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Target Species Selection for Dynamic Adaptive Chemistry Simulations 

 

Abstract 

By 

 

Nicholas Curtis 

 

 The Relative Importance Index (RII) method for determination of appropriate target species for 

dynamic adaptive chemistry (DAC) simulations using the directed relation graph with error propagation 

(DRGEP) method was developed and validated for two fuels, n-heptane and isopentanol, which are 

representatives of a ground transportation fuel component and a bio-alcohol, respectively.  The 

conventional method of DRGEP target species selection involves picking an unchanging (static) set of 

target species based on the expected major combustion processes; however, these static target species 

may not remain important throughout a combustion simulation.  The RII method determines appropriate 

DRGEP target species solely from the local thermochemical state of the simulation, enabling DAC 

simulations to better respond to changing combustion conditions while ensuring that accuracy will be 

maintained.  Further, the RII method reduces the expertise required of users to select DRGEP target 

species sets appropriate to the combustion phenomena under consideration.  The RII method was tested 

on constant volume ignition delay studies as well as single-cell engine simulations under homogenous 

charge compression ignition (HCCI) conditions for n-heptane and isopentanol reaction mechanisms.  It is 

illustrated that the RII is capable of accurate predictions of constant volume ignition delays over a wide 

range of starting conditions.  Further, for a similar maximum error in ignition delay predictions, under 

certain autoignition conditions the RII method produced considerably smaller local skeletal mechanisms 

compared to those of conventional DRGEP target species selections; however, both methods generated 
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similarly sized local skeletal mechanisms outside these regions.  In addition, the RII method was capable 

of accurately predicting ignition crank angles for single cell engine simulations under HCCI conditions 

with significantly smaller local skeletal mechanisms than conventional DRGEP target species selections.
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1. Introduction 

1.1 Role of Combustion in Society 

 Combustion of fossil fuels is incredibly important to the supply of energy in the United States.  

Fossil fuel combustion has provided 87% of total primary energy over the last decade, and is projected to 

supply more than 75% of the nation’s primary energy demand in 2040 [1].  Additionally, combustion-

related carbon dioxide emissions account for more than 80% of United States’ greenhouse gas emissions 

[2].  More efficient, reduced pollutant emission combustion solutions are a necessity to supply national 

energy demand while meeting increasingly stringent carbon dioxide and pollutant emissions limits.   

 It is estimated that a 30–50% reduction in fuel consumption in light-duty vehicles (i.e. passenger 

cars) can be achieved over the next 30 years [3].  In the near term the bulk of this reduction will occur 

through development and implementation of advanced internal combustion engines.  In addition, the 

ACARE Flightpath 2050 plan [4] calls for a 30% reduction in airplane CO2 emissions and a 90% 

reduction in NO2 emissions, resulting from improved gas turbine technology.  In order to achieve these 

goals engineers have begun exploring new combustion schemes such as low-temperature combustion 

(LTC), which achieves high efficiency and low emissions via the high compression ratio combustion of 

either very dilute or fuel lean mixtures.  Computational combustion modeling is an important tool used 

increasingly to investigate and develop novel combustion devices [5-11], and has demonstrated an ability 

to aid in and speed up the design-cycle of next generation combustion devices.  However, a number of 

problems exist that limit its practicality. 

1.2 Barriers to Computational Combustion Modeling 

Detailed, accurate chemical models are a necessity in order to accurately predict combustion 

phenomena in high-fidelity simulations of both advanced transportation engines and gas turbines [6, 12].  

Traditionally, engine designers have utilized greatly simplified reaction mechanisms containing only a 

few species and reaction steps to capture fuel breakdown and heat release.  These simplified global 
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mechanisms typically are only applicable in a narrowly defined set of combustion conditions; a problem 

in practical combustion applications where a variety of different combustion modes are observed [13].   

In order to achieve high efficiencies and low emissions, new engine types using novel 

combustion regions, such as LTC, are being investigated and developed.  One method of achieving LTC 

is the homogenous charge compression ignition (HCCI) approach, in which a highly homogenous mixture 

is burned at very fuel-lean conditions and high compression ratios.  The high compression ratios allow 

HCCI combustion to reach the efficiency of diesel engine; high fuel concentrations responsible for soot 

and NOx emissions are avoided however, resulting in orders of magnitude less pollutant emissions [14] 

than diesel engines.  The very lean mixtures typically utilized in HCCI combustion tend not to propagate 

like an ordinary flame; as such ignition timing is very sensitive to fuel chemistry and local conditions 

[15].  As a result, HCCI combustion is primarily controlled by chemical kinetics, and thus accurate 

chemical models are required for high fidelity predictions. 

Modeling of gas turbine technology is another area where detailed chemical kinetics models are 

required.  Lean premixed combustion has proven to be very successful in reducing nitrous oxide (NOx) 

emission levels; however, detailed chemistry is still required to accurately predict the ignition delay [16] 

as well as NOx formation, unburned hydrocarbon, and pollutant levels [12, 17].  Additionally, complex 

gas turbine phenomena such as lean blowout, a cause of expensive shutdown/restart cycles in power 

generation turbines and a major safety hazard for aerospace applications, often require the use detailed 

chemistry.  For example, in order to accurately predict extinction strain rates, a necessity for high-fidelity 

simulation of local flame extinction events (which in turn can cause  lean blowout [18]), the use of 

detailed chemical models is required [13, 16]. 

Over time, the need for accurate chemical reaction mechanisms has been recognized, resulting in 

the development of more detailed and complex chemical kinetic models for transportation fuels.  For 

instance, a recently proposed gasoline surrogate mechanism [19] contains approximately 1550 different 

chemical species and 6000 reactions, while a recent biodiesel surrogate mechanism [20] contains around 
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3300 species and over 10000 reactions.  The large size of these mechanisms makes them expensive even 

for use in simple zero-dimensional combustion studies due to the problem of chemical stiffness. 

Chemical stiffness is induced by quickly depleted radicals reaching a quasi-steady state and fast 

reversible reactions in partial equilibrium, causing species and reaction time scales to range from 

nanoseconds to seconds [13].  Large hydrocarbons typically have high levels of chemical stiffness, 

making use of explicit integration algorithms inefficient; instead implicit integration algorithms must be 

utilized [13].  However, implicit integration typically requires the factorization of a non-sparse Jacobian 

matrix, an operation that scales cubically in cost with the number of species in a mechanism [13].  The 

high cost of implicit chemical integration is such that even in some cases utilizing a relatively small 

chemical mechanism (e.g. ~50 species), chemical integration can consume between 75-99% of total 

computational time in a multi-dimensional reacting flow simulation [21-23].  In order to utilize large, 

complex chemical mechanisms relevant to transportation and energy fuels in realistic, useful simulations, 

accurate mechanism reduction and chemical stiffness removal strategies must be employed. 

1.3 Mechanism Reduction Techniques 

1.3.1 Reaction State Sampling 

 When reducing chemical mechanisms from detailed chemical models to a much smaller size 

suitable for use in larger scale simulations, the range of validity is a very important consideration.  A 

comprehensive mechanism is generated by sampling reaction states from a range of thermochemical 

conditions, known as a thermochemical state space.  A comprehensive mechanism is expected to be valid 

over the entire thermochemical state space.  Although use of comprehensive mechanism for conditions 

outside the thermochemical state space from which it was generated can result in large errors [13], 

comprehensive mechanisms generated from broad thermochemical state spaces can often be applied to 

more general state spaces (e.g., those of multi-dimensional simulations) with satisfactory accuracy [24].  

In contrast, a local mechanism is generated from and can only be assumed to be valid at one 
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thermochemical state; use of a local mechanism at any state other than the one for which it was generated 

is likely to induce large error. 

1.3.2 Time Scale Analysis 

 The first major category of mechanism reduction methods employs chemical time-scale analysis 

to reduce chemical stiffness by removing short time scales caused by rapidly depleted species and fast 

reversible reactions.  The classical Quasi-Steady State approximation (QSS) [25] and the Partial 

Equilibrium approximation (PE) [26, 27] were among the first methods of time-scale reduction.  By 

assuming that QSS species rapidly reach a quasi-steady state, their concentrations can be expressed as a 

set of algebraic equations instead of differential equations.  Similarly, the PE approximation assumes that 

a reaction quickly reaches a partial equilibrium after initial transience.  Methods such as such as 

computational singular perturbation (CSP) [28-30] and intrinsic low-dimensional manifolds (ILDM) [31] 

are more systematic time-scale analysis methods; using Jacobian analysis the fast and slow reaction 

modes are decoupled to reduce chemical stiffness.  Offshoots of these approaches can also be used to 

identify QSS species and PE reactions [32, 33].  As these methods typically require Jacobian analysis, the 

cost of which scales cubically with the number of species, their use on large chemical mechanisms can be 

expensive. 

1.3.3 Skeletal Mechanism Reduction 

 The second major category of mechanism reduction techniques attempts to remove species and 

reactions that are deemed non-important to the detailed chemical mechanism over a specified range of 

interest (e.g., temperature, pressure, and equivalence ratio).  Sensitivity analysis [34-36] is a classical 

skeletal reduction method that identifies and eliminates unimportant reactions and species via analysis of 

the Jacobian matrix.  An offshoot of sensitivity analysis, principal component analysis [37] determines a 

number of primary ‘coordinates’ of the sensitivity matrix, giving information about species and reaction 

coupling which is then used to identify unimportant species and reactions.  Additionally, CSP-based 

methods can be adapted for use in skeletal mechanism reduction; species strongly coupled in either the 
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fast or slow subspaces are considered important and are kept in the skeletal mechanism [38-40].  A 

similar method called level of importance analysis (LOI) combines time-scale analysis with sensitivity 

analysis in order to rank species importance [41-44], and thus determine unimportant species.  The 

previously described methods rely on Jacobian/Sensitivity matrix analysis, and thus their cost scales 

cubically with the number of species under consideration, a problem for large mechanisms. 

 Other methods include genetic algorithms [45, 46] and optimization methods [47-49].  Genetic 

algorithms take inspiration from natural selection, attempting to find the subset of species that best 

matches combustion targets through trial and error of successive generations of skeletal mechanisms.  

Optimization methods use linear-programming theory to eliminate species and reactions while meeting 

combustion targets within a specified error limit.  Although these methods can produce highly compact 

skeletal mechanisms, they are classified as NP-Hard, meaning that cost of finding the true optimal 

solution scales exponentially with the number of species in the mechanism.   

 The directed relation graph (DRG) method proposed by Lu and Law [50] has been extensively 

used to efficiently and reliably produce skeletal mechanisms from large starting mechanisms [51].  First, a 

graph with edges representing inter-species coupling is created.  A graph search is then started from a 

selected set of target species; species only weakly coupled to these targets are considered unimportant and 

are removed from the resulting skeletal mechanism.  Since its inception, the DRG method has been 

extended in several different directions; DRG-aided sensitivity analysis (DRGASA) performs sensitivity 

analysis on species not removed during the DRG step [52] to generate even more compact skeletal 

mechanisms, while the DRG with error propagation (DRGEP) method [53], considers the effect of error 

propagation due to species removal along graph pathways.  The DRGEP and DRGASA methods were 

further adapted into the DRGEPSA method [54, 55], which was found to generate more compact skeletal 

mechanisms than either the DRG, DRGEP, or DRGASA methods at the same level of accuracy.  As the 

DRGEP method is a key component of this work, the subsequent sections will examine the DRG and 

DRGEP methods in detail. 
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1.3.3.1 Directed relation Graph Method 

The directed relation graph method, original proposed by Lu and Law [50-52], uses a directed 

graph to map species coupling as edges between vertices on the graph. Species are considered 

unimportant and are removed from the skeletal mechanism if a path connecting them to a specified set of 

target species cannot be found.  The DRG method maps each species in the mechanism to a vertex on the 

graph; there is a directed edge between species A and B if and only if    
         , where  

 
   

    
∑             

  
   

∑        
  
    

 
(1)  

      {
                                  
                                                      

 
(2)  

         
        

  is the net stoichiometric coefficient of species A in reaction i,    is the net reaction rate 

   the total number of reactions in the mechanism, and      is a small cutoff threshold (e.g. 0.1), 

referred to as the DRG cutoff. 

The    
    value, also known as the direct interaction coefficient (DIC), attempts to quantify the 

dependence of the of species A on species B.  We can say that if    
    is large then the activity of species 

A is strongly dependent on species B.  Therefore, if species A is kept in the resulting skeletal mechanism, 

species B should be kept as well. 

The DRG is then utilized to generate a skeletal mechanism as follows; first, a set of starting 

vertices, also known as target species or search initiating species, are selected.  A depth-first search is 

initiated at these starting vertices; the set of species reached by the graph search are considered to be 

important to the overall production of the target species, and are therefore kept in the resulting skeletal 

mechanism.  A simplified example of this reduction procedure is pictured in Fig. 1. 

While the DRG cutoff      can be specified directly by the user, for comprehensive skeletal 

mechanism generation it is preferable to determine it iteratively to ensure strict error control.  The 

procedure for this is as follows; first a thermochemical state space is created by sampling reaction states 
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from a variety of relatively simple combustion problems (e.g. constant volume ignition, perfectly stirred 

reactors, etc.), in addition combustion targets for these problems (e.g. ignition delay, extinction residence 

time, key species mass fractions) are determined.  Starting from a very low DRG cutoff (e.g. 10
-3

), a 

comprehensive skeletal mechanism is generated from the defined state space by taking the union of a 

local skeletal mechanism generated for each point in the state space.  The resultant comprehensive 

skeletal mechanism is then tested on the same simple combustion problems and the error in combustion 

targets is determined.  The DRG cutoff is then raised and the procedure repeated until the error in 

combustion targets resulting from use of the skeletal mechanism is no longer below a user specified limit. 

The target species set for a DRG reduction can simply consist of the fuel, through which the 

oxidizer as well as important radicals are included [50].  If accuracy is required for additional phenomena 

(e.g. NOx predictions), a corresponding species (i.e. NO) should also be included in the target set [50].  

Finally, in the DRG method species that only participate as third bodies in reactions are not considered to 

be involved in the reaction (Eq. 1-2).  Therefore inert species can be included in the target set, such that 

they are not removed from the resultant skeletal mechanism. 

1.3.3.2 Directed relation Graph with Error Propagation Method 

 The directed relation graph with error propagation (DRGEP) method, originally proposed by 

Pepiot-Desjardins and Pitsch [53], is an extension of the original DRG method that considers the 

propagation of error caused by species removal down reaction pathways.  Motivated by shortcomings of 

the original DIC definition [50] in situations with long chemical paths involving fast modes [56] the 

DRGEP method uses a modified definition of the direct interaction coefficient: 

 
   

      
|∑           

  
   |

           
 

(3)  

where 
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(6)  

Unless otherwise specified, the direct interaction coefficient     will be assumed to be the DRGEP direct 

interaction coefficient    
      from this point on. 

 A path dependent interaction coefficient (PIC) from the set of target species is then defined on the 

path p from a target species Tj to species B as: 

 

       ∏        

           

   

 

(7)  

where the ith edge of path p connects species Si and Si+1.  The interaction coefficient for target Tj is 

defined as the maximum of all PICs between Tj and B: 

         
           

          (8)  

Finally, the overall interaction coefficient (OIC) is defined as: 

       
          

     (9)  

The species B is then considered active in the mechanism if and only if: 

            (10)  

where  DRGEP is a small cutoff threshold (e.g. 10
-4

), which will be referred to as the DRGEP cutoff. 

 Similar to the DRG method, the DRGEP DIC     is intended to estimate the error in overall 

production or consumption of species A induced by the removal of species B from the mechanism.  The 

PIC        captures the propagation of this error down the pathway p from a target to species B.  By 
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taking the OIC    to be the maximum PIC value for B from all targets, a reasonable estimate of the error 

induced on the target species by removal of species B is obtained.  Fig. 2 shows an sample reduction 

using the DRGEP method. 

The DRGEP method can be viewed as a more aggressive version of the DRG method.  If some 

error is introduced by removal of species B from the skeletal mechanism, this error must propagate to 

reach the target species A; a species further away on the graph from the target set is more likely to be 

removed than in the DRG method for this reason.  As a result the DRGEP method is much more sensitive 

to the selection of target species; the effect of different target species sets on the DRGEP method will be 

investigated in greater detail in Chapter 2. 

Following the work of Niemeyer and Sung [57], Dijkstra’s algorithm was used to perform the 

graph search to determine the OICs.  In order to improve execution speed in a dynamic adaptive 

chemistry (DAC) context, modifications were made to the search algorithm such that only a single graph 

search (including all target species) is performed and unnecessary graph edges are not expanded.  Full 

pseudo code is detailed in Appendix A.  

1.3.4 Compact Comprehensive Mechanism Generation 

 Often when generating a comprehensive skeletal mechanism, several mechanism reduction 

techniques are applied in sequence to generate the most compact mechanism possible.  Methods 

commonly used to further reduce comprehensive skeletal mechanisms are species lumping [52, 58-60], 

error cancellation [61], and unimportant reaction elimination [52].  Isomer lumping attempts to treat 

similar chemical species in the reaction mechanism (e.g. chemical isomers) as a single species in order to 

reduce the number of variables in the system, resulting in accelerated computation.  Error cancellation 

attempts to identify pairs of species whose removal from the mechanism induces error of similar 

magnitude, but with opposite signs.  By removing both species at once, the induced errors tend to cancel 

leaving a reduced system with minimal induced error.  Finally, in the unimportant reaction elimination 

method, a reaction is considered unimportant (and removed from the skeletal mechanism) if the 
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maximum of its normalized contributions to all species is less than a threshold value       which can 

either be user specified, or determined iteratively based on a user-specified error limit in combustion 

targets (e.g. ignition delay). 

As seen previously, the directed relation graph with error propagation aided sensitivity analysis 

(DRGEPSA) method is one technique for comprehensive skeletal mechanism generation.  In DRGEPSA 

a DRGEP reduction is applied first, before further considering sensitivity analysis to the species deemed 

marginally important by the DRGEP method.  DRGEPSA has been found to generate  more compact 

mechanisms than just the DRGASA or DRGEP methods alone [55].  Another work applied DRG 

reduction, followed by isomer lumping, DRGASA and Error Cancellation to find a 115 species 

comprehensive skeletal mechanism from a 3299 species detailed biodiesel mechanism [61]. 

1.4 Adaptive Chemistry Reduction 

 Comprehensive skeletal mechanisms generated based on a priori selected thermochemical states 

and user specified error limits are at a disadvantage in multi-dimensional simulations in that they apply 

the same level of detail to the entire multi-dimensional domain.  Consider that inside the flame zone of a 

multi-dimensional simulation, a highly accurate skeletal mechanism with many species will likely be 

needed, but outside the flame zone a much smaller mechanism may be sufficient.  Further, ensuring that a 

comprehensive skeletal mechanism remains accurate over the full range of conditions will likely cause the 

mechanism to be too large to be used in multi-dimensional simulations.  These problems motivate the use 

of adaptive chemistry (AC), which seeks to achieve computational speedup by using only locally relevant 

skeletal mechanisms.   

Given a starting chemical mechanism, AC simulations pre-generate a number of skeletal 

mechanisms based on expected thermochemical conditions. During the simulation an appropriate locally 

relevant skeletal mechanism is chosen based on the local thermochemical state.  The full chemical state is 
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mapped to the skeletal mechanism and integrated; the results are mapped back to the full mechanism and 

stored for the next simulation time step.   

One of the first uses of AC [62] switched between H2/O2 mechanisms simply based on hydrogen 

and oxygen mass fractions.  Although the adaptive scheme was able to reproduce species profiles in a 

planar reacting shear layer, little speedup was achieved due to the small size of the starting mechanism.  A 

later paper from Banerjee et al. [63] used genetic algorithms to produce skeletal mechanisms starting from 

the GRI 3.0 mechanism [64], and further to identify the valid thermochemical range of application for 

each skeletal mechanism.  Although the scheme was able to accurately predict temperature and species 

traces in a pairwise mixed stirred reactor (PMSR) simulation, it is noted that the use of genetic algorithms 

to generate skeletal mechanisms from larger starting mechanisms can be quite expensive.  Further, there 

is no guarantee that a given thermochemical state in the simulation will map to a reduced mechanism, 

requiring use of the detailed starting mechanism in some cases.  He et al. [65] proposed a method of 

elemental flux clustering to group thermochemical states.  After similar states were clustered into groups, 

a skeletal mechanism was generated for each cluster.  During the simulation, the appropriate reduced 

mechanism was chosen based on their distance from the cluster centers.  This method was capable of 

accurately predicting temperature and major mass fractions of an n-pentane mechanism in a PMSR 

simulation with a speedup of over sixty times compared to the detailed mechanism.  A recent work from 

Liang et al. [66] used binary partitioning along principal components of the sampled thermochemical 

space to group thermochemical states, generating a skeletal mechanism using DRGEP for each.  The 

approach was able to accurately match the detailed mechanism in a partially stirred reactor simulation. 

Although the AC approach is capable of highly accurate predictions, often with large 

computational gains, there are issues with the approach.  First, it relies on being able to predict the range 

of conditions expected to be seen in the full scale simulation.  It remains an open question whether 

reaction state sampling from zero-dimensional homogenous simulations can explore the entire range of 

conditions necessary for accuracy in a multi-dimensional simulation; it is possible that diffusive systems 
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may also need to be sampled [13].  Further, as local extinction and ignition may be present in large scale 

multi-dimensional simulations, the AC approach must include skeletal mechanisms that accurately 

describe low-temperature ignition chemistry as well as the high-temperature flame chemistry [13].  The 

AC scheme is additionally limited by the number of pre-generated skeletal mechanisms.  Not only is the 

memory occupied by these mechanisms potentially an issue, implementing an efficient high-dimensional 

search to find the appropriate skeletal mechanism may also be a problem.  In a study from Liang et al. 

[67] querying the skeletal mechanism library using a nearest neighbor search  was found to incur 

significant computational overhead. 

When the AC scheme encounters unmapped thermochemical states a variety of potential sub-

optimal solutions may be taken.  First, the unmapped state may be assigned to the ‘closest’ skeletal 

mechanism (as determined by one of the previously described selection methods).  However, this may 

induce large error if the skeletal mechanism is not truly applicable.  Further consider that unmapped 

reaction states may correspond to unexpected or undesirable behavior of the combustion system; taking 

this option, though simple, may actually induce large error in interesting phenomena.  A second option is 

to simply use the full detailed mechanism when unexpected states are encountered, yet the size of the 

detailed mechanism is the main motivation for an adaptive chemistry scheme to begin with; if the detailed 

mechanism is large and unexpected states are encountered with any frequency, this solution may be 

computationally prohibitive.  The last option is to simply generate a new skeletal mechanism for use with 

the unexpected state; depending on the type of mechanism reduction utilized, this may be a costly step in 

its own right.  Further concerns may include the memory requirements for storage of additional 

mechanisms, as well as potentially increasing the cost of searching for the appropriate skeletal mechanism 

for future states. 

1.5 Dynamic Adaptive Chemistry Reduction 

 In order to address the issues with the adaptive chemistry scheme, Liang el al. [68, 69] developed 

a method known as dynamic adaptive chemistry (DAC).  In a DAC simulation a reduction method is 



13 
 

applied to each instantaneous thermochemical state, generating a small but only locally accurate skeletal 

mechanism.  This locally accurate mechanism is integrated for a single simulation time step, and the 

resulting thermochemical state is stored.  After its use, the locally accurate mechanism is discarded and 

the process repeats at the next simulation time step.  By generating a skeletal mechanism for each 

thermochemical state, the DAC scheme ensures that the resulting skeletal mechanism is rigorously valid 

for that state; thus the problems of unexpected reaction states in the AC scheme are alleviated. However, 

in order for significant computational gains to be realized using DAC, the cost of skeletal mechanism 

generation must outweighed by the resulting speedup from integrating the smaller, locally accurate 

mechanism.  For this reason, reduction methods that scale linearly with the problem size (e.g., DRG-

based methods [50], Element Flux Analysis [70]) are typically used. 

 In their original DAC work, Liang et al. [68] coupled the DAC scheme to the DRGEP method.  

At each time step, the DRGEP method is applied to the local thermochemical state in order to determine 

the active species to be kept in the resultant local skeletal mechanism.  Reactions are included in the 

skeletal mechanism only if all the reactants and products are active species (not counting third bodies).  

Species not in the active set are treated as inactive, and their mass fractions are kept fixed.  Given a 

system with m active species (superscript a), n inactive species (superscript i), and a 

state  (      
     

    
     

 ), the resulting chemical kinetic system can be described as: 
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 (11)  

Although inactive species do not participate as reactants in any active reaction, their removal can induce 

serious error in third body reactions and pressure dependent reactions.  In order to minimize the size of 

the ODE system while accounting for these third body effects, the DAC scheme calculates the net species 

production rates of the active species, as well as the derivatives of any state variables (e.g. temperature, 

pressure) based on the entire thermochemical state (including inactive species) as seen in Eq. 11.   
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The DRGEP target species set was selected to include species from the major combustion 

processes of HCCI combustion; the fuel (n-heptane) was selected to cover hydrocarbon decomposition 

pathways, HO2 was selected to include water production (H2-O2 reactions), and CO was selected to 

include CO2 creation pathways (primarily through CO oxidation).  Using  this target species set and a 

DRGEP cutoff value            , a 30 fold speed up was achieved for a single cell HCCI ignition 

simulation using a detailed n-heptane mechanism [71], while excellent accuracy in pressure trace and 

species mass fractions were maintained. 

 A later work from Liang et al. [69] extended the DAC scheme to gasoline surrogate fuel 

mechanisms.  It was found that the target species set including n-heptane, HO2, and CO worked well for 

all the studied n-heptane / isooctane / toluene blends.  Further, the most reactive fuel species needed to be 

included in the target set, but the other fuels could be included with little impact on computational time.  

The DAC scheme was also able to capture the hydrocarbon/NO sensitization effect on the hydrocarbon 

ignition processes studied without direct inclusion of NO in the target species set.  Once a target species 

reached very low concentrations, it was found that including it in the target species set resulted in many 

unimportant species being introduced back into the skeletal mechanism.  To maintain computational 

efficiency, it was suggested that target species with mass fraction less than 10
-30

 should be removed from 

the target species set.  The same DRGEP cutoff value of 10
-4

 worked well in all cases.   

The effect of the integration time step on DAC accuracy was also studied.  In the most general 

case for implicit integration schemes (DVODE [72] was used in this study) the Jacobian must be 

generated numerically and factorized, time consuming processes.  Therefore to increase computational 

efficiency, the Jacobian is reused for multiple internal integration steps until it is deemed unsuitable.  In 

the DAC scheme however, the Jacobian must be reinitialized at each time step, as a different chemical 

system is being described by each skeletal mechanism.  By increasing the chemical integration time step 

size the same Jacobian is expected to be reused more often, and thus the simulation will be faster.  

However, for fast chemical problems (e.g. auto-ignition), raising the chemical integration time step was 
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found to induce unacceptable error as the local skeletal mechanism generated was not necessarily reliable 

for the entire time step.  For fast chemical processes a sufficiently small time step (e.g. 10
-5

 s) must be 

selected to maintain accuracy. 

Detailed (1099 species) and skeletal (150 species) gasoline surrogate mechanisms based on those 

from Andrae et al [73, 74] (modified to include NOx formation using the GRI-3.0 sub mechanism [64]) 

were tested in single-cell HCCI simulations as well as in shock tube ignition delay problems.  Up to a 70x 

and 15x speedup was found for the detailed and skeletal mechanisms respectively for HCCI simulations, 

while a 10x and 2x speedup was found for shock tube ignition delay timings. 

He et al. [70] paired an element flux analysis method with the DAC scheme to study n-pentane  

combustion.  The method was able to accurately predict the combustion of n-pentane in a pairwised 

mixed stirred reactor (PMSR) with a speedup factor of approximately 25.  The method was then tested on 

adiabatic plug flow reactor auto-ignition predictions.  Although a speedup over two times was achieved 

for the n-pentane mechanism, it is noted that the cost of the element flux method reached up to 20% of 

total computational time.   

Yang et al. [75] paired the DAC scheme with the DRG method for turbulent methane flame 

simulations.  They found that the DAC approach was capable of accurately reproducing the combustion 

process of a partially stirred reactor simulation (PaSR) with a significant level of non-equilibrium 

processes.  Further the computationally optimal way of operating the DAC scheme when the chemical 

integration time step was larger (e.g. 10
-4 

s or longer) than the timescale of validity (e.g. 10
-5 

s [69]) of the 

local skeletal mechanism was investigated; it was found that generating a skeletal mechanism with a 

longer applicable timescale, e.g. by lowering the DRG cutoff, from          to a smaller value — 0.01 

or 0.001, was more efficient than performing multiple DRG reductions within each chemical integration 

time step.  The DRG based DAC scheme achieved a speedup factor of two to four for non-premixed cases 

using the USC-Mech II [76] and two to six for premixed cases with good accuracy in temperature and 

species concentrations; with the GRI-Mech 3.0 [64] the DAC scheme achieved a speed factor up to three. 
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Tosatto et al. [77] formulated a DRG based DAC scheme that took into account transport fluxes, 

and applied it to several flame simulations.  A speedup factor of 5 was reported for a steady JP-8 flame, 

while a larger speed up factor of 10 was found for a time dependent ethylene flame.  The distribution of 

active species numbers kept in the mechanism was found to closely mirror the spatial structure of the 

flame itself. 

 

Gou et al. [78] paired a simplified version of the path flux analysis method [79] with the DAC 

scheme in an effort to address the challenge of controlling error in a DAC scheme.  First a table of 

threshold values was determined such that accuracy was maintained for key parameters (e.g. temperature, 

pressure, major species mass fractions) in homogenous ignition studies.  During the simulation, the 

optimal cutoff value was determined via the look-up table based on the local conditions and a reaction 

progress variable in order to generate the local skeletal mechanism.  The error controlled DAC scheme 

(EC-DAC) was capable of speedups factors from 5-100 with tight error control.  It is noted however that 

this scheme relies on reliably predicting the range of combustion conditions that will be encountered, 

which is potentially a problem as seen in Section 1.4.  Additionally, the selection of the reaction progress 

variable (mass fraction of oxygen) may not be optimal in turbulent reacting systems, where the role of 

mixing is much more pronounced.  More investigation is needed into strict error control for DAC 

simulations. 

 Shi et al. [23] applied the DAC/DRGEP scheme to the simulation of direct injection engines.  

Examining the target species set proposed in [69], it is argued that inclusion of certain target species (fuel, 

HO2, CO) can overestimate the importance of the target species for certain combustion stages.  In 

particular, during the post ignition stage at high temperatures, almost all of the large hydrocarbons have 

broken down into small molecules, thus only CO oxidation and H2-O2 reactions play an important role, 

and a more appropriate target set is (HO2, CO).  Further, once the system undergoes complete combustion 

or reaches near equilibrium, none of the original target species are important anymore as the system has 
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shifted to CO2 and H2O production; an appropriate target set would be (CO2, H2O).  Thus, dynamic 

selection of target species based on the local thermochemical state is necessary to achieve maximal 

efficiency of the DAC scheme.  An extended DAC scheme (EDAC) for switching between various target 

sets based on thresholds of two progress equivalence variables was proposed.  It was also found that 

species inside the NO sub-mechanism were not included except in narrow temperature and equivalence 

ratio ranges, depending on the NO sub-mechanism used.  As this could result in large errors in NOx 

predictions, NO was recommended to be added to the target species set if the temperature was over a 

critical value (e.g. 1800K).  It is noted that if NO is present in the mixture (e.g. in exhaust gas recycling 

simulations) the DAC/DRGEP scheme is capable of accounting for hydrocarbon/NO sensitization effects 

on the ignition process without including NO in the target species set.  Finally, once combustion has 

completed (as determined by temperature and the progress equivalence variables) the DRGEP cutoff 

value could be increased by a factor of ten without any loss in accuracy.  

It was found that the base DAC scheme was capable of achieving a 30%–50% time savings for 

two small n-heptane mechanisms, with an extra 8–10% time savings achieved through use of the EDAC 

scheme.  It is noted that the DAC scheme should not be applied to computational cells with liquid fuel 

droplets so as to avoid any adverse effects on evaporation model predictions.  However, in the proposed 

EDAC scheme, the progress equivalence ratio tolerances for switching between target species sets and 

DRGEP cutoffs were derived empirically from zero-dimensional studies; thus they may not be applicable 

for all combustion problems and chemical mechanisms.   When combined with an adaptive multi-grid 

technique [80] a factor of four speedup was found for DI engine simulations.  The combination of the 

DAC scheme and the adaptive multi-gridding technique also enabled a multi-dimensional engine 

simulation using a detailed chemical mechanism (543 species) to be completed in a practical amount of 

time.  It is noted that the overhead of the EDAC scheme did reach ~5% of total computation time for 

some cases. 
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1.6 Goals 
This work sought to determine a method of selecting DRGEP target species solely based on the 

local thermochemical state of the system.  As with the EDAC method, this will allow DAC simulations to 

respond to changing combustion conditions, maintaining accuracy and computational efficiency where a 

single DRGEP target species would fail.  However unlike the EDAC scheme, the proposed method will 

not be limited to a fixed set of static target species sets, ensuring that accuracy and efficiency will be 

maintained even for unexpected combustion conditions.  The proposed method will also be generally 

applicable, unlike the EDAC method which was developed for a specific application.  Finally,  the 

proposed method will aid the average user in running a DRGEP based DAC simulation, as determining  

appropriate DRGEP target species will be easier compared to the current methods of target species 

selection. 

1.7 Chapter Outline 
 In Chapter 2, the goals discussed in Section 1.6 will be expanded upon.  In Chapter 3, a 

methodology for determining appropriate DRGEP target species based solely on the local thermochemical 

state will be detailed.  In Chapter 4, the developed method will be applied to constant volume and single 

cell HCCI simulations in order to demonstrate its validity and performance.  Finally conclusions and 

suggestions for further work will be discussed in Chapter 5. 
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1.8 Chapter Figures 

  

 

Figure 2: A sample DRGEP reduction with             .  
Note: only forward DICs pictured for clarity.  The target 
species A is dark grey, while all other included species are 
light grey. Species not included are pictured in white 

 

Figure 1: A sample DRG reduction. Note that edges can be 
asymmetric and that isolated groups may exist.  The target species A 
is dark grey, while all other included species are light grey. Species 
not included are pictured in white 
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2. Challenges and Objectives 

2.1 Description of Dynamic Adaptive Chemistry Scheme 

 As the DAC scheme will be used in this section to compare the performance of static target 

species sets a description of its implementation is presented.  All calculations are completed using a 

version of the open-source chemical kinetics software Cantera [81], modified to allow dynamic 

mechanism reduction as well as enable dynamic adaptive chemistry integration.  The implementation of 

the DAC scheme follows the form presented by Liang et al. [68], as seen in Eq. 11.  The simulation time 

step is set to         s (although the internal integration time step does vary), and the 

integrator/Jacobian was reinitialized at each simulation time step to account for the changing problem 

size. 

2.2 Static Target Species Selection  

Traditionally when using the DRG/DRGEP methods, the user is required to specify a list of target 

species known to be important to the phenomena of interest.  Typical choices of these target species 

include the fuel, oxygen and combustion products (e.g. CO2) as well as certain key radicals known to be 

good indicator species (e.g. H, OH, CO, HO2) [69, 75, 77].  Other species such as NOx and other 

pollutants can be added to the target set if accuracy is required in their prediction.  In this context, such a 

choice of an unchanging set of target species (removal of species from the target set based on mass 

fraction notwithstanding) is termed a static target species set.   

Most attempts to determine appropriate sets of target species performance have consisted of 

direct comparisons of small numbers of competing static target species sets.  However, as Shi et al. [23] 

demonstrated, the proper choice of target species may vary depending on the local combustion state.  

Selection of a target species set based on the local thermochemical state will be termed dynamic target 

species selection.   
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2.3 Effect of Target Species Selection on the Accuracy and Efficiency of the DRG and 

DRGEP Methods 

N-Heptane is an important primary reference fuel (PRF) for gasoline that has been extensively 

studied in literature.  N-Heptane exhibits strong negative temperature coefficient (NTC) behavior as well 

as two-stage ignition behaviors in the low temperature chemistry regime [82], and due to its large size its 

oxidation differs considerably from smaller hydrocarbons like methane and ethylene.  These factors 

require a higher level of fidelity for produced skeletal mechanisms, as large errors can accumulate 

rapidly.  For this reason, Version 2 of the LLNL detailed n-heptane mechanism (561 species) [71, 83, 84]  

has will be used in this chapter for investigation into the effect of choice of target species. 

 As discussed in section 1.3.3.2, in the DRGEP method species further away from the target set on 

the DRGEP graph are more likely to be removed due to the error propagation step.  While this can result 

in a smaller skeletal mechanism size for a similar error level when compared to a skeletal mechanism 

generated using the DRG method, it also implies that the proper selection of target species is more 

important for the DRGEP method; improper selection of target species can actually make the resultant 

DRGEP skeletal mechanism larger or considerably less accurate. 

 In Fig. 3, a single cell HCCI engine simulation using the n-heptane mechanism under the 

conditions listed in Table 1 is investigated.  The top figure shows the resultant temperature trace of this 

simulation; a two stage ignition process is predicted.  The lower graph displays a comparison of 

performance metrics for the DRG/DRGEP simulations for different target species sets.  The mass fraction 

cutoffs for the DRG/DRGEP target species were set to 10
-12

 and 10
-30

 respectively, in accordance with 

past recommendations [69, 75].  The DRG/DRGEP cutoff values were set to 0.01 and 0.001 respectively, 

such that the error in ignition delay was roughly similar between the two methods. 

In Fig. 3 it is seen that the accuracy of the DRG based DAC scheme is insensitive to the changing 

target species sets; the error in ignition delay is nearly constant.  As the DRG method does not include 
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any sort of error propagation, the entire set of species important to n-heptane breakdown is included by 

choice of n-heptane as a target species.  As the OH and HO2 radicals will be likely important to n-heptane 

breakdown, they will be included in the local skeletal mechanisms for most of the simulation; as well, all 

species important to them will be included in the local skeletal mechanism.  In essence, before ignition 

both will act as target species even if not explicitly included in the target species set.  A similar 

phenomenon is expected of CO once carbon dioxide production becomes an important combustion 

process.  The side effect of this phenomenon is that the average number of active species before ignition 

is roughly constant for all target sets; therefore the accuracy and reduction level of the DRG method for 

DAC simulations is largely controlled by the DRG cutoff value.  On the other hand, the DRGEP based 

DAC scheme is highly sensitive to the selected target species set. 

For the DRGEP based DAC simulations, it is seen that for the target species sets (n-heptane, CO), 

(n-heptane, CO, HO2), the error in ignition delay is considerably reduced.  However, using simply (n-

heptane) as the target species set greatly increases error, while adding OH to the target species set (n-

heptane, CO, HO2) increases the error level to near that of the DRG based DAC simulations.  This 

underscores the importance of selecting DRGEP target species that are applicable to the combustion 

problem at hand; by adding target species not directly relevant to the problem under consideration the 

error of the DRGEP based DAC simulation can actually be increased.   

Before ignition (except in the case of the full target species set) the average number of species 

evaluated for the DRGEP based simulations is ~10 less than that of the DRG based simulations.  Further, 

post ignition the DRGEP based simulations evaluate ~12–15 species on average, a significant 

improvement over the DRG based simulations which evaluate ~30 species on average.  However, when 

OH is added to the DRGEP target species set both methods have produce similarly sized local skeletal 

mechanisms.  It is noted that for the target species containing solely n-heptane, the target species set 

becomes empty after ignition as the mass fraction of n-heptane becomes less than the mass fraction cutoff 
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for both cases.  As a result, the DRG/DRGEP simulations tend to turn off chemistry evaluations post 

ignition; hence the post-ignition average of active species is ~0 for both cases.   

Fig. 3 demonstrates that with proper choices of target species, the DRGEP method can be more 

accurate with smaller local skeletal mechanisms, implying a greater potential speedup.  In the DAC 

scheme, the goal is to quickly produce the smallest local skeletal mechanism that can accurately model 

the combustion process at that local thermochemical state; maintaining accuracy while achieving the 

maximum possible speedup.  For this reason, the DRGEP method has been selected as the method of 

choice for this study.   

2.4 Range of Applicability for Static DRGEP Target Species Sets 

 As seen in Section 2.3, the choice of target species can have a large effect on both the accuracy 

and computational efficiency of the DRGEP method.  However, as demonstrated in this section, it is not 

always simple to choose a single static target species set that is appropriate for all combustion processes.   

 Consider Fig. 4 in which the DRGEP based DAC scheme is applied to constant volume ignition 

simulations of n-heptane at 5 and 20 atm at equivalence ratios of 0.5, 1, and 2.  The most accurate target 

species set from Fig. 3 (n-heptane, HO2, CO) is compared to the target species set (n-heptane, HO2, CO, 

OH).  The mass fraction cutoff for target species inclusion in the target set is again set to 10
-30

.  The 

DRGEP cutoff value was set to 10
-4

, which had been found in [68] to provide a good balance between 

accuracy and computational efficiency.  

It is seen in Fig. 4 that the static target species without OH is considerably less accurate in the 

transition between the NTC and high temperature chemistry regions of the ignition delay curve; the 

maximum error increases from 12% to 22% in the 20 atm. autoignition delays and 5% to 16% in the 5 

atm. autoignition delays without OH in the target species set.  It might be concluded that OH should be 

included in the target species set for the most generally applicable target species set for n-heptane, 

however as seen in Fig. 3 the inclusion of OH into the target species set considerably increased the error 
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in ignition delay predictions for a single cell HCCI simulation, while simultaneously increasing the 

resultant skeletal mechanism sizes.  This leads to the conclusion that a single static target species set may 

not be optimal for all combustion conditions; in line with the work of Shi et al. [23].  Although this is not 

an issue in relatively simple combustion problems where the major combustion conditions can be known 

apriori with reasonable certainty, it may become an issue in large multi-dimensional simulations where 

the expected combustion conditions are more uncertain (see Section 1.4).  If unexpected combustion 

conditions are encountered in a large multi-dimensional simulations, a target species in a static DRGEP 

target species set may become unimportant or irrelevant, and the computational efficiency or accuracy of 

a DRGEP based DAC scheme may be impacted. 

2.5 Development of a Dynamic Target Species Selection Strategy 
In order to ensure that accuracy and efficiency are maintained, a dynamic target species selection 

strategy is needed for DRGEP based DAC simulations.  The EDAC scheme proposed by Shi et al. [23] 

depended on empirically determined constants to switch between different static target species sets, 

however it is not necessarily straightforward to adapt this approach to other problems and chemical 

mechanisms.  Instead this work will focus on selecting appropriate DRGEP target species based solely on 

the local thermochemical state.  By doing so, the following will be achieved: 

1. Like the EDAC method, this dynamic target selection method will be able to respond to changing 

combustion conditions.  However, unlike the EDAC method, the proposed method will not be 

limited to a fixed set of static target species sets, ensuring that accuracy and efficiency will be 

maintained even for unanticipated combustion conditions. 

2. The method will be generally applicable, whereas the EDAC method was developed with a 

specific application in mind, potentially posing a challenge to when reconfiguring for different 

problems and chemical mechanisms. 
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3. As appropriate target species will be determined from the local thermochemical state, this method 

should require little user knowledge to determine DRGEP target species as compared to static 

target species selection. 
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2.6 Chapter Figures and Tables 

  Table 1:  N-Heptane engine simulation 

conditions.  Engine properties from [85], initial 

modified from [74].  Simulation begins at Crank 

Angle = 99° 

T0 (K) 421 

P0 (bar) 3.2 

RPM 900 

φ 0.5 

Connecting Rod / Crank ratio 3.2 

Displacement Volume (L) 0.981 

Compression Ratio 14 
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Figure 3: Top: temperature trace of HCCI simulation for full n-heptane mechanism under initial conditions listed in 
Table 1. Bottom: Comparison of error and resultant mechanism size of target species sets for DRG/DRGEP DAC 
simulation of single cell n-heptane HCCI simulation. Minimum target species mass fractions were set to 10

-12
 and 

10
-30

 for the DRG/DRGEP simulations respectively, in accordance with [71] and [65].  DRG/DRGEP cutoff values were 
set to 0.01 and 0.001 respectively, such that the error for the full target set was similar between methods.   
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Figure 4: Comparison of two static target species sets for constant volume n-heptane ignition delays.  By adding OH to 
the target species set the maximum error decreases from 22% to 12% for the 20 atm cases, and 16% to 5% for the 5 atm 
cases. The DRGEP cutoff value was set to 10

-4
 for both cases and the minimum mass fraction for a target species to be 

included in the target species set was set to 10
-30

 in accordance with [65] 
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3. Dynamic Target Species Selection  

3.1 Sample Ignition Studies 

 To develop this method of dynamic target species selection n-heptane constant volume ignition 

studies will be examined using Version 2 of the LLNL detailed n-heptane mechanism (561 species) [71, 

83, 84].  In order to investigate the effect of differing combustion pathways, two sample cases will be 

taken from the high and low temperature regimes of n-heptane constant volume autoignition at an initial 

pressure of 2 atm (Fig. 5).  The first case (700 K, 2 atm,    ) lies in the transition from the NTC 

chemistry regime to the low temperature chemistry regime.  It exhibits a two stage ignition process; after 

first stage ignition most of the n-heptane has been exhausted and the temperature is ~900K (Fig 6).  The 

second case (1000K, 2 atm,    ) lies in the transition from the NTC chemistry regime to the high 

temperature chemistry regime, and exhibits a single stage ignition process (Fig 6).  By selecting ignition 

studies in ranges where different chemical processes dominate, the effect of chemistry on the proposed 

method can be investigated.  Additionally as the temperature of the 700K case after first stage ignition is 

similar to that of the 1000K case, an opportunity is provided to investigate the effect of temperature on 

changing chemical pathways. 

3.2 Examination of the Directed Relation Graph with Error Propagation Structure 

 To understand this method of determining target species the meaning of the DRGEP coefficients 

must first be examined (Fig. 7).  The DRGEP adjacency matrix (Fig. 7) in this study is formatted in row-

major format; the value at row i, column j is the DRGEP direct interaction coefficient representing 

species i's dependence on species j (i.e.    ).  If     is large, species B is considered important to the 

production or consumption of species A; similarly, if     is large, species A is considered to be important 

to the production or consumption of species B.  Summing all DRGEP coefficients in column A (Fig. 7): 

                ∑     

               

 
(12)  
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A species with a large column sum will be important to the production/consumption of many 

other species, and therefore will be very active in the mechanism.  However, since the column sum of a 

species is dependent on the number of neighbors it has in the mechanism, it cannot be used directly to 

make comparisons between different species.  Yet, a sense of its utility in tracking the activity of a species 

can be observed by comparing column sums of the same species in different ignition cases, as 

demonstrated in Fig. 8. 

In the 700K ignition case, much of the n-heptane is consumed during first stage ignition; as a 

result the column sum of n-heptane drops off significantly.  The column sum of CO2 remains small 

throughout the process, indicating that it reacts with relatively few species.  In the low temperature region 

before first stage ignition, the column sum of O2 and OH are particularly large as a result of the enhanced 

R-OH and R-O2 chemistry.  Additionally the column sums of HCO and HO2 are much lower in this 

region, indicating they are less important to the mechanism at this lower temperature state.  After first 

stage ignition, the column sums of all species except n-heptane reach levels similar to that of the 1000K 

case, indicative of the temperature effect of the changing strength of chemical pathways.   

The absence of a multiple stage ignition event in the 1000K ignition case manifests in far more 

gradual changes in the column sums.  The column sum of n-heptane steadily declines as it is consumed.  

The column sum of the HCO radical steadily increases throughout the induction period, as it becomes 

more important to CO2 production. The column sum of OH stays roughly constant throughout ignition, 

while the column sum of HO2 declines approaching ignition as its primary consumption pathway, via n-

heptane reactions, slows down.  Finally, CO2 has a small column sum throughout the process, similar to 

the 700K case. 

3.3 Target Species Roles 

Common choices of target species tend to fall into one of two categories, important radicals (e.g. 

OH, HO2…) and important reactants and products (e.g. n-heptane, O2, CO2, CO…).  In Fig. 9, a sample 
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local DRGEP reduction of the n-heptane mechanism [83] using either n-heptane or the OH radical as a 

target species is examined. 

Examining the immediate neighbors of n-heptane on the DRGEP graph, it becomes clear that n-

heptane only directly includes a few species, but tends to be strongly dependent on each.  Most species 

included in the resultant skeletal mechanism are kept due to their importance to the first ring of strongly 

linked species.  This type of target species behavior will be designated a ‘locally important’ target species 

due to its strong, but localized link to a few species.  It has been found that CO, CO2 and n-heptane tend 

to behave as locally important target species. 

Examining the OH reduction graph reveals a different pattern.  Most of the species included are 

one step away from OH on the graph, and are weakly linked to it.  As a result, relatively few species more 

than one step away are included.  Further, those included species farther away from the first ring of 

weakly linked species tend to be very strongly linked to a species in that ring.  This type of target species 

behavior will be designated a ‘globally important’ target species, due to its direct, but weak, link to so 

many species.  It has been found that most radicals, e.g. OH, HO2, behave as globally important target 

species.  Additionally, non-radicals involved in many reactions, e.g. O2 behave as globally important 

target species.  The number of reactions and neighboring species for each of the commonly used target 

species is listed in Table 2.   

In the case of oxygen, there are many potential reactions with a large number of species; 

however, except for the case of low temperature chemistry relatively few of these pathways are strongly 

reacting.  This leads to the lower column sum values of oxygen compared to OH and HO2 as seen in Fig. 

8.  In general, global target species will tend to have larger column sums as they react with many more 

species than locally important target species, making the column sum alone insufficient to compare 

species as potential target species. 
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3.4 Column Sum Normalization 

As the magnitude of the column sum of a species is roughly dependent on the number of 

neighbors it reacts with, it is natural to look for a normalizing factor that  will be tend to be smaller for 

species with many active neighbors.  In the n-heptane mechanism used the OH radical is involved in 1051 

reactions with 519 different species, while n-heptane is only involved in 140 reactions with 36 species.  

As OH radical reacts with so many species, any neighboring species will only be involved in a relatively 

small percentage of its reactions.  However, n-heptane reacts with relatively few species, leaving the 

possibility open that a single species will be involved with most of its production or consumption.  From 

Eq. 4, it can be inferred that the average DRGEP coefficient from OH to its neighbors: 
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 will be much smaller than the average DRGEP coefficient from n-heptane to its neighbors.  That is: 

    ̅̅ ̅̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅ (15)  

Consequently, Row Average of a species A is defined as: 
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(16)  

This definition gives the average of the active entries in row A of the DRGEP adjacency matrix; a 

globally important target species will have many active neighbors, but will tend to be weakly dependent 

on all but a few, resulting in a lower row average.  A locally important target species will have few active 

neighbors but will tend to be more strongly dependent on each, resulting in a higher row average. 

 Plotting the row average (Fig. 10) for some commonly used target species, it is seen that the 

relation predicted in Eq. 15 holds; in both ignition cases the row average of OH is almost an order of 
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magnitude smaller than that of n-heptane.  Further, the species expected to be locally important targets 

(e.g. HCO, n-heptane and CO2), as listed in Table 2, have row averages at least an order of magnitude 

larger than the globally important target species (e.g. O2, OH, HO2) in both ignition cases. 

3.5 Definition of the Relative Importance Index 

Using the row average as a normalizing factor; we define the relative importance index (RII) as: 

                                     (17)  

The RII of a species attempts to balance the column sum and row average of a species, allowing both 

globally and locally important target species to be selected. 

In Fig. 11, we examine the RII values of commonly used target species throughout the sample 

integration cases.  In both cases the RII of OH remains one of the largest values throughout the 

integration.  Further, the RII of OH and O2 are significantly higher in the low temperature chemistry 

region.  In the 700 K ignition case the RII of n-heptane begins to decline as it is consumed during first 

stage ignition, while the RII of HCO and HO2 rise as new pathways open leading up to the ignition event.  

Finally, the RII of CO2 remains relatively low throughout the process, increasing slightly during first 

stage ignition and before the final ignition event. 

Initially in the 1000K case, the RII of HO2 and n-heptane track with each other, as HO2 

consumption is strongly coupled to n-heptane reactions; closer to ignition this phenomena stops as HO2 

switches to ethyl and carbon monoxide reactions.  Near the beginning of the simulation, OH consumption 

and production is strongly tied to a few species (e.g. n-heptane reaction forming heptyl radicals) but as the 

induction period progresses, OH consumption and production become weakly tied to reactions with many 

species; as a result the RII of OH drops throughout.  The RII of HCO continues to increase throughout the 

simulation, as HCO  CO  CO2 becomes a more important pathway for CO2 production.  Finally, 

carbon dioxide has a small RII throughout the simulation, but starts to increase right before ignition, 

similar to the 700K case. 
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It is interesting to note that outside of the low-temperature chemistry zone, oxygen has a 

relatively RII value due to its low column sum and row average.  This implies that other species in the 

mechanism depend relatively weakly on oxygen and that oxygen consumption is only weakly dependent 

on any single species.    However, without oxygen (or another oxidizer) there would be no combustion 

reaction at all.  This leads to the conclusion that the RII value of a DRGEP target species is more closely 

related to the local importance of a species on the directed relation graph, rather than its overall 

importance to the mechanism. 

3.6 Target Selection Process 

From the DRGEP coefficients computed during reduction, the RII of each species can be 

calculated.  Moreover, it is trivial to add the calculation of active neighbors, column, and row sums to the 

pre-existing DRGEP calculation loop, meaning that this method can be executed with negligible 

overhead.  Only a single extra loop that scales proportionally to the number of species in the mechanism 

is needed to put this information together to calculate the RII value.  In this loop, each species mass 

fraction is tested; if it is greater than a minimum threshold, the species is inserted into a priority queue 

with priority equal to its RII value.  If the queue size is larger than the total number of RII targets to be 

selected, the species with the minimum RII value is popped off the queue.  Depending on the priority 

queue implementation, the cost of each insertion/removal pair from the priority queue scales linearly or 

logarithmically with the maximum size of the queue (the number of RII target species to be selected).  

However, since the number of RII target species is a small fixed number, the overall cost can be 

considered constant time in asymptotic analysis, i.e., O(1). Therefore the total additional overhead of this 

method compared to using a static target species set scales linearly with the number of species in the 

mechanism.   

Consider a potential target species A that only participates in a single reaction.  Species A will 

have a row sum of unity by definition; all of its consumption and production must depend on the only 
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species that it reacts with.  If these neighboring species also participate in relatively few reactions (a 

definite possibility) then the DRGEP coefficients: 

                           

will tend to be closer in value to one, as each neighbor Bi will react with only a handful of species.  As a 

result the column sum of A will be roughly equal to the number of neighbors, meaning that the RII value 

of species A will be larger than expected for such a species.  To avoid such an over inflation in the RII 

value of species A, it is recognized that such a species is likely to exist in small quantities during 

combustion, as it will tend to be a single step in a long reaction pathway.  In order to counter act this 

potential biasing of RII values, only species with a mass fraction greater than a small threshold (e.g.   

     ) are considered during the target selection process. 

In Fig. 12, the targets selected most often throughout the 700 K ignition case are examined.  In 

the first stage ignition n-heptane and O2 are initially chosen as a target species.  O2 is selected due to the 

minimum mass fraction requirement, as well as the enhanced R-O2 chemistry in this region.  Shortly 

thereafter, two seven carbon ketones (NC7KET35 & NC7KET42) are selected as target species.  These 

ketones play a large role in the creation of OH, via both their creation and decomposition, and lay along 

major pathways in the low temperature breakdown of n-heptane.  At approximately 0.004s, c2h5coch2, a 

major product of the decomposition of these ketones begins to be selected as a target species.  

Additionally, c2h5coch2 lies along an important path for early CO2 production.  Once appropriate OH 

levels build up, OH is continually selected for the rest of the simulation.  As OH is known to be important 

even in small concentrations for these low temperature, first stage ignition processes, it has been found to 

be beneficial to relax the OH mass fraction cutoff (e.g.,            in order to maintain accuracy in 

this combustion regime.  This procedure was also extended to other specific key radicals (e.g., HO2) in 

order to promote their earlier selection as target species. 

After first stage ignition HCO is initially selected as a target species, once the HCO created 

during first stage begins to react.  Once the HCO level is depleted, it is no longer selected as a target 
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species.  Shortly thereafter, formaldehyde (CH2O), another important CO2 precursor, begins to be selected 

as a target species.  It will be continually selected until final ignition, when HCO becomes an important 

CO2 producer again.  Finally we see that CH2CHO, another strong CO2 producer via a reaction forming 

HCCO, is selected as a target species throughout second stage ignition.  In the post-ignition stage, only 

species involved in the H2-O2 and CO oxidation reactions are selected as targets.  In this case, this means 

the selection of H2O2, HCO, and HO2. 

In Fig. 13, the target selection of the 1000 K ignition case is examined.  N-heptane is again 

initially selected, but in this simulation the higher temperature creates OH and HO2 fast enough such that 

they are selected almost from the beginning of the simulation.  At these initial conditions, n-heptane 

destruction via HO2 reactions is favored, as well as OH creation via HO2-methyl/ethyl reactions.  As a 

result, HO2 remains important for much of the early simulation.  Relatively early in the simulation 

CH2CHO begins to be selected.  Although it is not particularly important to the production of CH2O and 

CO, nearly 100% of the CH2CHO formed decays into these species, providing an excellent path into the 

other strongly reacting CO2 pathways.  Later, C3H5-t is selected as a target species.  C3H5-t is strongly 

coupled to propylene (C3H6) and CH3COCH2, and lies on a major pathway connecting heptyl radicals to 

CH2CO and other CO2 producing pathways in this region.  Finally just before ignition, HCO begins to be 

selected as a target species again as the HCO  CO  CO2 pathway becomes important to CO2 

production.  Post-ignition, the same set of species (H2O2, HCO, and HO2) covering H2-O2 and CO 

oxidation reactions are selected. 
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Figure 5: Ignition delay curve of constant volume n-heptane ignition at two atmospheres and equivalence ratio 
equal to one.  The selected sample cases are marked with arrows 

3.7 Chapter Figures 
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Figure 6: Temperature traces of the two selected constant volume n-heptane ignition cases, 700K (top) and 1000K 
(bottom) at 2 atm and equivalence ratio equal to one. 
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Figure 7: A representation of a graph created from DRGEP coefficients, and their corresponding 
structure in the adjacency matrix.  Note that a true adjacency matrix would be symmetric 
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Figure 8: DRGEP column sum during constant volume n-heptane ignition for the two constant volume ignition cases 
show in Fig. 6 
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Figure 9: A sample DRGEP reduction with             for two choices of target species.  N-Heptane is strongly linked 
to a few species, while the Hydroxyl radical is weakly linked to many species.  Arrow size and color indicate magnitude 

of DRGEP coefficient.  Target species are nodes with no incoming edges 
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Figure 10: The DRGEP Row Average of commonly selected target species for the two constant volume ignition 
cases show in Fig. 6 
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Table 2:  Number of neighboring species and reactions for commonly selected target species in the n-heptane 

mechanism[84]   

Species Number of Neighboring Species Number of Reactions Target Species Type 

CO2 25 31 Locally Important 

HCO 106 145 Locally Important 

HO2 337 763 Global Important 

n-heptane 36 146 Locally Important 

O2 352 624 Global Important 

OH 519 1051 Global Important 
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Figure 11: The Relative Importance Index of commonly selected static target species for two sample constant 
volume ignitions as Fig. 6. 
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Figure 12: Targets selected by RII method throughout the 700 K ignition case.  Species with the top 
three RII values and mass fraction greater than 10

-10
 were selected to be targets. 
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Figure 13: Targets selected by RII method throughout the 1000 K ignition case.  Species 
with the top three RII values and mass fraction greater than 10

-10
 were selected to be 

targets.  The black strip in the n-heptane selection during the induction period indicates 
that it is rapidly switching between being selected and not selected as a target species. 
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4. Results 

4.1 Simulation Methods 

 All simulations were performed using the DAC procedure outlined in section 2.1.  For constant 

volume ignition timing runs, the simulation was run until ignition, which was determined as the first time 

step where temperature was more than 400K greater than the initial temperature.  Single cell engine 

simulations were run taking constant time steps. The crank angle was calculated at each time step, from 

which the volume of the cylinder could be calculated using the listed engine parameters.  The single cell 

engine simulations were run from a specified starting crank angle until the piston reached bottom dead 

center (BDC).  Simulation wall clock times reported were taken as the average over five runs.   

4.2 N-Heptane Engine Simulation 

 First in Fig. 14 we will reexamine the HCCI ignition case originally presented in Fig. 3 in order to 

determine the effect of dynamic choice of target species.  It is observed that the RII target species behave 

in a more predictable manner; adding more target species to the RII set results in continuing decline in 

ignition delay error predictions while the static target species sets exhibit the highly non-linear behavior 

with growing size as seen in Fig 3. 

The top graph in Fig. 14 compares the RII target sets using a DRGEP cutoff of 5 * 10
-3

 to the 

static target species sets using a DRGEP cutoff of 10
-3

.  These DRGEP cutoff values were selected such 

that the static and RII target species sets have ignition delay error of very similar magnitude.  For the most 

accurate target species sets for both selection methods (five RII species and n-heptane, CO, HO2 

respectively), the RII target set evaluates ~20 less species on average before ignition, and ~5 less species 

on average after ignition.  The bottom graph in Fig 14 compares the RII target sets and static targets 

species sets both using a DRGEP cutoff of 5 * 10
-3

.  Although the average mechanism sizes are very close 

for this case, it is seen that the RII target species sets become considerably more accurate than the static 
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targets sets as more RII species are added.  The RII target sets clearly outperform the static target species 

sets for this single cell HCCI engine simulation.  Further, the RII method is relatively insensitive to the 

number of RII targets; continually adding RII targets will greatly reduce error when there are only a few 

RII target species (e.g. one or two), however once there are several RII target species (e.g. three or four), 

adding more RII target species only marginally decreases the error in ignition delay, while marginally 

increasing the average species evaluated before ignition.  

In general it has been found that the DRGEP cutoff value for a RII target species set should be set 

to ~2–5 times that of a comparably sized static target species set in order to achieve similar accuracies.  In 

addition, the roughly constant level of accuracy of the RII target species sets with larger numbers of RII 

species raises some interesting possibilities.  For instance, since it is very simple to add relevant target 

species using the RII method, a ‘scattershot’ approach—where many RII targets (e.g., 10) are paired with 

a relatively high DRGEP cutoff value—becomes a viable option.  This will be investigated further in the 

following section.   

4.3 N-Heptane Constant Volume Simulations 

 Next the performance of the RII method on constant volume simulations of n-heptane will be 

assessed.  Sets of static and RII target species are compared; the DRGEP cutoff values were determined 

by trial and error such that the static and RII target species sets had a similar maximum error in ignition 

delay.  The static target set consisted of n-heptane, HO2, CO, and OH; the static targets were only 

included in the target set if their mass fraction was greater than 10
-30

.  The RII target sets consisted of the 

species with the maximum RII values and a mass fraction greater than 10
-8

 (unless otherwise noted).  In 

all RII cases the mass fraction cutoff was lowered for HO2 and OH to 10
-15

. 

 As the constant volume simulations do not have a fixed end time, but instead were run until 

ignition, the wall time is not necessarily the best measure of the performance of a target species set.  

Consider two target species sets that over and under predict ignition delay by 5%.  For the longest ignition 
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delays under consideration, this could be up to the order of 10
-3 

s, or 200 simulation time steps, meaning 

that the over predicted ignition delay simulation could take ~400 time steps longer than the under 

predicted case.  To account for this potential discrepancy, the simulation wall time is normalized by the 

ratio of the ignition delay predicted by the DAC scheme to the ignition delay as predicted by the detailed 

mechanism.   

Fig. 15 shows that three RII species set is capable of accurately predicting the ignition delays 

over a wide range of initial temperatures and equivalence ratios for the n-heptane mechanism at 5 

atmospheres.  The normalized wall times plot shows a large speedup for the RII method in the high 

temperature chemistry region, but the static target species set (n-heptane, CO, HO2, OH) has faster 

normalized wall times in the NTC region.  As the initial temperature is lowered and the curve begins the 

exit the NTC region, the wall times of both methods become roughly equivalent.   Fig. 16 shows the same 

two target species sets for 20 atm ignition delays; again the RII method is capable of accurately predicting 

ignition delays for a wide range of initial conditions.   The normalized wall times of the RII method for 

the 20 atm cases follow a similar trend to that of the 5 atm cases; considerable speedup is seen in the high 

temperature chemistry region, while the RII method tends to be slower in the NTC region.  Additionally, 

an interesting trend of greatly reduced normalized wall times for the RII method is seen further into the 

low temperature chemistry region of the ignition delay curve for the 20 atm cases.  The relevant ignition 

delay error statistics for the target species sets in Figs. 15 & 16 are summarized in Table 3. 

 In Fig. 17 and 18, RII and static target species selections with a higher ignition delay error limit 

(i.e. less than 15%) are explored for the n-heptane mechanism.  Two RII targets sets, one with 10 RII 

target species, mass fraction cutoff of 10
-10

 and a DRGEP cutoff of 5 * 10
-4

, and the other with 5 RII 

target species, mass fraction cutoff of 10
-8

 and a DRGEP cutoff of 2.5 * 10
-4

 were able to predict ignition 

delays with a similar maximum error level compared to the static target species set (n-heptane, CO, HO2, 

OH) with DRGEP cutoff of 10
-4

.  The relevant ignition delay errors are summarized in Table 4. 



50 
 

The five RII target species set had faster normalized wall times in the high temperature and low 

temperature regions for both pressures compared to the static target set; however, in the NTC region, the 

normalized wall time was typically comparable or worse than the static target species set.  The ten RII 

target species set exhibited considerably faster normalized wall times compared to the static targets set in 

almost all cases for the 20 atm constant volume autoignition curve. Further into low temperature region, 

the normalized wall times reach comparable levels to the static targets species set.  In the 5 atm 

autoignition cases, the ten RII target set exhibits the best performance of the three targets sets for all 

initial conditions except in the transition from the NTC region to the low temperature chemistry region, 

where slower normalized wall times (similar to those of the five RII target set) are observed. 

The ten RII species set in Fig. 17 & 18 is an example of the ‘scattershot’ approach described in 

section 4.2.  By coupling larger numbers of RII species with a higher DRGEP cutoff value, more of the 

graph is explored, however species less important to the RII target species are aggressively removed.  As 

a result, the ‘scattershot’ approach is capable of matching the accuracy of a static target species set, but it 

has faster normalized wall times for most initial conditions tested.  One issue noted is that initially in 

homogenous combustion problems relatively few species have mass fractions greater than 10
-8

; if only 

five species have an appropriate mass fraction then the RII method will not select a full ten target species, 

instead only five targets will be selected.  However, using the higher DRGEP cutoff value (5 * 10
-4

 for the 

ten RII species set vs. 2.5 * 10
-4

 for the five RII species set) can induce large error if the ten RII species 

set remains incompletely filled for many consecutive time steps.  For this reason the mass fraction cutoff 

for this set was lowered to 10
-10

 for this RII target set.  The performance of this target species set merits 

further investigation into the ‘scattershot’ RII approach;  further improvements may come from a more 

robust method of filtering out biased RII species values, as well as a control strategy that varies the 

DRGEP cutoff value based on the number of RII target species selected.  
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4.4 Isopentanol Constant Volume Simulations 

 Biofuels are attractive possible alternate fuels that can reduce greenhouse gas and pollutant 

emissions.  Isopentanol is one of a variety of next-generation biofuels that may be used as an alternative 

fuel source for combustion engines.  As isopentanol has a volumetric energy density over 30% higher 

than that of ethanol, and is additionally less hygroscopic it has the capability to be a better alternative fuel 

for gasoline engines [86].  Isopentanol is a C5 branched alcohol with a methyl branch; as such it exhibits 

very different chemistry from n-heptane, with minimal NTC behavior and generally undergoing only 

single stage ignition processes.  As such, it is a good choice to further demonstrate the general 

applicability of the RII method.  A 360 species isopentanol mechanism from Sarathy et al. [87] was used 

in this section to study constant volume ignition under HCCI conditions as well as single cell HCCI 

simulations adapted from Yang et al. [88].   

In Fig. 19, two target species selections with similar maximum error levels (~8%) are compared.  

The RII method is capable of reproducing the ignition delays over a wide range of initial temperatures 

and equivalence ratios.  The relevant ignition delay error statistics are summarized in Table 5.  The 

normalized wall times of the static target species are slightly faster for most cases.  

In Fig. 20, two target species selections with a higher maximum error level (~16%) are compared.  

Again the RII method is capable of matching the accuracy of the static target species set over the range of 

the ignition delay curves.  The relevant ignition delay error statistics are summarized in Table 6.  It is 

interesting to note that the RII method has the largest error in the high temperature region.  For example, 

if only ignition delay cases with initial temperature less than 1100K are considered, the maximum error of 

the RII target set drops to 7.92% from 16.01%.  For the highest equivalence ratio considered (    , the 

ignition delay simulation only runs for 20-60 simulation time steps before ignition in this region, making 

each time step particularly important to accurate ignition delay predictions.  It has been found that 

decreasing the simulation time step (to 10
-6

s) can correct this problem, but further investigation is 
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required to see if the skeletal mechanisms generated by the RII method have a more limited timescale of 

validity in this region.  Again, the normalized wall times of this RII target set are slower for most cases. 

4.5 Isopentanol Engine Simulation 

 In Fig. 21, a comparison of RII and static target simulations of the isopentanol mechanism under 

HCCI conditions are presented for a single cell engine simulation.  Engine conditions were adapted from 

[88], and are summarized in Table 7.  The smaller static target species set (isopentanol, HO2, CO) was 

determined based on the target selection criteria proposed by Liang et al. [69], while the larger target 

species set additionally included OH based on the wider range of applicability of  a similar target species 

set discussed in section 2.5 (Fig. 4). 

 In Fig. 21 it is seen that all of the target species sets predict the ignition crank angle very well, to 

within 1.6° for all target species sets.  The RII target sets are seen to be considerably more accurate in the 

prediction of ignition delay.  The RII target species set with a higher DRGEP cutoff value (0.05) has 

similar accuracy to the static target species sets with a lower DRGEP cutoff value (0.01), while the RII 

target species set with a lower DRGEP cutoff value (0.01) is the only target species set to predict the 

ignition delay angle to within 1°.  The RII target set with a higher DRGEP cutoff value (0.05) evaluates 

considerably fewer species than the static target species sets, for a similar level of accuracy.  For most of 

the pre-ignition period this RII target set evaluates 20-60 fewer species than the static targets sets, the 

only exception being immediately prior to ignition, where the static target species sets start evaluating 

slightly fewer species.  Further, even the more accurate RII target set (DRGEP cutoff of 0.01) evaluates 

fewer species than the static targets for most of the simulation.  Finally, the decrease in active species for 

the target species sets before ignition is the likely cause of their higher error; this may indicate that the 

static target species sets are no longer valid at that point of the simulation.  It is interesting to note that the 

RII method was capable of similar accuracy in ignition delay predictions compared to static target species 

sets while generating significantly smaller skeletal mechanisms for both the n-heptane and isopentanol 
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HCCI engine simulations studied.  Further investigation into the computation performance benefits of 

using the RII method for HCCI conditions is merited.  
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4.6 Chapter Figures and Tables 

 

 

Figure 14: Comparison of DRGEP based DAC simulations of static target sets and RII selected targets for the same 
HCCI conditions pictured in Fig.3.  Static target species were removed from the target species set when their mass 

fraction was less than 10
-30

.  The species with the maximum 1-5 (corresponding to graph) RII value with mass 
fraction greater than 10

-8
 were considered for RII targets.  Additionally the mass fraction cutoff for OH and HO2 was 

lowered to 10
-15

.  Top: The DRGEP cutoff was set to 0.001 for the static target sets and 0.005 for the RII target sets. 
Bottom: The DRGEP cutoff was set to 0.005 for the static target sets and 0.005 for the RII target sets. 

 



55 
 

  

 

Figure 15: Static and dynamic target species comparison with maximum error ~7% for constant volume ignition delays 
of n-heptane at 5 atm.   The mass fraction cutoff was 10

-30
 and 10

-8
 for the static and dynamic targets, respectively (with 

the HO2 and OH mass fraction cutoff set to 10
-15

). 
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Figure 16: Static and dynamic target species comparison with maximum error ~7% for constant volume ignition delays of 
n-heptane at 20 atm.   The mass fraction cutoff was 10

-30
 and 10

-8
 for the static and dynamic targets, respectively (with 

the HO2 and OH mass fraction cutoff set to 10
-15

). 
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Table 3: Maximum and Average error for the target species selections in Fig. 15 & 16, as well as the 

average percent of simulation time spent in the reduction step. 

Target Species Set        

Max % 

Error: 

Avg. % 

Error: 

Avg. % of Time Spent in 

Reduction: 

nc7h16, ho2, co, oh        6.90 0.71 0.80 

rii = 3      8.11 1.76 0.83 
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Figure 17: Static and dynamic target species comparison with maximum error ~15% for constant volume ignition delays of 
n-heptane at 5 atm.   The mass fraction cutoff was 10

-30
 static targets set and 10

-8
/10

-10
 for the five and ten RII species 

target sets respectively (with the HO2 and OH mass fraction cutoff set to 10
-15

 in both cases). 
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Figure 18: Static and dynamic target species comparison with maximum error ~15% for constant volume ignition delays 
of n-heptane at 20 atm.   The mass fraction cutoff was 10

-30
 static targets set and 10

-8
/10

-10
 for the five and ten RII target 

sets, respectively (with the HO2 and OH mass fraction cutoff set to 10
-15

 in both cases). 
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Table 4: Maximum and Average error for the target species selections in Fig. 15, as well as the average percent of 

simulation time spent in the reduction step. 

Target Species Set        Max % Error: Avg. % Error: 

Avg. % of Time Spent 

in Reduction: 

nc7h16, ho2, co, oh      12.48 1.58 0.79 

rii = 5           13.40 2.20 0.87 

rii = 10         14.85 2.98 0.87 
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Figure 19: Static and dynamic target species comparison with maximum error ~8% for constant volume ignition delays of 
isopentanol.  The mass fraction cutoff for the static targets was 10

-30
 and 10

-8
 for the dynamic targets (with the HO2 and 

OH mass fraction cutoff set to 10
-15

). 
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Figure 20: Static and dynamic target species comparison with maximum error ~16% for constant volume ignition delays 
of isopentanol.  The mass fraction cutoff for the static targets was 10

-30
 and 10

-8
 for the dynamic targets (with the HO2 

and OH mass fraction cutoff set to 10
-15

). 
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Table 5: Maximum and Average error for the target species selections in Fig. 19, as well as the average percent of 

simulation time spent in the reduction step. 

Target Species Set 
       

Max % Error: 

Avg. % 

Error: 

Avg. % of Time Spent 

in Reduction: 

ic5h11oh, ho2, co, oh        8.73 3.48 0.40 

rii = 4        8.66 2.73 0.42 

 

 

 

 

 

Table 6: Maximum and Average error for the target species selections in Fig. 20, as well as the average percent of 

simulation time spent in the reduction step. 

Target Species Set 
       

Max % Error: 

Avg. % 

Error: 

Avg. % of Time Spent 

in Reduction: 

ic5h11oh, ho2, co, oh      15.10 5.65 0.38 

rii = 4      16.01 4.86 0.40 

 

 

 

 

 

Table 7: Isopentanol engine simulation 

conditions.  Engine properties and initial 

conditions from [88]. 

T0 (K) 405 

P0 (atm) 1 

RPM 1200 

φ 0.38 

Connecting Rod / Crank ratio 3.2 

Displacement Volume (L) 0.981 

Compression Ratio 14 
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Figure 21: Static and dynamic target species comparison for single cell engine simulation of isopentanol under 
HCCI conditions.  The mass fraction cutoff for the static targets was 10

-30
 and 10

-8
 for the RII sets (with the 

HO2 and OH mass fraction cutoff set to 10
-15

). 

 



65 
 

5. Conclusions and Further Research 

A novel method of determining appropriate target species for DRGEP based DAC simulations 

was developed and implemented.  The Relative Importance Index (RII) method is capable of accurately 

predicting constant volume ignition delays for a wide variety of conditions for n-heptane [71, 83, 84] and 

isopentanol [87] detailed mechanisms.  Additionally, the RII method was shown to accurately reproduce 

ignition crank angle delays for single cell engine simulations under HCCI conditions using both 

mechanisms.   

 The selection of static target species requires user knowledge of both the combustion mechanism 

under consideration as well as the important expected combustion processes in order to make appropriate 

choices of static target species.  If improper static target species are selected, or unexpected combustion 

conditions are encountered, the accuracy and computational efficiency of a DRGEP based DAC method 

can be drastically impacted.  As the RII method determines appropriate target species solely from the 

local thermochemical state, its use eliminates the concern of static target species sets being applied to 

inappropriate combustion processes and conditions.  Further, as the target selection process is automated, 

far less prior knowledge on the important combustion processes and target species is required of the user 

in order to determine an appropriate DRGEP target species set. 

It is possible that further parametric studies will continue to demonstrate the improved 

performance offered by the RII target method.  However, it appears that even with dynamically selected 

target species, there is a minimum size limit in order for skeletal mechanisms generated by the DRGEP 

method to maintain reasonable accuracy.  Going past this limit rapidly induces large amounts of error in 

combustion target predictions.  The result of this is that the speed of DRGEP based DAC simulations 

using the RII method and static target species sets could be roughly similar for certain combustion 

simulations, such as the constant volume ignition cases shown in this work.  On the other hand, the RII 

method shows considerable improvement in the HCCI simulations tested suggesting that the RII method 

may be particularly valuable under HCCI conditions.  The ‘scattershot’ RII target set described in section 
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4.3 seemed to have the best normalized wall times for the n-heptane constant volume simulations with a 

higher error limit in ignition delay (~15%). 

 Further improvement to the RII method is likely to be achieved via two avenues.  First, more 

parametric studies of the ‘scattershot’ RII approach may lead to improved performance; the approach 

would likely benefit from a more rigorous RII bias detection strategy, as well as by modifying the 

DRGEP cutoff value based on the number of RII targets considered.  Secondly, a method of determining 

the appropriate DRGEP cutoff value based on the local thermochemical state could prove to be greatly 

beneficial to the overall speed of DRGEP based DAC simulations.  In this work, the DRGEP cutoff 

values for ignition delay studies were determined such that accuracy is maintained over the entire ignition 

delay curve.  However, if only specific regions of the ignition delay curve are of interest (e.g. the low 

temperature region) the DRGEP cutoff value can often be relaxed significantly. In addition, for other 

combustion problems, e.g., in the n-heptane HCCI simulation studied, the DRGEP cutoff value could 

often be raised by an order of magnitude (compared to the DRGEP cutoff value required for accuracy in 

n-heptane constant volume ignition studies) while maintaining reasonably accurate predictions of ignition 

crank angle.  Therefore, by varying the DRGEP cutoff with the local thermochemical state, significant 

speedup may be achieved.  
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Appendix A 

Optimizations for Dynamic Adaptive Chemistry Methods 

 As alluded to in section 1.3.3.2, several optimizations were made to the graph search method to 

speed the reduction process.  Presented in Fig. 22 below is pseudo-code for the graph search used: 

The main advantages of this search are as follows: 

1) All targets are searched together as a set.   

 Consider the OIC update step (4).  If a species Node neighbors one of the target species, then at 

some point in the while loop, neighbor will be a target species.  However, the OIC of each target 

species is set to unity, and thus will not be changed in the OIC update step (4).  If Node does not 

neighbor a target species, then the OIC update step will act as if only a single target species is being 

searched.  Searching the targets together as a set effectively makes the search more efficient for 

multiple targets.   

2) All edges with DRGEP coefficient smaller than the DRGEP cutoff are not expanded 

 Say                            , for a given node and neighbor.  This implies that 

if                                     .  Therefore the OIC value of all possible paths 

traveling through ‘node’ to ‘neighbor’ will be less than the DRGEP cutoff, and will not be updated in 

(4); any species further along this path will therefore will not be included in the skeletal mechanism if 

it not included through an alternative path.  Therefore it is safe to ignore this edge.  This is similar to 

the RBFS algorithm presented by Liang et al [68]. 

3) Once the maximum queued OIC value is less than the DRGEP cutoff, the search can be 

ended 

Following from 2), if the maximum OIC value remaining is less than the DRGEP cutoff, than no 

updates to the OIC array after this point in the search can result in a OIC  greater than the DRGEP 
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cutoff (i.e. no new species will be added to the skeletal mechanism).  Therefore we can end the 

search. 

 

  

//Arguments: 
// targets  – the list of target species to use in the search 
// r_AB  – the DRG coefficient matrix 
// R  – output array storing the OICs 
//                       – the DRGEP cutoff 
Optimized_Dijkstras_Search (targets, r_AB, R,       ) 
{ 
 Set R = 0 
 nodes_to_visit = {all species} 
1) Foreach target in targets 
  Set R[target] = 1 
 next_node = targets[0] 
 While (nodes_to_visit is not empty) 
 { 
  Node = nodes_to_visit[next_node] 
  Erase next_node from nodes_to_visit 
3)  If (R[Node] <       ) 
   Exit 
  Foreach neighbor of Node 
  { 
2)   If (r_AB[Node, neighbor] <       ) 
    Continue 
4)   R[neighbor] = max(R[neighbor], R[Node] * r_AB[Node, neighbor]) 
  } 
  next_node = index of node in nodes_to_visit with maximum R[node] 
 } 
} 

Figure 22: Pseudo code of the optimized Dijkstra’s search 
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