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ABSTRACT 

In recent years, demand for utilization of power electronic converters in industrial, 

commercial and household applications has increased significantly. It is critical for engineers to 

design these converters in a short duration. Considering the time constraints on engineers it’s not 

surprising that rapid prototyping tools have become very popular in the industry. Through rapid 

prototyping, users can estimate power loss and cost which are essential to design decisions. The 

research presented here treats main power electronic components of a converter as building 

blocks that can be arranged to obtain various topologies to facilitate rapid prototyping. In order 

to get system-level power loss and cost models, two processes are implemented. The first process 

automatically provides minimum power loss or cost estimates and identifies components for 

specific applications and ratings; the second process estimates power losses and costs of each 

component of interest as well as the whole system. Power loss models are analytical and include 

effects of parasitic elements and non-idealities. Cost models for each building block are derived 

based on an extensive market survey. Three examples are used to illustrate the proposed research 

- boost and buck converters in continuous conduction mode (CCM) and flyback converter in 

discontinuous conduction mode (DCM). Optimization of component selection is based on the 

minimum possible cumulative power loss in these components or minimum cumulative cost of 

components. These techniques help engineers to select the best components for their applications 

and aid researchers in prototyping different converters for several applications. The proposed 

cost and loss estimates are shown to be over 92% accurate when compared to measured losses 

and real cost data. This research presents derivations of the proposed models, detailed 

experimental measurements and demonstration of a friendly user interface that integrates all the 

models.    
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CHAPTER 1: INTRODUCTION 

Power electronics literature and patent records over many years show radical developments 

and modifications in power electronic converters. In the early 1960’s, basic converters such as 

boost, buck and flyback converters were developed by utilizing semiconductor devices [1]. As 

progress in the performance, efficiency and structure of semiconductors increased, basic 

converters were modified for different applications and requirements. For instance, DC-DC 

converters were developed for automobile applications [1, 2], high frequency DC-DC switching 

converters [3, 4] or switched mode power supplies [5, 6] began to be used in battery chargers, 

home appliances, hybrid electric vehicles, and many other applications. Also, resonant switching 

converters [7, 8] were observed as an efficient solution for lighting applications, smart grids, 

renewable energy systems and power supplies [9]. Thus, today power electronic converters are in 

high demand in many areas of electrical and electronics technology. 

The diversity of applications, power ratings, and energy levels of power electronic converters 

require different converter topologies and ratings with numerous component options and 

combinations. The design of high efficiency, cost effective and reliable power converters in a 

short time is a challenging task for any power electronics engineer. A designer has to review a 

vast amount of existing literature, datasheets and web-based information in order to select a 

single component. Thus, researchers find it beneficial to work on developing tools which can 

help select appropriate components for new converter designs so that they can achieve minimum 

power loss and/or minimum cost for their application. 

Over the past few decades, several power loss and cost estimation models or methods have 

been developed for power converters. When designers first start to design a converter, they have 

to start with the ratings and from an application point of view. Thus, it has become a critical 
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issue to develop rapid prototyping tools or methods on the basis of the specifications.  The power 

loss models developed in the existing literature do not always consider most non-idealities and 

parasitic elements. Furthermore, printed circuit board (PCB) and gate drive losses are not 

observed along with component power losses in some existing power loss rapid prototyping 

tools. From a cost perspective, even though cost is a major driving factor for the power 

electronics industry, research literature shows limited cost models. Moreover, user-friendly rapid 

prototyping tools, which can accurately estimate the cost and power loss of a component as well 

as the whole system in a short time, are not present in the literature. The techniques and 

methodologies which are observed in the literature are described in detail in Chapter 2. 

Rapid prototyping tools based on power loss and cost models are expected to reduce 

engineering time and enhance product cost and quality in electronic manufacturing in many 

applications such as DC-DC converters, inverters, LED drivers, smart grid systems. 

Rapid prototyping tools for DC-DC converters are of main interest here due to the 

converters’ simplicity, wide range of their applications and since the methodology for 

developing models is of main interest here. The main goal of this research is thus to achieve 

rapid prototyping capability through a systematic methodology to estimate and minimize power 

losses and cost of DC-DC converters. Generalized power loss equations for fundamental power 

electronic components are composed from existing literature and then reformulated in terms of 

input and output requirements, switching frequencies and duty ratio to obtain a simple and 

uniform approach in power loss estimation tools for different converters. To validate these tools, 

boost and buck converters in continuous conduction mode (CCM) and flyback converter in 

discontinuous conduction mode (DCM) are implemented since they are widely applicable and 

popular among power electronic converters. It is important to note that methodology developed 
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in this research can be extended for other converters, inverters as well as other electronic 

development applications. On the other hand, cost models are based on an extensive market 

survey of component costs. A database for all applicable components is used to model costs of 

these components using their major ratings and values, e.g. cost of a capacitor is modeled as 

dependent on capacitance and voltage rating.  The power loss and cost models are then integrated 

into the rapid prototyping tools developed using a MATLAB Graphical User Interface (GUI). 

The power loss and cost model presented here are only for power electronic components. 

However, connectors’ power loss and cost models are not included. The rapid prototyping tools 

based on these models can use component-specific information, or can run in optimization mode 

which can perform converter component selection for power loss minimization or cost 

minimization. A major goal for these tools is to minimize the estimation error when comparing 

actual component cost and power loss values with the measured or real ones, and their main 

advantage is the ability to evaluate a large number of possible component combinations and 

achieve instantaneous cost and loss estimates. It is important to note that the models provided 

here can easily evolve over time and changes in technology and cost.  

In addition to power loss and cost models, researchers and designers are very interested in the 

reliability estimation and prediction techniques. Several methods and models have been proposed 

to estimate the reliability of components and derive accelerated testing methods for power 

electronic systems. These methodologies are discussed in detail in Chapter 2, but as reliability is 

a broader topic for research, rapid prototyping methods proposed here are limited to the power 

loss and cost estimation techniques while rapid prototyping tools based on reliability and 

accelerated testing methods can be developed in the future research.  
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The thesis proceeds as follows. Chapter 2 discusses existing literature for power loss, cost 

and reliability models. This includes power loss estimation and reduction techniques for system 

level and component level power losses, cost, as well as reliability. It provides deep insight into 

the topic and helps to develop rapid prototyping tools and concludes with the discussion of 

limitations of existing literature.  Chapter 3 describes the concept behind power loss models, 

procedures for rapid prototyping tools for power loss models in optimization mode and 

component-specific mode, derivations of power loss model equations for basic building block 

components, and reformulation of these equations for boost, buck and flyback converters. 

Chapter 4 presents cost estimation methodology in optimization mode and component-specific 

mode with cost surfaces based on a large database of basic building block components. Chapter 5 

elaborates on the optimal selection of components using the rapid prototyping tools, in addition 

to component-specific cost and power loss models. Research conclusions are covered in Chapter 

6, which also provides recommendations for future research efforts. The Appendix includes 

detailed results for case studies of component-specific and optimization modes for various 

converters and different operating points, along with experimental verification of the provided 

models and detailed derivation of mathematical expressions.  

 

Related Publications 

[1] A.V. Kulkarni, A. M. Bazzi, " Empirical Cost and Analytical Power Loss Models of DC-DC 

Inductors," in Proceedings of Electrical Manufacturing & Coil Winding Association, Milwaukee, 

Wisconsin, May 2013. 

 

[2] A.V. Kulkarni, A. M. Bazzi, “A Building-Block Approach to Efficiency and Cost Models of 

Power Electronic Systems," in Proceedings of  the IEEE Applied Power Electronics Conference 

and Exposition , Dallas Forth worth, Texas, March 2014. 
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CHAPTER 2: LITERATURE REVIEW  

Contributions from existing literature help to develop the concepts upon which the power 

loss and cost models are built and to highlight the ways in which power loss and cost models 

developed here are different. An important take-away from this chapter is that while the vast 

literature reviewed here does not address non-idealities and parasitic elements frequently, the 

power loss model presented here does focus on these elements along with PCB and gate drive 

losses leading to more accurate power loss models. The cost models developed in this research 

are based on an extensive market survey. The most important aspect of this research is that the 

power loss and cost modeling methodologies developed here are such that they can evolve over 

time and changes in technology. Subsequent sections of this chapter address related work on 

power loss, cost, and reliability models, and rapid prototyping methods.  

2.1 Power Loss Modeling  

This section provides information about the existing power loss models for components and 

converters. This information helps uncover the problems associated with existing power loss 

estimation models and aids to develop more accurate models. This section also describes power 

loss estimation methods and their advantages and disadvantages. Section 2.1.1 reviews power 

loss models of power electronic components. Section 2.1.2 reviews system-level power loss 

estimation models, and Section 2.1.3 summarizes different power loss estimation methods.  

2.1.1 Power Loss Models for Components 

Several techniques have been implemented to find the power losses in power electronic 

component. Majority of the research has focused on selecting components for power electronic 

converters, e.g. [10]. Extensive research has been conducted for finding specific losses in 
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semiconductors and magnetic components.  For example, in [11] a qualitative analysis is carried 

out on six non-isolated DC-DC topologies such as buck, boost, buck-boost, Ćuk, SEPIC, and 

Zeta to select components for these converters. This process is then verified with the help of 

conduction and switching losses in the MOSEFTs and IGBTs, but gate losses in IGBTs and 

MOSFETs are ignored in this research. 

The conduction and switching losses estimation in MOSFETs and IGBTs in boost converter 

CCM are given in [11] as, 

2
C CS CDP P P

D
    .                                                         (1) 

where PC is the MOSFET loss, PCS is the MOSFET switching loss, PCD  is the MOSFET 

conduction loss and D is the duty ratio. A similar approach has been developed in [12] for the 

DC converters which are used in telecommunication applications. The conduction power loss in 

MOSFET and its Schottky barrier diode conduction losses are observed but switching losses 

within it are ignored. In order to estimate exact power loss of MOSFET or IGBTs the 

conduction, switching and gate drive losses must be considered. 

The conduction and switching losses should both be considered while calculating the diode 

total power loss. In [13] conduction losses of flyback diodes are obtained using three simple 

tasks viz. estimation of maximum power loss consumption, nonlinear finite element analysis of 

diode losses and actual implementation of these analyses in the flyback converter experiment. 

This approach gives a deeper insight into diode conduction power loss estimation, but it fails to 

explain how to measure switching losses in the flyback converter diode. In [14], while 

calculating light load efficiency of a buck converter with diode emulation method, switching 

losses of MOSFET and its effect on the diode power loss were considered but effect of  diode 

switching loss on the total system-level loss was ignored. The MOSFET switching loss in the 
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buck converter is given as, 

_ ( ) ( ) _

1
( )

2
Switch ctrl CCM in o CCM f ctrl swP V I i t f        .                             (2) 

where PSwitch_ctrl(CCM) is the switching losses of buck converter in CCM, fsw is the switching 

frequency,  Vin is the input voltage, tf_ctrl is the MOSFET fall times, Io is the output current and 

∆i(CCM) is the inductor current ripples in CCM. An inductor core loss estimation method has been 

proposed in [15] for PFC application. This method is based on the Steinmetz equation, but for 

high switching power converters this equation is modified as, 

   1 / (2 ) / / (2 ) /m n m n
CORE e on on S on off SP K V B T T T B T T T    

 
                        (3) 

where ∆B
m
 is the maximum peak flux density, Ton is the interval when MOSFET is ON, Toff is 

the interval when MOSFET is OFF, TS is the MOSFET switching time, Ve is the effective core 

volume, K1 is the inductor core material constant and n is transformation ratio. The above 

equation considers the effect of high switching frequency on the core loss and the B-H curve. 

However, [15] did not consider the winding copper loss and the skin effect on core losses which 

is usually observed at high frequencies. For higher switching frequencies, lower power loss is 

observed in the copper windings in [16]. In this research the copper windings are used with 

center-gapped, side-gapped and spacer configuration cores. Copper loss estimation tools are 

developed for the inductors with these cores, but a generalized copper loss model is not 

considered. 

Power losses in capacitors are generally lower as compared to power losses in other 

components. The power loss within a capacitor is calculated by combination of the power losses 

in ESR and the parallel parasitic resistance across it. For instance, fault detection and power loss 

estimation formulae are given in [17] for various switching frequencies in a PFC circuit. The 
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total power loss in the capacitor is shown as, 

2
( ) ( )

1

N

LOSS k k

k

P ESR I


                                                         (4) 

where PLOSS is the power loss in capacitor, ESR is the equivalent series resistance, I is the 

capacitor current and k is the of harmonic order of the capacitor current. Similar to the power 

electronic components, the power loss estimation tools for PCBs and gate drive circuits are also 

observed in the literature. The procedures for proximity loss and conduction loss in PCBs are 

discussed in [18] with the help of finite element analysis. The proximity losses are obtained in 

[18] as, 

2
. ., ,

2
( , , )proxu l x prox x oxP w h de H





 .                                                 (5) 

In this equation Pproxul,x is the proximity losses of the PCB, prox,x is the geometry dependences of 

the conduction losses in traces, w is the width of the trace, h is the height of the trace, Hax is the 

external magnetic field generated, de is the skin depth and σ is the conductivity of conductor. To 

analyze the high frequency power loss in a PCB, the analogy of basic principles of 

electromagnetic wave propagation in periodic media has been used in [19].  

Methods for estimation and reduction of gate drive circuit power losses are proposed in [20] 

with the help of switching frequency and MOSFET gate to source capacitance. However, power 

losses within the gate drive capacitances are ignored in it. In [21], analytical power loss model is 

developed for the MOSFET and its current source resonant gate driver but power losses within 

bootstrap capacitor circuit are ignored. The total power loss in the gate driver IC is, 

2
GDRV DD g swP V C f                                                              (6) 

where VDD is the gate drive IC supply pin and Cg is the gate capacitance. 

 



9 
  

2.1.2 Power Loss Models for Power Electronic Converters 

Detailed analysis of power losses in different converters is further described in this subsection 

along with topology-specific power loss models. For example, power losses within a boost 

converter caused by reverse recovery characteristics of the rectifier have been modeled for 

minimization in [22]. Some researchers have also worked on specific component losses in the 

converters such as MOSFET losses in a boost converter [23]. Total system-level power losses 

are also discussed in the literature, for example the total boost converter power loss and its 

component losses in [24]. The total boost converter power losses are given in [24] as, 

loss cond fixed TOT swP P P W f      ,                                               (7) 

where the boost converter power losses depend on the conduction losses in the MOSFET  

and diode (Pcond), fixed losses of other components (Pfixed), and dynamic losses (WTOT) that vary 

with the switching frequency (fsw). 

Most of the research in converter power loss modeling is targeted towards power loss 

estimation and component selection procedure for the converters. For instance, a dynamic power 

loss (PD) model based on transient loss (PT), datasheet parameters (Pf) and parasitic elements of 

the components (Pr) is developed for the buck converter in [25]. It also provides component 

selection procedure for the buck converters, but PCB and gate drive circuit losses are ignored. 

Dynamic losses of each component in the converter are approximated as, 

D f r TP P P P                                                              (8) 

Also, a power loss calculation method for power MOSFETs in buck converters is given in [26]. 

Power loss reduction techniques are also provided in the literature. For example, power loss 

reduction techniques for active clamped flyback converter are shown in [27]. However, this 

method fails to explain power loss estimation techniques in flyback or active clamped flyback 
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circuits. Another example is [28], where with the help of the Dowell equation, a power loss 

model for flyback transformer windings considers skin and proximity losses. The primary and 

secondary winding power loss of flyback transformer at various harmonics is given as,   

wp wpdc RpnP P F                                                                (9) 

ws wsdc RsnP P F .                                                             (10) 

FRpn and FRsn are derived from Fourier transforms which provide the power loss values at various 

harmonics, Pwp is the primary winding power loss, Pwpdc  is the primary winding DC power 

loss, Pws is the secondary winding power loss and Pwsdc is the secondary winding DC power loss. 

 Some research also offers power loss estimation methods for flyback converters in DCM but 

ignores snubber circuit power loss estimation as in [29] where power loss in primary and 

secondary switches, magnetic components, and gate drive circuits are presented but snubber 

circuit power losses are ignored. 

2.1.3 Power Losses Calculation Methods 

Several methods to measure system-level power losses have been presented in the literature. 

For example, references [30] and [31] provide electrical and calorimetric methods. Electrical 

methods utilize voltage and current measurements to estimate losses, while calorimetric methods 

utilize temperature measurements and temperature rise. Problems are observed in the 

measurement of individual component power losses with the help of both voltage and current 

measurements and calorimetric measurements [32]. Problems observed in the voltage and current 

measurements are related to bandwidth limitations, offset voltages of probes, and limitations of 

oscilloscope accuracy, while calorimetric measurements are time-consuming and difficult. To 

overcome these limitations, a temperature-based power loss measurement method has been 

proposed for estimating power losses in each component and the overall converter. In this 
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method, temperature profile of each component is obtained at desired operating point in a 

thermal equilibrium. A low voltage power is then fed to each component until the desired 

operating point is reached where a relationship is derived between the component power loss and 

corresponding temperature. This method is more accurate than both methods but it requires a 

large set up. Also, weather fluctuations and their effects on component temperature are not 

considered in [32]. 

Analysis of adaptive power loss estimation techniques are developed on the basis of serial and 

parallel resistances in [33]. Average on-state mathematical model is presented including 

parameters such as core hysteresis loss, eddy current loss, conduction ohmic loss and switching 

loss. Although this method gives power loss estimation of semiconductors in converters, it is 

unable to estimate power losses in the PCBs and gate drive circuits. 

2.2 Cost Modeling 

This section provides information about the existing cost models for components and 

converters. Along with cost estimation methods and the associated advantages and 

disadvantages. Section 2.2.1 explains cost model dedicated to power electronic components. 

Section 2.2.2 describes cost estimation models for different power electronic systems.  

2.2.1 Cost Models for Components 

Existing literature indicates significant research related to cost estimation of various power 

electronic components. Component cost is one of the most important parameters to be analyzed 

because its value changes with market trends 

Some research has focused on the cost estimation and reduction techniques for system and 

components based on power loss measurement techniques. In [34] cost estimation is provided for 

capacitor-type and SCR-type magnetizer systems and their components. Cost model is provided 
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for the capacitors, transformers, semiconductor devices and magnetic fixture. The cost model for 

semiconductor devices such as SCR, MOSFET and IGBT is given in the system as, 

SCR SCR SCRCost P U                                                          (11) 

where CostSCR is the SCR cost, PSCR is the power loss in SCR and USCR is the unit cost of  SCR 

($/VA). However, generalized IGBT or MOSFET cost modeling equations for any application 

are not provided in this paper. 

Another methodology that is observed in the literature is to reduce the cost of components 

based on energy consumption and energy storage volume. This technique is mostly observed for 

capacitors, e.g. [35], where energy-to-volume ratio (EVR) of electrolytic capacitors is given as, 

0.5 ratedC V
EVR

Volume

 
 .                                                      (12) 

C is the capacitance value, Vrated is the rated voltage, Volume of the electrolytic capacitor. It is 

shown in [35] that cost is directly proportional to EVR of the capacitor and thus a cost reduction 

technique for electrolytic capacitors is presented.  Similar methodology was implemented in [36] 

to estimate the cost of capacitor bank. Energy stored in each capacitor for capacitor discharge 

impulse magnetizer is obtained along with unit cost of the capacitor; however unit price 

estimation method for the capacitor is not presented in that paper. The capacitor bank cost 

estimates as,   

Capacitor Capacitor CapacitorCost E U                                                 (13) 

where CostCapacitor is the capacitor cost, ECapacitor is the energy of the capacitor and UCapacitor is the 

unit price of capacitor. Inductor cost estimates are obtained using cost estimates of the core and 

magnet wire.  In [37], core cost, core volume and switching frequency are related to each other. 

The core volume increases as per the switching frequency and cost of the core depends upon the 

core volume. In [38], magnet wire cost model is presented based on cost per unit mass (Cm) for 
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given unit length of wire (l), wire diameter (d), number of turns (n) and cost per unit length of 

wire (Co),  

 2
0 mCost C C d n l                                                         (14) 

Also in [38], an inductor cost model is presented and depends on magnet wire, cost per weight of 

the core and weight of the wire.  The inductor cost model is presented as, 

, , ,
fc

lab L lab x wdg lab xW                                                    (15) 

σlab is the cost per weight of winding, Wwdg is the weight of winding material and ∑lab,x is the cost 

per weight of winding. Semiconductor cost models are not as common, but the majority of 

research in semiconductor cost modeling is related to microcontroller or IC cost estimation. For 

instance, [39] develops cost estimates of 3D IC at early design stages to reduce manufacturing 

time and cost expenditure. A similar approach is provided in [40] to obtain cost estimates of 3D 

IC while factoring in the effect of change in temperature on manufacturing cost. Generally, 3D 

IC design cost depends upon the wafer cost, bonding cost, packaging and cooling cost. Cost of 

the IC is obtained as, 

IC Wafer bondingmaterial packaging coolingCost Cost Cost Cost Cost                             (16) 

where CostIC is the IC cost, Costwafer is the wafer material cost, Costbondingmaterial is the bonding 

material cost, Costpackaging is the packaging cost and Costcooling is the cooling material cost. Cost 

parameters in the above equation depend on the material used and manufacturing techniques. 

Although this method can predict IC costs with high accuracy, the parameters of this cost 

equation are not easily available in the datasheet or manual. Thus, this technique is useful for 

manufacturers but not so much for distributors or end users.  
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2.2.2 System Cost Models 

Cost estimation and reduction techniques are also utilized to predict system level cost. For 

example, [41] and [42] present cost models of a battery, inverter, converter, and other 

subsystems on the basis of power ratings of these sub-systems.  In [41] cost models for battery, 

driving motor, inverter, controllers and overall system level costs are obtained. These cost 

estimates are assumed to be dependent on energy consumed in the system and the unit price of 

the component. For example, the driving motor cost (CM) is presented as, 

M M M ccC P U C  .                                                         (17) 

where PM  is the power loss in the motor, UM  is the unit price of the motor and Ccc is the control 

circuit cost. Models presented in [42] assess the cost of a PV power generation system based on 

the ratings and internal component specifications. This cost model includes initial cost of the 

system installation and cost of each component in the system but the changes in cost parameters 

as per the market trends are not considered. Another example is [43] where costs of the series PV 

string (CPV), microcontroller (CsysMC) and micro inverter PV systems cost (Cinv) are modeled. 

The cost estimation for micro-converters is given as,  

, , ,k ,sysMC PV dcdc s j x inv s

j x k x

C nC n C C C C C C  

 

 
       

 
 

                         (18) 

The cost per watt is obtained in [44] as,  

sysMC

pW

sys

C
C

P
 .                                                              (19) 

where Cs is the set of sensor cost, Cµ  is the microcontroller cost, Cµ,ψ is the set of microcontroller 

sensor cost , Cdcdc  is the DC-DC converter cost, CpW  is the cost per watt, C
cPV

cell is the cost of per 

PV cell and Psys is the system power loss.  
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According to [44] the cost boundaries of PV panels are dependent upon life cycle costing, PV 

rating, inflation, discounts, number of replacements, and  maximum number of replacements.  

Reference [45] presents an algorithm for a PV system cost (PV cost) estimation Simulink model 

for the cost estimation tool, and simulation results where the system cost is approximated as,  

 cos ( cos  cos )   cosSystem t PV t Battery t BOS factor Labor t                         (20) 

While the method in [45]  addresses the system installation cost  (Labor cost), the component 

cost is not presented. Battery cost, balance of system factor (BOS) is also considered. 

Some of the existing reaserch provides cost estimates to other electrical systems from which 

lessons can be learned. Examples include nonlinear optimization of interconnected power 

systems cost [46], life-cycle cost modeling of transmission lines [47], manufacturing processes 

[48], and others. Most of these efforts are at a power system scale and not power electronics 

scale.  For example, [48] assesses manufacturing cost of a product by obtaining design, 

manufacturing and maintenance costs and the time required to perform specific operations on 

machines. With these two parameters, cost based on machine operation can be obtained as, 

ij h ij hC M T S   ,                                                          (21) 

where Cij is the cost for each operation, Mh is the unit cost of machining h , Tij is the temperature 

of machine at the operation and Sh is the setup cost for machine h but other cost parameters such 

as fault cost and packaging cost are not analyzed in this research.  

Reference [49] shows a combined reliability and cost model for power switching devices 

such as MOSFET and IGBT. First, the component reliability is estimated based on its total 

power loss within the semiconductor device and then the cost is calculated based on reliability. 

In this paper, the reliability and cost relation is developed based on the junction temperature and 

the number of power switching devices Tj(N,t) and it is given as, 
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/
0

( , ) ( , ) ( , )
t

j C loss N th

d
T N t T P N z Z N t z dz

dz

 
    

 
                                 (22) 

where TC is the case temperature, Ploss/N is the power losses in semiconductor devices and Zth is 

the thermal impedance. 

 Note that interest in this research is to have cost models of electronic components at the 

component level to achieve system-level cost models. Manufacturing processes and large-scale 

system cost models are beyond the scope of this research.  

2.3 Reliability Modeling  

Literature shows that significant work has been conducted in all aspects of reliability, failure 

rate analysis, and diagnosis considering failures observed in components and across overall 

system. There are several stages of failures in the components which are described by the bath 

tub curve shown in Figure 1 [50]. Failure stages of the components are classified as infant 

mortality, field failures or random failures and wear out. However, failure analysis in the infant 

mortality and wear out region has not been included frequently enough in the literature [51, 52].  

Failure 

rate (l)

Time (t)

Infant 

Mortality

Field 

failures 

Wear out

region
 

Figure 1 Bath tub curve 

This subsection provides information about the existing reliability models for components 

and power electronic systems and seeks to highlight the problems associated with existing 
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estimation models in order to help develop more efficient models. This section also describes 

reliability modeling methods, their advantages as well as disadvantages. Section 2.3.1 explains 

reliability models for power electronic components and systems, while Section 2.3.2 summarizes 

different reliability estimation methods.  

2.3.1 Reliability Models for Power Electronic Components and Converters 

Reliability estimation techniques for MOSFETs, diodes, capacitors, inductors and 

transformers, controller ICs, and overall converters are discussed in this section. A very useful 

but conservative component-level reliability modeling resource is the military handbook MIL-

HDBK-217F [53]. As per MIL-HDBK-217F, a MOSFET failure rate is obtained as, 

           M b T A Q El  l                                                              (23) 

MOSFET reliability can be obtained as,  

( )
tM

MOSFETR t e
 l                                                         (24) 

In these equations λM is the failure rate of MOSFET, λb is the base rate of each component from 

[53], пA is the device application stress factor, пQ is the quality factor, пE is the environmental 

stress factor, пT is the temperature factor and RMOSFET is the reliability of the MOSFET. In [54], 

an accelerated stress test is developed to analyze field failures of the power MOSFETs used in 

power supplies. Several accelerated tests are also performed on diodes to estimate their in-circuit 

reliability. In [55] the wire bonding scheme of SiC-diodes is observed at high temperatures with 

the help of a surge current test and power cycling test. [56] provides a reliability prediction 

model for signal diodes, MOSFETs, and metal oxide varistor. The diode is tested with different 

high temperature cycles and its reliability is obtained. The total multiplier (M) for extrapolation 

from accelerated testing is given as, 
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T V MM M M M                                                            (25)  

where MM is the multiplying factor, MV is the voltage time multiplier and MT is the time 

temperature factor. From this multiplier diode reliability is obtained as, 

( )/A B MTe l                                                                (26) 

Failure rate of component (λ) is obtained from empirically developed constants (A, B) and total 

multiplier. In [57], IGBT module reliability is evaluated in wind power converter using various 

methods. This reliability approach is implemented on interleaved boost and buck converters. The 

reason for using boost and buck converters is the simplicity in the circuit and system design and 

high conversion efficiency as compared to the other topologies [58]. Overall, significant research 

in semiconductor reliability is focused on LEDs and SiC diodes, but generalized reliability 

estimation model for power diodes is not included. 

Research has also been carried out to estimate the reliability of capacitors. Existing literature 

shows that there are several accelerated testing methods applicable to multilayer capacitors. 

Different reliability methods are presented for the chip capacitor mounted on a hybrid IC in [59]. 

In this research deterioration of the dielectric was observed at high-temperature and under high-

voltage condition. Some reliability models for capacitors are developed for dedicated 

applications such as [60] where a reliability model for capacitors is developed for power factor 

correction circuits within power supplies. The performance of a capacitor degrades with 

variations in the harmonic voltage and current (ψ(S)) so the capacitor goes through different high 

voltage and temperature cycles. The capacitor failure rate (λC) is obtained as, 

1

1 1

( ) ( )
C

s
S F P

l  


                                                         (27) 
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 where FS(P) is the probability of conditional distribution. Generalized capacitor reliability 

models are still lacking in the literature.  

The reliability models for inductors and transformers are presented and discussed in [59-61].  

To estimate the life span of PCB mounted inductors and capacitors, temperature cycling and 

humidity bias life cycles are carried out in [60]. The inductor reliability is calculated in [61] and 

a model for that is given in [53] as, 

I b C Q E
l  l                                                             (28) 

where λI  is the failure rate of inductor and пC is the capacitor stress factor. Although the failures 

in transformers at converter and inverter levels are not frequently observed in experiments, 

transformer reliability and its life span estimations can be found in some literature [62, 63]. 

From a system-level or converter-level perspective, reliability models are more common and 

utilize conservative sources such as [53]. In [64], the reliability of a boost converter has been 

analyzed to avoid periodic replacement of components and high maintenance cost. Each 

component failure rates, Mean Time To Failure (MTTF) and Mean Time Between Failure 

(MTBF) are also obtained. The converter failure rate is obtained in [64] as, 

( ) ( ) ( ) ( ) ( )system sw Cap Diode Inductort t t t tl  l l l l .                                 (29) 

where λsystem is the failure rate of system, λsw is the failure rate of switching element, λCap is the 

failure rate of capacitor, λdiode is the failure rate of diode and λInductor is the failure rate of 

inductors. A similar approach has been shown in [65] for a 250 W multiphase boost converter for 

PV applications. This paper also follows equation (29) for failure rate estimation of boost 

converter. In these two papers [64, 65] the component level variation is not observed and its 

impact on the system level reliability is also not presented. 
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Some of the research is based on specific system reliability analysis and its degradation due 

to the effect of other parameters in the system. For instance, [66] studies the effect of nuclear 

radiation and ionization on power electronic converters. Generally DC-DC converters are used to 

supply power to various systems in a nuclear power plant. These experiments are carried out 

with the help of a simulation that includes gamma radiation effects to predict the life span of a 

buck converter. The buck converter failure rate is obtained in [66] as, 

f
system

N

t No
l 


                                                          (30) 

where λsystem is the  failure rate of system, Nf  is the number of component failures at time t , No is 

the number of components. The impact of ionization, high temperature and radiation on buck 

converter MOSFET is also observed in [67]. Component parasitic element performance is also 

checked for different temperature and radiation values. Flyback converter reliability is addressed 

in [68] for zero-voltage-switching (ZVS) flyback converters. In [69], a simulation model is 

developed for flyback converters used in heavy load applications and in order to improve their 

reliability for various temperature ranges, an atomic circuit block has been developed. In [70], 

electro-thermal and thermo-mechanical accelerated testing methods are implemented on a power 

inverter for the photovoltaic AC modules with the help of the rain flow cycle counting approach. 

 Thus, overall system reliability estimation methods are widely observed in the literature but 

generalized system-level reliability estimation methods for any converter type need to be 

developed. 

2.3.2 Reliability Modeling and Rapid Prototyping Methods  

In this section reliability modeling methods available in the literature are discussed. Majority 

of the research is mainly focused on failure rate analysis and reliability modeling methods. A 

useful reference for definitions of the Mean Time To Failure, Mean Time Between Failures, 
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failure rate, and reliability is MIL-HDBK-338B [71]. For example, failure rate of power 

electronic components is analyzed with the help of MIL-HDBK-217F in [72] and in [73] where 

the Weibull failure rate analysis method is used to determine failure rate in automotive 

components. Monte–Carlo method is broadly used to determine system failure analysis and 

diagnosis, for instance in [74] where the reliability of a light sensor system is analyzed.  In [74] a 

multistage automotive assembly process is considered as a case study to validate the reliability 

model. Failure Mode and Effect Analysis (FMEA) method is also frequently used to perform 

root cause analysis and failures of components as can be seen in [75] where solar module and 

power electronic converter failures are analyzed using FMEA. Other probabilistic methods have 

also been proposed. For example, the probability of occurrence of each fault sequence in an 

induction motor drive is studied using a Markov reliability modeling approach in [76].In this 

paper FMEA, Monte–Carlo method  and Markov models are used to analyze faults in different 

controllers, sensors and power electronic systems. Reliability modeling methods with the help of 

fault tree analysis are also observed in the existing literature. This tool is especially useful to 

evaluate safety and risk analysis aspect of system. For example in [77] the reliability of cores, 

windings, brushing and tank of the HVDC transformers is obtained using fault tree analysis. 

Other research such as [78] has focused on six-sigma methods mainly because the failure rate of 

some components or circuits is assumed to be normally distributed. In [78] specific designs for 

reliability practices are prepared for the designers to understand the relationship between selected 

components and predicted system failure rates. 

Literature on power electronics reliability modeling generally lacks a systematic method to 

evaluate a component or converter reliability and estimate its life span irrespective of the 

converter topology. Also, rapid prototyping tools for reliability modeling are not common, but 
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new applications requiring more reliable designs such as in aerospace and automotive systems 

will require such tools. It is important to note that reliability modeling and rapid prototyping in 

power electronic converters is beyond the scope of this thesis, but a brief literature review is 

presented here.  

 2.4 Summary of Literature Review Findings 

Several conclusions can be drawn from the literature review in Sections 2.1-2.5:  

1) Power loss models exhibit a number of ambiguities such as, parasitic elements not being 

considered and considering only specific component power losses while deriving system 

level power losses. Furthermore, PCBs and gate drive power losses are frequently 

ignored. Considering these elements can thus provide higher modeling accuracy.  

2) Generalized power loss models are not commonly addressed in the literature.  

3) Rapid prototyping methods for the above models are frequently ignored. Considering all 

these problems, a new power loss model is developed in further sections which should be 

a significant improvement over these limitations. 

4) Cost models for components or converters observed in the literature are developed 

specifically for some components such as power MOSFETs while a generalized cost 

estimation tool based on all components in the converters is not developed.  

5) Some cost models ignore essential elements of the system such as magnetic cores.  

6) Cost models observed in the literature may not be able to evolve as per changes in 

technology or cost profiles over time.  

 

Rapid prototyping cost estimation tools have also not been observed in the literature studied so 

far. Further sections will describe in detail the power loss and cost models proposed in this thesis 
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for power electronic components that are used as building blocks for converters. Rapid 

prototyping tools based on these models are also developed for individual components or 

building blocks, and in order to minimize the converter power loss or cost in an optimization 

mode.  
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CHAPTER 3: POWER LOSS MODELS FOR CONVERTERS 

Power loss modeling is one of the essential steps in helping to improve the efficiency of a 

circuit by design. It is the most important tool to analyze the component power loss, its 

contribution towards the total system level power loss and its effect on the other components’ 

power losses in order to determine the efficiency of the circuit. Inductors and MOSFETs are 

main components in boost and buck converters from a power loss perspective [79]. Similarly, the 

coupled inductor or transformer is a critical component of the flyback converter, which decides 

whether system’s operation is in CCM or DCM, as well as overall flyback converter power loss 

[80]. Component non-idealities and parasitic elements also play a major role in increasing power 

losses of a component, so these parameters also have to be studied while developing a power loss 

model. Thus, to improve efficiency of the converter, each component power loss, along with its 

non-idealities and its contribution towards total system power loss, have to be analyzed.  

 In this chapter, components are considered as building blocks and the overall system-level 

power loss is obtained by configuring these building blocks as desired.  
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Figure 2 Example illustration on how to aggregate component level models into a system 

The proposed approach is implemented on boost, buck and flyback converters and can be 

extended to buck-boost, Ćuk, and other converters. Figure 2 illustrates how to aggregate 

component level models into a system. This figure shows basic power electronic components 
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along with a gate drive circuit and PCB. A power loss model for each component is the same but 

variables such as voltage and current vary in value based on the converter topology.  

Power loss models are based on converter voltage, current, power, and frequency ratings and 

operating conditions along with basic datasheet information. These models are derived on boost, 

buck in CCM and flyback converter in DCM. To derive power loss models for these converters, 

a generalized component-level approach is implemented. As the converter topology and its 

characteristics change, modifications are carried out in the power loss models for each converter. 

These power loss models are then aggregated in to a rapid prototyping tool to obtain simple, 

efficient and user friendly operation. 

In this chapter, section 3.1 discusses generalized component level power loss models of each 

of the fundamental components in a power electronic converter. Section 3.2 explains the 

component level power losses for specific converter topologies and shows model derivation 

based on voltage and current values and/or waveforms for different converters.  Section 3.3 

shows experimental results to validate the proposed models. 

3.1 Generalized Component-Level Power Loss Models 

Generalized power loss models are derived based on equivalent circuit models of each major 

component by considering component non-idealities and parasitic elements irrespective of the 

converter topology. 

In the upcoming model derivations, some assumptions are made to facilitate the modeling 

process: i) MOSFET Cgs is considered to calculate MOSFET gate drive losses, but the Cgd  and 

the Cds are neglected, because power losses in these capacitances are almost negligible; ii) In 

Figure 4, only the linear region of ∆i is considered, however, sometimes the exponential region 

can also be observed for ∆i; iii) For diodes, only the series resistance RD is considered for 
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conduction loss, while the diode parallel capacitance is neglected because power loss within it is 

almost zero; iv) In an inductor, approximate value of PCORE  is obtained from the RC value; this 

formula is based on actual empirical results; v) The inductor current waveform is not always 

linear as shown in Figure 7, but it is assumed to be linear in order to develop a power loss 

equation for the inductor; vi) For the capacitor, RP and ESR are considered to model power 

losses in the capacitor, but ESL (i.e., equivalent series inductance) is ignored because it is 

usually only observed at high frequencies; vii) Gate drive losses are mainly observed within 

capacitances surrounding the gate drives ICs. CMOS capacitances contribute less power loss 

when bootstrap and supply capacitors are connected [85] and are thus ignored.  

3.1.1 MOSFET Losses 

In power electronic converters, MOSFETs operate as switching elements. Figure 3 shows a 

MOSFET model with its non-idealities. 

 

Figure 3 MOSFET model with non-idealities 

MOSFET Conduction loss (PCM) [79] is,  

2
CM DSon DrmsP R I ,                                                           (31) 

where ID is represented as shown in Figure 4. 

 

Figure 4 MOSFET drain current 
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In the conduction loss equation, RDSon is drain-to-source resistance, IDrms is drain-to-source RMS 

current. Switching losses of MOSFETs are mainly divided into two parts, the turn-on loss 

(PON(M)) and the turn-off loss (POFF(M)). Total switching losses in a MOSFET (PSW) are thus [81], 

( ) ( )SW ON M OFF MP P P                                                       (32) 

where for a fixed fsw, 

( )

1

2
ON M DS Don r swP V I t f ,                                                    (33) 

(M)

1

2
OFF DS Doff f swP V I t f .                                                  (34) 

Gate losses (PG) are usually observed at Cgs [79], 

G gs Supply swP Q V f .                                                         (35) 

Thus, total power losses in a MOSFET (Ploss(MOSFET)) are, 

(MOSFET)loss CM SW GP P P P   .                                              (36) 

whereas, VDS is drain-to-source voltage, IDon is MOSFET on-state current, IDoff is MOSFET off-

state current, tr is MOSFET rise time, tf  is MOSFET fall time, fsw is switching frequency, Qgs is 

gate-to-source charge and VSupple is supply voltage. 

3.1.2 Diode Losses 

 Diodes in power electronic converters act as rectifiers and also block reverse voltages. Figure 

5 shows a diode model with its non-idealities. 

 

Figure 5 Diode model with non-idealities 

Diode conduction loss (PCD) is modeled as, 

IF

VD0RDIdeal Diode

+     VF           -
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2
0 (1 ) (1 )CD D Favg D FrmsP V D I R D I    ,                                           (37) 

where typical values of VD0 and RD are, 

0
Dmax

D
Dtyp

V
V

V


                                                                                           
(38) 

F
D

F

V
R

I





                                                                                                 
(39) 

whereas, VD0 is diode initial state voltage, IFavg is diode average forward current, IFrms is diode 

RMS forward current, RD is diode on-resistance, D is duty ratio, VDmax is diode maximum voltage, 

VDtyp is diode typical forward voltage, ∆VF is change in diode forward voltage and ∆IF is change 

in diode forward current. 

There are two switching losses of a diode — turn-on loss and turn-off loss. The turn-on loss 

is usually ignored because the diode starts conducting from an off-state. The diode switching loss 

(PSWD) is thus [82], 

1

2
SWD rr rr swP Q V f .  

                                                                                 
(40) 

and the total diode power loss (Ploss(Diode)) is, 

    ( )loss Diode CD SWDP P P                                                      (41) 

In equation (40) and (41), Qrr is diode reverse recovery charge, Vrr is diode reverse recovery 

voltage and fsw is switching frequency. 

3.1.3 Inductor Losses 

An inductor stores energy in its magnetic field. Figure 6 shows an inductor along with its 

non-idealities and Figure 7 shows the inductor current waveform. 
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Figure 6 Inductor model with non-idealities 

 

Figure 7 Inductor current waveform 

The core loss (PCORE) is obtained with the help of Steinmetz equation and given in [83, 84] as, 

1
x y

CORE eP K f B V .                                                      
 
(42) 

If core loss coefficients are not supplied by a manufacturer, RC can be used and PCORE is 

estimated as, 

2
L

CORE

C

V
P

R
 .                                                             (43) 

Resistive losses can also be estimated as shown in [83, 84], 

2
DCR LavgP I DCR ,

                                                                                    
(44) 

2
ACR LrmsP I ACR .                                         

                      
(45) 

Total power loss of an inductor (Ploss(Inductor)) is thus, 

( )loss Inductor CORE DCR ACRP P P P   .                                         (46) 

whereas, K1 is the inductor core material constant, f is the inductor current frequency, B is the 

peak flux density, Ve is the effective core volume, VL is the inductor voltage, RC is the effective 

core impedance, ACR is the inductor AC resistance, DCR is the inductor DC resistance, PDCR is 

the DC resistance power loss,  PACR is the AC resistance power loss, ILavg is the inductor average 

current, ILrms is the inductor RMS current and x,y is core loss coefficients. 

RC

ACR
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3.1.4 Capacitor Losses 

 Capacitors are another major storage element in power electronic converters. Figure 8 shows 

a capacitor equivalent model with its non-idealities. 

 

Figure 8 Capacitor model with non-idealities 

Two major power losses in the capacitor are those in its AC and DC resistances [85]. The 

capacitor AC resistance loss (Pac) is, 

2
ac CrmsP I ESR . 

                                                                                     
(47) 

while the capacitor DC resistance loss (Pdc) is, 

2
C

dc

P

V
P

R
 .                                                              (48) 

Total power loss of the capacitor (Ploss(Capacitor)) is thus, 

( )loss Capacitor ac dcP P P  .                                                    (49) 

Pdc is small as compared to Pac as capacitors are mainly used to pass current ripple, thus Pdc it is 

frequently ignored. In these equations ICrms is the capacitor RMS current, ESR is the equivalent 

series resistance, VC is the capacitor voltage, RP is the capacitor parallel resistor, 

3.1.5 PCB Losses 

PCB Trace1

PCB Trace2

CStrayLStray

PCB Layer1

PCB Layer2

 

Figure 9 PCB equivalent model 
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Figure 9 shows PCB equivalent model. Stray inductances and capacitances are usually 

observed in multilayer PCBs [86, 87]. Trace power loss (Ptrace) [88] is calculated as, 

2
trace trace traceP I R .                                                        (50) 

Stray inductance power loss (PLstray) is obtained [88] as, 

Lstray trace stray

di
P I L

dt

 
  

 
.                                                       (51) 

where Lstray can be estimated in µH as, 

4
0.2 0.5

2
2 10 ln e

stray e

W H

Le

L
L L

W H







    
    

    
.                                 (52) 

As presented in [88] stray capacitance is estimated as, 

0.085 r
stray

E A
C

d
 ,                                                        (53) 

and the stray capacitance power loss (PCstray) is, 

21

2
Cstray d Stray swV C fP  .

                                                                              
(54) 

The total PCB power loss (PPCB) is thus, 

PCB trace Lstray CstrayP P P P   .                                                 (55) 

whereas, Itrace is PCB trace current, Rtrace is PCB trace resistance, Le is the length of PCB trace 

H is height of PCB trace, Lstray is the PCB stray inductance, Cstray  is the PCB stray capacitance 

W is the width of PCB trace, Er is the dielectric constant for air, A  is the plate area in mm
2
, d is 

the plate separation in mm. 

3.1.6 Gate Drive Losses 

Major power loss in the gate drive circuit is normally observed across its supply pin and 

bootstrap capacitor pin. Figure 10 shows a gate drive IC equivalent model.  
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Gate drive losses shown in this paper mainly focused on self-oscillating ICs or dedicated 

application ICs 

Gate 

Driver IC

CB

VBT

+

-

VCC

+

-

IQBS

IQCC

 

Figure 10 Gate drive ICs equivalent model 

Gate drive power loss (PGDRV) is calculated as in [89] to be, 

GDRV VCC BTP P P  ,                                                        (56) 

where ,                                                    VCC QCC CCP I V ,                                                          (57) 

BT QBS BTP I V .                                                           (58) 

whereas, IQBS, IQCC is the gate drive quiescent currents, VCC  is gate drive IC supply voltage, VBT 

is the gate drive IC bootstrap voltage. The converter total power loss (PTotal) is thus: 

Total ( ) ( ) ( ) ( )
P P P P P P P

loss MOSFET loss Inductor loss Diode loss Capacitor PCB GDRV
            (59) 

3.2 Power Loss Models for Several Converters 

Equations explained in the previous section are common in the literature but are rarely 

presented for specific converter topologies. In this section, power loss models for boost and buck 

converter in CCM and flyback converter in DCM are explained in detail. These converters are 

used as examples due to their common use in any applications and their simple construction and 

analysis. All generalized equations are reformulated in terms of input and output parameters and 

datasheet information. 

When power loss equations for a specific converter are prepared, some approximations are 

made, such as when MOSFET switching power losses in the boost converter are calculated, drain 
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to source voltage is assumed as Vin only. Ideally, while calculating drain to source voltage VDS, 

the voltage across inductor VL should be subtracted from input voltage Vin. However, since 

inductor contributes almost zero power loss in switching losses of the MOSFET, it can be 

excluded from measurement of MOSFET switching power loss.  When the diode switching loss 

in the buck converter is calculated, the power loss across ESR is not considered. In Figure 12, the 

flyback transformer’s primary current waveform is assumed to be linear, but sometimes it is 

exponential.  Similarly, the flyback inductor switching waveform as shown in Figure 13 excludes 

the exponential region and the effect of disturbances on the linear region. These generalized 

assumptions are made because their effects on power loss models are insignificant and they 

cannot reduce the source of error in the estimated and the measured power losses. 

3.2.1 Boost Converter in CCM 

A typical non-ideal boost converter is shown in Figure 11. Derivations for boost converter in 

CCM are as follows, 

 

Figure 11 Boost converter with its non-idealities 

3.2.1.1 MOSFETs Losses 

PCM is obtained from (31) and can be estimated [90,91] as, 

2
2

12
CM DSon in
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P R D I

 
  

 
 .                                                  (60) 
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To calculate PSW, IDon and IDoff can be obtained from Figure 7, 

2
Don in

i
I I


   

,  
                                                                                    

(61) 

2
Doff in

i
I I


  ,

                                                                                        
(62) 

DS inV V .
                                                                                               

(63) 

Thus, PON(M) and POFF(M) are calculated as, 

(M)

1

2 2
ON in in r sw

i
P V I t f

 
  

 
,                                                (64) 

(M)

1

2 2
OFF in in f sw

i
P V I t f

 
  

 
.                                                (65) 

whereas, Vin is the converter input voltage, Δi is the inductor ripple current, Iin is the converter 

input current, VDS is the drain-to-source voltage, Vout is the converter output voltage and Iout is the 

converter output current and VF is the diode forward voltage. 

3.2.1.2 Diode Losses 

PCD and PSWD are obtained by referring (37) and (40) as, 

2
0(1 ) (1 )CD D in D inP V D I R D I    ,                                            (66) 

 
1

2
SWD rr out in in swP Q V V I DCR f   .                                          (67) 

3.2.1.3 Inductor Losses 

PCORE, PDCR and PACR can be calculated as, 

 
2

out in in F

CORE

C

V V I DCR V
P

R

  
 ,                                           (68) 

2
DCR inP I DCR ,

           
                                                   (69) 
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2

12
ACR

i
P ACR


 .                                                         (70) 

3.2.1.4 Capacitor Losses 

Ploss (Capacitor) is obtained using (47) and Figure 8 as, 

2

( )
12

loss Capacitor

i
P ESR


 .                                    

                       
 (71) 

3.2.2 Buck Converter in CCM 

A typical non-ideal buck converter is shown in Figure 12. Buck converter in CCM operation 

is considered for the following derivations: 

 

Figure 12 Buck converter topology for power loss model 

3.2.2.1 MOSFETs Losses 

PCM is obtained from (31) and can be estimated from [91] as, 

2
2

12
CM DSon out

i
P R D I

 
  

 
,                                                  (72) 

To calculate PSW, IDon and IDoff can be obtained from figure 7 and VDS is as (63) .Thus, PON and 

POFF are obtained as, 

2
Don out

i
I I


   

,     
                                                                                   

(73) 

2
Doff out

i
I I


   

,   
                                                                                     

(74) 
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(M)

1

2 2
ON in out r sw

i
P V I t f

 
  

 
,                                               (75) 

(M)

1

2 2
OFF in out f sw

i
P V I t f

 
  

 
.                                              (76) 

3.2.2.2 Diode Losses 

PCD and PSWD are obtained by referring (37) and (40) as, 

2
0(1 ) (1 )CD D out D outP V D I R D I    ,                                           (77) 

 
1

2
SWD rr out out swP Q V I DCR f  .                                              (78) 

3.2.2.3 Inductor Losses 

PCORE, PDCR and PACR can be calculated as, 

 
2

in out in DSon out

CORE

C

V V I R I DCR
P

R

  
 ,                                       (79) 

2
DCR outP I DCR ,                                                          (80) 

2

12
ACR

i
P ACR


 .                                                         (81) 

3.2.2.4 Capacitor Losses 

Ploss (Capacitor) is obtained using (47) and Figure 8 as, 

2

( )
12

loss Capacitor

i
P ESR


 .          

                                                              
 (82) 

3.2.3 Flyback  converter in DCM 

Flyback converters are widely used in DCM. A non-ideal flyback converter in DCM is 

shown in the Figure 13. 
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Figure 13 Flyback converter model with its non-idealities 

3.2.3.1 MOSFET Losses 

For this application MOSFET switching period was considered as TON+TOFF=0.8TS. MOSFET 

switching waveform is shown in Figure 14. 

 

Figure 14 MOSFET switching waveform 
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DS in outV V nV  ,
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PCM in the flyback converter is described in [91, 92] as, 

 

2

0.26 1in out
CM DSon

Fm pri sw
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P R D

VL L f

  
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.                                 (85) 

For a flyback converter in DCM, IDon is zero but IDoff  and PSW are determined using [93, 94] and 

Figure 15 as, 

 2

0.9

m pri sw
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 
 (M)

22

0.9

m pri

fin
SW OFF in out
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 
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.                                   (87) 

 

Figure 15 Inductor switching waveform 

whereas, Lm is the mutual inductance, Lpri is the primary inductance, Lsec is the secondary 

inductance. 

3.2.3.2 Diode Losses 

PCD and PSWD of the flyback diode are calculated as, 

 

2

0

0.52
(1 ) (1 )

m pri

in
CD D out D

swL L

nV D
P V D I R D

f

 
     

  

,                                (88) 

1

2
SWD rr out swP Q V f .   

                                                                               
(89) 

3.2.3.3 Flyback Coupled-Inductor/Transformer Lossses 

PCORE is given in [92-94] as, 

    CORE fe AC C mP K B A L 
.                                                      (90)

                               

 
where,                                                        

Pr

m
AC

i C

L i
B

N A

 
 .     

 
                                                    (91) 

Primary and secondary resistive losses are calculated [94] as, 

 

2

0.4

m pri sw

in
Rpri pri

L L f

V D
P R



 
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 

2

sec sec

0.4

m pri sw

in
R

L L f

nV D
P R



 
  
 
 

.                                                (93) 

In these equations, AC is the cross-sectional area of core, B
β
AC is the AC component of flux 

density, Kfe is the inductor current material constant at switching frequency, Npri is the primary 

windings number of turns, PRpri is the primary resistance loss, PRsec is the secondary resistance 

loss, Rpri is the primary DC resistance and Rsec is the secondary DC résistance. 

3.2.3.4 Capacitor Losses 

From (48), Ploss (Capacitor) is calculated as, 

 

2

2
( )

0.52

m pri

in
loss Capacitor out

swL L

nV D
P I ESR

f

   
   

    

.                                      (94) 

3.2.3.5 Snubber Circuit Losses 

The main components in the snubber branch are snubber resistor (Rsn), snubber capacitor Csn and 

snubber diode (Dsn). Rsn and Csn form a clamp unit. Power loss in the clamp unit (Pclamp) is 

represented in [95] as, 

 
2 2

0.9clamp DSBR in

clamp

sn sn

V V V
P

R R

 
  
 

 
,  

                                                         
(95) 

Pclamp is also written as, 

21

2
1

0.9 2

in
clamp sw pri

DSBR in

f L
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 
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 

.                                          (96) 

Snubber diode conduction loss (PCDsn) is obtained from (41) as, 

2
0(1 ) (1 )CDsn Dsn out Dsn SrmsP V D nI R D nI    .                                     (97) 

Snubber diode switching loss (PSWDsn) is obtained as, 

1

2
SWDsn rrsn in swP Q V f .   

                                                                              
(98) 
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whereas, Rsn is the snubber resistor, RDsn is the snubber diode on-state resistance, VDSBR is the 

drain-to-source breakdown voltage, Vclamp is the clamp voltage rise, ISrms is the flyback 

transformer secondary RMS current, VDsn0 is the snubber diode initial state voltage, Qrrsn is the 

snubber diode reverse recovery charge, IDsn(rms) is snubber diode RMS current and IDsn(avg) is 

snubber diode avg. current 

 Total snubber circuit power loss (Psn) is represented as, 

sn clamp CDsn SWDsnP P P P   .   
                                                                       

(99) 

3.3 Results  

Basic boost, buck and flyback converters were experimentally developed to test the power 

loss models presented here. These converters were tested in open-loop mode. All parasitic 

elements and specific test condition examples are given in Table I. Figure 16 shows the board 

holding both the boost and buck converters. However, gate drive circuits are not powered from 

Vin thus their losses are not included. In addition to assumptions listed in sections 3.1 and 3.2, 

some approximations are made for testing these converters, e.g. RC (when not given in a 

datasheet), and limited measurement accuracy. Each converter and its related results and 

waveforms are presented and discussed separately. In this section, detailed converter 

specification, each component power loss and specific converter power losses are organized. 

Measured power losses are calculated as the difference between measured input and output 

powers as recorded on the oscilloscope.  
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Figure 16 Experimental setup for the buck and boost converters 

Table I Example testing conditions and parasitic elements in experimental prototypes 

Parameter Boost  Buck  Flyback 

Vin 20V 62V  11.2V 

Iin 3.5A  1.1A 0.38A 

Vout 77.4V 24.6V 19.6V 

 Iout 0.85A 2.56A 0.15A 

Δi 1.1A 2.95A 0.89A 

fsw 50KHz 50KHz 100KHz 

D 0.75 0.4 0.5 

ESR 0.603Ω 0.603Ω 0.603Ω 

VD0  1V 1V 1V 

RD 7mΩ 7mΩ 7mΩ 

DCR/Rpri 0.06Ω 34mΩ 0.09 

ACR/Rsec 0 1.5Ω 0.58 

Qrr 195nC 195nC 195nC 

Qgs 64nC 13nC  13nC 

RDSon 0.029Ω 0.18Ω 0.18Ω 

tr 100nsec 51nsec 51nsec 

tf 63nsec 36nsec 36nsec 

≈ Rcore 3325Ω - - 

Lm, Lpri - - 59.4µH 

3.5µH 
B - 3400mT 42.42mT 

Ve/AC - 0.24cm
3
 0.97cm

3
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3.3.1 Boost Converter Results 

Basic boost converter topology is built as shown in Figure 11 and operates in CCM.  Table II 

explains boost converter results for different duty ratios along with actual measurements using a 

resistive load. Accuracy of the estimated power loss exceeds 92% with less than +/-8% 

estimation error. Table II represents the components, estimated and measured power losses. 

Table III presents detailed boost converter component power losses for different duty ratios. For 

the boost converter operation MOSFET-IRFP4332PBF, inductor-PCV-0-274-10L, diode-

MURF860G and capacitor-EEU-EB2D221 are used. Inductor and capacitor values are selected 

from the rapid prototyping tool selection procedure for the boost converter as will be explained 

in Section 5.2.1.1 Figures 17-21 demonstrate operation of the boost converter from a 30% duty 

ratio to a 75% duty ratio. It is observed from Figure 17-21 that as duty ratio increases system 

performance decreases. The boost converter provides almost ideal performance at the 50% duty 

ratio but this is a drawback of the V-I measurement method [97] and oscilloscope which cannot 

capture the accurate results for higher disturbances. Measured power loss (Pmeasured) and 

estimated power loss (Pestimated) can provide percentage error. Estimation error shown in Table II 

and later tables is calculated as,  

measured estimated

measured

P - P
% Error = ×100

P

 
 
 

.                                         (100) 

Table II Estimated and measured power loss in boost converter 

Duty 

Ratio 

PMeasured  

(W) 

PEstimated  

(W) 

%Error 

30% 0.6 0.56 6.6% 

40% 0.78 0.72 7.69% 

50% 0.97 0.92 5.15% 

60% 1.36 1.37 -0.74% 

 

 

75% 4.21 4.19 0.43% 
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Table III Detailed boost converter component power losses for different duty ratios 

Parameters Duty Ratios 

 30% 40% 50% 60% 75% 

Vin 20 20 20.1 20 20 

Iin 0.45 0.6 0.88 1.35 3.50 

Vout 28 33 39.8 49.3 77.4 

Iout 0.3 0.34 0.42 0.52 0.85 

fsw 50KHz 50KHz 50KHz 50KHz 50KHz 

D 0.3 0.4 0.5 0.6 0.75 

PMeasured 0.6 0.78 0.97 1.36 4.21 

Ploss_Mosfet 0.10 0.11 0.14 0.19 0.61 

Ploss_Diode 0.4 0.5 0.54 0.69 1.18 

Ploss_Inductor 0.03 0.06 0.15 0.34 1.67 

Ploss_Capacitor 0.01 0.02 0.03 0.04 0.062 

PPCB 0.02 0.03 0.06 0.1 0.67 

PEstimated 0.56 0.72 0.92 1.37 4.19 

%Error 6.6 7.69 5.15 -0.74 0.43 

 

Figure 17 Boost converter results for 30% duty 

Vout  (50V/div) 

Vin (50V/div) 

Iout (0.5A/div) 

Iin (1A/div) 
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Figure 18 Boost converter results for 40% duty ratio 

         

Figure 19 Boost converter results for 50% duty ratio 

        

Figure 20 Boost converter results for 60% duty ratio 
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Figure 21 Boost converter results for 75% duty ratio 

3.3.2 Buck Converter Results 

The basic buck converter topology is built as shown in Figure 12 and operates in CCM. 

Table IV explains buck converter results for different duty ratios with actual measurements from 

an oscilloscope and the estimated power loss from the power loss model of the buck converter. 

The error between the measured power loss and the estimated power loss is less than 8%. Table 

IV represents components, estimated and measured power losses and Table V presents detailed 

buck converter component power losses for different duty ratios. For buck converter operation 

MOSFET- IRFP4332PBF, Inductor- AIRD-03-101k, Diode-MURF860G and capacitor- EEU-

EB2D221 are used based on the component selection that will be described in Section 5.2.1.1. 

Figures 22-25 demonstrate operation of the buck converter from a 20% duty ratio to a 50% duty 

ratio.  

Table IV. Estimated and measured power loss in buck converter 

 

 

 

 

Duty 

Ratio 

PMeasured 

(W) 

PEstimated  

(W) 

%Error 

20% 2.54 2.49 -1.96% 

30% 3.76 3.78 0.53% 

40% 5.22 5.20 -0.45% 

50% 7.05 6.55 -7.09% 

Vout  (50V/div) 

Vin (50V/div) 

Iout (0.5A/div) 

Iin (1A/div) 
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Table V Detailed buck converter component power losses for different duty ratios 

Parameters Duty Ratios 

 20% 30% 40% 50% 60% 

Vin 60 60 62 61 46 

Iin 0.28 0.6 1.1 1.65 1.6 

Vout 12.4 18 24.6 30 27.1 

Iout 1.15 1.79 2.56 3.12 2.55 

fsw 50KHz 50KHz 50KHz 50KHz 50KHz 

D 0.2 0.3 0.4 0.5 0.6 

PMeasured 2.54 3.76 5.22 7.05 4.49 

Ploss_Mosfet 0.23 0.45 0.87 1.36 1.01 

Ploss_Diode 0.99 1.36 1.68 1.74 1.17 

Ploss_Inductor 0.95 1.31 1.51 1.87 1.22 

Ploss_Capacitor 0.20 0.32 0.44 0.45 0.24 

PPCB 0.13 0.19 0.70 1.13 0.83 

PEstimated 2.49 3.78 5.2 6.55 4.47 

%Error -1.96 0.52  -1.09 -7.09 -0.45 

 

 

 
Figure 22 Buck converter results for 20% duty ratio 
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Figure 23 Buck converter results for 30% duty ratio 

   

Figure 24. Buck converter results for 40% duty ratio    

                                

                 Figure 25 Buck converter results for 50% duty ratio 
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3.3.3 Flyback Converter Results 

Basic flyback converter topology is built as shown in Figure 13 and operates in DCM 

Flyback converter results for different duty ratios are shown in Table VI with actual 

measurements from an oscilloscope and the estimated power loss from the power loss model of 

the flyback converter. The error between the measured power loss and the estimated power loss 

is less than 5%. Table VII represents components, estimated and measured power losses and 

Table VII presents detailed flyback converter component power losses for different duty ratios. 

For flyback converter operation MOSFET-IRFP4332PBF, flyback transformer-Q4338-BL, 

Diode-EGP10G and capacitor-EEU-EB2D221 are used. Figures 26-29 demonstrate operation of 

the flyback converter from a 20% duty ratio to a 50% duty ratio that is maximum duty ratio.  

Table VI. Estimated & measured power loss in flyback converter 

Duty Ratio PMeasured  

(W) 

PEstimated  

(W) 

%Error 

20% 0.32 0.31 -3.13% 

30% 0.55 0.56 1.81% 

40% 0.85 0.82 -4.7% 

50% 1.32 1.27 -3.78% 

Table VII Detailed flyback converter component power losses for different duty ratios 

Parameters Duty Ratios 

 20% 30% 40% 50% 

Vin 11.7 11.6 11.6 11.2 

Iin 0.075 0.2 0.2 0.38 

Vout 9.26 11.1 14.7 19.6 

Iout 0.06 0.16 0.1 0.15 

fsw 100KHz 100KHz 100KHz 100KHz 

D 0.2 0.3 0.4 0.5 

PMeasured 0.32 0.55 0.85 1.32 

Ploss_Mosfet 0.08 0.16 0.32 0.58 

Ploss_Diode 0.14 0.22 0.20 0.27 

Ploss_Inductor 0.03 0.05 0.07 0.09 

Ploss_Capacitor 0.02 0.02 0.06 0.08 

Psn 0.04 0.10 0.14 0.21 

PPCB 0.004 0.01 0.02 0.04 

PEstimated 0.31 0.56 0.81 1.27 

%Error -3.13% 1.81% -4.7% -3.78 
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Figure 26 Flyback converter results for 20% duty ratio    

      

Figure 27 Flyback converter results for 30% duty ratio 

     

Figure 28 Flyback converter results for 40% duty ratio 
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Figure 29.  Flyback converter results for 50% duty ratio 

Overall, results in Tables II, IV and VI are shown to be within 8% error and thus the power 

loss models established are proven to be more than 92% accurate. The accuracy of the power 

loss model is improved by considering the power loss of each component along with its non-

idealities and parasitic elements. The estimation of PCB losses has also helped to improve the 

accuracy. The power loss model can be further improved if power loss of each component of the 

converter is estimated. This power loss model can also be developed for other components, 

converter topologies and systems with the same approach. Furthermore, power loss models for 

microcontrollers and DSP ICs can also improve accuracy and flexibility. Component power 

losses for each converter are provided in the Appendix I. Detailed derivation of RMS values of 

drain currents, capacitor RMS current of the flyback converter and inductor currents are given in 

the Appendix III. 
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CHAPTER 4: COST MODELS FOR CONVERTERS 

The principal function and ultimate aim of industry is to make profitable products. Today’s 

marketplace is full of new products and services changing at a very fast pace.  In order to stay 

competitive in a rapidly changing consumer market, companies must focus on value generation 

for their customers. This value can be generated through new features and better functionality at 

lower costs. Cost has emerged as one of the most important attributes of a successful product and 

of a competitive industry in general. 

When industry develops a new product with the customers’ requirements in mind, the 

product has to go through numerous designs, engineering, manufacturing, testing and compliance 

procedures. All these factors contribute to the product cost and are indispensable to product 

success. While industry cannot avoid these critical operations in order to reduce cost, it still must 

remain focused on constantly lowering the cost while maintaining the product quality, reliability 

and availability at a high level. Developing prudent and practical cost reduction techniques based 

on raw material prices is thus a vital focus area for product designers and engineers. 

In the particular case of electronics components, cost forms a major decision making factor. 

High-end electronics is an extremely competitive market and customer preferences are pushing 

developments towards more functionality at progressively lower cost. With the ever rising 

demand and constant cost pressure, it has become vitally important for electronic components to 

be designed and manufactured more efficiently and at lower costs. 

 The cost model developed in this research aims at solving this very important challenge 

facing a design engineer. These models are based on average prices related to component ratings 

obtained using an extensive market survey and surface-fitting tools. A large database of cost 

information for different elements was collected from common manufacturers and suppliers. 
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Average cost for each component at a certain rating combination was found by considering 

multiple options.   This database was input to MATLAB to create an interpolated graph and the 

MATLAB surface fitting and the curve fitting tools were used to find a mathematical 

relationship between cost and component parameters. Cost per quantity was considered to avoid 

price discrepancy between manufacturers, purchase quantities, etc. It is important to note that 

component technology and cost profiles change over time as a result of changes in material and 

manufacturing techniques, but the methodology proposed here still applies. 

In this chapter, sections 4.1-4.4 show cost models developed for MOSFETs, diodes, 

inductors, and capacitors, respectively. Section 4.5 elaborates on the importance of magnetic 

core cost estimation and shows the proposed core cost model. Section 4.6 discusses the cost 

model for magnet wire which is also critical to inductor and transformer design. Section 4.7 

shows real against estimated prices of various components to validate the developed cost models. 

4.1 MOSFET Cost Model 

MOSFET selection procedure is based on its drain-to-source voltage, drain current, gate-to-

source threshold voltage and switching time.  These parameters decide the performance and the 

efficiency of the circuit. However, when the MOSFET is selected to develop any power 

electronic converter, its worst case current and voltage stress handling capacity has to be 

analyzed. Thus, to create a cost model equation for the MOSFET, a large database was prepared 

using drain to source voltage VDS, drain current ID and cost.  

Figures 30 and 31 depict the mathematical relationship for this database as applicable to 

single as well as 1000 quantities. Cost per quantity is considered because the prices fluctuate 

with changing quantities. It can be observed that the structure of these two figures is almost 

identical. This indicates that even if this approach is implemented for different values of 
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quantity, the cost model equation from the surface fitting tool remains the same. Thus, the 

MOSFET cost model equation for multiple quantities (CostM) is represented as, 

 
13

0
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i i
M DS D i DS D
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(101) 

Table VIII. αi Coefficients and ranges 

Coefficient Values Ranges βi γi 

α0 1.622 (-9.142, 12.39) 0 0 

α 1 0.034 (-0.087, 0.154) 1 0 

α 2 -0.133 (-0.89, 0.63) 0 1 

α 3 -0.0001 (-8, 25) 2 0 

α 4 -0.0016 (-0.0047,-0.0163) 1 1 

α 5
 0.0058 (-0.01, 0.022) 0 2 

α 6
 1.3e-8 

 

(-1.6e-6,1.6e-6) 3 0 

α 7
 8e-6 (-8.8e-7, 1.5e-5) 2 1 

α 8
 -2.95e-6 (-4.2e-5,3.6e-5) 1 2 

α 9
 -4.48e-5 (-1.4e-5,5.3e-5) 0 3 

α 10
 1.46e-10 (-1.2e-9,1.5e-9) 4 0 

α 11
 -5.3e-9 (-1.1e-8,5.6e-10) 3 1 

α 12
 -3.5e-8 (-6.9e-8, 1.3e-9) 2 2 

α 13
 1.3e-7 (-8.1e-8,3.4e-7) 1 3 

 

In equation 101, CostM is MOSFET cost, VDS is MOSFET drain-to-source voltage, ID is MOSFET 

drain-to-source current. αi values are obtained from the surface fitting tool.  Table VIII represents 

different αi values and their ranges. To calculate exact cost αi values must be varied within the 

specified range. These coefficients cannot change as per the quantity making this equation 

suitable for use with multiple quantities.  
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Figure 30 MOSFET cost model for one unit 

 

Figure 31 MOSFET cost model for 1000 units 

4.2 Diode Cost Model 

As described in the power loss model, it is necessary to analyze performance of a diode in 

‘ON’ state as well as in ‘OFF’ state because when the diode is ‘ON’ it provides inductor current 

to the load and when it is ‘OFF’ it blocks reverse voltage from the load. When selecting a diode 
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for a power electronic converter, designers have to consider the ability of Diode to block the 

reverse voltage, capacity to handle peak current, forward voltage drop and the switching 

operation time. Out of these conditions, diode’s selection procedure is mainly concerned with its 

reverse blocking voltage and its current capacity. With this consideration cost model equation for 

a diode was derived using DC blocking voltage (VB), diode forward current (IF) and the diode 

cost (CostD). Interpolated graphs of diodes for single and 1000 quantities are presented in Figure 

32 and 33, respectively. These two interpolated graphs are almost identical thus establishing that 

cost model equation is independent of quantities. 

The diode cost (CostD) is represented as, 

2

0

( , )

j
j j

D B F j B F

j

Cost V I V I
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
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 
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(102) 

Where δ coefficients are obtained as, 

Table IX δj coefficients for diode cost model equations 

Coefficients Value Range j

 
κj

 
δ0 

0.22
 

(-0.1, 0.3)
 

0 0 
δ 1 

7e-5
 

(-2.6e-4, 1.2e-4)
 

0 1 
δ 2 

0.1
 

(-0.08, 0.13)
 

1 0 
 

In this equation δj values are obtained from surface fitting tool. Different δ values and their 

ranges are presented in Table IX. To calculate exact cost the δ values must be varied within the 

specified range. These coefficients cannot change as per the quantity so this equation can be used 

for multiple quantities.  
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Figure 32 Diode cost model for one unit 

 

 

Figure 33 Diode cost model for 1000 units 
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4.3 Inductor Cost Model 

Similar to the MOSFET and diode, an inductor also plays a vital role in the operation of the 

converter.  Moreover, it is the value of the inductance that decides modes of operation for the 

converter. A smaller value of inductance results in failure of the inductor to operate in a specific 

mode whereas a higher value increases the start-up and settling times. The cost of an inductor is 

sometimes higher than that of other components in a converter.  Designers may even opt to select 

the cores and the magnet wires to prepare an inductor as per the application requirement, but the 

cost model developed in this section is only for the ready-made inductors which are readily 

available in the market. Cost model for the inductors is based on inductance (L), inductor current 

(IL) and cost as shown in Figures 34 and 35. Interpolated graphs are almost identical for single as 

well as multiple quantities. The inductor cost (CostL) is represented as, 

2( )
( , ) sin( )

IL
L L LCost L I LI e


  

    ,                                      (103) 

Table X Inductor cost model coefficients 

Coefficients Value Ranges 

x 9.67 (-3.48, 24.83) 

µ 61.64 (-25.68, 97.59) 

 -8.246 (-20.63, 8.141) 

v 4.495 (-0.2334, 9.223) 

ω -0.08658 (-0.5143, 0.3411) 

 

In Table X, the inductor cost model coefficients are obtained from surface fitting tool. These 

coefficients do not change as per the quantity so this equation can be used for multiple quantities. 

Similar approach can be implemented on the cores and magnet wires for the inductors. The cost 

models for flyback transformer cores and magnetic wires are based on this approach.  
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Figure 34 Inductor cost model for one unit 

      

 

 

Figure 35 Inductor cost model for 1000 units 
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4.4 Capacitor Cost Model 

A capacitor acts as a filter which is predominantly selected to suppress output voltage ripple 

and to handle output current ripples in the converter. As described in the previous section, 

capacitor power loss is dependent upon the ESR value. Thus, while selecting a capacitor for the 

converter, designers have to consider its capacitance value, capacity of handling the output 

voltage ripples and the ESR value. 

In this cost model, a database was prepared for capacitance value (C), capacitor voltage (VC) 

and the corresponding cost. Figures 36 and 37 show the interpolated graphs which are prepared 

from the capacitor database and the mathematical relationship for these graphs is also presented 

here.The capacitor cost (CostC) is represented as, 
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 ,      
                                                                 

(104) 

Table XI. ηz coefficients and ranges  

Coefficients Value Ranges z
 ξz

 

η0 -0.5651 (-4.043, 2.913) 0 0 

η 1 7.98e-4 (-0.017, 0.019) 1 0 

η 2 0.03 (-0.022, 0.082) 0 1 

η 3 5.1e-6 (-1.6e-5,1.74e-53) 2 0 

η 4
 3.2e-5 (-5e-5, 0.0001139) 1 1 

η 5
 -1.8e-4 (-4e-4,5.9e-5) 0 2 

η 6
 -4.9e-8 (-1.1e-7,1e-8) 2 1 

η 7
 1.6e-7 (4.2e-8,2.8e-7) 1 2 

η 8
 2.5e-7 (-5.5e-8, 5.6e-8) 0 3 

 

Equation 104 represents the cost equation for capacitors, where Table XI presents the ηz 

coefficients obtained from MATLAB surface fitting tool. These coefficients are not affected by 

changes in quantity so this equation can be used for multiple quantities.  
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Figure 36 Capacitor cost model for one unit 

 

 

Figure 37 Capacitor cost model for 1000 units 
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4.5 Cost Model for Flyback Coupled-Inductor/Transformer Cores 

Cores are vital elements when designing a flyback coupled inductor or transformer. They 

decide the mode of operation, performance and efficiency of a converter. Some manufacturers 

provide ready flyback transformers for commonly used applications, but even these commonly 

stem from custom designs. . There are two types of cores i.e. gapped and ungapped. In this cost 

model both these types are considered. Frequency range considered for the cores is 50 KHz to 

500 KHz, and high frequency cores which are used for radio or telecommunications application 

are excluded from this research. Figures 38 and 39 show interpolated graph for core database. 

Cost model for the core is obtained on the basis of inductance factor value (AL), switching 

frequency (fsw) and cost. AL value is considered because the inductance value is directly 

proportional to AL. The core cost (CostCo) is represented as, 

4
( , )

0

m m
m

Cost A f A f
Co L sw m L sw

m


 



 
 ,                                         (105) 

Table XII τm Coefficients and ranges 

Coefficient

s 

Value Ranges m m 
τ0 1.204 (0.6736, 1.735) 0 0 

τ1     1.625   

 

(1.31, 1.939) 1 0 

τ2 0.1432  (-0.6245, 0.9078) 0 1 

τ3
 -0.007604 (-0.467, 0.4518) 1 1 

τ4 -0.1744  (-0.6827, 0.344) 0 2 

 

Equation 105 represents the cost equation for the cores where τm coefficients obtained from 

MATLAB surface fitting tool are presented in Table XII. These coefficients are unchanged with 

respect to quantity so this equation can be used for multiple quantities.  



62 
  

 

Figure 38 Flyback core cost model for one unit 

 

 

Figure 39 Flyback core cost model for 1000 units 
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4.6 Magnet Wire Cost Model 

Magnet wire decides the current range of the flyback coupled inductor or transformer. 

Magnet wires are selected as per the gauge and total bundle cost where current requirement for a 

specific gauge is provided by the manufacturers. For the purpose of this section only a two 

dimensional graph is created to estimate cost equation since current and wire gauge are already 

established by standards for heat dissipation and safety. Table XIII described current requirement 

for specific gauge. The wire gauge and its corresponding current capacity are obtained from [83].   

Table XIII Wire gauge and its current capacity [83] 

Wire Gauge Current Capacity 

10 13.84 

12 8.71 

14 5.48 

16 3.44 

18 2.17 

20 1.36 

22 0.86 

24 0.54 

26 0.34 

28 0.21 

30 0.13 

32 0.084 

34 0.05 

36 0.033 

38 0.021 

40 0.0132 

 

Figure 40 shows magnet wire gauge (G) vs. cost graph where the cost model given here is 

developed for half pound bundles for consistency purposes. Cost equation for the magnet wire is 

obtained from the curve fitting tool .The capacitor cost (CostW) is represented as, 

6
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w q
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Table XIV φq coefficients and ranges 

Coefficient

s 

Value Ranges ςq 

φ0 0.0002906 (0.6736, 1.735) 5 

φ 1     -0.03452 

 

(1.31, 1.939) 4 

φ 2 1.608 (-0.6245, 

0.9078) 

3 

φ 3 -36.42 (0.5611, 1.106) 2 

φ 4
 396.6 (-0.467, 0.4518) 1 

φ 5 -1583 (-0.6827, 0.344) 0 

 

Equation (106) represents cost equation for the magnet wire where φq coefficients as presented in 

Table XIV are obtained using the MATLAB curve fitting tool. This equation is independent of 

quantities since the related coefficients do not vary with quantity.  

 

Figure 40 Magnet wire cost model for single bundle 
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next section and are shown to be 90% accurate. The equation forms provided in section 4.1-4.6 

were selected based on R
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4.7 Cost Models Results 

A cost database for basic components was developed to test the cost models presented 

here.The cost estimates of components which are used for actual experiment are compared with 

actual prices from suppliers. Table XV summarizes components which are used for boost, buck 

and flyback converter development. The actual cost (Costactual) and the estimated cost 

(Costestimated) can provide percentage error. The error obtained from actual and estimated cost is 

shown as, 

actual estimated

actual

C - C
% Error = ×100

C

 
 
 

                                           (107) 

Table XV. Detailed cost comparison for power components 

Component Cactual Cestimated % Error 

MOSFET-FP4332PBF $4.33 $4.37 -0.92% 

Inductor-AIRD-03-101K $5.97 $5.95 0.33% 

Diode- MURF860G $0.99 $1.03 -4.04% 

Capacitor-220µF/250V $0.723 $0.752 -4.01% 

Core- B66421G0000X187 $0.69 $0.724 -4.93% 

Wire-Belden wire 8051, 

22AWG 

$49.03 $48.03 2.039% 
 

Results in Table XV are shown to have less than 5% error and thus the cost models 

established prove that the results are more than 95% accurate. The accuracy of the cost model 

was improved with the help of interpolated graphs and surface fitting tools. An accurate surface 

fit can give better results of the interpolated graphs. Exact cost of the component can be obtained 

if coefficients are changed within specified range.  The MATLAB surface fitting tools cannot 

provide exact surface fits but they can provide surface fitting estimates to some extent. Cost of 

the component changes as per trend and changes in technology and web based cost model can 

estimate component costs considering these changes. The cost model presented here can find 

‘Ceiling cost’, that is the maximum cost of the component. Further improvement has to be made 



66 
  

in the cost model such that it can estimate a ‘Floor Cost’, that is the minimum cost of a 

component. This can be achieved if database of all available and active components is obtained 

from the manufacturers and distributors. Furthermore, a web based cost model can be developed 

following the approach presented here and an active database of manufacturer and distributor 

data can be incorporated into it to provide a robust, flexible and scalable cost modeling tool. 
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CHAPTER 5: RAPID PROTOTYPING TOOLS FOR POWER LOSS AND COST MODELS 

 Rapid prototyping is of interest for research, industrial, and commercial purposes as a major 

time and cost saving tool. Many engineers, researchers and designers use rapid prototyping tools 

to predict the results for their applications and designs. With the help of these tools they are able 

to evaluate several designs and tradeoffs in rapid iterations in order to decide on the most 

suitable design for their application before actual implementation. Rapid prototyping tools can 

help verify a concept, fix the design problems, and finalize the design before its actual 

implementation so as to avoid unnecessary cost burdens later in the development stage. These 

tools are found to be very helpful even for investors and customers to visualize the product 

performance and decide on further investment in the product before it goes to market. 

Rapid prototyping tools or methods for power electronic converters are frequently ignored. 

Appropriate component selection is a crucial task for power electronics engineers or designers 

where they should consider cost, availability, performance, efficiency, and several other factors 

which is a very iterative and time-consuming process. Thus, developing rapid prototyping tools 

for power electronics applications will aid the designers and engineers in selecting suitable 

components for their application. Multiple rapid prototyping tools can be implemented to predict 

performance and operation along various parameters of a component or system, such as its cost, 

efficiency, reliability and operating conditions. This research is focused on efficiency and cost 

model estimation tools. The procedure used in rapid prototyping tools for cost and power loss 

models is illustrated in Figure 41.   
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Figure 41 Procedure for the proposed rapid prototyping tools 

 

Rapid prototyping tools for efficiency and cost models are further categorized into two 

modes: optimization mode and component-specific mode. In optimization mode, the tool takes 

converter ratings as inputs, then each component in a large database is checked to verify whether 

it is suitable for the application or not. Then the method automatically provides power loss and 
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cost estimates which help in identifying the best possible components for specific applications. 

The component-specific mode takes specific component parameters from datasheets and ratings, 

for example specific capacitor, inductor, MOSFET, diode, PCB, and gate drive parasitic 

elements and ratings, and then calculate power losses and costs of each component as well as the 

whole system. No optimal selection of these components is provided in the component-specific 

mode since all components and their related parameters are set by the user.  

In this chapter, section 5.1 discusses rapid prototyping tools for the component-specific mode 

for both efficiency and cost estimation. This mode is especially useful for designers to check the 

effect of specific component choices on cost and efficiency in a converter.  Section 5.2 presents 

the optimization mode for efficiency and cost models, which gives designers the freedom to 

choose from a number of components combinations. Thus, with the help of both the modes, a 

user can select a component, verify its performance and cost before its implementation or during 

the process of implementation of converters and also in already developed converters.    

5.1 Rapid Prototyping Tool: Component-specific Mode 

The power loss models developed in the Chapter 3 are implemented in a MATLAB GUI to 

obtain a user-friendly, simple, and efficient tool. This tool aids the designers to find out 

component and system level loss or cost estimates of already selected components.  

5.1.1 Power Loss Modeling in the Component-specific Mode 

Power loss models established in Chapter 3 for the buck and boost converters in CCM and 

flyback converter in DCM are embedded into a MATLAB GUI. Special entries are required for 

the flyback transformer: Rcore , Lm and Lpri.  The developed tool is explained with the help of a 

pseudo code and flowchart.  
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5.1.1.1 Pseudo Code for Power Loss Modeling in the Component-specific Mode 

In this mode of operation, the user needs to input all specifications and datasheet information 

of known devices or components. Each component’s power loss is then estimated with the help 

of power loss models derived in Chapter 3. Estimation error is calculated using equation (100) if 

power loss measurements are available. 

Start; 

Get input and output parameters; 

if boost or buck converter selected   

      Calculate PCM, PSW and PG ;  

PLoss_MOSFET= PCM+PSW+PG; 

      Calculate PCD and PSWD ; 

PLoss_Diode= PCD+PSWD; 

      Calculate PCore, PDCR and PACR ; 

PLoss_Inductor= PCore+PDCR+PACR; 

      Calculate PLoss_Capacitor ;  

Calculate Ptrace, PLstray, PCstray 

       PPCB= Ptrace+PLstary+PCstray ; 

Calculate PGDRV; 

else if Flyback converter selected 

     Get Lm, Lpri and RCore ;    
Calculate PCM, PSW and PG 

       PLoss_MOSFET= PCM+PSW+PG ; 

Calculate PCD and PSWD  

       PLoss_Diode= PCD+PSWD; 

Calculate PCore, PPri and PSec 

       PLoss_Transformer= PCore+PPri+PSec;  

Calculate PLoss_Capacitor ; 

      Calculate Ptrace, PLstray, PCstray ;  

PPCB= Ptrace+PLstary+PCstray; 

     Calculate PGDRV; 

end if; 

Calculate PTotal;  

if experimental validation is required 

Measure Ploss=Pin-Pout; 

Measure Error between PTotal and PLoss; 

Print error; 

end if; 

Print all power losses; 

 

 

 



71 
  

5.1.1.2 Flowchart for Power Loss Modeling in the Component-specific Mode 

Figure 42 shows the overall procedure of power loss estimation technique in Component-

specific mode. 
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Figure 42 Overall procedure for power loss modeling in the component-specific mode 
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5.1.1.3 Results for Power Loss Modeling in the Component-specific Mode 

Figures 43-45 present screenshots of the tool GUI in component-specific mode for the boost, 

buck and flyback converters, respectively,.  

 

Figure 43 GUI showing component-specific mode boost converter power loss model 

          

Figure 44 GUI showing component-specific mode buck converter power loss model 
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Figure 45 GUI showing component-specific mode flyback converter power loss model 

This mode can accurately measure power losses in each component as well as whole system. 

Error between measured and estimated losses is also shown if measured losses are available from 

experiments. Note that error values shown in Tables II, IV and VI are reported using this tool 

and are shown to be less than 8% leading to accuracy over 92%. Note that this mode is 

advantageous when designers and engineers want to study the effect of specific components on 

converter power loss (sensitivity analysis), and when they have a selected set of components. 

But, the main drawback of this mode is that it cannot select components for the converter. 

5.1.2 Cost Modeling in the Component-specific Mode 

Cost of each component is obtained with the help of the cost model described in Chapter 4. 

This section gives cost estimates for basic power electronics components specified by the user. 

These estimates provide the user with a ‘ceiling’ cost such that cost of the selected component 

should not exceed the value obtained using the tool. The entire converter system cost is not 
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estimated because system cost also depends upon PCBs, gate drive circuits, soldering material 

and labor etc. The developed tool is further explained using pseudo code and flowchart.  

5.1.2.1 Pseudo Code for Cost Modeling in the Component-specific Mode 

Each component cost is estimated based on the cost models developed in Chapter 4. The 

error between actual and estimated cost is calculated using equation (107). 

Start; 

Select a component; 

Get the component parameters and ratings; 

Read Component.xlsx file and get the entire database  

Put x-axis parameters from the 1st column of the database 

Put y-axis parameters from the 2
nd

 column of the database  

Put z-axis parameters from the 3
rd

 column of the database  

Plot the 3D graph of cost model; 

Calculate the cost for selected component with its dedicated cost equation; 

Print the cost and interpolated graph; 

Check whether new component is selected; 

if new component is selected 

 Go to start; 

end if; 

end;  

5.1.2.2 Flowchart for Cost Modeling in the Component-specific Mode 

Figure 46 shows overall procedure of cost estimation technique in component-specific mode. 
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Figure 46 Flowchart for cost model in component-specific mode 

5.1.2.3 Results for Cost Modeling in the Component-specific Mode 

The cost model shown above was integrated into a user-friendly GUI developed in 

MATLAB for rapid-prototyping. Figure 47 presents cost modeling results from the component-

specific mode. In this tool, a user can check each component cost estimates individually. The 

cost estimates given in Table XV are obtained from this cost model. 
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Figure 47 GUI for component cost estimates in Component-specific mode 

Cost estimates shown in Figure 47 and %error values shown in Table XV are also within 8% 

error, leading to over 92% estimation accuracy. But, the main drawback of this mode is that it 

cannot select the lowest cost components for the converter by itself.  

5.2 Rapid Prototyping Tools: Optimization Mode 

 Power loss models in the component-specific mode developed in the previous section is 

further optimized with the help of MATLAB GUI to obtain a user-friendly, simple, and more 

efficient tool. This tool aids designers in selecting components for their applications that avoid 

excess power loss in the circuit or have the lowest cost for a specific application. This subsection 

contains detailed analysis of the development of the efficiency and cost models.  
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5.2.1 Power Loss Modeling in the Optimization Mode  

Power loss models developed in Chapter 3 are combined with converter ratings to 

automatically produce system-level minimum power loss and select the right components. This 

model reduces the manual effort in calculating component power losses to select a combination 

of components that minimizes power losses, which is a tedious and time consuming process. The 

selected component power loss is obtained and then minimum power loss component is selected 

for maximum efficiency. Considering this, the optimization techniques developed here are 

critical to facilitate rapid prototyping.  

5.2.1.1 Component Selection Procedure  

The component selection formulae are obtained from existing literature [96-98]. It is 

critically important to select inductor and capacitor values for various applications. If a smaller 

value of inductance is selected, it results in failure of the inductor to operate in a specific mode 

whereas a higher value increases the converter start-up and settling times.  Similarly a smaller 

value capacitor cannot avoid unwanted ripples at the output. To avoid these discrepancies the 

exact values of components are estimated. Core and magnet wire size estimations are also 

provided for the flyback converters.  

A. Component selection procedure for boost converters in CCM 

To select boost converter components, input current ripple (∆Iin) is calculated in [95] as, 

0.4 out
in out

in

V
I I

V

 
   

 
,                                                       (107) 

whereas the inductor value (L) of the boost converter obtained in [97] is, 
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Capacitance value (C) of the boost converter is given in [95] as, 

 

 
out

out sw

I D
C

V f



.                                                          (109) 

The MOSFET and diode are selected based on values of the voltage and current flowing through 

them. In order to avoid the breakdown of these components due to excessive voltage and current, 

VDS of the MOSFET should be greater than Vout of the converter and ID should be greater than Iin 

of the converter [95].  Diode forward current IF should be more than Iin and Vrr should be more 

than Vout [95].  

B. Component selection procedure for buck converters in CCM 

Inductor current ripple in a buck converter is obtained in [95] as, 

 1 out
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D V
i

Lf


  ,                                                          (110) 

Whereas inductor value of the buck converter is given in [96] as, 
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whereas, RLoad is load resistance of the converter. 

The Capacitance value of the buck converter is given in [97] as, 

 
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In equation (112) ∆Vout is output voltage ripple of the converter. 

MOSFET and diode are selected on similar criteria as described previously in the boost converter 

selection process. 

C. Component selection procedure for flyback converters in DCM 
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The flyback converter component selection procedure is derived in [83], [85] and [97]. 

Inductor current ripples of buck converters are obtained in [97] as, 

in on

m

DV T
i

L
  ,                                                          (113) 

whereas primary and secondary inductance value of the flyback converter are given in [83] as, 
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whereas, primary current (Ipri). Inductance factor is obtained as, 
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L

L
A

N
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In equation (116) AL is inductance factor, N is transformation ratio. 

Primary turns (Npri) and secondary turns (Nsec) of the flyback converter are obtained from [85] as, 

max

max

m
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sec priN nN .                                                          (118) 

whereas, Bmax is maximum peak flux density, AC is cross sectional area of core, Imax is maximum 

mutual inductance current. 

The output capacitance value of the flyback converter is similar to the boost converter capacitor 

as specified in equation (112). Primary and secondary windings resistances are obtained in [83] 

as, 
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Mean length per turn (MLT), conductivity of copper at room temperature (ρo), cross-sectional 

area of primary winding (Awpri), cross-sectional area of secondary winding (Awsec) and cross-

sectional area of winding (Aw) are usually provided by manufacturers. If it is not given by 

manufacturers it can obtained as given in [83] as, 

u A
w

K W
A

n
 .                                                        (121) 

whereas, fill factor (Ku) is usually considered as, 0.5 for low voltage inductors and 0.65 for high 

voltage inductors. Window area (WA) values are provided by the core manufacturers. MOSFET 

and diode are selected on similar criteria as described previously in the boost converter selection 

process. 

While implementing these formulae in the software, more criteria are also implemented to 

select component within specified range. The current and voltage ranges are provided for 

component selection procedure to select appropriate component, if lowest value or highest value 

component may fails to perform specific applications. To avoid this discrepancy range for all 

components is prepared. This range provides final list to component selection procedure. The 

lowest power loss component is selected from this list.  

To select MOSFET range is provided for VDS and ID. VDS value should be selected as VDS 

greater than and equal to double of Vout and less than four times Vout.  ID value should be selected 

as ID greater than and equal to double of Iin and less than four times Iin. Similar approach is 

implemented for diode Vrr value should be selected as Vrr greater than and equal to double of Vout 

and less than four times Vout and IF value should be selected as IF greater than and equal to 

double of Iin and less than four times Iin. For inductors, the inductance value L should be less than 
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Lmax and Lmax value is equal to twice of L which is obtained from selection procedure.  For 

capacitor selection criteria is put as,  the capacitance value C should be less than Cmax and Cmax 

value is equal to twice of C which is obtained from selection procedure. This criteria can be 

changed for different application.  

5.2.1.2 Pseudo Code for Power Loss Modeling in the Optimization Mode 

 The pseudo code provided here is specific to inductor selection and power loss estimation 

process only. Similar logic was developed for all components with the help of power loss model 

equations. 

Start 

Get input and output parameters; 

IL=Iin; 

L=((Vin×Duty× (1-Duty))/(2×fsw×Iout)); 

Lmax=2×L; 

Read inductor.xls file and get the entire database;   

    for i=1 to all database 

        if L <=inductor values in database && 

           Lmax > inductor values in database 

            if IL <= inductor current values in database 

                Extract ACR, DCR and RC values from the database; 

           end if; 

        end if; 

   i=i+1; 

   end if; 

Calculate PACR, PDCR and PCORE as described in power loss model  

Ploss_inductor= PACR+ PDCR +PCORE ; 

Print component name;  

5.2.1.3 Flowchart for Power Loss Modeling in the Optimization Mode 

 Figure 48 shows the detailed flowchart of optimization mode for minimum power loss. .  
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Figure 48 Optimization tool for minimum power loss component selection 
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5.2.1.4 Results for Power Loss Modeling in the Optimization Mode 

Figures 49-51 show the optimization mode rapid prototyping tool developed for boost, buck, 

and flyback converters minimum power loss component selection, respectively. Results for these 

models are generated in a Microsoft Excel file through MATLAB and verified manually. Tables 

XVI-XVIII present results for boost, buck and flyback converters generated by the optimization 

tool. Power loss values of the components selected through optimization mode shown in Figures 

49-51 are found to be the least values when compared with the component list shown in Table 

XVI–XVIII in which minimum power loss component selections are highlighted. The 

optimization tool thus performs as expected.   

 

Figure 49 Optimization mode boost converter power loss modeling and component selection 
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Figure 50 Optimization mode buck converter power loss modeling and component selection 

 

Figure 51 Optimization mode flyback converter power loss modeling and component selection 
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Table XVI Boost converter results generated by power loss modeling tool 

MOSFET Capacitor 
Suitable Components PLoss(W) Suitable Components PLoss(W) 

RDN100N20FU6-ND 3.436527

778 

EEU-EB2D221 0.000223251 
RDN100N20-ND 3.436527

778 

LGU2F221MELB 0.000223251 
IRLI640GPBF 1.898888

889 

ECO-S2GB221EA 0.027160494 
IRLI640G 1.898888

889 

Inductor 
FQP9N30 4.466997

222 

Suitable Components PLoss(W) 
STP12NK30Z

 3.763864198 

3.76386 PCV-0-274-10L 

 

2.983625744 
Diode PCV-2-274-03L 

PCV-2-274-05L 

PCV-2-274-10L 

PCV-2-394-05L 

3.302118631 
Suitable Components PLoss(W) PCV-2-274-05L 1.171902331 

CDBB5200-HF 1.495 PCV-2-274-10L 1.528307208 
  PCV-2-394-05L 3.299376352 

    
 

Table XVII Buck converter results generated by power loss modeling tool 

MOSFET Diode 
Suitable Components PLoss(W) Suitable  Components PLoss(W) 
FQD4N20TMFSCT-ND 5.03508831 
FQD4N20TMFSDKRND 5.03508831 SK35A-LTP 2.878770625 

Capacitor STPS5H100B-TR 2.0371 
Suitable Components PLoss(W) B350A-13-F 2.881284375 
UHE2A101MPD 0.00574182

6 

SS35 2.87751375 
ESH107M200AM7AA 1.07828776 B550C-13-F 2.331017472 
UVZ2F101MHD 0.01446759

3 

SB550-E3/54 2.397534375 
UPT2G101MHD6 0.01446759

3 

SK55L-TP 2.46423892 
Inductor SB550 2.2554836647

7273 Suitable Components PLoss(W) CDBC580-G 2.45870867 
PCV-0-104-01L 0.94052368

3 

SB580 2.258625852 
PCV-0-104-03L 0.35827212 SB580-T 2.21386 
PCV-0-104-05L 0.27427803

6 

HSM580G/TR13 2.464077 
  RGP30B-E3/73 3.186462933 
  SK310A-LTP 2.890710938 
  CDBA3100-G 2.734426563 
  B3100-13-F 2.586175679 
  CDBC5100-G 2.46423892 
  SS5P10-M3/86A 2.301881552 
  SB5100-T 2.2188875 
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Table XVIII Flyback converter results generated by power loss modeling tool 

MOSFET Capacitor 
Suitable Components PLoss(W) Suitable  Components PLoss(W) 
ZXMN20B28KTCCT-ND 1.293020308 EEU-FC2A220 0.003203172 
ZXMN20B28KTCDKRND 1.293020308 EEU-EB2D220 0.006851628 

Primary winding UPJ2F220MHD1TN 0.009106776 
Suitable Components PLoss(W) EKXG401ELL220MK

20S 

0.01097266 
Powerwerx Wire-MW-18-1 8.7940e-04 ECA-2AM470 9.72443E-05 

Secondary winding EEU-ED2C470 0.000145076 
Suitable Components Suitable 

Components 

UPB2E470MHD1TO 0.000145076 
Powerwerx Wire-MW-20-1 8.7940e-04 ECO-S2GA470BA 0.014191632 

Cores 380LX470M500H012 0.003591 
Suitable Components PLoss(W) UHE2A101MPD 3.64846E-05 
B65713 0.000263 ESH107M200AM7A

A 

0.006851628 
B65805 0.002582 UVZ2F101MHD 9.19296E-05 
B66361 0.00216 UPT2G101MHD6 9.19296E-05 
B66285 0.002582 EEU-FC2A221 0.001249668 
B65814 0.001417 EEU-EB2D221 3.11699E-05 
B66288 0.001759 LGU2F221MELB 3.11699E-05 
B66287 0.00098 ECO-S2GB221EA 0.003792096 
B66291 0.00098 ECA-2AHG471 7.77092E-06 
B66387 0.000562 SLP471M200E1P3 0.006075972 
B65684 0.000562 ELXM3B1VSN471M

A35S 

0.006075972 
Diode EET-HC2G471LA 1.46513E-05 

Suitable Components PLoss(W) EKMS501VSN471M

A60S 

1.93914E-05 
SS15 0.115716 ECA-2AHG102 3.64846E-06 
GF1A-E3/67A 0.102843 EET-UQ2D102EA 0.00129276 
SS15E-TP 0.104059 350LSQ1000MNB36

X98 

0.00129276 
SK15-13-F 0.107342 B43508A9108M000 0.00172368 
SS18-TP 0.108761 ALS30A102KF500 0.001378944 
SS18 0.116216   
B180-13-F 0.104988   
CDBA180-G 0.11361   

 

5.2.2 Cost Modeling in the Optimization Mode  

Designers have to review vast amounts of catalog and web content in order to select low cost 

components that fit their design and budget. This iterative process adds a significant burden in 

terms of time and effort. Using the optimized mode the cost modeling tool, components in a 

database are automatically filtered on the basis of various ratings and operating conditions, and 

components with minimum cost are selected  
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5.2.2.1 Pseudo Code for Cost Modeling in the Optimization Mode 

Start 

Get input and output parameters; 

L=((Vin×Duty×(1-Duty))/(2×fsw×Iout)); Lmax=2×L; 

Read inductor.xls file and get all the database;    

    for i=1 to all database 

        if L <=inductor values in database && Lmax > inductor values in database 

               Extract ACR, DCR and RC values from database; 

               Extract unit costs and multiple unit costs data base; 

        end   i=i+1; 

   end 

Find minimum cost of the component for unit quantity; 

Find minimum cost of the component for multiple quantities; 

  if  minimum quantity=1; 

     print minimum cost of the component for unit quantity; 

  else if minimum quantity=1000; 

     print minimum cost of the component multiple quantities; 

 end elseif; 

end if; 

 Calculate PACR, PDCR and PCORE as described in power loss model; 

Ploss_inductor= PACR+ PDCR +PCORE ; 

Print component name; Print component cost; 

 

5.2.2.2 Flowchart for Cost Modeling in the Optimization Mode 

 Figure 52 shows the detailed flowchart of the optimization technique implementation for the 

cost modeling tool.  
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Figure 52 Optimization mode flowchart for the cost modeling tool 
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5.2.2.3 Results for Cost Modeling in the Optimization Mode 

The cost model shown above was integrated into a user-friendly GUI developed in 

MATLAB to establish a rapid-prototyping tool. The optimization mode cost model generates the 

component list and lowest price of the selected components. Figures 53-55 present the boost, 

buck, and flyback converter cost estimates in optimization mode. Costs of the components 

selected through this mode are found to be the least values when compared with the component 

list shown in Table XIX. An example of the tradeoff between minimum power loss and 

minimum cost is shown in Table XIX and XX for the boost converter. If a component is selected 

on the basis of minimum cost, then it may not result in a power efficient circuit. Similarly when a 

component is selected only based on lowest power loss it may lead to an efficient but expensive 

solution. Table XIX shows those selected components that have a higher power loss at the lowest 

available cost while table XX shows the selected components with lowest power loss and highest 

cost. Table XXI and XXII show the selected components for buck and flyback converters. 

 

Figure 53 Boost converter Optimization mode cost modeling tool 
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Table XIX Boost converter results generated by optimization mode cost modeling tool with 

minimum cost as the optimization objective 

MOSFET 

Suitable 

Components 

Cost($) PLoss(W) 

RDN100N20FU6-

ND 

2.73 3.436527778 

RDN100N20-ND 2.73 3.436527778 

IRLI640GPBF 2.88 1.898888889 

IRLI640G 2.88 1.898888889 

FQP9N30 1.18 4.466997222 

STP12NK30Z 1.95 3.763864198 

Diode 

Suitable 

Components 

Cost($) PLoss(W) 

CDBB5200-HF 0.21 1.495020814 

Inductor 

Suitable 

Components 

Cost($) PLoss(W) 

PCV-0-274-10L 

PCV-2-274-03L 

PCV-2-274-05L 

PCV-2-274-10L 

PCV-2-394-05L 

4.08 2.983625744 

PCV-2-274-03L 4.15 3.302118631 

PCV-2-274-05L 4.56 1.171902331 

PCV-2-274-10L 7.39 1.528307208 

PCV-2-394-05L 5.1 3.299376352 

Capacitor 

Suitable 

Components 

Cost($) PLoss(W) 

EEU-EB2D221 2.56 0.000223251 

LGU2F221MELB 7.022 0.000223251 

ECO-S2GB221EA 4.68 0.027160494 

 

 

 

 

 

 

 

 

 



91 
  

 

Table XX Boost converter results generated by optimization mode cost modeling tool with 

lowest power loss as the optimization objective 

MOSFET 

Suitable 

Components 

Cost($) PLoss(W) 

RDN100N20FU6-

ND 

2.73 3.436527778 

RDN100N20-ND 2.73 3.436527778 

IRLI640GPBF 2.88 1.898888889 

IRLI640G 2.88 1.898888889 

FQP9N30 1.18 4.466997222 

STP12NK30Z 1.95 3.763864198 

Diode 

Suitable 

Components 

Cost($) PLoss(W) 

CDBB5200-HF 0.21 1.495020814 

Inductor 

Suitable 

Components 

Cost($) PLoss(W) 

PCV-0-274-10L 

PCV-2-274-03L 

PCV-2-274-05L 

PCV-2-274-10L 

PCV-2-394-05L 

4.08 2.983625744 

PCV-2-274-03L 4.15 3.302118631 

PCV-2-274-05L 4.56 1.171902331 

PCV-2-274-10L 7.39 1.528307208 

PCV-2-394-05L 5.1 3.299376352 

Capacitor 

Suitable 

Components 

Cost($) PLoss(W) 

EEU-EB2D221 2.56 0.000223251 

LGU2F221MELB 7.022 0.000223251 

ECO-S2GB221EA 4.68 0.027160494 
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Figure 54 Buck converter optimization mode cost modeling tool 

 

Table XXI Buck converter results generated by optimization mode cost modeling tool 

MOSFET Diode 
Suitable Components Cost($) Suitable  Components Cost($) 

FQD4N20TMFSCT-ND 0.67 SK35A-LTP 0.57 
FQD4N20TMFSDKR-ND 0.67 STPS5H100B-TR 1.4 

Capacitor B350A-13-F 0.46 
Suitable Components Cost($) SS35 0.63 

UHE2A101MPD 0.56 B550C-13-F 0.95 
ESH107M200AM7AA 1.02 SB550-E3/54 0.61 

UVZ2F101MHD 1.85 SK55L-TP 0.49 
UPT2G101MHD6 2.68 SB550 0.56 

Inductor CDBC580-G 0.74 

 
Suitable Components Cost($) SB580 0.59 

PCV-0-104-01L 1.31 SB580-T 0.43 
PCV-0-104-03L 1.48 HSM580G/TR13 1.34 
PCV-0-104-05L 2.37 RGP30B-E3/73 0.476 

  SK310A-LTP 0.57 
  CDBA3100-G 0.63 
  B3100-13-F 0.68 
  CDBC5100-G 0.74 
  SS5P10-M3/86A 0.77 
  SB5100-T 0.74 
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Figure 55 Flyback converter optimization mode cost modeling tool 
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Table XXII Flyback converter results generated by optimization mode cost modeling tool 

MOSFET Capacitor 

Suitable Components Cost($) Suitable  Components Cost($) 

ZXMN20B28KTCCT-

ND 

0.78 EEU-FC2A220 0.502 

ZXMN20B28KTCDKR

-ND 

0.78 EEU-EB2D220 0.69 

Primary winding UPJ2F220MHD1TN 1.32 

Suitable Components Cost($) per ½ lb EKXG401ELL220MK

20S 

1.72 

Powerwerx Wire-MW-

18-1 

26.95 ECA-2AM470 0.426 

Secondary winding EEU-ED2C470 0.724 

Suitable Components Cost($) per ½ lb 

Components 

UPB2E470MHD1TO 1.668 

Powerwerx Wire-MW-

20-1 

27.74 ECO-S2GA470BA 1.314 

Cores 380LX470M500H012 5.41 

Suitable Components Cost($) UHE2A101MPD 0.56 

B65713 10.08 ESH107M200AM7AA 1.02 

B65805 0.43 UVZ2F101MHD 1.85 

B66361 0.51 UPT2G101MHD6 2.68 

B66285 1.07 EEU-FC2A221 2.018 

B65814 1.07 EEU-EB2D221 2.56 

B66288 0.36 LGU2F221MELB 7.022 

B66287 2.72 ECO-S2GB221EA 4.68 

B66291 2.72 ECA-2AHG471 1.69 

B66387 5.6 SLP471M200E1P3 3.198 

B65684 3.54 ELXM3B1VSN471M

A35S 

15.88 

Diode EET-HC2G471LA 7.904 

 
Suitable Components Cost($) EKMS501VSN471M

A60S 

26.83333333 

SS15 0.41 ECA-2AHG102 2.762 

GF1A-E3/67A 0.17 EET-UQ2D102EA 5.264 

SS15E-TP 0.4 350LSQ1000MNB36

X98 

14.244 

SK15-13-F 0.95 B43508A9108M000 20.305 

SS18-TP 0.39 ALS30A102KF500 36.1 

SS18 0.46   

B180-13-F 0.82   

CDBA180-G 0.54   

 

Thus, the rapid prototyping tools developed here can provide two modes of operation for 

designers. In this chapter these modes have been explained with the help of GUI models and the 

results obtained from these models are verified experimentally and manually. The results shown 

in Tables II, IV, VI and XV are obtained from component-specific mode while Tables XVI-XXII 

provide results for manual mode. Results for component-specific mode operation are verified 



95 
  

with the help of experimentally implemented boost, buck and flyback converters and the results 

for optimization mode are verified manually. These two modes of operation help in selecting the 

components such that they are useful in maximizing the efficiency of the circuit or provide a cost 

effective solution.  
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CHAPTER 6:  CONCLUSION AND FUTURE WORK 

Rapid prototyping tools are presented here in optimization mode and component-specific 

mode. With these two modes of operation the users can estimate power loss or cost of the 

components as well as that of the overall system. These two modes of operation aid in 

component selection process by estimating the cost and performance of the component within 

the converter system before finalizing it. The rapid prototyping tools can be useful for engineers 

and designers. The power loss and cost models are found to be 92% accurate. These tools have 

been verified as major time and cost saving applications and they can be easily scaled up to 

include many other applications such as in inverters, motor drives, and lighting applications. 

The review of existing literature was instrumental in providing insights about developing 

more accurate power loss and cost models. Since most of the existing research did not consider 

non-idealities and parasitic elements while calculating power loss of components. Moreover, 

PCBs and gate drive losses are also not considered in the existing power loss models. The power 

loss models presented here are based on non-idealities and parasitic elements including PCB and 

gate drive losses to develop more accurate models. Derivation for all power loss models are 

presented and discussed in detail. These models are based on converter specifications and 

datasheet information so that the users can predict power losses in the circuits before finalizing 

their converter design. 

Cost models were derived based on an extensive survey of the commercial devices followed 

by a cost surface fitting and curve fitting exercise. Component cost equations are obtained with 

the help of these tools and further verified with actual cost of the components. The error 

observed in this verification was less than 10%. Existing literature does not discuss the core and 

magnet wire cost estimation models which are important for flyback transformers. These models 
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derived here can be helpful for designers while designing flyback transformers as well. It is 

important to note that component technology and cost profiles change over time as a result of 

changes in material and manufacturing techniques. The rapid prototyping tools developed in this 

research intend to develop power loss and cost modeling methodologies that can evolve with 

time and changes in technology. 

The rapid prototyping tools are prepared as with the aim of saving time and cost. These tools 

are divided into two categories to improve selection process. Optimization mode for power loss 

models helps to select components based on the least power loss whereas component-specific 

mode can provide power losses of each selected components. Similarly optimization mode for 

cost models selects the components based on lowest costs while the component-specific mode 

can provide cost estimates for a specific range of component parameters. Although the 

techniques for component selection process developed here are shown to be successful, the 

models presented here cannot provide power loss or cost estimates for other applications. 

However, they can be easily scaled and extended for other applications based on a similar 

methodology and approach. Similarly, the rapid prototyping tools are limited to power loss and 

cost models, but can be extended not only for other applications but also for other models such as 

reliability models.   

The component-specific mode work well with power losses for basic power electronic 

components, PCBs and gate drive circuits, but further work should be done to estimate power 

losses within microcontroller or DSP. The cost model with component-specific mode can 

estimate the ceiling prices of components, however further work is needed in order to obtain a 

minimum value of ‘floor’ price of the component. In conclusion, this research provides a simple, 

flexible and user-friendly way of selecting components to design systems by considering the 
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vital elements of power loss and cost in the design phase itself. These methods and models are 

highly accurate and scalable considering the early stage of their application in the overall system 

design process. Finally, this research will be helpful to all designers and engineers to prepare 

their own rapid prototyping tools for the applications of their choice. The prepared tools can also 

be useful for component distributors who can implement these tools in a web-based environment. 
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APPENDIX I COMPONENT-SPECIFIC MODE RESULTS FOR DIFFERENT DUTY RATIOS 

 

Table A1 Boost converter component-specific mode results for different duty ratios 

Parameters Duty Ratios 

 30% 40% 50% 60% 75% 

Vin 20 20 20.1 20 20 

Iin 0.45 0.6 0.88 1.35 3.50 

Vout 28 33 39.8 49.3 77.4 

Iout 0.3 0.34 0.42 0.52 0.85 

Fsw 50KHz 50KHz 50KHz 50KHz 50KHz 

D 0.3 0.4 0.5 0.6 0.75 

Pin 9.00 12.00 17.69 27 70 

Pout 8.4 11.22 16.72 25.63 65.79 

Ploss 0.6 0.78 0.97 1.36 4.21 

PCM 0.002 0.005 0.012 0.03 0.27 

PSW 0.03 0.04 0.07 0.10 0.28 

PGD 0.06 0.06 0.064 0.06 0.064 

Ploss_Mosfet 0.10 0.11 0.14 0.19 0.61 

PCD 0.32 0.4 0.44 0.55 0.89 

 PSWD 0.08 0.1 0.1 0.14 0.28 

Ploss_Diode 0.4 0.5 0.54 0.69 1.18 

PCORE 0.02 0.04 0.1 0.23 0.93 

PDCR 0.01 0.02 0.05 0.11 0.74 

PACR 0 0 0 0 0 

Ploss_Inductor 0.03 0.06 0.15 0.34 1.67 

Ploss_Capacitor 0.01 0.02 0.03 0.04 0.062 

PGDRV 0 0 0 0 0 

PPCB 0.02 0.03 0.06 0.1 0.67 

PTotal 0.56 0.72 0.92 1.37 4.19 

%Error 

 
6.6 

 

7.69 5.15 -0.74 0.43 
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Table A2 Buck converters component-specific mode results for different duty ratios 

 

Parameters Duty Ratios 

 20% 30% 40% 50% 60% 

Vin 60 60 62 61 46 

Iin 0.28 0.6 1.1 1.65 1.6 

Vout 12.4 18 24.6 30 27.1 

Iout 1.15 1.79 2.55 3.12 2.55 

Fsw 50KHz 50KHz 50KHz 50KHz 50KHz 

D 0.2 0.3 0.4 0.5 0.6 

Pin 16.80 36 68.20 100.65 73.60 

Pout 14.03 32.22 62.73 93.6 69.11 

Ploss 2.54 3.76 5.47 7.05 4.49 

PCM 0.06 0.20 0.52 0.94 0.75 

PSW 0.13 0.21 0.31 0.38 0.24 

PG 0.04 0.04 0.04 0.04 0.03 

Ploss_Mosfet 0.23 0.45 0.87 1.36 1.01 

PCD 0.93 1.27 1.56 1.59 1.04 

 PSWD 0.06 0.09 0.12 0.15 0.13 

Ploss_Diode 0.99 1.36 1.68 1.74 1.17 

PCORE 0.41 0.41 0.41 0.41 0.41 

PDCR 0.05 0.11 0.22 0.33 0.22 

PACR 0.49 0.79 1.09 1.13 0.59 

Ploss_Inductor 0.95 1.31 1.72 1.87 1.22 

Ploss_Capacitor 0.20 0.32 0.44 0.45 0.24 

PGDRV 0 0 0 0 0 

PPCB 0.13 0.19 0.70 1.13 0.83 

PTotal 2.49 3.78 5.41 6.55 4.47 

%Error 

 
1.96 -0.52  0.45 7.09 0.45 
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Table A3 Flyback converters component-specific mode results for different duty ratios 

Parameters Duty Ratios 

 20% 30% 40% 50% 

Vin 11.7 11.6 11.6 11.2 

Iin 0.075 0.2 0.2 0.38 

Vout 9.26 11.1 14.7 19.6 

Iout 0.06 0.16 0.1 0.15 

Fsw 100KHz 100KHz 100KHz 100KHz 

D 0.2 0.3 0.4 0.5 

Pin 0.88 2.32 2.32 4.26 

Pout 0.56 1.78 1.47 2.94 

Ploss 0.32 0.55 0.85 1.32 

PCM 0.05 0.12 0.28 0.52 

PSW 0.01 0.02 0.03 0.04 

PGD 0.02 0.02 0.02 0.02 

Ploss_Mosfet 0.08 0.16 0.32 0.58 

PCD 0.05 0.11 0.06 0.08 

 PSWD 0.09 0.11 0.14 0.19 

Ploss_Diode 0.14 0.22 0.20 0.27 

PCORE 0.02 0.02 0.02 0.02 

Ppri 0.002 0.004 0.01 0.01 

Psec 0.01 0.02 0.04 0.05 

Ploss_Inductor 0.03 0.05 0.07 0.09 

Ploss_Capacitor 0.02 0.02 0.06 0.08 

Psn 0.04 0.10 0.14 0.21 

PPCB 0.004 0.01 0.02 0.04 

PTotal 0.31 0.56 0.81 1.27 

%Error 

 
3.13 -1.81 4.7 3.78 
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APPENDIX II OPTIMIZATION MODE RESULTS FOR DIFFERENT DUTY RATIOS 

Table A4 Boost and buck converter parameters for GUI model 

 Boost Converter Buck Converter 

Parameters Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Vin (V) 50 40 20 50 200 200 

Iin  (A) 4 2.1 2 0.5 2 1.5 

Vout (V) 120 80 130 25 160 120 

Iout (A) 2.1 0.9 0.3 1 2.5 2.5 

Duty 0.6 0.5 0.85 0.5 0.8 0.6 

fsw (KHz) 100 100 50 50 50 100 

Voutripple(V) 0.1 0.1 0.1 0.2 0.1 0.2 

Table A5 Boost converter power loss model results for Case 1 

MOSFET Diode 

Suitable Components PLoss(W) Suitable Components PLoss(W) 

FQP9N30 6.0472777

78 

RD0504T-TL-H 3.633955

2 
STP12NK30Z 4.1921913

58 

BY229B-400HE3/45 5.533324

444 
IRF740PBF 5.8689506

17 

STTH5L04DEE-TR 3.2627 

IRF740STRLPBF 5.8689506

17 

Capacitor 

SiHB10N40D 6.1370370

37 

Suitable Components PLoss(W) 

Inductor LGU2F221MELB 0.000223

251 
Suitable Components PLoss(W) ECO-S2GB221EA 0.027160

4938271

605 

PCV-2-274-03L 4.4202524

52 

  

PCV-2-274-05L 1.5975424

87 

  

PCV-2-274-10L 2.0457273

54 

 

Table A6 Boost converter power loss model results for Case 2 

MOSFET Inductor 

Suitable Components PLoss(W) Suitable Components PLoss(W) 

FQD7N20LTMDKR-

ND 

2.4663682

77 

PCV-2-394-05L 1.318871

494 
BUZ73AL H-ND 1.8637325

07 

  

JAN2N6798U-MIL 1.2855430

81 

  

FQD7N30TMTR-ND 2.0267703

92 

Capacitor 

Diode 

 

Suitable Components PLoss(W) 

Suitable Components PLoss(W) EEU-ED2C470 0.000221

346 
S320 1.774 UPB2E470MHD1TO 0.000221

346 
PDS3200-13 1.659 ECO-S2GA470BA 0.021652

422 
GI912-E3/73 2.007 380LX470M500H012 0.005478

852 
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Table A7 Boost converter power loss model results for Case 3 

 

 

 

 

 

 

 

 

 

 

 

Table A8 Buck converter power loss model results for Case 1 

 

MOSFET Inductor 

Suitable Components PLoss(W) Suitable Components PLoss(W) 

FQT7N10LTFCT-ND 0.4254166

67 

PCV-2-223-05L 0.0503284

24 FQT7N10LTFDKR-ND 0.4254166

67 

PCV-2-223-10L 0.0490967 

FQT7N10TFTR-ND 0.3047916

67 

PCH-27X-223-LT 56.996215

71 ZXMN20B28KTCCT-

ND 

0.6625 RFB1010-221L 3.4780687

48 ZXMN20B28KTCDKR

-ND 

0.6625 PCV-0-224-03L 0.1401287

14 Diode   

Suitable Components PLoss(W)W)   

SS15 0.9509380

63 

Capacitor 

GF1A-E3/67A 1.0959235

77 

Suitable Components PLoss(W) 

SS15E-TP 0.8867728

96 

EEU-FC2A220 0.0743333

33 SK15-13-F 0.9124580

43 

EKXG401ELL220MK

20S 

0.2546333

33 SS18-TP 0.8416144

11 

EEU-EB2D220 0.159 

SS18 0.9512507

5 

UPJ2F220MHD1TN 0.2113333

33 B180-13-F 0.9214661

68 

  

CDBA180-G 0.9575686

32 

  

RS1B-E3/5AT 1.1698561

44 

  

CDBM1100-G 0.9575045   

SS110-TP 0.8429902

36 

  

SB1100 0.9568791

25 

  

MOSFET Diode 

Suitable Components PLoss(W) Suitable Components PLoss(W) 

FQD7N30TMTR-ND 2.5106656

25 

UVZ2F101MHD 0.00019 

IRF730PBF 3.4607854

59 

UPT2G101MHD6 0.00019 

IRF730STRRPBF 3.4607854

59 

Inductor 

STP7NK40Z 3.4570348

64 

Suitable Components PLoss(W) 

STD9NM40N 2.7229388

07 

PCV-2-564-02L 12.71139

138 STD6NK50ZT4 4.1627202

59 

PCV-2-564-06L 8.046394

52 FDD6N50FTM 4.0036300

49 

PCV-2-564-08L 4.245614

201 NDF05N50ZH 5.1767546

77 

DO5040H-684KLB 37.92929

184 Diode   

Suitable Components PLoss(W)   

RGP30G-E3/73 0.6374304

62 
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Table A9 Buck converter power loss model results for Case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A10 Buck converter power loss model results for Case 3 

MOSFET Diode 

Suitable Components PLoss(W) Suitable Components PLoss(W) 

IRF720 9.7368333

33 

RGP30G-E3/73 2.2659598

72 IRF720SPBF 9.7368333

33 

RD0504T-TL-H 2.0181925 

IRF720STRRPBF 9.7368333

33 

STTH5L04DEE-TR 1.7395036

9 IRF730PBF 5.8348333

33 

Inductor 

IRF730STRRPBF 5.8348333

33 

Suitable Components PLoss(W) 

STP7NK40Z 5.7425 PCV-0-104-01L 4.6252808

48 STD9NM40N 4.3583333

33 

PCV-0-104-03L 1.7468856

92 STD6NK50ZT4 7.2584166

67 

PCV-0-104-05L 1.3359644

82 FDD6N50FTM 7.2375 Capacitor 

NDF05N50ZH 8.4320833

33 

Suitable Components PLoss(W) 

STP8N80K5 5.955 UPB2E470MHD1TO 0.021042 

SPD06N80C3 5.9575 ECO-S2GA470BA 2.058333 

IXTH6N80A 9.8833333

33 

380LX470M500H012  

380LX470M500H012 

0.520833 

MOSFET Diode 

Suitable Components PLoss(W) Suitable Components PLoss(W) 

IRF730PBF 7.0840833

33 

RGP30G-E3/73 1.1569199

36 IRF730STRRPBF 7.0840833

33 

RD0504T-TL-H 1.0370262

5 STP7NK40Z 7.0379166

67 

STTH5L04DEE-TR 0.8737418

45 STD9NM40N 5.4708333

33 

BYC5DX-500,127 1.0616713

54 STD6NK50ZT4 8.6292083

33 

RGP30J-E3/73 1.0753008

11 FDD6N50FTM 8.4104166

67 

CN649 0.9847395

21 NDF05N50ZH 10.466041

67 

LXA03B600 1.7456863

54 STP8N80K5 6.9358333

33 

BYV25D-600,118 0.9804920

45 SPD06N80C3 6.72875 LQA05TC600 1.2823453

41 IXTH6N80A 10.775 Capacitor 

Inductor Suitable Components PLoss(W) 

Suitable Components PLoss(W) UPT2G101MHD6 0.0133333

33 PCV-2-223-05L 0.1884615

37 

  

PCV-2-223-10L 0.1685322

16 

  

PCH-27X-223_LT 136.29945

72 

  

PCV-0-224-03L 1.0476876

05 

  



105 
  

 

 

 

 

 

Table A11 Boost converter cost model results for Case 1 

MOSFET Diode 

Suitable Components Cost($) Suitable Components Cost($) 

FQP9N30 1.18 RD0504T-TL-H 1.05 

STP12NK30Z 1.95 BY229B-400HE3/45 1.03 

IRF740PBF 1.63 BYC5DX-500,127 0.35 

IRF740STRLPBF 1.63 BYV25D-600,118 0.848 

SiHB10N40D 1.79 LQA05TC600 1.41 

Inductor BY229B-600HE3/45 5.5333244

44 
Suitable Components Cost($) LQA08TC600 1.93 

PCV-2-274-03L 4.15 QH08TZ600 1.85 

PCV-2-274-05L 4.56 MURF860G 0.99 

PCV-2-274-10L 7.39 Capacitor 

  Suitable Components Cost($) 

  LGU2F221MELB 7.022 

  ECO-S2GB221EA 4.68 

 

Table A12 Boost converter cost model results for Case 2 

MOSFET Diode 

Suitable Components Cost($) Suitable 

Components 

Cost($) 

FQD7N20LTMDKR-

ND 

0.98 GI912-E3/73 0.48 

BUZ73AL H-ND 1.26 RGP30G-E3/73 0.45 

JAN2N6798U-MIL 4.34 RD0504T-TL-H 1.05 

RDN100N20FU6-ND 2.73 Capacitor 

RDN100N20-ND 2.73 Suitable 

Components 

Cost($) 

IRLI640GPBF 2.88 EEU-ED2C470 0.724 

IRLI640G 2.88 UPB2E470MHD1T

O 

1.668 

FQD7N30TMTR-ND 1.04 ECO-S2GA470BA 1.314 

FQP9N30 1.18 380LX470M500H01

2 

5.41 

STP12NK30Z 1.95 Inductor 

  Suitable 

Components 

Cost($) 

  PCV-2-394-05L 5.1 
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Table A13 Boost converter cost model results for Case 3 

MOSFET Inductor 

Suitable Components Cost($) Suitable 

Components 

Cost($) 

FQD7N30TMTR-ND 1.04 PCV-2-564-02L 3.78 

FQP9N30 1.18 PCV-2-564-06L 6.46 

STP12NK30Z 1.95 PCV-2-564-08L 10.79 

IRF730PBF 1.26 Capacitor 

IRF730STRRPBF 1.51 Suitable 

Components 

Cost($) 

STP7NK40Z 1.56 UVZ2F101MHD 1.85 

STD9NM40N 1.67 UPT2G101MHD6 2.68 

IRF740PBF 1.63   

IRF740STRLPBF 1.63 Diode 

SiHB10N40D 1.79 Suitable 

Components 

Cost($) 

STD6NK50ZT4 1.18 LQA05TC600 1.41 

FDD6N50FTM 1.1 RGP30G-E3/73 0.45 

NDF05N50ZH 0.94 RD0504T-TL-H 1.05 

TK10A50D 1.89 BYC5DX-500,127 0.35 

STP11NK50ZFP 1.93 RGP30J-E3/73 0.495 

IPA50R350CP 1.12 LXA03B600 0.81 

FDPF12N50UT 1.73 BYV25D-600,118 0.848 

 

Table A14 Buck converter cost model results for Case 1 

MOSFET Inductor 

Suitable Components Cost($) Suitable 

Components 

Cost($) 

FQT7N10LTFCT-ND 0.54 PCV-2-223-05L 2.12 

FQT7N10LTFDKR-

ND 

0.54 PCV-2-223-10L 2.06 

FQT7N10TFTR-ND 0.54 PCH-27X-223_LT 1.91 

Diode RFB1010-221L 0.68 

Suitable Components Cost($)W) PCV-0-224-03L 1.46 

SS18-TP 0.39 Capacitor 

SS18 0.46 Suitable 

Components 

Cost($) 

B180-13-F 0.82 EEU-FC2A220 0.502 

CDBA180-G 0.54 EKXG401ELL220M

K20S 

1.72 

RS1B-E3/5AT 0.178 EEU-EB2D220 0.69 

CDBM1100-G 0.57 UPJ2F220MHD1TN 1.324 

SS110-TP 0.39   

SB1100 0.52   
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Table A15 Buck converter cost model results for case 2 

MOSFET Diode 

Suitable Components Cost($) Suitable Components Cost($) 

IRF730PBF 1.26 RGP30G-E3/73 0.45 

IRF730STRRPBF 1.51 RD0504T-TL-H 1.05 

STP7NK40Z 1.56 STTH5L04DEE-TR 1.49 

STD9NM40N 1.67 BYC5DX-500,127 0.35 

STD6NK50ZT4 1.18 RGP30J-E3/73 0.495 

FDD6N50FTM 1.1 CN649 0.448 

NDF05N50ZH 0.94 LXA03B600 0.81 

Inductor BYV25D-600,118 0.84 

Suitable Components Cost($) LQA05TC600 1.41 

PCV-2-223-05L 2.12   

PCV-2-223-10L 2.06 Capacitor 

PCH-27X-223_LT 1.91 Suitable Components Cost($) 

PCV-0-224-03L 1.46 UPT2G101MHD6 2.68 

 

Table A16 Buck converter cost model results for case 3 

MOSFET Diode 

Suitable 

Components 

PLoss(W) Suitable Components PLoss(W) 

IRF720 3.18 RGP30G-E3/73 0.45 

IRF720SPBF 1.51 RD0504T-TL-H 1.05 

IRF720STRRPBF 1.51 STTH5L04DEE-TR 1.49 

IRF730PBF 1.26 Inductor 

IRF730STRRPBF 1.51 Suitable Components PLoss(W) 

STP7NK40Z 1.56 PCV-0-104-01L 1.31 

STD9NM40N 1.67 PCV-0-104-03L 1.48 

STD6NK50ZT4 1.18 PCV-0-104-05L 2.37 

FDD6N50FTM 1.1 Capacitor 

NDF05N50ZH 0.94 Suitable Components PLoss(W) 

  UPB2E470MHD1TO 1.668 

  ECO-S2GA470BA 1.314 

  380LX470M500H012  

380LX470M500H012 

5.41 
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APPENDIX III DETAILED DERIVATIONS OF EQUATIONS 

For equation (60) and (72) IDrms is obtained by taking RMS value of ID where ID is represented as 

shown in Figure 4. 

IDrms is represented as 

2

0

1

2

DT

Drms

i i
I Iout t dt

T DT

   
    

  
 ,                                        (A1) 

2 2 2

2 2

0

1 2

2 2

DT

Drms out out

i i t it i
I I I dt

T DTD T

       
        

     
                           (A2) 

2 2 2
2 2

0
4 3 2

DT

Drms out out out

i D i D i t
I DI DI i t iDI t

  
                             (A3) 

2 2 2
2 3 4 6

12
Drms out

i D i D i D
I DI

    
                                      (A4) 

2
2

12
Drms out

i
I D I

 
  

 
                                                    (A5) 

Similar approach is implemented to calculate IDrms of the boost converter. 

IDrms represented in (85) and Figure 14 is calculated  as, 

1

3
Drms Lpk

D
I I ,                                                       (A6) 

1

3

s
Drms Lpk

s

D T
I I

T
 ,                                                      (A7) 

but                                                            1ON sT DT ,                                                         (A8) 

 0.8 S out F

ON

F

T V V
T

V


 ,                                                    (A9) 
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 
 0.81

3

S out Fin
Drms

S Fsw pri m

T V VV D
I

T Vf L L

 
     

,                                  (A10) 

 
0.26 1in out

Drms

Fsw pri m

V D V
I

Vf L L

 
  

  
,                                       (A11) 

To calculate IDoff  of the flyback transformer current (86), ILavg in (92) and (93) is calculated 

with the help of (84) as,  

 1 2
2

LPK
Lavg

I
I D D  ,                                                    (A12) 

 
0.8

2
m pri sw

in
Lavg

L L f

V D
I



 
  

 
 

,                                                 (A13) 

 
0.4

m pri sw

in
Lavg Lpri

L L f

V D
I I



 
   

 
 

,                                              (A14) 
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m pri sw
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Lsec

L L f

nV D
I



 
  
 
 

,                                              (A15) 
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L L f L L f

V D V D
I

 

    
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 
0.9

m pri sw
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Doff

L L f

V D
I


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RMS value of triangular waveform is given in Figure 14 calculated as, 

1 2
( )

3

S S
rms pri LPK

S

D T D T
I I

T

 
   

 
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( )

0.8

3

S
rms pri LPK

S

T
I I

T

 
   

 
                                                    (A20) 

 ( ) 0.26rms pri LPKI I                                                      (A21) 

( ) 0.52rms pri LPKI I                                                         (A22) 

(sec) 0.52rms LPKI nI                                                         (A23) 

Capacitor current Icrms in (94) flyback converter  

 

2

2
(sec)

0.52

m pri sw

in
Crms out

L L f

nV D
I I



  
   
  
  

                                            (A24) 
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APPENDIX IV COST MODEL EQUATIONS WITH DIFFERENT SURFACE FITS 

Table A17 Surface fitting tool equations for MOSFET 

Surface fitting tool results Cost Models 

Lowess- quadratic SSE-51.44, R-square-0.9436 

No explicit model was provided by MATLAB tool 

Polynomial –x degree four  

and y degree three 

13

0

( , )
i

i i
M DS D i DS D

i

Cost V I V I
 





  

SSE-194.2, R-square-0.6717 

Customize equation 

2( ( ) )
( , ) sin( )

ID
M DS D DS DCost V I a b m V I ce


  

  

SSE-898.4, R-square-0.01473 

Table A18 Surface fitting tool equations for diode 

Surface fitting tool results Cost Models 

Lowess- quadratic   SSE: 0.07198,  R-square: 0.9502 

No explicit model was provided by MATLAB tool 

Polynomial –x degree one 

and y degree one 

2

0

( , )

j
j j

D B F j B F

j

Cost V I V I






 

  

SSE-0.1591, R-square-0.8899 

 
Customize equation 

2( ( ) )
( , ) sin( )

IF
D B F B FCost V I a b m V I ce


  

  

SSE-0.2563, R-square-0.8039 

 

 

Table A19 Surface fitting tool equations for inductors 

Surface fitting  tool results Cost Models 

Lowess- linear or quadratic Out of surface fit box 

No explicit model was provided by MATLAB tool 

Polynomial –x degree one and 

y degree one 

 ( , ) a+ b + cL L LCost L I L I  

SSE-7693, R-square-0.3261 

 
Customize equation 

2( )
( , ) sin( )

IL
L L LCost L I LI e


  

     

SSE-3408, R-square-0.7014 
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Table A20 Surface fitting tool equations for capacitor 

 

 

 

 

 

 

 

 

Table A21 Surface fitting tool equations for Cores 

Surface fitting tool results Cost Models 

Lowess- linear   SSE: 1.196  R-square: 0.9882 

No explicit model was provided by MATLAB tool 

Polynomial –x degree two 

and y degree two 

4
( , )

0

m m
m

Cost A f A f
Co L sw m L sw

m


 



 
  

SSE: 6.448  R-square: 0.9365 

Customize equation 

2( ( ) )
( , ) sin( )

fswCost A f a b m A f ce
Co L sw L sw


  

  

SSE: 74.43 R-square: 0.2669 

Table A22 Curve fitting tool equations for Magnet wire 

Curve fitting tool results Cost Models 

Linear polynomial 
1

0

(G)

q
q

w q

q

Cost G








  

Quadratic polynomial 

2

0

(G)

q
q

w q

q

Cost G








  

Cubic polynomial 

3

0

(G)

q
q

w q

q

Cost G








  

Polynomial 5
th

 degree 

6

0

(G)

q
q

w q

q

Cost G








  

 

Surface fitting tool results Cost Models 

Lowess- linear SSE: 139.8,  R-square: 0.9091 

No explicit model was provided by MATLAB tool 

Polynomial –x degree two 

and y degree three 

8

0

( , )
z

zz
C C z C

z

Cost C V C V






  

SSE: 265.5,  R-square: 0.8274 

 
Customize equation 

2( ( ) )
( , ) sin( )

VC
C C CCost C V a b m CV ce


  

  

SSE: 1245,  R-square: 0.19 
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