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Abstract 

  

 Osteoporosis is a debilitating skeletal disorder affecting approximately 30% of women 

over the age of 50 in the United States. The Mediterranean Diet has strong positive effects on 

cardiovascular health, and so it is of interest to also study its effects on bone health. We 

conducted a longitudinal, pilot, clinical intervention trial with 16 postmenopausal women. The 

study had two aims: first to determine if postmenopausal American women were able to adopt a 

traditional Mediterranean-style diet (MedSD); and second, to determine if adherence to a MedSD 

resulted in improved bone turnover markers. Participants followed their typical diet for 12 

weeks, and then were counseled by a Registered Dietitian to follow the MedSD for 12 weeks. 

Three-day diet records and the Mediterranean Diet Score questionnaire (MDS) were collected 

throughout the study period as subjective measures of compliance, while serum fatty acid (FA) 

profiles were analyzed as an objective measure of compliance to the diet. Serum markers of bone 

resorption (C-terminal cross-linking telopeptides of type 1 collagen, CTX) and bone formation 

(procollagen type 1 amino-terminal propeptide, P1NP) were collected to assess changes in bone 

turnover. Mixed effects longitudinal growth modeling was used to assess changes in primary and 

secondary outcome variables. The changes observed in 3-day diet records, MDS, and serum FA 

profiles reflected significant adherence to the MedSD during the intervention phase. Neither 

serum P1NP nor serum CTX changed significantly throughout the study, however, when 

individual dietary components were examined, dietary omega-3 had a significant positive effect 

on serum P1NP, suggesting that this aspect of the MedSD may have a positive impact on bone 

formation. Future studies should aim to further examine this relationship. 

 

 

 



Introduction 

 Osteoporosis is a skeletal disorder characterized by microarchitectural deterioration of 

bone, resulting in compromised bone strength and increased risk of fracture (1). In 2008, 

approximately one in three women over the age of 50 in the United States were diagnosed with 

osteoporosis (2, 3, 3), and the national prevalence is expected to increase as the population 

continues to age (1, 2).  Health care costs associated with osteoporosis are projected to reach 

$25.3 billion by the year 2025 (4). Because the disease is essentially irreversible, it is important 

to develop more effective prevention and treatment strategies. Various modifiable risk factors 

have already been identified, including low calcium intake, vitamin D insufficiency, high salt 

intake, high caffeine intake, and excessive alcohol intake (5). Recent research has suggested that 

omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) may also play a role in 

bone health (6, 7, 7-9). While it is beneficial to examine the role of specific nutrients in bone 

health, it may be more appealing to look at the impact of a whole-diet approach on prevention, 

because such interventions may be more applicable. Additionally, there is a possibility of 

synergistic effects between foods and nutrients, and these interactions must be considered when 

conducting dietary interventions. A whole diet intervention approach mimics the consumption of 

a variety of foods and therefore encompasses the possible interactions that may exist within a 

dietary pattern (10). 

 One dietary pattern that is being studied for its potential impact on bone health is a 

Mediterranean-Style Diet (MedSD). A traditional MedSD is characterized by high intake of 

fruits, vegetables, legumes, non-refined grains, moderate to high intake of fish, moderate intake 

of dairy, low intake of red or processed meat, sweets, and saturated fat, with the main source of 

dietary fat coming from olive oil (11). Specific components of the MedSD are associated with 



higher bone mineral density (BMD), such as increased fruit and vegetable consumption (12, 13), 

moderate fish intake (14-17), greater intake of olive oil and decreased consumption of red meat 

(18). Dietary assessment tools have been developed and validated to measure the degree of 

adherence to a MedSD in an American population. The tools are based on the traditional 

Mediterranean diet pyramid and take into account the potential consumption of non-

Mediterranean foods, thus making them applicable to a US population (19). 

 Previous studies examining the relationship between the MedSD and bone health are 

mainly cross-sectional and observational (20, 21). Few intervention trials have assessed the 

impact of a MedSD on skeletal parameters, and those that have been done, use either a mixed 

gender sample (22), or a sample of only men (23, 24), thus failing to target the high-risk 

population of post-menopausal women. Seiquer et al examined calcium retention in young men 

after a 28-day MedSD intervention and found there to be significant decreases in urinary 

calcium, and significantly higher calcium retention after the MedSD than during the basal diet 

period, suggesting that the Mediterranean intervention diet positively impacted calcium 

utilization and thus could potentially improve peak bone mass in adolescent boys (24). Both 

Bulló et al and Fernandez-Real et al utilized a subsample of the PREDIMED intervention trial, a 

study which assigned men and women to either a Mediterranean diet with mixed nuts, 

Mediterranean diet with virgin olive oil (VOO), or a low-fat control diet in order to assess 

cardiovascular outcomes. Bulló et al. examined bone mineral density (BMD) as a secondary 

outcome in 271 men and women via quantitative ultrasound on the calcaneum, and urinary free 

deoxypyridinoline (a marker of bone resorption) and found that after a one year follow-up 

period, there were no significant changes in BMD or bone resorption markers (22). 

Contrastingly, Fernandez-Real et al examined serum total and uncarboxylated osteocalcin levels, 



serum CTX and serum P1NP in 127 men at baseline and 2-yr follow-up from fasting blood 

samples. Serum CTX significantly decreased in all three dietary groups, but serum P1NP 

significantly increased in only the MedDiet+VOO group, suggesting that a Mediterranean diet 

supplemented with virgin olive oil for a period of 2 years may have a protective effect on bone in 

elderly men at cardiovascular risk (23). These studies are inconclusive and fail to address the 

potential impact of a MedSD in the high-risk population of post-menopausal women.  

 We therefore undertook a six-month MedSD intervention trial in 16 postmenopausal 

American women and assessed bone turnover markers as the primary outcome.  The overall 

objectives of this study were 1) to determine if postmenopausal women living in the Unites 

States could adopt and adhere to a MedSD, and 2) to assess the impact of adherence to a MedSD 

on bone turnover, measured by serum markers of bone resorption (C-terminal cross-linking 

telopeptides of type 1 collagen, CTX) and bone formation (procollagen type 1 amino-

terminal propeptide, P1NP). The specific hypotheses for each objective are defined in Table 1. 

 
Methods 

Participants. Thirty-three women were screened via telephone for participation. Ten women 

failed telephone screening leaving 23 postmenopausal women who voluntarily enrolled. Seven of 

these subjects were dropped during the study period secondary to changes in supplement use 

(meeting exclusion criteria), resulting in a total of 16 participants completing the study. The trial 

design was a one group, longitudinal pilot clinical intervention. Each subject followed a baseline 

control diet for 12 weeks and then switched to a Mediterranean-style intervention diet. Subjects 

visited the research site approximately every 3 weeks for a total of 9 visits. 



 Exclusion criteria included any disease that may affect bone metabolism, cancers of any 

kind (except basal or squamous cell of the skin) in the past 5 years, use of medication known to 

affect bone metabolism, participating in physical activity more than 75 minutes/day for 6 

days/week, dietary behaviors or supplementation in excess of DRI upper limits, vitamin D 

supplementation in excess of 10,000 IU/day, total calcium consumption from food and 

supplements exceeding 2,000 mg/day, following a medically prescribed diet or dietary pattern 

similar to the Mediterranean-Style diet (MedSD), history of chronic renal or liver disease, history 

of hip fracture or known vertebral fracture within the past year, alcoholic beverage intake >3 

drinks/day, having an allergy to fish or nuts, achieving a score >81% (45/55) on the 

Mediterranean-Style Dietary Pattern Score assessment form (MSDPS), consumption of more 

than 5 servings/day of fruit or vegetables, consumption of 2 or more servings/week of fatty fish, 

or consumption of 3 or more servings/week of any seafood. The study was approved by the 

Investigational Review Board at the University of Connecticut Health Center (UCHC). All 

participants gave their written informed consent. 

Diets. Subjects followed their typical diets for the first 12 weeks of the study period. They were 

instructed by a Registered Dietitian not to make any major changes to their typical diet (i.e. do 

not introduce new diet habits or eliminate foods or food groups) and not to start any new 

nutritional supplements. This period served as the control for the intervention phase. 

 After 12 weeks, participants were educated by a Registered Dietitian to begin the 

MedSD. This intervention diet included 4 components: 1) incorporation of 3 Tablespoons Extra 

Virgin Olive Oil (EVOO) daily; 2) incorporation of 3-5 servings/week of high omega-3 fish 

(salmon or tuna); 3) incorporation of 1.5 ounces of walnuts daily; 4) incorporation of increased 

amounts of fruits, vegetables and whole grains. Participants were provided with the first three 



components of the diet at the research site, and were instructed on how to make the changes 

involved in the fourth component on their own. Participants could choose any combination of 

frozen tuna steaks, frozen salmon fillets, or canned tuna in water to meet the requirements of the 

second dietary component. In order to maintain consistent calorie consumption and prevent 

weight gain, subjects were counseled about the importance of making the above dietary changes 

via replacement of already existing foods rather than addition of these foods (i.e. EVOO to 

replace butter, salmon to replace beef or pork, etc.). 

Data Collection. Participants traveled to the Center on Aging at the UCHC in Farmington, 

Connecticut for each study visit. They recorded dietary intake using 3-day diet records at visits 1, 

5, 6 and 9. Diet records were reviewed by a Registered Dietitian and entered into The Food 

Processor SQL (FoodPro) version 10.1.0 from ESHA research in Salem, Oregon to analyze 

nutrient composition of recorded foods. Lastly, an 11-question Mediterranean Diet Score (MDS) 

(19) was administered at visits 1, 5, and 9. MDS scores ranged from 0-55, with higher scores 

indicating greater adherence to a MedSD. 

 Serum samples were collected at visits 1, 3, 5, 7 and 9 serum was separated from whole 

blood and stored at -80°C until measurement. Fatty acids were extracted, methylated, and the 

resulting methyl esters (FAME) were analyzed by gas chromatography. Individual fatty acids 

were identified from sample peak comparison to authentic FAME standards and reported as area 

percentage of total fatty acids.  At these visits, P1NP was also collected from the serum to 

measure bone formation, and CTX was collected to measure bone resorption. These two markers 

of bone turnover function as the primary outcome measures. Calcium regulation was measured 

via serum 25-hydroxyvitamin D and serum parathyroid hormone levels. 



Statistical Analysis. The primary outcomes in this study were serum P1NP and serum CTX. 

Secondary outcomes included MDS, serum fatty acids, and dietary components of 3-day food 

records. A power calculation revealed that the sample size was adequately powered to observe 

changes in certain serum fatty acids. The study had 99% power to detect a 0.49±0.44% change in 

serum docosahexanoic acid (DHA), and 70% power to detect a 0.30±0.48% change in serum 

eicosapentanoic acid (EPA), two omega-3 serum fatty acids of importance. However, as 

expected, the sample size was not adequately powered to observe an effect of the nutrition 

intervention on bone turnover markers. In order to have 80% power to detect significant changes 

in the primary outcome variables P1NP and CTX, a sample size of approximately 150 subjects 

would be required. 

 Nutrient data from FoodPro was exported into Microsoft Office Excel 2007 for 

Windows. Descriptive and mixed effects longitudinal growth analyses were performed using 

SPSS statistical software (version 21 for Windows). All data were tested for normality using the 

Shapiro-Wilk test and a p-value of <0.05 indicated that the data differed significantly from a 

normal distribution. All variables were determined to be normally distributed except the 

following: total dietary vitamin D (IU) at visits 1, 5, 9; dietary PUFA (g) at visit 5; dietary 

omega-3 (g) at visits 1, 5, 9; dietary omega-6 (g) at visit 9; dietary ratio of omega-6:omega-3 at 

visits 1, 5; serum CTX at visits 1, 3, 5, 7; serum fatty acid eicosadienoic acid (20:2n6) at visits 1, 

5. 

 Serum fatty acids that were non-detected by the GC during at least one visit were 

excluded from analysis. The remaining serum saturated, omega-3, and omega-6 fatty acids were 

included in the analysis. To address hypotheses 1a), and 1b), mixed-effects longitudinal growth 

modeling was conducted with time as the independent variable for each of our continuous 



dependent variables (MDS score, area percentage of serum omega-3, omega-6, and saturated 

fatty acids). To address hypotheses 1c), and 1d), time-varying covariates were entered separately 

into the model (MDS, and dietary factors, respectively). To address hypothesis 2a), one 

independent variable (IV) was entered into the model (time), and to address hypothesiss 2b), 2c), 

and 2d), a second IV was entered into each model (MDS, dietary factors, and serum fatty acids, 

respectively). We chose these statistical methods because modeling the data as a growth pattern 

allowed us to more accurately capture the slope of the participants’ change over time, thus 

providing more information about the group and individual longitudinal changes observed. 

Additionally, the addition of a second IV as a time-varying covariate would allow us to explore 

the effect of that second variable on our DVs. If the additional IV did have a significant effect on 

the DV, then having this additional IV in the model would help to explain within-person change 

over time more precisely. Additionally, for those models with one IV that did show a significant 

change in the dependent variable (DV) over time, a secondary model was tested, in which we 

recoded baseline data (visits 1 and 5) as zero, and intervention data (visit 9) as 1, in order to 

confirm that the significant change was attributable to the intervention and not to the placebo 

effect. Mixed effects longitudinal results are expressed as [β-coefficient (95% CI)] in the text. 

Tables also include variance components of the models, and goodness-of-fit indices (Akaike 

Information Criteria, AIC; and Bayesian Information Criteria, BIC). 

 
Results 

 The enrolled sample at baseline (visit 1) included 22 postmenopausal women, with a 

mean age of 77±6.8 years, mean weight of 65.4±8.7 kg, and mean BMI of 25.4±2.9 kg/m2. By 

the conclusion of the study, three subjects were dropped because they had begun taking fish oil 

supplements after enrollment, and three were dropped because it was discovered that they had 



initially underreported their typical intake of Mediterranean foods, leaving 16 subjects who 

completed the study. Weight, and thus BMI, remained stable throughout the study period.  

Baseline nutrient intake is presented in Table 2. On average, subjects were consuming 

above the RDA for protein (>0.8g/kg/day), and when supplements were taken into account, 

subjects were also meeting or exceeding recommendations for calcium (>1200mg/day) and 

Vitamin D (>600 IU/day). Additionally, their omega-6:omega-3 ratio was approximately equal 

to that of the typical American n-6:n-3 ratio of about 9.4:1 (6). 

 The level-1 growth models used to assess hypotheses 1a), 1b), and 2a) were simple linear 

growth models (DVs listed in Table1). They contained a linear growth slope for time coded as 

visit 1, visit 5, visit 9, but did not model the treatment effect or the effect of any other time-

varying covariates. Level-2 growth models included the addition of a second independent 

variable in order to create a model with time-varying slopes. The coefficient for these slopes, β20, 

indicates how much more change we expect participants to make over every unit of the newly 

added IV. The corresponding equations for both levels of linear growth models are shown in 

Table 1. 

 Hypothesis 1a) was that MDS scores would significantly increase during the intervention, 

indicating subjective adherence to a MedSD. MDS values significantly increased from 32.3±4.3 

at baseline (visit 1) to 41.3±3.7 at visit 9 (p<0.001), with an average increase of 1.32 (0.67 to 

1.97) per visit, indicating a shift toward a more Mediterranean pattern over time. There were no 

statistically significant variations in the intercept or slopes between subjects for this model, 

suggesting that participants’ initial scores were similar and all changed in a similar pattern. 

Because of the significant change observed per time point, secondary analysis assessing the 

intervention effect showed an average increase of 8.86 (7.56 to 10.16; p<0.001) after the 



intervention. This significant improvement in the MDS after the intervention period indicates 

that the increase in score was attributable to the intervention and not to the placebo effect. 

 Hypothesis 1b) was that serum fatty acid profiles would change significantly during the 

intervention, objectively indicating adherence to a MedSD. Results from these models are 

presented in Table 3. It was predicted that serum n-6 and saturated FAs would significantly 

decrease, while serum n-3 FAs would significantly increase during the intervention compared 

with control period. With the exception of serum linoleic acid (n-6) all of the serum FAs that 

changed significantly, did so in the way that was expected if a MedSD was adopted. For those 

fatty acids that changed significantly over each time point, secondary analysis assessing the 

intervention effect showed that all of these changes were attributable to the intervention. 

Together, the changes in MDS and serum fatty acid profiles were indicative of successful 

adherence to the MedSD during the intervention phase. 

 Hypothesis 1c) was that addition of MDS to the model would predict changes in serum n-

3, n-6, and saturated fatty acids. Results are displayed in Table 4. 

 Hypothesis 1d) was that individual dietary factors would predict changes in serum n-3, n-

6 and saturated fatty acids. Results are displayed in Table 5. 

 The second overall objective was to assess the impact of adherence to a MedSD on serum 

markers of bone turnover, CTX and P1NP. To address hypothesis 2a), the level-1 growth model 

with time as the only IV, showed that there were no significant changes in CTX [-.00006 (-

0.0117 to 0.0115)] or P1NP [-.282 (-1.31 to 0.743)] throughout the study. To address hypothesis 

2b), MDS was added to the model and also showed no significant impacts on CTX [.011 (-.005 

to .027)] or P1NP [-.452 (-1.24 to .335)]. To address hypothesis 2c), various dietary factors were 

added to the model (results shown in table 6). When dietary omega-3 (g) was added to the 



model, there was a significant change in P1NP (p<0.05), with an average increase of 1.65 µg/L 

(0.102 to 3.202) per visit. When dietary ratio of n-6:n-3 was added, there was a negative trend in 

P1NP (p=.064), with an average decrease of -0.513 µg/L (-1.06 to 0.033) per visit. When dietary 

polyunsaturated fat (g) was added to the model, there was a positive trend in P1NP (p=.082), 

with an average increase of 0.296 µg/L (-.042 to .634) per visit. These data indicate a possible 

beneficial effect of the increased consumption of dietary omega-3, decreased ratio of dietary n-

6:n-3 and increased dietary polyunsaturated fat that was seen in the intervention MedSD. Lastly, 

to address hypothesis 2d), addition of serum FAs to the model showed no significant effects on 

bone turnover markers, with the exception of docosatetraenoic acid [73.64 (1.79 to 145.48)] on 

P1NP (p<0.05). Results shown in Table 7. 

 

Discussion 

 This six-month pilot study aimed to determine if postmenopausal, American women 

could adopt a MedSD and if a MedSD pattern was beneficial to bone health. This sample of 

older women was in fact able to successfully adopt a MedSD as evidenced by a significant 

increase in the MDS subjective assessment tool. Objective assessment utilizing serum FA 

profiles was also supportive of successful adherence to a MedSD during the intervention because 

of the changes observed in a variety of serum n-3, n-6, and saturated FAs. However, not all 

serum FAs were reflective of changes in reported dietary fat composition. Of all the major 

dietary components of a MedSD, dietary n-3 (g) was the most positive predictor of bone 

formation.       

While the MDS assessment tool used has been previously validated (19) for its effective 

use with non-Mediterranean populations(11), our objective assessment of adherence must be 



critiqued. A recent review by Baylin et al addressed the efficacy of various biomarkers as 

indicators of dietary intake and suggested that the data are conflicting and dependent on a variety 

of factors (25). Tissue biomarkers may effectively reflect dietary change in fat intake if the 

macronutrients within the diet are tightly controlled and if the expected change in intake of 

specific fatty acids is dramatic. Therefore, the variability in our subjects’ baseline intake of 

macronutrients, may have impacted the pattern of change observed throughout the study. 

Additionally, those fatty acids that cannot be synthesized endogenously, such as linoleic acid, α-

linolenic acid, and trans FAs may more accurately reflect dietary changes than those that can be 

synthesized within the body (25), suggesting that the changes we observed in serum LCPUFAs 

may not be reflecting more than sole dietary intake of those lipids. Despite this, a cross-sectional 

study in Japan that aimed to determine the association of dietary FA intake and plasma FA 

concentration of long-chain n-3 FAs found significant correlations for EPA and DHA (r=0.692, 

r=0.587, respectively) in a sample of 79 women (26). Previously, plasma FA concentrations were 

used as a potential marker of dietary compliance in clinical trials, but whole blood was recently 

suggested as a more reliable indicator (27). It seems that the body of literature would benefit 

from more research assessing the accuracy of biomarkers of dietary changes in fat intake. 

There are various ways to assess bone health, the gold-standard of which is Dual X-ray 

Absorptiometry (DEXA) to measure bone mineral (BMD) compared to standards using T- and 

Z-scores (28). However, the use of serum P1NP and CTX was recommended by the International 

Osteoporosis Foundation (IOF) and the International Federation of Clinical Chemistry and 

Laboratory Medicine for use in short term, clinical studies for assessment of bone turnover (29). 

Serum CTX, a marker of bone resorption, is indicative of the proteolytic fragments of the bone 

collagen matrix (28), while serum P1NP is reflective of the cleavage of type I procollagen to 



form type I collagen, the protein that constitutes 90% of bone (30). Together, these markers of 

resorption and formation, respectively, represent bone turnover. While these bone turnover 

markers (BTM) have the advantages of being noninvasive and relatively inexpensive, their high 

variability is an important disadvantage. Serum P1NP and CTX can be affected by both 

controllable and uncontrollable factors including age, sex, time of day, food intake, physical 

activity over the past 24 hours, and serum vitamin D (28). The high variability seen with these 

BTM probably contributed to the lack of significant change seen from our intervention. 

While our intervention did not yield significant changes in BTM over time, the inclusion 

of dietary omega-3 (g) in the model did show a positive impact on serum P1NP. It has been 

suggested that a potential mechanism for this effect may involve suppression or activation of the 

gene PPARγ by DHA or arachidonic acid (AA), respectively (31). This mechanism may support 

our study results because of the significant increase we observed in serum DHA, and trend 

toward a reduction in AA seen at the end of our study period. Another potential mechanism by 

which PUFA may affect bone homeostasis is that a shift from n-6 to n-3 FAs may impact 

complex signaling pathways including those affecting receptor activator nuclear κβ (RANK) (7), 

a receptor present on osteoclasts; and PGE2, a prostaglandin shown to regulate bone remodeling 

(32).  

 Previous intervention studies examining the impact of a MedSD on bone health were 

conducted in either a mixed gender sample (22), or a sample of only males (23, 24). Seiquer et al 

(24) conducted a longitudinal intervention trial with 20 healthy adolescent males aged 11-14 

years old, in which participants followed their typical diet for 3 days, and then a MedSD for 28 

days. Urine and feces were collected during the 3-day basal diet period and last 4 days of 

intervention diet period. Apparent calcium absorption, digestibility, and retention were 



calculated from calcium intake from food, and calcium excretion from feces and urine. There 

were significant decreases in urinary calcium excretion and higher calcium retention after the 

intervention diet than during the basal diet period. While this study used different markers of 

bone health (calcium utilization) than in our study, it is suggestive that a MedSD may improve 

peak bone mass in adolescent boys (24). This conclusion is interesting because it provides 

implications on bone health at a different stage of growth and development than is addressed 

with our study population. A longitudinal intervention trial by Fernández-Real et al randomly 

assigned a subsample of  127 community-dwelling elderly men at cardiovascular risk from the 

Prevención con Dieta Mediterránea (PREDIMED) study to one of three diets: a low-fat control 

diet, a Mediterranean diet with mixed nuts (MedDiet+mixed nuts), or a Mediterranean diet with 

virgin olive oil (MedDiet+VOO). Serum total and uncarboxylated osteocalcin levels, serum CTX 

and serum P1NP were measured at baseline and 2-yr follow-up from fasting blood samples and 

showed that total osteocalcin significantly increased in the MedDiet+VOO group, but not the 

MedDiet+mixed nuts or control group. Additionally, serum CTX significantly decreased in all 

three groups, but serum P1NP significantly increased in only the MedDiet+VOO group, 

suggesting that a Mediterranean diet supplemented with virgin olive oil for a period of 2 years 

may have a protective effect on bone in elderly men at cardiovascular risk (23). While this study 

had a longer follow-up period, their choice of P1NP and CTX as markers of bone status is not 

ideal because these BTM are recommended for use in shorter term interventions versus longer 

trials. Bulló et al addressed this limitation, also utilizing a subsample of the PREDIMED study 

population, but instead measuring quantitative ultrasound on the calcaneum to assess long term 

changes in BMD. Free deoxypyridinoline was also collected from the urine as a marker of bone 

resorption. In contrast to the results of the previously cited intervention trials, there were no 



significant changes in BMD or bone resorption markers in this study (22). Our study adds to the 

body of literature on the impact of MedSD interventions on bone health because we were unable 

to find significant changes on BTM as a result of the MedSD (with the exception of the 

relationship between dietary omega-3 and serum P1NP). Our results parallel other investigators’ 

findings except we studied a population at high risk for development of osteoporosis that has not 

previously been evaluated. 

 The present study has limitations. First, as a pilot study, the small sample size and lack of 

power to observe changes in our primary outcome variable are most likely our biggest limitation. 

Additionally, there was a lack of control for certain dietary factors that may impact bone status, 

such as total calcium and total vitamin D intake. While our exclusion criteria did provide a cut 

off point for an acceptable range of calcium and vitamin D intake, perhaps changes in bone 

health are seen more dramatically at lower calcium intakes (33), suggesting potential benefit 

from a tighter range of these nutrients. Stratifying our participants by calcium intake may have 

addressed this limitation, but our small sample size made this unfeasible. As with any subjective 

marker of compliance, the use of the MDS to assess compliance may not have been reliable as it 

was based on self-report. The measurement of changes in serum FA was used to address this 

limitation, however, there may also be discrepancy in the efficacy of use of plasma FAs as a 

measure of dietary compliance as described above. It would be beneficial for future studies to 

consider including a larger sample size, and tighter control of confounding nutrients such as 

calcium and vitamin D. 

 Despite these limitations, our study was still able to capture intriguing results regarding a 

potential positive impact of dietary omega-3 on the bone formation marker, P1NP. Additionally, 

this study was novel in that it was able to successfully implement a MedSD in an American 



population at high risk for osteoporosis, showing that this dietary pattern can be adopted by non-

Mediterranean populations who may benefit from its positive effects. 

 

Conclusion 

 The results of the present study showed that although our MedSD intervention did not 

have a direct effect on BTM, the increases in dietary n-3 seen as a result of the intervention did 

have a positive effect on bone formation. These results are promising because all of our subjects 

were successful in adopting the MedSD, indicating that the intervention may be a feasible 

application in clinical practice. Undoubtedly, a MedSD is beneficial for cardiovascular health, 

and is not harmful to bone health. Our study suggests a benefit to bone health, and so further 

studies with larger sampling will provide additional insight into this intriguing relationship.
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