 

isotopic shifts occurred faster in the CMI due to the faster NO3
- and NO2

- consumption rates 

(Figure 3.e).  The δ15NH4
+ initially rose by 4‰ during the period of trace O2 (>10 μM) but was 

then invariant for the remainder of the experiment.  N2 production in CMI was 50% higher than 

#MI, and showed a marked plateau after day 18 after all the NO3
- and NO2

- had been drawn 

down.  The greatest N2 production rate occurred between day 0 and day 4 (10 μM/day), and was 

coincident with the initial drop in δ15N2 as the pool received fractionated N from NO2
-.  A 

rebounding enrichment in δ15N2 of 1-1.5‰ followed the initial depletion to plateau values that 

were 0.3‰ higher than the initial δ15N2 (Figure 3.f). 
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Figure 3.  N concentrations and isotopes for incubations using upper plume F575 deep (D) 

sediments collected and incubated in 2011. Nonacetate (panels a, b, c) and acetate (panels d, e, f) 

are shown.  The dashed line indicates the time at which trace oxygen was gone from the 

incubation. Standard deviations are reported for all data, but when not seen, the error bars are 

smaller than the size of the symbol. 
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F575 Zone M sediments were subject to the same NO2
- and NH4

+ with/without acetate 

treatments as Zone D.  Target initial concentrations for NO2
- were raised to 200 μM, and more 

sampling times were added.  In the #MI treatment, ambient NO3
- of 27 μM was quickly reduced 

below 10 μM by day 4 and completely consumed by day 21.  There was a lagged NO2
- removal 

that occurred during the trace O2 period, which then accelerated between days 10 and 20, and 

continued until all NO2
- was consumed by day 40.  NH4

+ dropped initially by 20% by day 4 

during the trace oxic period, and was then invariant for the remainder of the experiment.  Up to 8 

μM N2O was detected at day 17 during NOx drawdown (Figure 4.a).  Large δ15N enrichments in 

excess of 45‰ were measured in NO2
- and NO3

- during the incubation.  The δ15NH4
+ values 

initially rose by 4‰ up until day 9 during the trace O2 period, but then plateaued between 8 and 

9‰ for the remainder of the incubation (Figure 4.b).  N2 production lagged for the first week of 

the incubation, similar to the lag in NO2
- loss, followed by increases approximately equivalent to 

the amount of NO2
- loss.  The δ15N2 showed the characteristic J-shaped pattern (“J-curve”) of 

initial isotopic depletion (to -1‰) commensurate with initial N2 production, followed by a rise in 

δ15N2 towards the latter part of the incubation (Figure 4.c).  The final δ15N2 was 0.3 to 0.5‰ 

higher than the starting δ15N2.   

The CMI treatment in the M zone sediments showed a similar behavior for NO3
-, NO2

-, 

and NH4
+ concentrations and isotopes, albeit with a 2 day shorter lag in NO3

- and NO2
- loss.  

N2O concentration reached a peak concentration of 5 μM-N occurring at 20 days (Figure 4.d).  

This was concurrent with the point of 50% loss in NO2
-, as well as the start of δ15N2 rise after its 

minimum.  As observed in the #MI treatment, δ15NO3
- and 15NO2

- increased linearly over time to 

>45‰, the δ15NH4
+ rose by 7‰ and plateaued, and the “J curve” in the δ15N2 was 

contemporaneous with N2 production (Figure 4.e, f).  CMI however yielded 15 μM more N2 than 
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#MI, with the amplitude of the δ15N2 J-curve (max δ15N2-min δ15N2) was 0.5‰ larger than that 

measured for #MI.   
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Figure 4.  N concentrations and isotopes for incubations using upper plume F575 mid-depth (M) 

sediments collected and incubated in 2012.  Nonacetate (#MI, a, b, c) and acetate (CMI, d, e, f) 

treatments are shown in vertical panels.  Dashed lines indicate the end of the trace oxic period.  

N2O concentrations are shown in combination with other DIN species concentrations. 
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Downgradient F168 Site - F168 treatments used sediments and groundwater from one 

depth (-7-8 m alt NAVD88), characterized by the presence of high NO3
- and NH4

+ concentration.  

Treatments were identical to those used with the upgradient site. Overall, rates for #MI were 

slower than those measured at F575, but the CMI rates for both sites were similar (Figure 3-6).  

In the 2012 #MI experiment, both NO3
- and NO2

- increased in concentration (by 43 and 57μM, 

respectively) within the first 14 days during a period when trace O2 was present in the 

incubation.  Both concurrently decreased to residual levels (<6 μM) by day 57, but were never 

fully consumed by the end of the incubation.  The #MI NH4
+ initially decreased by 25% during 

the trace oxic period, but fluctuated over time between 60 and 95% of its initial concentration 

(265 μM).  Net NH4
+ loss was 107μM.  N2O was not present until after day 21, when it 

accumulated to a maximum of 33 μM-N by day 57 (Figure 5.a).    

Because NO3
- and NH4

+ were present in high concentrations at this site, initial isotopic 

enrichments for both represent background concentrations.  δ15NO3+2 and δ15NO2
- enrichments 

remained invariant around 10‰ and 2‰ until day 14, when they began to increase as both NO3
- 

and NO2
- were consumed.  Enrichments up to 37‰ were measured in both pools by day 34.  

δ15NH4
+ fluctuated only between 16 and 17‰ (Figure 5.b) for the entire incubation.  N2 

production occurred throughout the incubation, for a yield of 126 μM.  The initial drop in δ15N2 

was slow and reached its minimum of -0.54‰ on day 34.  The subsequent “J-curve” rebound in 

δ15N2 reached a final enrichment at 1.8‰ greater than its initial value (Figure 5.c).   

The CMI treatment showed similar behavior to the #MI in concentration but reaction 

rates were approximately twice those measured in #MI.  NO3
- drawdown had a steeper slope than 

that of NO2
- and both were completely removed by day 33.  NH4

+ fluctuated widely within a 

range of 121 μM during the incubation but yielded a small net decrease of 22 μM.  N2O 
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production did not occur until after day 7, with a sharp rise to a maximum of 7 μM-N within 5 

days.  It fell steadily to 0 by day 33 (Figure 5.d).   

The δ15NO3+2 and δ15NO2
- isotope values increased by up to 55‰, at which point NO2

- 

and NO3
- were no longer detectable.  Despite a small initial rise in δ15NH4

+ of 1‰, the value 

varied within the range of 16-18‰ throughout the incubation (Figure 5.e).  Rapid N2 production 

in the first 14 days plateaued by day 30 and yielded a total of 152 μM.  The rapid N2 production 

was accompanied by rapid depletion of δ15N2, followed by the expected rise as the remaining 

NO2
- was reduced.  At the end of the incubation, maximum δ15N2 was1.5‰ greater than the 

initial (Figure 5.f). 
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Figure 5.  N concentrations and isotopes for incubations using lower plume F168 sediments 

collected and incubated in 2012.  Nonacetate (#MI) and acetate (CMI) treatments are shown in 

vertical panels.  Dashed lines indicate the end of the trace oxic period.  N2O concentrations are 

shown in combination with other DIN species concentrations. 
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F168 sediments collected in 2012 were used again in a repeat incubation experiment in 

2013 to better constrain the enrichment factors.  The same treatments were used.  The nonacetate 

#MI treatment showed an extremely low NOx reduction and N2 production rate relative to the 

2012 experiment when sediments were fresher.  A low rate of NO3
- loss was accompanied by a 

near quantitative rise in NO2
-.  NO2

- did not decrease throughout the entire incubation.  NH4
+, 

which decreased from day 0 – 9, afterwards slowly increased to a value near the initial NH4
+ 

concentration of 368 μM by the end of the sampling period (Figure 6.a).   

An initial δ15NO3+2 value of 7‰ in the #MI treatment rose steadily throughout the 

experiment at a rate of about 0.13‰ per day to a maximum enrichment of 20‰.  δ15NO2
- was 

initially lighter than δ15NO3+2, but matched its enrichment by day 21.  δ15NH4
+ initially decreased 

during the trace O2 phase, but varied less than 1‰ throughout the course of the experiment 

(Figure 6.b).  Very slow linear N2 production was characterized by a slow linear δ15N2 depletion 

of 1‰ during the entire incubation.  Insufficient conversion of NO2
- occurred to cause a rebound 

in the δ15N2 as observed in the other incubations (Fig 6.c). 

In the corresponding CMI treatment, faster rates relative to #MI resulted in fully 

consumed NO3
- within the first 3 days and NO2

- by day 50.  These NOx reduction rates were on 

par with the 2012 CMI experiment, indicating that the very low rates in the 2013 #MI relative to 

2012 were probably related to less available carbon in older unamended sediments.  NH4
+ varied 

within an 89 μM range, but showed a pattern of initial decrease while NO2
- was consumed, and 

was followed by rising NH4
+ until the end of the incubation (Figure 6.d). 

δ15NO3+2 showed strong enrichments up to 80‰ during the rapid reduction of NO2
- and 

NO3
-.  δ15NH4

+ showed a small 1‰ enrichment between days 0-3, followed by little to no 

variation (±0.3‰) for the remainder of the incubation (Figure 6.e).  The pattern of N2 was 
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characteristic of the other CMI incubations, with rapid N2 production followed by a plateau after 

all NOx had been consumed.  The general “J-shaped” curve was evident in the δ15N2, albeit with 

some higher variance than observed in the other treatments. The δ15N2 dropped to 0.5‰ and 

eventually rebounded to a maximum of 2‰ by the end of the incubation (Figure 6.f). 
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Figure 6.  N concentrations and isotopes for incubations using lower plume F168 sediments 

collected and incubated in 2012.  Nonacetate (#MI) and acetate (CMI) treatments are shown in 

vertical panels.  Dashed lines indicate the end of the trace oxic period.  N2O concentrations are 

shown in combination with other DIN species concentrations. 
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Rayleigh-derived Apparent Isotope Enrichment Factors – Rayleigh plots relating change 

in N species concentration to change in δ15N were constructed for the O2 free portions of all 

natural abundance incubations.  The Rayleigh plots for the upper plume F575 were characterized 

by high NO2
- and low NO3

-, so NO3+2 enrichment factors derived from 15N analysis with P. 

aurofaciens were similar to those for NO2
- only derived from 15N analyses using S. 

nitritireducens.  

All experiments showed good fits (r2 ≥ 0.82) for the NO3+2 and NO2
- data in the majority 

of treatments.  The NO3+2 enrichment factors were within 1-2‰ of the NO2
- enrichment factors 

(Figure 7-8).  For the D zone sediments, nonacetate NO3+2 and NO2
- fractionations did not 

generate good fits to yield enrichment factors (p > 0.05).  In comparison, plus acetate treatments 

yielded enrichment factors of -23 and -21‰ for NO3+2 and NO2
- respectively (Table 2).  For the 

M zone sediments, the #MI treatment yielded 3-4‰ magnitude greater enrichment factors for 

NO3+2 and NO2
- (ε = -19‰) relative to the deep sediments, but the acetate CMI treatments were 

identical between the two sediment types (ε = -21‰) (Table 2).  For ammonium, very poor fits 

to the Rayleigh model were found for all treatments in both zones when all δ15NH4
+ and 

concentration data were examined (Figure 9).  The poor fits were likely due to both small 

changes in NH4
+ concentration, and to competing reactions/sediment-water exchanges at 

different times of the incubation (e.g. aerobic ammonium oxidation near the start of the 

incubation fueled by trace O2 at greater than 10 μM entrained into the serum bottle).  NH4
+ 

isotope and concentration data analyzed after trace O2 removal and the establishment of reducing 

conditions showed no improvement in the Rayleigh fits for #MI treatments (Figure 9.a-b).  CMI 

δ15NH4
+ exhibited fits (r2 > 0.72, p < 0.05) with enrichment factors of -15 and -16‰ for D and M 



41 
 

zone sediments, respectively during the presence of trace O2 (suggestive of aerobic ammonium 

oxidation), but poor Rayleigh fits remained after O2 fell below 10 μM (Figure 9.a-b). 

Rayleigh plots at the downgradient F168 site for 2012 and 2013 experiments yielded 

good fits for all NO3+2 and NO2
- concentration and isotope data (r2 ≥ 0.85) (Figures 7-8) .  Here 

there was high background NO3
- in addition to the added NO2

-, so unique enrichment factors for 

NO3
- and NO2

- reduction could be derived from the measured NO3+2 and NO2
- δ15N analyses.  

This was possible for the #MI treatments where NO3
- remained long enough to capture changes 

in concentration, but not in the CMI treatments where NO3
- was consumed faster than the 

timescale of sampling.  In both the 2012 and 2013 experiments, the #MI treatment yielded 

enrichment factors for NO2
- reduction that were 8-12‰ magnitude greater than NO3

- reduction, 

yet the magnitudes of the enrichment factors were very different for each species between years.  

The faster 2012 experiment isotope effects for NO2
- and NO3

- loss were -27 and -8‰ 

respectively (Figure 7.c, d).  The 2013 experiment, where low rates of NO3
- loss were 

accompanied by relatively little loss of NO2
-, yielded very large apparent enrichment factors for 

NO2
- and NO3

- of- 47 and -35‰.  These enrichment factors in the #MI treatments represent the 

net effect of both the NO3
 - and NO2

- reductions.  When the NO3+2 enrichment factors are 

considered for #MI, 2012 and 2013 show similar values of -17 and -19‰ despite the large 

difference in reaction rates.  These enrichment factors were similar to values to those found in 

the #MI F575 experiments.  Similar to the upgradient F575 experiments, the δ15NH4
+ Rayleigh 

plots did not yield good fits (r2 ≤ 0.06).  Separating data into a post-O2 removal period did not 

improve the fits during the O2 free period, but did permit estimation of an enrichment factor for 

NH4
+ loss during the trace O2 period in F168 2012 #MI when aerobic ammonium oxidation was 

likely operating.   
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Figure 7.  Rayleigh plots for combined δ15(NO3+2) for all four natural abundance experiments.  

Effective enrichment factors (ε) for NO2+3 reduction were estimated from the slope of these 

plots and summarized in Table 2.  Red symbols indicate data collected during a period of trace 

oxygen in the incubations.  
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Figure 8.  Rayleigh plots for δ15NO2
- for all four natural abundance experiments.  Effective 

enrichment factors (ε) for NO2
- reduction were estimated from the slope of these plots and 

summarized in Table 2. Red symbols indicate data collected during a period of trace oxygen in 

the incubations.  
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Figure 9.  Rayleigh plots for δ15NH4
+. Effective enrichment factors (ε) could not be estimated 

from these data with the exception of F575-D-CMI, F575-M-#MI, and F168-#MI during the 

trace O2 period.  These enrichment factors likely reflect a dominance of aerobic ammonium 

oxidation and not anammox. Red symbols indicate data collected during a period of trace oxygen 

in the incubations. 
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Table 2.  Apparent enrichment factors (epsilon: ε) imprinted from net N loss on discrete DIN 

pools.  Where ε = (α – 1) x 1000, and α is the fractionation factor defined by the ratio of the rate 

constants (15k/14k) for a reaction.  Isotope effects for NO3
-, NO2

-, and NO3+2 are for the period 

after trace O2 has been consumed.  Enrichment factors reported for NH4
+ are generated from 

aerobic periods, and are denoted in red with an asterisk.  With the exception of F168 2013 NO2
-, 

only enrichment factors where p < 0.05 and substrate concentration decreases by at least 20% are 

shown. 
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15N Tracer Incubation Experiment – F168 – In the #MI (nonacetate) treatment, ambient 

NO3
- (71 μM) was removed by day 31.  NO2

- concentration decreased by 17% for a net loss of 

41 μM.  The 15N enrichment of the added NO2
- showed an isotope dilution during the incubation 

from 96 at% to 77 at% over 29 days (Figure 10).   N2 production was not observed until day 31, 

but detectable mass 29 and mass 30 enrichments were measured as early as day 17 (mole 

fractions 0.020 and 0.051, respectively).  The highest 29 and 30 mole fractions observed were 

0.036 and 0.070 at day 31. Calculated anammox and denitrification rates (eq. 13, 14) within the 

last 12 days were 5.5 and 19 nmoles N/g sed/day respectively.  Anammox accounted for 28% of 

the total N2 production (Figure 10).  Tracer incorporation into NH4
+ was observed and the 

δ15NH4
+ increased by 747‰ over the duration of the incubation (Figure 10).  The calculated 

DNRA rate (eq. 15) was 1 nmoles-N/g sed/day.  DNRA accounted for 4% of the NO2
- loss in the 

#MI treatment. 

In the acetate treatment, NO3
- drawdown was complete by day 3.  NO2

- was also fully 

removed by day 3, undergoing little change for the first day, but yielding a rate of 236 μM/day 

between 2 and 3 days.  15NO2
- enrichment showed an isotope dilution from 99 at% to 19 at% by 

the last sampling point when <2 μM NO2
- remained.  Denitrification, anammox, and DNRA rates 

all increased in the presence of acetate, but the proportions of these reactions to each other 

differed relative to the #MI treatment.  N2 production was observed beginning at 0.7 days post 

injection. Mass 29 and 30 enrichments were first measured at 2 days  with mole fractions of 

0.014 and 0.020 that increased to  0.088 and 0.103 by the end of the incubation (day 4).  

Anammox and denitrification rates (eq. 13, 14) were calculated as 24 and 555 nmoles-N/g 

sed/day respectively, with anammox responsible for 4% of the total N2 production.  A smaller 

amount of 15N tracer in NH4+ was measured relative to #MI, albeit in 1/6 the amount of 
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incubation time, and enrichment reached a maximum of 218‰ (Figure 10).  The calculated 

DNRA rate (eq. 15) was 3 nmol-N/g sed/day.  DNRA accounted for <2% of the NO2
- loss in the 

CMI treatment. 
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Figure 10.  Results from the F168 tracer experiment. DIN concentrations and isotopes are shown 

in panels a-d. N2 concentrations and mole fractions (MF) of isotopologues (29N2, 
30N2) are shown 

panels e and f.  No trace O2 was measured at any timepoints. 
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DISCUSSION 

 

Results from our natural abundance and tracer incubations yielded five findings: 1) 

denitrification and anammox co-occur in aquifer sediments, albeit at relatively low rates; 2) 

addition of labile organic carbon in the form of acetate shifts the denitrification/anammox ratio 

very strongly in favor of denitrification; 3) no distinguishable NO2
- or NO3

- isotope fractionation 

patterns could be discerned that were unique or diagnostic of specifically anammox or 

denitrification; 4) the use of δ15NH4
+ as a diagnostic for anammox is potentially confounded by 

large NH4
+ pool size and aqueous/sediment exchange; 5) isotope modeling demonstrates that the 

observed isotope dynamics can be achieved with or without anammox in conjunction with 

denitrification. 

 

CO-OCCURRENCE OF DENITRIFICATION AND ANAMMOX 

There are few reported anammox measurements in groundwater (Clark et al. 2008; 

Moore et al. 2011, Robertson et al. 2012).  The rates of N2 production observed here in the 

natural abundance incubations from the upper and lower plume, and the tracer-based rate 

measurements of denitrification and anammox in the lower plume, together indicated co-

occurrence of both reactions.  The rates measured in this study, which ranged between from 5.5-

24 nmoles N/g sed/day for anammox and 19-555 nmoles N/g sed/day for denitrification, were 

comparable with other laboratory incubations of water and whole sediments collected from this 

site (Hyun et al. 2013), but 20-fold higher than in situ rates calculated following a 15NO2
- 

groundwater injection at this site (Smith et al. 2013).  These incubation-derived rates relative to 

in situ were also faster than what would be predicted based upon modeled plume scale N2 
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production during plume transport (Smith et al. 2004; Böhlke et al. 2006; Smith et al. 2013).  

This apparent enhancement in the lab incubations could have been due to increased incubation 

temperature (20° C) relative in aquifer temperature (10° C), but even accounting for a typical 

factor of two enhancement of rates with a 10 degree shift in temperature (Q10 = 2) lab rates were 

still an order of magnitude greater.  Instead, much of the enhancement was likely due to some 

degree of carbon mobilization from particles, not uncommon to slurry incubations (Smith et al. 

2012).  These observed rates, on the order of 1-88 nM-N/g/day for anammox and 19-1800 nM-

N/g/ day for denitrification, are nevertheless slow relative to analogous rates for processes in 

coastal and estuarine sediments (Dale et al. 2009), aquatic sediments (Dalsgaard et al. 2012), ice 

(Rysgaard and Glud 2004)  and continental shelf sediments (Dalsgaard et al 2005).   

The faster overall total N2 production observed at the upper plume relative to the lower 

plume was coincident with a higher observed denitrification at F575 (Smith et al. 2013).  This 

faster rate, which was only moderately enhanced by the addition of acetate, was presumably 

enabled by a higher labile carbon abundance in the younger portion of the plume (Smith et al. 

2012)   In the lower plume, rates of anammox (28% of denitrification under no acetate 

conditions) were faster than the range predicted from ammonium transport model constraints that 

have been used to model 15NH4
+ additions to the plume at this site (Böhlke et al. 2006).  

Anammox in lower plume sediments were within the range (13-1390 nmol/L/hr) of the few rates 

of anammox measured in groundwater, both lab rate (Moore et al. 2011) and in situ (Robertson 

et al. 2012).  The ratio of anammox to denitrification up to 28% in the lower plume (Figure 11) 

was above the median ratio reported for most surface water sedimentary systems and soils, in 

which anammox rates are typically less than 10% of total N2 loss (Dalsgaard et al. 2005; Song 
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and Tobias 2011).  The lack of labile carbon at the downgradient site may create conditions 

favoring anammox, as evidenced by the higher anammox to denitrification ratio seen. 

 

ORGANIC CARBON INDUCED SHIFT TO DENITRIFICATION 

The addition of acetate to incubation treatments was designed to permit comparison of 

isotope dynamics under conditions where anammox and denitrification approximated the ratio 

observed in the aquifer (nonacetate), in contrast to conditions that were heavily dominated by 

denitrification (+ acetate).  Although anammox bacteria can reportedly use some carbon 

substrates, including acetate, (Nicholls and Trimmer 2009; Russ et al. 2012) the stimulation of 

anammox rates by acetate is insubstantial relative to the well-documented enhancement of 

denitrification by this carbon source (Dalsgaard et al. 2005; Ginige et al. 2005; Seitzinger et al. 

2006). 

Nonacetate treatments always proceeded at a slower rate than those of acetate treatments 

regardless of plume location.  Increased electron supply allowed faster reaction rates with an 

enhanced effect on rates of NOx reduction and N2 production.  (Figs 3-7).  The greatest effect on 

rates of DIN drawdown and conversion to N2 was seen in the lower plume sediments.   

Differences between treatments were particularly pronounced in the downgradient 2013 

experiment, for which the nonacetate treatment exhibited only a small amount of N conversion to 

N2 even after 93 days of incubation.  With a large NH4
+ and NO3

- background at this site, along 

with being in the core of the plume, this slow reaction rate may explain the persistence of the 

DIN load in the plume.  

Denitrification is believed to terminate at N2O in electron-limited environments 

(Seitzinger et al. 2006).  While denitrification was occurring in all incubations, those that 
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included acetate showed less accumulation of N2O relative those without acetate, indicating that 

the added carbon provided additional reducing power to push denitrification past N2O in these 

low carbon sediments (Figure 3-7).  The effect of acetate on the timing and accumulation of N2O 

was most pronounced in the lower plume (F168) (Figure 5.a) which contains older and lower 

amounts of organic carbon groundwater and where in situ expression of the nitrous oxide 

reductase (nosZ) gene was very low (Song per. Com.).  Direct validation of this acetate-induced 

denitrification was confirmed by the addition of 15N tracer to the F168 sediments which induced 

a shift from a denitrification : anammox (D:A) ratio of 72% in the absence of acetate (treatment 

“#MI”) to a D:A ratio of > 92% when acetate was added (treatment “CMI”) (Fig 11-12).  This 

nonacetate ratio of D:A for F168 in the incubations was larger than the D:A measured in situ 

following a 15NO2
- injection (D:A = 70:30), and may again indicate some degree of carbon 

mobilization from particles and enhanced carbon availability relative to in situ conditions (Smith 

et al. 2012).   The smaller effect of acetate addition on the DIN dynamics in the upper plume (at 

all depths) where carbon is more abundant and labile (Smith et al. 2012) and D:A already high at 

90% (Böhlke per. Com.) is further evidence that the acetate acted to increase denitrification 

relative to anammox, particularly in the lower plume.  Collectively, these lines of evidence 

suggest that isotope enrichment factors and isotope dynamics in lower plume sediments should 

reflect a mixture of anammox and denitrification on the order of 1:3 in the nonacetate 

incubations, but almost exclusively denitrification in the acetate treatment.  The isotope 

dynamics in the upper plume incubations should reflect the overwhelming influence of 

denitrification regardless of acetate treatment.   
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NOx ISOTOPES AS A DIAGNOSTIC OF ANAMMOX 

NOx - The observed, or apparent, enrichment factors estimated from the Rayleigh plots 

(Figure 7-8) represent a composite of the fractional contributions and isotopic fractionations of 

all reactions that interact with the specific nitrogen species measured.  Poor Rayleigh fits 

typically indicate several competing reactions either supplying or consuming a particular species 

and consisting of different enrichment factors.  Good Rayleigh fits typically indicate either a 

dominance of one reaction affecting the concentration and isotopic composition of the pool, or, if 

there are multiple reactions – similar enrichment factors among them.  The NO2
- and NO3

- 

Rayleigh plots (Figure 8-9, Table 2) showed good linear fits at both plume locations and under 

both acetate and nonacetate treatments. Only the F168 lower plume nonacetate treatments (#MI) 

yielded unique enrichment factors for NO3
- reduction to NO2

-, and these two values were widely 

different.  At -8 and -35‰, they are just outside of the range of isotope effects reported for 

denitrification (-13-30‰; Barford et al. 1999; Delwiche and Steyn 1970; and Granger et al. 

2008) in pure culture, and in other groundwater denitrification experiments; Mariotti et al. 1981 

(-24.6‰ - -29.8‰), Aravena and Robert 1998 (-22.9‰) measured under similar experimental 

conditions.  The highly variable apparent isotope effect for NO3
- reduction measured in this 

study may indicate some isotopic disequilibrium between NO3
- and NO2

-, particularly when 

reaction rates are low (F168 2013 #MI; Brunner et al. 2013).  The apparent NO2
- reduction 

isotope effects measured in this study were within the greater third of enrichment factors 

reported for denitrification (-5-25‰; Mariotti et al. 1981; Bryan et al. 1983, epsilon Casciotti 

2002).  With the exception of the upper plume deep sediments (#MI) which yielded an isotope 

effect/enrichment factor equivalent to that reported for NO2
- reduction by a single anammox 
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culture (-16‰), all other measured NO2
- reduction enrichment factors were  3–10‰ larger than 

what would be expected currently from anammox (Brunner et al. 2013).  

The smaller NO2
- reduction enrichment factors in the upper plume sediments versus 

lower plume sediments in the absence of acetate suggested a potential difference in the 

partitioning of different NO2
- reduction pathways (e.g. anammox and denitrification).  However, 

the smaller enrichment factor was found in the upper plume, where there was a larger in situ D:A 

(Smith et al. 2012).  Given a NO2
- reduction enrichment factor for anammox of -16‰; (Brunner 

et al. 2013), but a wider range of greater isotope effects for denitrification, a higher magnitude 

enrichment factor would have been expected at the larger D:A at the upper plume.  Further, the 

addition of acetate, which forced both upper and lower plume incubations towards 

denitrification, did not yield significant shifts in the apparent isotope effects on NO2
- reduction 

relative to no acetate conditions in either sediment type.  An explanation other than differential 

contributions of anammox and denitrification, must be responsible for the difference in apparent 

isotope effects in the upper and lower plumes in the absence of added carbon.  Given the 

magnitudes of measured enrichment factors, the range of published values, and the lack of a 

clear shift in enrichment factors in the presence/absence of acetate, the NO2
- isotopes are not 

clearly diagnostic of a shift from anammox + denitrification to denitrification at either site. 

 

AMMONIUM ISOTOPES AS A DIAGNOSTIC 

Ammonium - The Rayleigh model could not be used to estimate effective enrichment 

factors for changing NH4
+ in any of the incubations.  The very poor fits (Fig 11) to all of the 

NH4
+ and δ15NH4

+ data were initially thought to be attributable to two distinct phases of NH4
+ 

processing: an initial aerobic ammonium oxidation phase when trace O2 was present, and a 
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subsequent anaerobic NH4
+ processing phase which would include anammox. All experiments 

showed initial small amount of NH4
+ consumption, likely due to aerobic ammonium oxidation 

fueled by the trace O2 entrained during incubation set up.  Many of the incubations (Figure 4-6) 

showed concurrent transient rises in NO2
- and/or NO3

- during this period, and the pattern of 

δ15NO2
-/ NO3

- at this time were consistent with aerobic ammonium oxidation.  Upgradient, this 

initial NH4
+ drawdown was followed by little change in NH4

+ concentration. Downgradient with 

ambient NH4
+ present, the drawdown was followed by a large fluctuation within a range of 100 

μM.  To deconstruct the effect of ammonium oxidation, we parsed the NH4
+ data for each 

incubation into periods of >10 μM O2 (where aerobic ammonium oxidation may dominate) and 

<10 μM O2 (where the concentration and isotope effects of the oxidation would be inhibited).  

The differentiation showed the initial NH4
+ concentration decrease and enrichment of δ15NH4

+ 

(Figure 3-7) associated with the presence of trace oxygen.  The separation only improved the fit 

of the Rayleigh curve sufficiently in two treatments to yield an enrichment factor estimate.  This 

estimate, for the trace O2 period, likely reflects aerobic ammonium oxidation though the fitted 

enrichment factors are small relative to those published for NH4
+ NO2

-.  This apparent 

dampening of the isotope effect is probably due to isotopic exchange of NH4
+ between the 

aqueous and sediment fractions. With a large and exchangeable ammonium pool, low rates of 

any fractionating reaction (aerobic ammonium oxidation, anammox, etc.) would yield only small 

detectable isotopic changes in the sampled aqueous NH4
+ fraction.  Detection of this potentially 

small signal could be hampered by small fractionations associated with sorption/desorption 

reactions between the NH4
+ (aqueous) and the NH4

+ (sediment) (Böhlke et al. 2006).  Any lags in 

reestablishing equilibrium between the isotopically light added NH4
+ (4‰), the isotopically 

heavy in situ NH4
+ (15‰) and fractionation reactions would be manifested as variability in the 
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measured aqueous δ15NH4
+.  It is possible that this factor is amplified in a laboratory setting 

relative to in situ where the timescale of sampling is short in comparison to groundwater transit 

times.  This explanation could reconcile why a robust Rayleigh defined ammonium isotope effect 

for anammox is measurable in sediment free cultures (Brunner et al. 2013), and inferred on large 

spatial and temporal scales in aquifers (Clark et al. 2008), but not in our experimental set-up.  A 

second possible explanation that DNRA contributed to poor NH4
+/δ15NH4

+ Rayleigh fits seems 

unlikely given that the results of the 15N tracer experiments showed DNRA was never more than 

4% of the total NO2
- reduction. 

 

ISOTOPE MODELING 

The finite difference time-stepping isotope model was constructed with experimental 

tracer-derived rates and other reported enrichment factors as constraints on N reactions and 

ratios.  It was designed to specifically illuminate three aspects of the results.  First, to determine 

the enrichment factors for respective N reactions in the natural abundance incubations that 

represented a “best fit” for concentrations and δ15N evolution of NO2
-, NO3

-, NH4
+, N2 

concentration and N2O concentration.  These reactions included: nitrate reduction (NO3
- 
 

NO2
-), denitrification (NO2

- 
 N2O; N2O  N2), anammox (NO2

-  N2; NH4
+  N2; NO2

-  

NO3
-), aerobic ammonium oxidation (NH4

+ 
 NO2

-), nitrification (NO2
-  NO3

-) (also a side 

reaction of anammox), and dissimilatory nitrate/nitrite reduction to ammonium (NO2
- 
 NH4

+).  

Second, to determine whether or not the weighting of denitrification in the acetate treatments 

necessitated significant changes in the enrichment factors in order to maintain good model fit.  

Third, to determine if the observed isotope dynamic could be achieved with reasonable 
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enrichment factors in the complete absence of anammox.  This last task addressed directly 

whether a portion of the isotope dynamic was clearly indicative of anammox.   

The model was initialized first using a range of enrichment factors as reported in Mariotti 

et al. 1981, Bartford et al. 1999, Casciotti 2002, Casciotti et al. 2003; Granger et al. 2008, and 

Casciotti 2009.   Enrichment factors and rates are adjusted to yield optimum fits while remaining 

constrained by the range in the literature.  The DNRA, denitrification, and anammox rates 

relative to each other were constrained by results from the tracer incubations.  The range of 

acceptable D:A ratios was 0-0.50; the range of DNRA as a percentage of NO2
- reduction was 0-

4%. 

Model fits under “natural” (no acetate) conditions yielded similar parameters for both 

upgradient and downgradient sites.  When parameters were set to achieve best model fits, 

enrichment factors ranged from -18-25‰ for all reactions.  For the denitrification steps, 

including nitrate reduction (NO3
-  NO2

-  N2O  N2), enrichment factors were -20, -18, and -

22‰.  All of these values were within reported ranges, with the exception of N2O N2 which 

was approximately 10‰ greater (Barford et al. 1999; Ostrom et al. 2007).  For anammox, NO2
- 

 N2 had an enrichment factor of -25‰, and NH4
+  N2 generated an enrichment factor of -

23‰.  DNRA and aerobic ammonium oxidation were also found with enrichment factors of -

20‰.  Optimum A:D was 0.08, with the DNRA ratio to NO2
- reduction at 0.02.  At the 

downgradient site, isotope effects ranged from -16-30‰.  Denitrification steps had enrichment 

factors of -25, -25, and -30‰.  For anammox, the NO2
-  N2 reaction had an enrichment factor 

of -16‰, and the NH4
+  N2 reaction had an enrichment factor of -23‰.  DNRA was inactive 

for this model.  Aerobic ammonium oxidation was at -20‰.  A:D ratio was set at 0.18.  All these 

enrichment factors in the nonacetate treatments were in range of those required for denitrification 
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(Barford et al. 1999; Granger et al. 2008; Bryan et al. 1983; Casciotti et al. 2002; Mariotti et al. 

1981).  With the exception of N2O N2, whose modeled ε was ~10‰ greater than previously 

reported (Barford et al. 1999; Ostrom et al. 2007), all modeled isotope effects for denitrification 

in the upper and lower plume were within reported ranges (Barford et al.1999; Granger et al. 

2006; Casciotti et al. 2002).  It was difficult to achieve good fits to the δ15N2 data without the 

large N2O  N2 enrichment factors, indicating that this higher fractionation in the final 

denitrification step is characteristic of the system. The isotope effects for anammox reactions 

(NO2
- 
 N2 and NH4

+  N2) were largely consistent with the one published summary of 

anammox enrichment factors (Brunner et al. 2013). One greater modeled enrichment factor for 

NO2
-  
 N2 in the upper plume (-25‰ versus a published -16‰) was relatively unimportant in 

the overall model.  The model was sensitive to changes in denitrification parameters, but due to 

the low A:D ratio even in lower plume, changes in anammox reaction enrichment factors only 

moderately influenced overall model fit.   
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Figure 11.  Best model fits to data from the 2012 upgradient nonacetate treatment.  The anammox:denitrification ratio is located above 

the table, next to the rate of DNRA occurring proportional to them.  In the table, the pathway is to the far left, with its reaction name 

beside it.  Fractionation factors (α) are shown beside their corresponding enrichment factors (ε).  In the plots, the points indicate 

experimental data from the treatment, and the smoothed line is generated from the model for a best fit. 
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Figure 12.  Best model fits to data from the 2012 downgradient nonacetate treatment.   The anammox:denitrification ratio is located 

above the table, next to the rate of DNRA occurring proportional to them.  In the table, the pathway is to the far left, with its reaction 

name beside it.  Fractionation factors (α) are shown beside their corresponding enrichment factors (ε).  In the plots, the points indicate 

experimental data from the treatment, and the smoothed line is generated from the model for a best fit. 
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When acetate was added to shift the N2 production to denitrification (minimizing 

anammox), similar fits could be achieved by adjusting denitrification rates and enrichment 

factors within a reasonable range for both upgradient and downgradient (Figures 13 and 14).  

NO2
- concentration and isotopes continued to be dominated by denitrification. The fits for NO3

- 

and 15NO3
- were unaffected by presence or absence of the NO2

-  NO3
- reaction component of 

anammox. The influence of anammox on the NH4
+ isotopes was similarly negligible.  The NH4

+ 

isotopes were largely governed by aerobic ammonium oxidation at the beginning of incubations, 

and isotope exchanges between aqueous and sediment ammonium. Even when the #MI 

treatments were modeled with anammox removed, good model fits could be attained.  Similarly 

because DNRA had a small rate, it did not play a significant role in model fitting for either NO2
- 

or NH4
+ at any site for any treatment.   
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Figure 13.  Best model fits to data from the 2012 upgradient acetate treatment.   The anammox:denitrification ratio is located above the 

table, next to the rate of DNRA occurring proportional to them.  In the table, the pathway is to the far left, with its reaction name beside 

it.  Fractionation factors (α) are shown beside their corresponding enrichment factors (ε).  In the plots, the points indicate experimental 

data from the treatment, and the smoothed line is generated from the model for a best fit. 
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Figure 14.  Best model fits to data from the 2012 downgradient acetate treatment.   The anammox:denitrification ratio is located above 

the table, next to the rate of DNRA occurring proportional to them.  In the table, the pathway is to the far left, with its reaction name 

beside it.  Fractionation factors (α) are shown beside their corresponding enrichment factors (ε).  In the plots, the points indicate 

experimental data from the treatment, and the smoothed line is generated from the model for a best fit.
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SUMMARY 

While a signal for anammox can be detected and confirmed through tracer experiments, 

we were unable to establish a clear isotopic diagnostic for any DIN species that would be 

indicative of anammox under conditions where denitrification co-occurs.   In the Cape Cod 

plume, there was a sufficient fractionation overlap between denitrification and anammox 

reactions involving shared oxidized N pools to preclude distinction between 15NOx isotopes.  Use 

of the δ15NH4
+ pool was hampered by a combination of low rates of NH4

+ use by anammox and 

variable amounts of NH4
+ isotope exchanges between aqueous and sediment fractions.  It is 

possible that the dampening of the anammox isotope effect caused by these exchanges may 

diminish on plume transport scales.  On these extended time scales, low anammox rates could 

remove enough total NH4
+ enough to potentially detect an anammox fractionation in the NH4

+ 

pool (Clark et al. 2008).  However, the chromatographic and isotope homogenization effect of 

these isotope exchanges should be carefully considered when using in situ patterns of δ15NH4
+ to 

infer anammox.    
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