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Abstract 

 
Fourier ptychographic (FP) imaging is a recently developed technique to get high-

resolution high-throughput imaging.  FP iteratively stitches together many variably illuminated, 

low-resolution intensity images in the Fourier space to expand the frequency passband and 

recover a high-resolution sample image.  

There are several latest developments of the Fourier ptychographic imaging scheme. FP scheme 

can be used as adaptive imaging method.  An image-quality metric is defined as a guide star for 

the optimization process, and system corrections are then performed to maximize such a guide 

star. The adaptive FP scheme performs system correction by modifying the complex transfer 

function in the recovery process, which can be used to recover the unknown pupil function, 

perform system correction and recover unknown system parameters. 

To shorten the acquisition time of the FP platform, sparsely sampled FP, which uses a 

sparse-sampled mask to filter the captured intensity images, is developed and it reduced the 

acquisition time by ~ 50%. In addition, the application of sub-sampled Fourier ptychography 

solved the pixel aliasing problem.  

State-multiplexed FP, which allows the illumination of at most 4 LEDs at the same time, 

is able to shorten the acquisition time and the number of frames for 2~4 times. Similar 

reconstruction procedure is used to decompose R/G/B data and recovery a colorful high-

resolution image, which can also be used to replace spectral filter, gratings or other optical 

components for spectral multiplexing and demultiplexing.  

Pattern-illuminated FP extends the original FP from coherent imaging to incoherent 

imaging. Instead of using coherent light with different incident angles, pattern-illuminated FP 

uses different structured pattern to illuminate sample, and then recover a high resolution image.  
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Finally, based on the FP algorithm, a field-portable high-resolution microscope using a 

cellphone lens was design for low-cost imaging. It uses a cellphone lens in a reverse manner and 

a LED array as illumination. The FPscope can get a maximum synthetic numerical aperture (NA) 

of 0.5 and depth-of-focus of 0.1mm, which is longer than that of a conventional microscope 

objective with a similar NA.  
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Chapter 1 

Introduction 

In an imaging platform, space-bandwidth product (SBP) is the fundamentally limit to the 

throughput. SBP is defined as the number of degree of freedom it can extract form an optical 

signal. In microscopy, the SBPs of most off-the-shelf objective lenses are on the order of 10 

megapixels, regardless of their magnification factors or numerical apertures (NA). For example, 

a standard 20X microscope objective lens (MPLN 20X, 0.4 NA, Olympus) has a resolution of 

0.8 µm and a field-of-view with 1.1 mm diameter, corresponding to a SBP of ~8 megapixels.  

However, a large SBP is highly needed in pathology, hematology, immunohistochemistry 

and neuroanatomy. To solve this problem, commercial development of sophisticated mechanical 

scanning microscope systems and lensless imaging set-ups has been prompted to raise the SBP. 

But the disadvantage is that the mechanical scanning system requires precise control over 

actuation, optical alignment and motion tracking. Furthermore, it also neglects the computational 

addressable problem of resolution enhancement. Though lensless imaging gives a unique 

imaging capabilities, it still has some disadvantages. For instance, digital in-line holography does 

not work well for contiguous samples and contact-imaging microscope requires a sample to be 

very close to the sensor.  

Fourier ptychography (FP) tackles this problem from another perspective.  It is capable of 

providing a scalable SBP for most existing microscopes without involving mechanical scanning 

or phase measurements.  

1.1 Introduction to Fourier ptychographic microscope  

Fourier ptychography iteratively stitches together many variably illuminated, low-resolution 

intensity images in the Fourier space to expand the frequency passband and recover a high-
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resolution complex sample image. Instead of directly measuring the phase information of the 

incoming light field, FP uses an iterative phase retrieval process to recover the complex phase 

information of the sample. It has been shown that, without involving any interferometry 

measurement and mechanical scanning, FP facilitates microscopic imaging well beyond the 

cutoff frequency set by the NA of the objective lens.  

1.2 The principle of Fourier ptychographic microscope 

A typical FP platform consists of an LED array and a conventional microscope with a 

low-NA objective lens, as shown in Fig. 1.1(a). The LED array is used to successively illuminate 

the sample at different incident angles (one LED element corresponds one incident angle). At 

each illumination angle, FP records a low-resolution intensity image of the sample. Under the 

thin-sample assumption, each acquired image uniquely maps to a different passband of the 

sample’s spectrum. 

The FP algorithm then recovers a high-resolution complex sample image by alternatively 

constraining its amplitude to match the acquired low-resolution image sequence, and its 

spectrum to match the panning Fourier constraint, as shown in Fig. 1.1(a). Essentially, FP 

introduces angular diversity functions to recover the high-resolution complex sample image, as 

compared to the translational diversity functions used in the conventional ptychography 

approach [1].  

The reconstruction procedures of the FP are shown in Fig. 1.1(b). It starts with a high-

resolution spectrum estimate of the sample: 𝑈0̂(𝑘𝑥, 𝑘𝑦). This sample spectrum estimate is then 

sequentially updated with the low-resolution intensity measurements 𝐼𝑖𝑚 (subscript ‘m’ stands 

for measurement and ‘i’ stands for the ith LED). For each update step, we select a small sub-

region of the 𝑈0̂(𝑘𝑥, 𝑘𝑦)，corresponding to the optical-transfer-function of the objective lens, 
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and apply Fourier transformation to generate a new low-resolution target image √𝐼𝑙𝑖 𝑒𝑖𝜑𝑙𝑖 

(subscript ‘l’ stands for low-resolution and ‘i’ stands for the ith LED). We then replace the target 

image’s amplitude component √𝐼𝑙𝑖  with the square root of the measurement √𝐼𝑚𝑖 to form an 

updated, low-resolution target image √𝐼𝑚𝑖 𝑒𝑖𝜑𝑙𝑖. This image is then used to update its 

corresponding sub-region of  𝑈0̂(𝑘𝑥, 𝑘𝑦). The replace-and-update sequence is repeated for all 

intensity measurements, and we iterate through the above process several times until solution 

convergence, at which point  𝑈0̂(𝑘𝑥, 𝑘𝑦) is transformed to the spatial domain to produce a high-

resolution complex sample image. The achievable resolution of the final FP reconstruction is 

determined by the latest incident angle of the LED array. As such, FP is able to bypass the design 

conflicts of conventional microscopes to achieve high-resolution, wide field-of view imaging 

capabilities.  

 
Fig. 1.1. The FP setup and the recovery procedures (adapted from [2] and [3]). (a) An LED array is used to 

illuminate the sample with angle-varied plane waves. The objective’s optical-transfer-function imposes a well-

defined constraint in the Fourier domain. This constraint is digitally panned across the Fourier space to reflect the 

angular variation of angle-varied illuminations. (b) The iterative phase retrieval procedures of the FP. 

The name of Fourier ptychography comes from a related phase retrieval scheme, 

ptychography [3], [4]–[15]. Ptychography is lensless imaging approach originally proposed for 
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transmission electron microscopy [4] and brought to fruition by Faulkner and Rodenburg [5]. It 

uses a focused beam to illuminate the sample and records multiple diffraction patterns as a 

function of sample positions. This set of diffraction patterns is then used to invert the diffraction 

process and recover the complex sample profile following the iterative phase retrieval strategy. It 

is clear that FP and ptychography both share the strategy of phase retrieval technique: iteratively 

seeking a complex sample solution that is consistent with many intensity measurements. With 

ptychography, the object support constraints for phase retrieval are imposed by the confined 

illumination beam in the spatial domain. As such, the sample must be mechanically scanned 

through the desired field-of-view. With FP, on the other hand, the object support constraints are 

given by the confined optical-transfer function in the Fourier domain. In this regard, FP acts as 

the Fourier counterpart to ptychography, justifying its name [16]. By using a low-NA objective 

lens, FP naturally offers a large and fixed field of-view, high signal-to-noise ratio, and no 

mechanical scanning as compared to the conventional ptychography. The use of lens elements in 

FP settings also reduces the coherence requirement of the light source. Post-processing used in 

conjunction with the panning LED illuminations then leads to a resolution-improved, high-pixel-

count final image. Furthermore, as discussed below, FP is able to digitally correct for aberrations 

and extend the depth-of-focus beyond the physical limitation of the objective lens. 
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Fig. 1.2. Wide-field, high-resolution imaging via FP (adapted from [2]). FP combines the field-of-view advantage of 

a 2X objective and resolution advantage of a 20X objective. 

 

1.3 The application of Fourier ptychographic microscope 

Fourier ptychographic microscope is a wide-field, high-resolution, long depth-of-focus 

imaging method. This technique may potentially free clinicians from bowing in front of the 

microscope and manually moving the sample to different regions for observation. As digital 

imaging is introduced to laboratory environment, it may also have the potential to improve the 

work environment and laboratory productivity, to enable education, and to enhance 

communication and collaboration between clinicians.  

In addition, as Fourier ptychographic imaging is also a phase retrieval imaging method. 

Many biological samples do not absorb or scatter light significantly. As such, they are 

transparent or generate little contrast under a conventional bright-field microscope. FP is able to 

recover both the intensity and phase of an optical field exiting a sample, which is shown in figure 

1.3. Therefore, it holds a great potential for quantitative image analysis. Therefore, it holds a 

great potential for quantitative image analysis.  
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Fig. 1.3. Comparing FPM phase reconstructions to digital holographic and theoretical data. FPM transforms low-

resolution intensity images from a 2× objective (a1) into a high-resolution phase map (a2) of different-sized 

polystyrene microbeads, as compared with a DH reconstruction (a3) using a 40× objective. (b) A similar image 

sequence highlights FPM’s phase-imaging capabilities on a human blood smear. (c) Line traces through the 

microbeads and a RBC demonstrate quantitative agreement with expected phase performance. 

 

The concepts in adaptive optics [17]–[19] can also be implemented in the FP scheme to 

perform adaptive Fourier ptychographic imaging [20]. In the adaptive FP scheme, an image-

quality metric is defined as a guide star for the optimization process, and system corrections are 

then performed to maximize such a guide star. Compared to conventional adaptive imaging 

systems, the adaptive FP scheme performs system corrections by modifying the complex transfer 

function in the iterative recovery process (no adaptive optical hardware is needed), offering a 

unique advantage on system simplicity and reliability. We demonstrates the use of the adaptive 
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FP to recover the unknown pupil function and perform aberration correction. Such a scheme can 

also be used to correct for intensity uncertainty of the LED array and recover unknown system 

parameters [20]. 
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Chapter 2 

Sparsely sampled Fourier ptychography (Adapted from [27]) 

2.1 Introduction to the sparsely sampled Fourier ptychography 

A key aspect of a successful FP reconstruction is the data redundancy requirement of the 

recovery process. In particular, such a data redundancy requirement is important for recovering 

the ‘lost’ phase information of the sample. So analysis of data redundancy both in spatial domain 

and Fourier domain is important to the mount of raw images needed to capture. Based on the 

conclusion, a sparsely sampled FP scheme by selectively updating the pixel values in the spatial 

domain is used to bypass the HDR combination process in the original FP platform, which can 

shorten the acquisition time of the FP platform by ~50%.  

2.2 Analysis of the data redundancy requirement in FP 

In a FP experiment, the interaction between a plane wave illumination and a sample can 

be modeled as t(x, y)𝑒𝑖𝑘𝑥𝑖𝑥+𝑖𝑘𝑦𝑖𝑦 , when t(x, y) is the complex transmitted function of the 

sample, and  𝑒𝑖𝑘𝑥𝑖𝑥+𝑖𝑘𝑦𝑖𝑦 is a plane illumination with a wavevector (𝑘𝑥𝑖 + 𝑘𝑦𝑖). Multiplication of 

the plane wave illumination in the spatial domain is equivalent to shifting the sample spectrum in 

the Fourier domain. Thus, images with different plane wave illuminations correspond to different 

spectrum regions in the Fourier space. Intuitively, a certain amount of spectrum overlapping in 

between successive acquisitions is needed to connect all acquired images in the Fourier space. If 

there is no overlapping in between these spectrum regions, FP reduces to a conventional phase 

retrieval procedure where each image can be processed independently. In this section, the 

spectrum overlapping requirement of the FP recovery process is investigated. Specifically, how 

much spectrum overlapping is needed for a successful FP reconstruction? 
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Fig. 2.1. FP reconstructions with different spectrum overlapping percentages. (a1)-(a2) Input high-resolution 

intensity and phase profiles of the simulated complex sample. (b)-(d) FP  reconstructions with different spectrum 

overlapping percentages in the Fourier domain. (e) The RMS errors of the FP reconstructions versus the spectrum 

overlapping percentages. (a1) is copyrighted by MIT; we use it with permission. 
The spectrum overlapping percentage is determined by the angular variation in between two 

successive illuminations. It is defined as the overlapping spectral region of two successive acquisitions 

divided by the entire region of the objective’s pupil function. A typical FP platform uses an LED array for 

providing angle-varied illuminations. As such, the spectrum overlapping percentage is determined by the 

size of the LED element and the distance between the LED array and the sample. In Fig. 2.1, we 

investigate the spectrum overlapping requirement using simulations. The simulation parameters were 

chosen to realistically model a light microscope experiment, with an incident wavelength of 632 nm, a 

pixel size of 2.75 μm and an objective NA of 0.08. We simulated the use of a 15*15 LED array for 

illuminating the sample with different incident angles. Different spectrum overlapping ratio was achieved 

by adjusting the distance between the LED array and the sample. 

The high-resolution input intensity and phase profiles are shown in Fig. 2.1(a1) and 2.1(a2), 

which serve as the ground truth of the simulated complex object. We then simulated the low-resolution 

measurements under different incident angles by imposing a low-pass filter at the corresponding regions 

of the Fourier space. These low-resolution images were then used to reconstruct the high-resolution 

complex sample image following the FP recovery procedures [2, 20]. Figure 2.1(b)-2.1(d) demonstrate 

the FP reconstructions under different spectrum overlapping percentages. It is obvious that the 

reconstruction quality of Fig. 2.1(b) (with an 18% overlapping percentage) is worse than those with 
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higher overlapping percentages. The image qualities of different FP reconstructions are quantified in Fig. 

2.1(e), where root-mean-square (RMS) errors (i.e., the difference between the ground truth and the 

recovered images) are plotted as a function of the spectrum overlapping percentage. It is shown that the 

RMS errors decreases as the spectrum overlapping percentage increases, and a minimum of ~35% 

overlapping percentage is needed for a successful FP reconstruction. 

After analysis of sampling in the Fourier domain, the sampling in the spatial domain is also 

investigated. The FP recovery process uses the amplitudes of the acquired images to constraint the high-

resolution reconstruction in the spatial domain. In order to discuss the sampling requirement in the spatial 

domain, we first review the amplitude updating process in the FP algorithm. The FP algorithm starts with 

a high-solution spectrum estimate of the sample. For each illumination angle, we select a small sub-region 

of this spectrum and perform inverse Fourier transform to generate a low-resolution target image. The 

amplitude component of this target image is then replaced by that of the acquired image while the phase 

component is kept unchanged. This amplitude updating process is repeated for all intensity measurements 

and we iterate through the process several times until solution convergence. This section is about how 

many pixels need to be updated in the spatial domain for a successful FP reconstruction.  

The simulation parameters are the same as those of the previous section. We introduce a sparsely 

sampled mask in the updating process, as shown in Fig. 2.2(a3)-2.2(c3). This mask contains only two 

types of pixel values: 0 and 1. The regions corresponding to value ‘1’ are updated as the original FP 

algorithm, while those corresponding to ‘0’ are kept unchanged in the updating process. The pixel with 

value ‘0’ is termed empty pixel. Figure 2.2(a1)-2.2(c1) and 2.2(a2)-(c2) demonstrate the recovered FP 

images with different empty pixel percentages. We can see that the reconstruction quality of Fig. 2.2(c) 

(with 90% empty pixels) is worse than those with lower empty pixel percentages. We also quantified the 

FP reconstruction qualities using the RMS error metric in Fig. 2.2(d). It is shown that, FP algorithm is 

able to recover the complex image with a maximum of ~70% of empty pixels. 
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Fig. 2.2. FP reconstructions with different empty pixel percentages in the spatial domains. (a)-(c) FP reconstructions 

with 10%, 60%, and 90% empty pixels. (d) The RMS error of the FP reconstructions versus the empty pixel 

percentage. 

In Fig. 2.3, we further analyze the joint spectral-spatial sampling requirement of the FP 

recovery process. Different curves in Fig. 2.3 represent different empty pixel percentages. The 

convergence region is enclosed by the dash line at the bottom right. It is shown that, a higher 

spectral sampling percentage results in a low spatial sampling requirement. The interplay 

between the spectral and spatial sampling requirements gives us more flexibility on designing the 

FP imaging platforms. For example, we can tradeoff the spatial sampling by using more LED 

illuminations. In the following two sections, we will demonstrate two application examples on 

exploring such a spectral-spatial sampling interplay.  



23 
 

 
Fig. 2.3. The joint spectral-spatial sampling requirement of the FP recovery process. The RMS metric is plotted as a 

function of the spectrum overlapping percentage. Different curves represent cases with different empty pixel 

percentages. The FP convergence region is enclosed by the dark dash line. 

 

2.3 The principle of sparsely sampled Fourier ptychography 

As discussed above, the sampling interplay between the spectral and the spatial domains 

allows one to tradeoff the spatial sampling with an increased number of illuminations. In this 

section, we will report a sparsely sampled scheme following such a strategy. The reported 

scheme is able to bypass the HDR combination process in the original FP platform, and shorten 

the acquisition time considerably. 
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Fig. 2.4. (a1-a2) The overexposed raw images of a blood smear sample. (b1-b2) The corresponding HDR images of 

(a1) and (a2). Two exposure times were used in the HDR combination process. (c1-c2) The sparsely sampled masks 

by binarizing the overexposed raw images (a1) and (a2). 

As demonstrated in Ref [2], a typical FP platform needs to acquire multiple images of the 

same scene with different exposure times (normally, one short and one long exposure are 

needed). These raw images are then combined to produce a HDR image of the scene. 

Figures .2.4(a1)-2.4(c1) and Figs. 2.4(a2)-2.4(c2) demonstrate two examples of such a HDR 

combination process. Figure 2.4(a1) and 2.4(a2) are two different raw images of the same blood 

smear sample, where many regions are overexposed. Figure 2.4(b2) and 2.4(b2) demonstrate the 

reconstructed images following the HDR combination step.  

The principle of the sparsely sampled FP is straight forward. In the amplitude updating 

process, it produces a sparsely sampled mask by binarizing the overexposed raw image, as 

shown in Fig. 2.4(c1) and 2.4(c2). This mask is then imposed in the amplitude updating process: 

the regions with overexposed pixels will be kept unchanged while other regions will be updated 
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by the intensity measurement. Depending on the empty pixel percentage, one may need to 

increase the number of plane wave illuminations to ensure the solution convergence. 

In a typical microscope experiment, the percentage of overexposed pixels is no more than 15%, 

and thus, the solution convergence condition withstands. 

We validated the sparsely sampled FP scheme using a light microscope experiment. The 

experimental geometry was similar to that of simulation and we used the blood smear slide as 

our sample, the same as that of Fig. 8. Figure 2.5(a) show the raw image of the sample with a 

pixel size of 2.75 μm. Figure 2.5(b1) and 2.5(b2) are the recovered intensity and phase images 

without using the HDR combination process. These two FP reconstructions are corrupted by the 

overexposed pixels in the raw images. Figure 2.5(c1) and 2.5(c2) are the recovered images using 

the HDR combination process. The corresponding acquisition time is about 3 minutes (450 

images in total). The results of the proposed sparsely sampled FP are shown in Fig. 2.5(d1) and 

2.5(d2), and the corresponding acquisition time is about 1.6 minute (225 images in total). From 

the comparisons shown in Fig. 2.5, we can see that the image quality of the reported scheme is 

comparable to that of the original FP with the HDR combination step. The advantage of the 

reported scheme is obvious: it gets rid of the multi-exposure acquisition process and shortens the 

acquisition time by ~50%. 
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Fig. 2.5. (a) The raw image of a blood smear sample. The FP reconstructions without (b) and with (c) the HDR 

combination process. (d) The reconstructions using the sparsely sampled FP scheme. (b1)-(c1) The recovered high-

resolution intensity images. (b2)-(d2) The recovered high-resolution phase images. 

 

2.4 The principle of sparsely sampled Fourier ptychography 

In a FP platform, the pixel size of the image sensor needs to be carefully chosen to match 

the optical transfer function of the objective lens. Nyquist theorem dictates that, the pixel size 

needs to be smaller than λ/(2·NA), where λ is wavelength of the light field and NA is the 

numerical aperture of the objective lens (the magnification factor is normalized in our 

discussion). A pixel size larger than this Nyquist limit may lead to the pixel aliasing problem in 

the Fourier domain (Fig. 2.6(a)). It will also significantly degrade the quality of the FP 

reconstruction. In this section, we will report a sub-sampled scheme, a special case of the 

sparsely sampled FP, to address the pixel aliasing problem. It is also important to acknowledge 

that, a similar updating procedure has been discussed in the lensless ptychography approach [13]. 

The sub-sampled FP scheme is shown in Fig. 2.6(b). We divide one original pixel into 4 

sub-pixels, and thus, the effective pixel size is only half of the original pixel size. We then 

generate a sub-sampled mask in the amplitude updating step, as shown in the left part of Fig. 

2.6(b). Only 1 out of 4 sub-pixels is updated by the measurement and the other 3 sub-pixels are 
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kept unchanged in the updating process. Essentially, this scheme is a special case of the sparsely 

sampled FP, with a 75% empty pixel percentage and a pre-defined sub-sampled mask. 

 
Fig. 2.6. (a) Pixel aliasing problem due to a large pixel size in the spatial domain. (b) The subsampled scheme by 

dividing one original pixel into 4 sub-pixels. The effective pixel size is only half of the original pixel size. At each 

iteration, only 1 out of 4 sub-pixels is updated by the measurement. The other 3 are kept unchanged.  

 

We first validate this scheme using simulations. We chose a pixel size of 4.125 μm, a 

wavelength of 0.63 μm, and a NA of 0.1. Therefore, the pixel size is larger than the Nyquist limit 

of 3.15 μm. We simulated the use of a 15*15 LED array for illuminating the sample from 

different incident angles. The spectrum overlapping percentage is ~65%. Figure 2.7(a) shows 

one raw intensity image of the sample. Figures 2.7(b1)-2.7(b2) demonstrate the FP 

reconstructions using the sub-sampled mask in the updating process. Figure 2.7(b3) shows the 

corresponding recovered spectrum in the Fourier space. Due to the pixel aliasing problem, there 
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is not enough bandwidth to impose the circular pupil function in the Fourier space. As such, each 

low-resolution image in Fig. 2.7(b3) corresponds to a square region in the Fourier space. The 

case without using the sub-sampled mask is shown in Figs. 2.7(c1)-2.7(c3), where the 

reconstructions are corrupted by the pixel aliasing problem. 

 
Fig. 2.7. Simulation of the sub-sampled FP scheme. (a) Raw intensity image with the pixel size larger than the 

Nyquist limit. (b1-b2) The FP reconstructions using the sub-sampled scheme. (b3) The recovered spectrum of (b1) 

and (b2). (c1-c2) The FP reconstructions without using the sub-sampled scheme. (c3) The recovered spectrum of 

(c1) and (c2). 

 

We then validated the sub-sampled FP scheme using a light microscope experiment. The 

experimental setting was the same as the simulation, and a USAF resolution target was used as 

the sample. Figure 2.8(a) shows the raw intensity image of the sample. Figure 2.8(b1) and 

2.8(b2) are the recovered high-resolution image and spectrum using the sub-sampled scheme. 

The FP reconstructions without using the sub-sampled scheme are shown in Fig. 2.8(c1) and 

2.8(c2). It is obvious that, the sub-sampled FP scheme is able to reconstruct an artifact-free 

sample image. On the other hand, the FP reconstructions without using the sub-sampled mask are 

corrupted by the pixel aliasing problem.  
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Fig. 2.8. Experimental validation of the sub-sampled FP scheme. (a) Raw intensity image with a pixel size (4.125 

μm) larger than the Nyquist limit (3.15 μm). (b1) The FP reconstruction using the sub-sampled scheme. The 

linewidth of group 9 element 3 is 0.78 μm. (b2) The recovered spectrum of (b1). (c1) The FP reconstruction without 

using the sub-sampled scheme. The image quality is significantly degraded by the pixel aliasing problem. (c2) The 

recovered spectrum of (c1). 
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Chapter 3 

Spectral multiplexing and coherent-state decomposition in Fourier ptychographic 

imaging (Adapted from [58]) 

3.1 Background  

Despite the successful demonstration of the FP approach, its operation is currently 

limited to the single coherent state of the light source. In other words, the light source in FP 

settings is assumed to be spatially a point source and temporally a single wavelength. Incoherent 

mixture of multiple coherent states has not been considered in the FP recovery procedures. 

Therefore, one important step for advancing the FP technique is to develop a recovery scheme 

for handling state mixture and performing information multiplexing with FP acquisitions. As we 

will discuss later, such a state-multiplexed FP scheme may find applications in coherent-state 

decomposition and computational multispectral imaging. 

Recently, mode expansion of the mutual coherence function has been reported for coherent 

diffractive imaging, which allowed reconstruction using partially coherent light sources [22–24]. 

A mixed-state formulation has also been reported for the lensless ptychography approach by 

Thibault and Menzel [25], and was recently applied to information multiplexing by Batey et.al 

[26]. Motivated by the previous works, in particular, the mixed state formulation of lensless 

ptychography [25], we report a state-multiplexed recovery scheme for Fourier ptychographic 

imaging settings. We validate the reported scheme with both simulations and experiments. 

3.2 State-multiplexed Fourier ptychography 

A typical FP platform consists of an LED array, a conventional microscope with a low-

NA objective lens, and a monochromatic CCD camera. The LED elements on the array are 

turned on sequentially to illuminate the sample from different incident angles. At each 
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illumination angle, the camera acquires a low-resolution intensity image of the sample. These 

acquired images are then stitched with overlap in the Fourier domain using the single-state FP 

algorithm.  

In such a single-state FP algorithm, the generated low-resolution target images uniquely map to 

different regions of the sample estimate in the Fourier space. This one-to-one mapping 

relationship is a direct consequence of the single-coherent-state assumption, i.e., the illumination 

is assumed to be a point source spatially and a single wavelength temporally. In the case of low-

coherent Fourier ptychographic acquisition, the intensity measurement represents an incoherent 

summation of different coherent states [25], and thus, the mapping between the low-resolution 

target image and the high-resolution sample estimate is not in a one-to-one relationship. In the 

reported state-multiplexed FP scheme, we model the decoherent effect using multiple target 

images, corresponding to different coherent states of the light source [25]. 

 
Fig. 3.1. The recovery procedures of the state-multiplexed Fourier ptychography scheme. 
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The recovery process of the state-multiplexed FP scheme is shown in Fig. 3.1. Similar to 

the single-state scheme, it starts with a high-resolution estimate of the sample profile: √𝐼ℎ𝑒𝑖𝜑ℎ. 

This sample estimate is used to generate multiple low-resolution target images corresponding to 

different coherent states. Second, the intensity components of the target images are summed up 

to generate the incoherent mixture 𝐼𝑡. Third, the ratio between the actual measurement 𝐼𝑚 and 𝐼𝑡 

is used to update the intensity components of the target images, while the phase components are 

kept unchanged. Fourth, the updated target images are used to modify the corresponding spectral 

regions of the sample estimate. Lastly, the entire process is repeated for all intensity 

measurements, and iterated for several times until the solution converges. The computational 

cost of the state-multiplexed FP scheme is linearly proportional to the number of coherent states. 

For example, the computational time of two-state multiplexing is twice of the single-state’s 

computational time. The key difference between the reported scheme and the single-state FP lies 

in the intensity replacement process. In the single-state FP, the intensity component of the target 

image is directly replaced by the actual measurement m I while the phase component is kept 

unchanged. The reported state-multiplexed scheme, on the other hand, uses the ratio between the 

incoherent mixture and the actual measurement to update the intensity components of the target 

images. This new updating process ensures that the intensity summation of different coherent 

modes equates to the measured incoherent mixture, while the phase of individual modes is 

preserved.  

3.3 Simulations and experiments of the state-multiplexed FP scheme 

We first validated the state-multiplexed scheme using simulations. The simulation 

parameters were chosen to realistically model a light microscope experiment, with an incident 

wavelength of 632 nm, a pixel size of 1.375 μm (at the sample plane) and an objective NA of 0.1 
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(Olympus 4X Plan). We simulated the use of a 15*15 LED (SMD 3528) array for illuminating 

the sample with different incident angles. The LED array is placed 85 mm beneath the sample, 

and the distance between adjacent LEDs is 4 mm. 

 
Fig. 3.2. Simulations of the single-state and state-multiplexed FP schemes. (a1) and (a2) the input intensity and 

phase images of the simulated object. (b1) Raw data of the single-state FP scheme. Each low-resolution image (0.1 

NA) corresponds to one LED element in the array. (b2) and (b3) the recovered sample intensity and phase images 

using the single-state FP scheme. (c1) Raw data of the state-multiplexed FP scheme. Two adjacent LED elements 

are lit up simultaneously for sample illumination, and each low-resolution intensity image (0.1 NA) represents an 

incoherent summation of two coherent states. (c2) and (c3) the recovered ample. Intensity and phase images (0.5 

NA) using the state-multiplexed FP scheme. (d1) and (d2) the reconstructions of state-mixed raw data using the 

single-state FP scheme (for comparison).  

 

The high-resolution input intensity and phase profiles are shown in Fig. 3.2(a1) and (a2), 

which serve as the ground truth for the simulated complex object. We then simulated the low-

resolution measurements for 1) the single-state FP scheme and 2) the state-multiplexed FP 

scheme. For the single-state scheme, each low-resolution intensity image corresponds to one 

LED element in the array (225 images), as shown in Fig. 3.2(b1). The corresponding 
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reconstructed intensity and phase images are shown in Fig. 3.2(b2) and 3.2(b3). For the state-

multiplexed scheme, we simulated the case of two adjacent LED elements lighting up 

simultaneously for sample illumination. In this case, each low-resolution intensity image (Fig.3.2 

(c1)) represents an incoherent summation of two coherent states. As we group two LEDs as one 

light source element, the total number of simulated low-resolution images reduces by half (113 

images; we did not group the last LED element). We note that, the spectrum-overlapping 

percentage (i.e., the data redundancy requirement) is determined by the distance between two 

adjacent light sources. In this case, two LEDs can be viewed as one ‘larger’ light source element, 

and the resulting averaged spectrum-overlapping percentage is determined to be 

~55%, satisfying the convergence condition of ~40% [27]. Based on the simulated low-

resolution state-mixtures, we applied the state-multiplexed FP scheme to recover the high-

resolution sample images in Fig. 3.2(c2) and 3.2(c3). Using the state-mixture data set, we also 

used the single-state FP scheme (for comparison purpose) to reconstruct the sample images in 

Fig. 3.2(d1) and 3.2(d2). 
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Fig. 3.3. Experiments of the single-state and state-multiplexed FP schemes. (a1) and (a2) The experimental setups 

for the two schemes. (b1) Raw data of the single-state FP scheme (0.1 NA). (b2) and (b3) The recovered sample 

intensity and phase images using the single-state FP scheme (0.5 NA). (c1) Raw data of the state-multiplexed FP 

scheme (0.1 NA). Two adjacent LED elements are lit up simultaneously for sample illumination, and each low-

resolution intensity image represents an incoherent summation of two coherent states. (c2) and (c3) The recovered 

sample intensity and phase images using the state-multiplexed FP scheme (0.5 NA). (d1) and (d2) The 

reconstructions of state-mixed raw data using the single-state FP scheme (for comparison). 

 

The image qualities of different FP reconstructions are quantified using the mean-square 

errors (the difference between the FP reconstructions and the ground truth; smaller errors 

represent better reconstruction). The mean-square errors for Fig. 13(b2), 13(c2), and 13(d1) are 

0.11%, 0.47% and 4.0%, respectively. From this set of simulations, we can see that, the reported 

state- multiplexed scheme is able to recover the sample image with quality similar to single-state 

FP. 

We next validated the state-multiplexed FP scheme using a light microscope experiment, 

as shown in Fig. 3.3. The parameters of the experimental setup are similar to those of 
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simulations. For the single-state FP scheme (Fig. 3.3(a1)), each acquired image corresponds to 

illumination from one LED element. Figure 3.3(b1) shows an example of the single-state low-

resolution raw image. For the state-multiplexed FP scheme (Fig. 3.3(a2)), two adjacent LEDs are 

used for sample illumination, and thus, the corresponding raw image (Fig. 3.3(c1)) represents an 

incoherent summation of two coherent states (from two LEDs). The reconstructed high-

resolution images for these two schemes are shown in Fig. 3.3(b2)-3.3(b3) and 3.3(c2-c3). Based 

on the state-mixed raw images, we also used the single-state FP scheme to reconstruct the high-

resolution images in Fig. 3.3(d1)-3.3(d2) for comparison.  

From Fig. 3.3, we can see that, the state-multiplexed FP is able to recover high-resolution 

sample images from state-mixed measurements, and the quality of the reconstructions is 

comparable to that of single-state FP. This experiment validates the effectiveness of the reported 

state-multiplexed FP recover routine. 

3.4 Spectral multiplexing in Fourier ptychographic imaging 

One important application of the state-multiplexed FP scheme is multispectral imaging. 

Light sources with multiple wavelengths can be used to illuminate the sample from different 

incident angles, and the acquired images represent incoherent summations of the sample 

transmission profiles at different wavelengths. A state-multiplexed FP algorithm can then be 

used to reconstruct multiple high-resolution images at different wavelengths. In this section, we 

demonstrate such a state-multiplexed scheme for color multiplexing, which we will refer to as 

“color-multiplexed FP”. It is also important to acknowledge that, color multiplexing has recently 

been demonstrated for lensless ptychography by using the concept of translational diversity 

(laterally moving the sample over different spatial positions) [26]. 
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The operation principle of color-multiplexed FP is shown in Fig. 3.4, where we used a 

color LED array for sample illumination and acquired low-resolution images using a 

monochromatic camera. Since R/G/B LED elements were turned on simultaneously in the 

acquisition process, the acquired images represent incoherent summations of sample profiles at 

R/G/B wavelengths. Such state-mixed raw data is then used to recover three high-resolution 

images at the corresponding wavelengths and produce a final color image of the sample. 

 
Fig. 3.4. Color-multiplexed FP scheme. R/G/B LEDs are turned on simultaneously for illumination. Low-resolution 

images are acquired using a 0.1 NA objective lens and a monochrome camera. A color-multiplexed FP recovery 

algorithm is then used to decouple the R/G/B channels from the low-resolution images. A high-resolution color 

image of the sample can be recovered using computation instead of spectral filters. 

 

 

The recovery process of the color-multiplexed FP scheme is similar to that of state-

multiplexed scheme. However, in this case, multiple sample estimates at different wavelengths 

are used in the workflow. As shown in Fig. 3.5, three sample estimates are used to generate the 

corresponding target images. The intensity components of the target images are summed up to 

generate the incoherent mixture 𝐼𝑡, and the target images are updated using the ratio between the 

actual measurement 𝐼𝑚 and 𝐼𝑡 . The updated target images are then used to modify the 

corresponding spectral regions of the sample estimates. The entire process is repeated for all 

intensity measurements, and iterated for several times until the solution converges. Lastly, the 

recovered images at different wavelengths are combined to produce a high-resolution color 

image. 
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Fig. 3.5. Color-multiplexed FP recovery routine. 

As before, we first validated the color-multiplexed FP using simulations. We simulated a 

15*15 color LED array with red/green/blue (632 nm, 532 nm, and 472 nm) elements lighting up 

simultaneously; other parameters being the same. The high-resolution input images (the ground 

truth) at three different channels are shown in Fig. 3.6(a1)-3.6(a3), and the corresponding color 

image is shown in Fig. 3.6(a4). The simulated low-resolution measurement is shown in Fig. 

3.6(b), which represents an incoherent summation of three coherent states of the sample profiles. 

We then applied the color-multiplexed FP recovery algorithm to perform reconstruction, and the 

results are shown in Fig. 3.6(c1)-3.6(c4). We also quantified the image quality by calculating the 

mean-square errors, and the results are 0.5%, 0.4%, and 0.1% for Fig. 3.6(c1)-3.6(c3) 

respectively. We can see that, the color-multiplexed FP scheme is able to recover the color image 

of the sample from state-mixed measurements. 

 



39 
 

 
Fig. 3.6. Simulations of the color-multiplexed FP scheme. (a) Input R/G/B channels and the color image. (b) The 

low-resolution intensity measurement of the object, representing an incoherent summation of 3 object profiles at 

different wavelengths. (c) The color-multiplexed FP recovery (0.5 NA). The mean-square errors for (c1)-(c3) are 

0.5%, 0.4%, and 0.1%, respectively. 

 

We also validated the color-multiplexed FP scheme using a light microscope experiment, 

as shown in Fig. 3.7. We used a pathology slide (human breast cancer section, Carolina Inc.) as 

our sample, and R/G/B LEDs were turned on simultaneously for sample illumination. Low-

resolution images were acquired using the 0.1 NA objective lens and the monochrome camera 

(parameters are the same as that for simulations). As such, these measurements represent 

incoherent mixtures of sample profiles at three wavelengths, as shown in Fig. 3.7(a). The color-

multiplexed FP algorithm was then used to decouple into the R/G/B channels from the state-

mixed measurements and recover the high-resolution color image of the sample. Figure 3.7(b1)- 

3.7(b3) demonstrate the recovered images for R/G/B channels, and the final color image is 

shown in Fig. 3.7(c). We also reconstruct the color image from three separated FP acquisitions 

(without state-mixing) in Fig. 3.7(d). As a comparison, the color image captured using a 

conventional 40X objective lens (0.6 NA) is shown in Fig. 3.7(e). However, we note that, the 
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focal plane of Fig. 3.7(e) may slightly shift when we switch the objective lens (the sample is 

about 15 μm thick). 

From this experiment, we can see that, the color-multiplexed FP algorithm is able to 

recover the high-resolution color image from the state-mixed measurements. We found that, the 

major noise source in our experiment was from the intensity uncertainty of the light source array. 

For example, the intensity fluctuations of R/G/B LED elements change the ratio of color 

components, creating state-decomposing errors and color mismatch problem for FP 

reconstructions. To address this problem, we can use a spectroscopic element to better calibrate 

the intensity values of the different LEDs in the array. Adaptive correction scheme can also be 

used to correct for intensity uncertainty in a post-processing manner [20]. We also found that, 

under the same illumination intensity, the intrinsic image contrast for the blue channel is weaker 

that of red and green channels. To address this problem, we can adjust the illumination intensity 

ratio between different wavelength components. The optimal intensity ratio may depend on the 

employed staining technique. Nevertheless, the experiment shown in Fig. 3.7 provides a proof-

of-concept demonstration of the color-multiplexed FP scheme. 
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Fig. 3.7. Experimental demonstration of the color-multiplexed FP scheme. (a) Raw data of the color-multiplexed FP 

acquisition, representing incoherent summation of the sample profiles at three wavelengths. (b1)-(b3) The recovered 

color-multiplexed high-resolution images (0.5 NA) at red, green, and blue channels. (c) The recovered color image 

by combining (b1)-(b3) (with white balance). (d) The recovered color image (0.5 NA) using three separated FP 

acquisitions with individual red, green, and blue illumination (no state-mixing). (e) Color image using a 

conventional microscope with a 40X high-NA objective lens (0.6 NA). 

 

3.5 Discussion and conclusion 

In summary, we have developed and tested a state-multiplexed recovery scheme for 

Fourier ptychographic imaging. In this scheme, we use multiple target images for handling 

different coherent states of the light source and then update the high-resolution sample image 

accordingly. We have demonstrated the applications of the reported scheme for coherent-state 

decomposition and color-multiplexed imaging. 

The state-multiplexed scheme can be used to model the partially coherent effects of the 

employed light sources. For example, the finite extent of the light source (related to spatial 

coherence) can be modeled as multiple point sources emitting light independently. The finite 

spectrum of the light source (related to temporal coherence) can be modeled as multiple light 

sources emitting light with different, but narrower passbands. The finite spatial extent or the 
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emission band of the LED can be separated into different point sources or narrower passbands 

until no difference between adjacent states can be detected. However, we note that, in our current 

implementation, the major reconstruction error comes from the intensity uncertainty of the LED 

array, not the partially coherent effects of the light source element. We also note that, instead of 

light up two components simultaneously, we can also light up more components in the array to 

form, for example, Hadamard basis patterns. By using the optimal basis, we may be able to 

reduce the number of acquisitions and raise the photon budget. 

Furthermore, the spectrum-multiplexing scheme reported in this work can be used to 

replace thin-film interference filters, gratings or other optical components for spectral 

multiplexing and demultiplexing. We note that, the conventional ptychography approach 

typically requires the use of high-coherence light sources. The reported approach, on the other 

hand, considerably reduces the coherence requirement. In our demonstrations, we used a color 

LED array for imaging a pathology slide. It would be straight forward to extend the reported 

approach for more wavelengths using low-cost broadband LEDs. 

Multispectral microscopy imaging is an emerging modality for various biomedical 

applications. This technology uses visible light as well as ultraviolet and infrared light to acquire 

more information from specimens. With the rich information of the 3D multispectral data cube, 

tissue constituents can be more easily identified with their spectral signatures [28]. For example, 

multispectral microscopy has been demonstrated for differentiating prostate cancer [29], 

cancerous colon biopsies [30], and melanoma [31] using pathology slides. It has also found 

applications in chemical imaging and sensing using functioned nanoparticles [32]. Different from 

other multispectral imaging geometries, the reported FP scheme can be implemented with most 

existing microscopes in a cost-effective manner. The resolution and throughput are also adequate 
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for microscopy screening. We anticipate that, the reported scheme can provide a practical 

solution for multispectral microscopy and open up exciting opportunities for computational 

multispectral imaging in the near future. Our on-going efforts include the development of a high-

power white light LED array for sample illumination. 

Finally, we note that, the effectiveness of the spectrum-multiplexed approach may 

depend on the data redundancy and the compressibility of the sample image [20]. This 

relationship can be directed to the recent development of compressive sensing [21, 33–35]. 

Further investigations along this line are highly desired. 
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Chapter 4 

High-resolution fluorescence imaging via pattern-illuminated Fourier 

ptychography (Adapted from [77]) 

4.1 introduction and background 

The lateral resolution of conventional fluorescence microscopy is determined by the 

diffraction limit of the employed optics: λ/(2NAobj), where λ is the wavelength of the incidence 

and NAobj is the numerical aperture (NA) of the objective lens [1]. This diffraction limit, 

however, is established under the assumptions of single image acquisition and uniform light 

illumination. It is possible to combine multiple acquisitions with non-uniform illuminations to 

bypass this resolution barrier. Frequency mixing between the sample and the non-uniform 

illumination pattern shifts the high-frequency components to the passband of the collection 

optics. Therefore, the recorded image contains sample information that is beyond the diffraction 

limit. Structured illumination microscopy (SIM) is one good example towards this end [36–44]. 

A typical SIM setup projects a sinusoidal pattern at the sample plane and uses at least three phase 

steps to laterally shift the pattern across the sample. The corresponding images will be used to 

improve the resolution along the orthogonal direction of the sinusoidal pattern. Following a 

similar logic, sinusoidal patterns with other orientations will be used to improve the resolution 

along other directions. In the linear regime, the SIM approach is able to improve the diffraction-

limited resolution by a factor of two, and thus, the final achievable 

NA can be twice of the objective’s NA. The capability of bypassing diffraction limit has 

made SIM a popular tool for super-resolution fluorescent imaging. In this chapter, we report a 

novel fluorescence imaging approach, termed pattern-illuminated Fourier ptychography (FP), for 

bypassing the diffraction limit of the employed optics. Similar to SIM and other speckle 
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illumination schemes [36–55], the reported approach uses non-uniform intensity patterns for 

sample illumination and acquires the corresponding diffraction-limited intensity images. Based 

on the acquired images, a novel Fourier ptychographic recovery algorithm is used to reconstruct 

the high-resolution sample image in an iterative manner. The recovery process starts with a low-

resolution intensity image as the initial guess. This initial guess is then sequentially updated by 

other low-resolution measurements taken under different illumination patterns. Similar to the 

original FP approach [57–63], the iterative updating process also switches between the spatial 

and Fourier domains. In the spatial domain, we use the pattern-illuminated low-resolution images 

as intensity constraints for the sample estimate. In the Fourier domain, we use the incoherent 

optical transfer-function of the objective lens as the object support constraint for the solution. 

This sequential updating process is iterated until the sample estimate converges (5-20 times). 

We note that, the strategy of using non-uniform illumination for improving lateral or 

axial resolution is not new [36–44]. However, the use of the FP framework [2, 3, 16, 20, 57-58] 

to recover a high-resolution fluorescence image is new and may provide an alternative solution 

to existing SIM and speckle illuminating platforms. As the use of fluorescence microscopy is 

prolific in modern biological research and clinical diagnosis [2, 3, 16, 20, 57-58], the reported 

approach may open up new opportunities for the Fourier ptychographic imaging paradigm. 

4.2 Pattern-illuminated Fourier ptychography 

As a coherent imaging technique, the original FP approach cannot be used for 

fluorescence microscopy. The reason is very simple: fluorophores are not responsive to phase 

variation of the excitation waves. In the original FP prototype, no matter which angle we 

illuminate the sample, the fluorescence emission remains unchanged and no additional 

information can be extracted from the raw images. To modify the FP recovery concept for 
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fluorescence microscopy, we can simply replace the plane wave illuminations with intensity-

varied patterns. In this case, fluorophores are responsive to the intensity variations, and each 

low-resolution image provides additional information for the high-resolution sample profile. We 

term such a scheme as pattern-illuminated Fourier ptychography. 

As shown in Fig. 4.1, the pattern-illuminated FP approach uses multiple intensity-varied 

pattern Pn (n = 1,2,3…) to illuminate the object Iobj  and acquires the corresponding low-

resolution images In (n = 1,2,3…) through the objective lens. The proposed algorithm aims to 

recover the high-resolution object image Iobj  from the low-resolution images In (n =1,2,3…). 

Here we assume that the illumination pattern Pn is known. Later in this section, we will extend 

the recovery framework for an unknown illumination pattern.  

 
Fig. 4.1. Overview of the pattern-illuminated FP recovery scheme. Multiple pattern-illuminated low-resolution 

images In (n = 1,2,3…) are used to recover the high-resolution sample image Iobj. In the last low-resolution image In, 

the high-frequency illumination pattern is filtered out by the low-NA objective lens. 

 

The image formation process can be expressed in the Fourier space as follow 

                                           ℱ(𝐼𝑛) = 𝑂𝑇𝐹 ∙ ℱ(𝐼𝑜𝑏𝑗 ∙ 𝑃𝑛),                                             (1) 

where ℱ() denotes the Fourier transform of the image, and OTF denotes the incoherent optical-

transfer-function of the objective lens. There are two multiplication steps in Eq. (1): one in the 

spatial domain and one in the Fourier domain. In the spatial domain, the object emission profile is 

multiplied with the illumination pattern to produce a target image 𝐼𝑡𝑛: 𝐼𝑡𝑛 = 𝐼𝑜𝑏𝑗 ∙ 𝑃𝑛. In the Fourier 

domain, the incoherent OTF is multiplied with the spectrum of the target image to produce the 
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spectrum of the measurement: ℱ(𝐼𝑛) = 𝑂𝑇𝐹 ∙ ℱ(𝐼𝑜𝑏𝑗 ∙ 𝑃𝑛). To recover the high-resolution object 

emission profile 𝐼𝑜𝑏𝑗 , we need to invert these two multiplication steps in both the spatial and 

Fourier domain.  

The flow chart of the recovery algorithm is shown in Fig. 4.2. Briefly speaking, it starts with 

an initial guess of the sample emission profile (step 1). This initial guess is then sequentially 

updated by other low-resolution measurements taken under different illumination patterns (step 

2). The updating process is iterated until the solution converges (step 3).  

 

Fig. 4.2. Flow chart of the pattern-illuminated FP algorithm.  

 

These three steps can be explained in details as follow. Step 1: it starts with an initial guess of 

the sample emission profile 𝐼𝑜𝑏𝑗. This initial guess can be an interpolation of one low-resolution 

measurement; it can also be a random guess. Step 2.1: the initial guess is then multiplied with the 



48 
 

illumination pattern 𝑃𝑛 to produce a target image 𝐼𝑡𝑛 in the spatial domain: 𝐼𝑡𝑛 = 𝐼𝑜𝑏𝑗 ∙ 𝑃𝑛. Step 

2.2: the target image 𝐼𝑡𝑛 is updated by the low-resolution measurement 𝐼𝑛 in the Fourier space as 

follow 

                ℱ(𝐼𝑡𝑛)𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = ℱ(𝐼𝑡𝑛) + 𝑂𝑇𝐹 ∙ (ℱ(𝐼𝑛) − 𝑂𝑇𝐹 ∙ ℱ(𝐼𝑡𝑛))                      (2) 

The term ℱ(𝐼𝑡𝑛)𝑢𝑝𝑑𝑎𝑡𝑒𝑑  is then transformed back to the spatial domain to produce an updated 

target image 𝐼𝑡𝑛
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

. Step 2.3: the updated target image 𝐼𝑡𝑛
𝑢𝑝𝑑𝑎𝑡𝑒𝑑

 is then used to update the high 

resolution sample estimate in the spatial domain using the following equation 

                      𝐼𝑜𝑏𝑗
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝐼𝑜𝑏𝑗 +

𝑃𝑛

(max(𝑃𝑛))^2
∙ (𝐼𝑡𝑛

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 − 𝐼𝑜𝑏𝑗 ∙ 𝑃𝑛)                           (3)       

Step 3: The updating process is repeated for all different illumination patterns and iterated until 

the solution converges. The convergence metric is the mean-square-error (MSE) of two 

consecutive recovered solutions. The process stops if the MSE is smaller than a pre-defined 

value.  

We note that, Eq. (2) is performed in the Fourier domain and Eq. (3) is performed in the spatial 

domain. Similar procedures can also be found in the pupil recover scheme of the original FP 

approach [59], as well as in the conventional ptychography approach [60, 61]. In conventional 

SIM settings, the illumination patterns are generated by two beam interference, and thus, the 

patterns are known. In this case, Eq. (2)-(3) can be used to recover the high-resolution sample 

image. We note that, different from the conventional SIM recovery scheme, the reported algorithm 

requires no phase stepping of the sinusoidal pattern.  

It is straight forward to extend the reported framework for handling unknown pattern. In this 

case, one unknown pattern can be translated to different spatial positions or rotated with different 

orientations. At each position, one low-resolution image is acquired using the low-NA objective 
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lens.  Similar to the recovering process of the sample image 𝐼𝑜𝑏𝑗, we can assign an initial guess for 

the unknown pattern 𝑃𝑢𝑛𝑘𝑛𝑜𝑤𝑛 . In our implementation, we use uniform illumination (i.e., 

𝑃𝑢𝑛𝑘𝑛𝑜𝑤𝑛=1) as the initial guess. To recover this unknown pattern, we only need to add one sub-

step, step 2.4, in the image updating process. In this sub-step, the updated target image 𝐼𝑡𝑛
𝑢𝑝𝑑𝑎𝑡𝑒𝑑  is 

used to update the unknown pattern as follow:   

 𝑃𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑃𝑢𝑛𝑘𝑛𝑜𝑤𝑛 +

𝐼𝑜𝑏𝑗

max (𝐼𝑜𝑏𝑗)
∙ (𝐼𝑡𝑛

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 − 𝐼𝑜𝑏𝑗 ∙ 𝑃𝑢𝑛𝑘𝑛𝑜𝑤𝑛(𝑥 − 𝑥𝑛))   ,        (4)       

where 𝑥𝑛 is the scanning positions of the sample.  

We note that, the use of translated illumination pattern has been demonstrated by Ventalon and 

Mertz for improving the axial resolution of fluorescence microscopy [22]. Our work, on the other 

hand, uses the translated illumination pattern to improve the lateral resolution of the sample 

emission profile. Furthermore, the reported recovery algorithm does not rely on the statistical 

nature of the illumination patterns. The iterative algorithm is able to recover both the high-

resolution sample image and the unknown pattern at the same time.  

4.3 Simulations of the pattern-illuminated FP framework 

We first simulated the use of the reported framework for conventional SIM settings, where 

the known sinusoidal patterns are used for sample illumination. Fig. 4.3(a1) shows the simulated 

raw image acquired by a 0.15 NA objective lens (0.25 µm pixel size). Fig. 4.3(a2) shows the same 

raw image with 1% additive Gaussian noise. Fig. 4.3(a3) shows the corresponding Fourier 

spectrum of the raw image. 

Next, we used different number of sinusoidal patterns for sample illumination and perform 

image recovery using the pattern-illuminated FP algorithm. In Fig. 4.3(b), we use 18 sinusoidal 

patterns for illumination. We only changed the orientations of the sinusoidal patterns and no phase 
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stepping is needed. The frequency of the sinusoidal patterns corresponds to an illumination NA of 

0.1, and thus, the NA of the final recovered image in Fig. 4.3(b) is 0.25. In Fig. 4.3(c), we use 36 

sinusoidal patterns with two different frequencies. The frequency of the first 18 patterns 

corresponds to an illumination NA of 0.1, and the frequency of the other 18 patterns corresponds 

to an illumination NA of 0.25. Therefore, the NA of the final recovered image shown in Fig. 4.3(c) 

is 0.4. Following a similar logic, we use 54 sinusoidal patterns in Fig. 4.3(d), corresponding to 

three different illumination NAs (0.1, 0.25, and 0.4). The NA of the final recovered image shown 

in Fig. 4.3(d) is, therefore, 0.55. 

 

Fig. 4.3 Pattern-illuminated FP recovery using sinusoidal patterns.  (a1) Simulated raw image without 

noise, and (a2) with 1% additive noise. (a3) The Fourier spectrum of (a1). FP recoveries using (b) 18 raw 

images, (c) 36 images, and (d) 54 images. We used 15 loops for the FP reconstructions. For the noise-free 

cases, the corresponding MSEs are 1.07%, 0.70%, and 0.44% for (b1)-(d1). For the cases with 1% noise, 

the corresponding MSEs are 1.65%, 1.30%, and 1.12% for (b2)-(d2). (e) The MSE is plotted as function of 

different noise levels. Different color lines correspond to different number of raw images. 

We also study the noise performance of the proposed algorithm by adding different amounts 

of Gaussian noise to the raw image. Fig. 4.3(b2)-4.3(d2) demonstrate the recovered images with 

1% additive noise. Fig. 4.3(e) shows the MSE as a function of different noise levels. We can see 
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that, the image quality degrades linearly as a function of the additive noise. Therefore, the reported 

framework is robust to the additive noise.  

In a practical experiment, it is difficult to precisely characterize the illumination pattern. 

Therefore, it is important to extend the reported FP framework for handling unknown illumination 

patterns. As we have discussed in the section 2, we can use one unknown pattern in our framework 

and translate this pattern into different spatial positions for sample illumination. The object and 

the unknown pattern can be updated using Eq. (3) and Eq. (4) in the iterative recovery process. 

In Fig. 4.4, we simulated the case of translating one unknown speckle pattern to 169 different 

spatial positions for sample illumination. The simulated raw images are shown in Fig. 4.4(b). The 

recovered unknown illumination pattern and object image are shown in Fig. 4.4(c) and 4.4(d). The 

MSE of Fig. 4.4(d1) is 0.4%, comparable to the case of Fig. 4.3(d1). We note that, the unknown 

speckle pattern in this simulation is fully randomized. Therefore, the upper frequency limit of the 

pattern shown in Fig. 4.4(a) is only determined by the employed pixel size. In a practical 

experimental setting, the upper frequency limit for the speckle pattern is, however, determined by 

the employed optics. For example, if a 0.9 NA condenser is used to focus the speckle pattern onto 

the sample, the maximum NA of the speckle pattern is 0.9. The corresponding frequency support 

can then be imposed for illumination pattern at each iteration loop (the components outside the 

frequency support are set to zero).           

The simulations shown in Fig. 4.3 and Fig. 4.4 validate the working principle of the reported 

pattern-illuminated FP recovery algorithm.    
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Fig. 4.4 Pattern-illuminated FP recovery using unknown patterns. (a) The unknown illumination 

pattern (random pattern) is translated into 169 different spatial positions. (b1) The simulated raw 

image. (b2) The Fourier spectrum of (b1). (c) The recovered illumination pattern. (d) The recovered 

high-resolution object image and its Fourier spectrum. We used 15 loops for the FP reconstructions. 

The MSE of (d1) is 0.4%. 

 

 

4.4 Experimental demonstration of the pattern-illuminated FP approach 

In this section, we will use the reported framework to improve the resolution of a 

commercially available fluorescence microscope (Nikon Ti-E motorized microscope). The 

experimental setup is shown in Fig. 4.5, where a 488 nm laser diode is used as the light source and 

a diffuser is inserted into the epi-illumination arm. The excitation light, thus, forms a random 

speckle pattern on the sample. The resulting fluorescence emission then passes through the 

detection path and reaches the CCD sensor. To acquire a pattern-illuminated FP dataset, we only 

need to move the sample to different spatial positions using the motorized stage and acquire the 

corresponding fluorescence images. We note that, our setup is compatible with most existing epi-

illuminated microscope platforms; no major hardware modification is needed. 
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In our demonstration, we used a mouse kidney section (Molecular Probes F24630, Life 

Technology) as our sample. The central wavelength of the mission filter is 525 nm, with a 50 nm 

bandwidth (Semrock FF03-525/50-25). We use a 10X 0.25 NA objective lens (Nikon) and a CCD 

camera (Andor Clara Interline CCD) for image acquisition. The sample is moved to 49 different 

positions in our experiment, and the acquired images are used to recover both the high-resolution 

sample emission profile and the unknown illumination pattern. Fig.4.5 (b1)-(b4) demonstrate 4 out 

of 49 acquired raw images using the reported platform. As expected, we can clearly see the 

speckle-like features from these raw images. We note that, the 10X, 0.25 NA objective lens is used 

both for illumination and light collection in the reported setting. Therefore, the upper frequency 

limit of the speckle pattern is determined by the incoherent optical-transfer-function of the 0.25 

NA lens. In the recovery process, we imposed the corresponding frequency support to constraint 

the illumination pattern at each iteration loop.   

 
Fig. 4.5 (a) Pattern-illuminated FP setup. A diffuser is placed at the epi-illuminated arm of the 

microscope platform. The excitation light from the objective lens forms a speckle pattern on the 

sample. The resulting fluorescence emission from sample is then collected by the objective lens and 

detected by the CCD camera. (b1)-(b4) 4 acquired raw images.    
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Fig. 4.6 Imaging performance of the pattern-illuminated FP approach. (a1) Sample image acquired 

using the 10X objective lens with uniform illumination. (b1) Speckle-illuminated raw image. (b2) 

FP recovery using 49 raw images. (c1) Sample image acquired using a 40X high-NA objective lens. 

(a2), (b3), (c2) Intensity lines traces of the highlighted features in (a1), (b2), (c1).  For (a1) and (c1), 

we averaged multiple frames to get a similar photon budget as (b2).  
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Fig. 4.7. FP reconstructions using different number of raw images. We used 5-9 loops for the 

iterative recovery process. (a) 9-frame recovery. (b) 16-frame recovery. (c) 25-frame recovery. (d) 

49-frame recovery. (a1)-(d1) The recovered object profiles. (a2)-(d2) The recovered unknown 

illumination patterns. (a3)-(d3) Intensity lines traces corresponding to the highlighted features in 

(a1)-(d1). The FP reconstruction converges with 25 raw images.  

 

Fig. 4.6 demonstrates the performance of the pattern-illuminated FP approach. For Fig. 4.6(a), 

we use the same 10X objective lens with uniform illumination to capture the sample image.  Fig. 
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4.6(b1) shows the raw FP image under the speckle illumination. Fig. 4.6(b2) shows the FP 

reconstruction using 49 raw images. Fig. 4.6(c1) shows the image captured by a 40X high-NA 

objective lens. Fig. 4.6(a2), 4.6(b3), and 4.6(c2) show the intensity line traces of a small feature of 

the sample, corresponding to the highlighted regions of Fig. 4.6(a1), 4.6(b2) and 4.6(c1). As shown 

in Fig. 4.6(a2), we cannot resolve the two lines using the 10X objective lens. We can, however, 

barely resolve the two-line feature using the FP recovered image in Fig. 4.6(b2). We also observe 

the same feature from the image captured by the 40X high-NA objective lens in Fig. 4.6(c). 

Therefore, from the comparison of this set of images, we verify that the observed two-line feature 

is not an artifact of the FP reconstruction process. From Fig. 4.6(b) and 4.6(c), the distance between 

these two lines is estimated to be 0.66 µm. By Rayleigh criteria, the NA of the FP recovered image 

is, thus, determined to be 0.47. The corresponding resolution enhancement factor is ~1.8, close to 

the theoretical limit of 2. 

We further compare the FP reconstructions using different number of raw images in Fig. 4.7.  

Fig. 4.7(a)-4.7(d) show FP reconstructions using 9 frames, 16 frames, 25 frames, and 49 frames 

respectively. From this comparison, we can see that, the FP reconstruction converges with 25 raw 

images. 
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Chapter 5 

Field-portable high-resolution microscope using a cellphone lens (Adapted 

from [76]) 

5.1 Introduction and background  

Optical microscopy pervades almost all aspects of modern bioscience and clinical applications. 

A typical microscope consists of an objective lens, space for relaying the image, and a tube lens to 

project a magnified image onto the eyepiece or a camera. To achieve high-resolution microscopic 

imaging, a precise and expensive objective lens is needed for collecting light over a large angle. 

The challenge for miniaturizing the conventional microscope platform comes from intrinsic 

aberrations of the lens elements. The perfect lens obeying ray diagrams does not exist in the 

physical world. A microscope objective particularly highlights the lens aberrations due to the large 

collection angle of the entrance pupil. To improve the performance of a standard microscope, we 

need to pack in more lens elements to correct for both chromatic and monochromatic aberrations.      

In recent years, there has been increasing interest in developing portable microscope platforms 

that would benefit remote clinics or be used in resource-limited environments [62-67]. Lensless 

microscopy is a good example of this direction. It has been shown that, sub-micron resolution can 

be achieved using various lensless imaging techniques, such as optofluidic microscopy [62, 64], 

digital in-line holography [64, 67, 68], and contact imaging microscopy [66]. Applications of these 

techniques range from malaria parasite screening and single cell tracking, to real-time cell culture 

monitoring and etc. While these techniques have been successfully demonstrated, they are limited 

to a small range of samples. Optofluidic microscopy requires the sample to flow across a 

microfluidic channel. It works well for dispersible samples such as blood, fluid cell cultures, and 

other suspensions of cells or organisms, but is incompatible with adherent samples or samples on 
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glass slides. Digital in-line holographic microscopy records interference intensity distribution of a 

target under coherent light illumination. Reconstruction algorithms then recover the complex 

transmission profile of the sample. This approach works well for sparse sample such as well-

isolated blood smear slides but the algorithms cannot handle confluent samples such as pathology 

slides. The reason for this limitation is the well-known loss of phase information during the 

intensity recording process. In order to recover the complex sample transmission profile, confined 

object constraints (sparsity constraints) need to be imposed in the spatial domain. The contact 

imaging approach requires the sample placed at close proximity to the sensing surface and, thus, 

cannot handle conventional microscope glass slides. While techniques for mitigating these 

limitations have been reported [68, 69], the image quality is generally not as good as a conventional 

microscope.  

Here we report our effort on the development of a portable high-resolution microscope 

platform, termed FPscope, using the Fourier ptychography (FP) approach [2, 3]. FP is a recently 

developed computational imaging procedure that synthesizes a number of variably illuminated, 

low-resolution intensity images in Fourier space to produce a high-resolution complex sample 

image. The FP imaging procedure transforms the general challenge of optical design that is 

coupled to the physical limitations of the system’s aberrations to one that is solvable by 

computation. The final achievable resolution of FP is determined by the largest incident angle of 

the illumination beam, not the numerical aperture (NA) of the objective lens. The recovery 

information using FP is shown to be quantitative in nature. Optical aberration can also be digitally 

corrected by introducing a complex pupil function in the recovery process [70, 71]. Recently, we 

have also extended the FP procedure to multispectral imaging [58], 3D holographic imaging [72], 

and super-resolution macroscopic imaging beyond the diffraction limit [72]. 
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5.2 System design of the FPscope 

The core component of the FPscope is a cellphone lens. The large consumer market has 

made cellphone lens modules available at low-cost and in high-quality. For a conventional 

cellphone camera, the lens module is used to demagnify the scene onto the image plane of the 

camera, where the image sensor is located. In the FPscope, we use the cellphone lens module 

(Nokia 808) in the reverse manner; we replace the image sensor with sample specimen and use the 

cellphone lens to project the magnified image onto a low-cost CCD camera (DMM 31AU03, The 

Imaging Source). The magnification factor can be tuned by adjusting the distance between the 

sample and the cellphone lens. In our design, the magnification factor was chosen to be 4.5, to 

satisfy the Nyquist sampling requirement. We note that the configuration shown in Fig. 5.1(a) is 

not new. We have demonstrated the same configuration (using a lens in the reverse manner and 

projecting the magnified image onto the detector) for gigapixel imaging [73]. However, the use of 

a cellphone lens in conjugation with the FP algorithm enables a cost-effective solution for field-

portable microscopy imaging.   

 
Fig. 5.1 System design of FPscope. (a) A cellphone lens is used in a reverse manner. The magnified 

sample image is projected onto a CCD sensor. An 8 by 8 LED matrix is used for sample illumination. 

(b) The assembled FPscope connected to a computer.        

To supersede the diffraction limit of the lens module, we used an 8 by 8 LED array for sample 

illumination. Each LED element of the array illuminates the sample from an oblique incident 
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angle, and the corresponding image is acquired using the cellphone lens with a 0.15 NA. The 

acquired 64 images are then synthesized in Fourier space using the Fourier ptychographic 

algorithm. The final synthetic NA is determined by the largest incident angle of LED illumination, 

and it can be adjusted by changing the distance between the LED array and the sample. In our 

design, the distance between the LED array and the sample is chosen to be ~10 cm, corresponding 

to a maximum synthetic NA of 0.5. We also note that if the illumination is placed too close to the 

sample, there won’t be enough Fourier spectrum overlap between two adjacent LEDs [74].  

We designed a 3D manual stage to move the sample in the x-y plane and to adjust the focal 

position. Most of the components in our design were produced using a Makerbot 3D printer. The 

components were assembled with springs and screws. Fig. 5.1(b) shows the FPscope connected to 

a computer. 

 
Fig. 5.2 The assembling process of the FPscope. (a) A Nokia cellphone lens is fit in to a plastic case. 

(b) The case is assembled onto a CCD camera. (c) The assembling of the x-y stage and the slide 

holder. (d) The assembling of the z stage. (e) The final assembled FPscope.  

 

Fig. 5.2 shows the assembly process of the FPscope. Fig. 5.2(a) and (b) show the cellphone 

lens mount in front of the CCD camera. Fig. 5.2(c) shows the x-y stage and the slide holder 

assembly. Fig. 5.2(d) shows the z stage assembly. The final assembled FPscope is shown in Fig. 
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5.2(e). The dimensions of the FPscope are 8 x 8 x 16 cm. The mass of the platform is about 250 

grams, mostly of which is from the CCD camera. 

5.3 System characterization of the FPscope 

We characterized the system resolution performance by imaging a USAF target. In this 

experiment, we captured 64 low-resolution images and used them to recover a high-resolution 

image using the FP algorithm. The recovery process switches between the spatial and Fourier 

domains. In the spatial domain, the acquired low-resolution images are used to constrain the 

amplitude of the solution. In the Fourier domain, the coherent transfer function (i.e., the pupil 

function) of the cellphone lens is used as a support constraint for the solution. This support 

constraint is digitally panned across Fourier space to reflect the angle-varied illuminations of the 

8 by 8 LED array. The detailed recovery procedure can be found in [2, 3]. 

 
Fig. 5.3 Resolution characterization of the FPscope. (a) One of the 64 low-resolution raw images 

captured using the cellphone lens. (b) The FP recovered image, where feature of group 9, element 3 

can be clearly resolved.  

 

Fig. 5.3(a) shows the raw image captured by the cellphone lens; the NA was measured to be 

~0.15. Fig. 5.3(b) shows the recovered image, and the maximum synthetic NA was, as expected, 
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about 0.5. We can clearly resolve the feature in group 9, element 3, where line-width is 0.78 µm. 

Another advantage of the FPscope is the ability to incorporate pupil correction in the recovery 

process. By introducing a second-order defocused pupil function, we can digitally tune the focal 

position along the optical axis. Fig. 5.4 demonstrates the digital refocusing capability of the 

FPscope. We can see that, the depth-of-focus of the FPscope is longer than 0.1 mm without trading 

off resolution. This much depth-of-focus is orders of magnitude longer than that of conventional 

microscope objective lens with a similar NA. Therefore, the FPscope is significantly less prone to 

sample misalignment.   

 

Fig. 5.4 (a) Depth-of-focus characterization of the FPscope. One of the low-resolution raw images 

captured at (b1) z = 50 µm and (c1) z = -50 µm. (b2-b3), (c2-c3) The FP reconstructions by 

introducing a second-order defocused pupil function at the recovery process. The depth-of-focus is 

orders of magnitude longer than that of conventional microscope objective lens with similar NA.      

 

5.4. Demonstration of the FPscope with biological samples 

We also used the FPscope to image biological samples. In the first experiment, we used a blood 

smear as our sample. Fig. 5.5(a) shows the low-resolution raw image of the blood smear. Fig. 

5.5(b)-(c) show the recovered intensity, phase images of the sample. We also recovered the high-

resolution color image of the sample by combining the FP constructions from R/G/B illuminations. 
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Fig. 5.5(e) shows the image captured using a conventional microscope with a 40X, 0.75 NA 

objective lens.  

 
Fig. 5.5 (a) Rawimage of a blood smear (0.15 NA). FP recovered intensity image (b), phase 

(c), and color image (d). The maximum synthetic NA is 0.5. (e) The image captured using 

a conventional microscope with a 40X, 0.75 NA objective lens.  
 

In the second experiment, we used a pathology slide as our sample (human adenocarcinoma of 

breast section, Carolina), as shown in Fig. 5.6. The full field-of-view is about 1.2 mm by 0.9 mm 

and corresponding computational time is about 50 seconds in MATLAB using a personal computer 

with an i7 CPU. High-resolution views are provided for two regions, one at the central field-of-

view, and the other one at the edge. Images captured with a conventional microscope with a 0.75 

NA objective lens are also provided for comparison. 
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Fig. 5.6 Demonstration of the FPscope using a pathology slide. The full field-of-view is about 1.2 

mm by 0.9 mm. The maximum synthetic NA is 0.5. Images captured using conventional microscope 

with a 0.75 NA objective lens are also shown for comparison.   
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Chapter 6 

Conclusion 

In chapter 2, In conclusion, we have investigated the data redundancy requirements of the FP 

approach in both the spectral and spatial domains. We have reported a sparsely sampled FP scheme 

by selectively updating the pixel values in the spatial domain. Such a scheme is able to get rid of 

the multi-exposure acquisition process in the original FP platform, and considerably shortens the 

acquisition time. We have also discussed a sub-sampled FP scheme and used it solve the pixel 

aliasing problem plagued in the original FP setting. Our on-going effort includes the development 

of single-pixel FP by using the sub-sampled scheme. Finally, we note that, the data redundancy 

requirements may also depend on the chosen samples. The relationship between the image 

compressibility and the data redundancy requirement deserves further investigations. This 

relationship can also be related to the recent development of compressive sensing [21]. The study 

in this paper, however, provides an engineering guideline on designing FP experiments. 

In chapter 3, we have developed and demonstrated an imaging technique, termed pattern-

illuminated Fourier ptychography, for high-resolution fluorescence imaging. This approach 

recovers a high-resolution sample image from many pattern-illuminated low-resolution images. 

We reiterate that, the use of non-uniform intensity patterns for sample illumination is not a new 

idea. It has been demonstrated in various imaging settings for improving lateral/axial resolution 

[36–44]. However, the use of the FP framework for recovering the high-resolution fluorescence 

image is new and may provide an alternative solution for the existing SIM and speckle illuminating 

settings. There are several advantages associated with the reported approach. 1) It is compatible to 

most existing fluorescence microscope platforms; no major hardware modification is needed. The 

experimental demonstration presented in this work was performed at a commercially available 
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microscope platform. 2) The rich literatures on correction schemes of FP and conventional 

ptychography can be integrated into the reported framework. For example, the pupil correction 

scheme and the related adaptive system correction scheme in FP can be integrated into the reported 

framework for factoring out system uncertainties. The positional correction scheme used in the 

conventional ptychography approach can also be integrated into the reported framework to correct 

for positional uncertainty. 3) The reported approach is very efficient in terms of computational 

cost. The solution typically converges with 5-15 loops. In our experimental demonstration, we 

used 5-9 loops for recovering the images shown in Fig. 25(a1)-(d1). The corresponding 

computational time is less than one second using an Intel i7 CPU. The reported algorithm is also 

highly parallelizable. As a result, the computational time can be significantly shortened using a 

GPU. 4) The mechanical scanning range of the reported approach is on the order of speckle size. 

Therefore, the scanning process is considered very fast compared to the conventional sample 

scanning process, where the scanning range is on the scale of sample size. In our implementation, 

we use 1 µm scanning step and the entire scanning region is restricted within 7 µm by 7 µm. There 

are two limitations associated with the current experimental setting. 1) The epi-illuminated 

configuration uses the same objective lens for light delivering and light collection. Therefore, it 

limits the maximum resolution enhancement factor to 2. It would be straight forward to decouple 

the illumination NA from the collection NA using a transmission configuration. For example, we 

can use a high-NA condenser lens to produce high-frequency speckle patterns. We can then use a 

low-NA lens to capture raw images. The final resolution is determined by the high-NA condenser 

lens while the final field-of-field is determined by the low-NA objective lens. In this regard, it is 

possible to use the reported approach to develop high-throughput gigapixel fluorescence imaging 

platform. 2) In the current implementation, the sample scanning positions are assumed to be the 
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known information. This assumption requires the use of precise mechanical stages. However, we 

note that, it is possible to recover the scanning positions from the cross-correlation of the acquired 

images. Therefore, it is possible to recover the high-resolution image without knowing the 

scanning positions of the sample.  

In chapter 4, we have developed and demonstrated an imaging technique, termed pattern-

illuminated Fourier ptychography, for high-resolution fluorescence imaging. This approach 

recovers a high-resolution sample image from many pattern-illuminated low-resolution images. 

We reiterate that, the use of non-uniform intensity patterns for sample illumination is not a new 

idea. It has been demonstrated in various imaging settings for improving lateral or axial resolution. 

However, the use of the FP framework for recovering a high-resolution fluorescence image is new 

and may provide an alternative solution for the existing SIM and speckle illuminating platforms. 

There are several advantages associated with the reported approach. 1) It is compatible with most 

existing fluorescence microscope platforms; no major hardware modification is needed. The 

experimental demonstration presented in this work was performed on a commercially available 

microscope platform. 2) The rich literatures on correction schemes of FP and conventional 

ptychography can be integrated into the reported framework. For example, the pupil correction 

scheme and the adaptive system correction scheme in FP can be integrated into the reported 

framework for factoring out system uncertainties. The sparsely sampled FP scheme can be used in 

the reported framework to bypass the pixel aliasing problem. 3) The reported approach is very 

efficient in terms of computational cost. The solution typically converges with 5-20 loops. In our 

experimental demonstration, we used 5-15 loops for recovering the images shown in Fig. 12(a1)-

(d1). The corresponding computational time is less than one second using an Intel i7 CPU. The 

reported algorithm is also highly parallelizable. As a result, the computational time can be 
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significantly shortened using a graphical processing unit (GPU). 4) The mechanical scanning range 

of the reported approach is on the order of speckle size. Therefore, the scanning process is 

considered very fast compared to the conventional sample scanning process, where the scanning 

range is on the scale of sample size. In our implementation, the entire scanning region is restricted 

within 15 μm by 15 μm. There are three limitations associated with the current experimental 

setting. 1) The epi-illumination configuration uses the same objective lens for light delivering and 

light collection. Therefore, it limits the maximum resolution enhancement factor to 2. It would be 

straight forward to decouple the illumination NA from the collection NA using a transmission 

configuration. For example, we can use a high-NA condenser lens to produce high-frequency 

speckle patterns. We can then use a low-NA lens to capture raw images. The final resolution is 

determined by the high-NA condenser lens while the final field-of-view is determined by the low-

NA objective lens. In this regard, it is possible to use the reported approach to develop a high-

throughput gigapixel fluorescence imaging platform. Such a development will be complementary 

to the gigapixel bright-field microscopy using the original FP approach. 2) In the current 

implementation, the sample scanning positions are assumed to be the known information. This 

assumption requires the use of precise mechanical stages. However, we note that, it is possible to 

recover the scanning positions from the cross-correlation of the acquired images. Therefore, it is 

possible to recover the high-resolution image without knowing the scanning positions of the 

sample. 3) We assume the sample is a 2D section in the reported framework. Modelling the 

reported FP framework using 3D optical transfer function and 3D speckle patterns is one of our 

future directions. 

In chapter 5, we have reported a compact, lightweight, low-cost, and high-resolution 

microscope platform that we termed FPscope. There are several advantages of the reported 
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platform:  1) the resolution of the reported platform is determined by the largest incident angle of 

the illumination, not the NA of the cellphone lens and, therefore, we are able to eliminate the 

traditional reliance on a high-NA lens. 2) Aberrations of the cellphone lens are compensated by 

the complex pupil function introduced to the FPscope. We have demonstrated the use of a second 

order defocused pupil function to extend the depth-of-focus beyond the physical limit of the lens. 

3) The rich literature on FP can be integrated into the reported framework. For example, the pupil 

correction scheme [71] and the adaptive system correction scheme [70] in FP can be integrated 

into the reported framework for factoring out system uncertainties, such the position of the sample, 

the intensity of the LED array, the position of the LED array and etc. The sparsely sampled FP 

scheme [27] can be used in the reported framework to bypass the pixel aliasing problem. The 

multispectral scheme can also be used in the FPscope to perform information multiplexing [58]. 

Finally, we reiterate that the use of a lens in the reverse manner is not a new idea. It has been 

demonstrated in our previous work on gigapixel imaging [73]. However, the use of a reversed 

cellphone lens in conjunction with the FP algorithm enables a cost-effective solution for field-

portable microscopy imaging, which may allow healthcare access in resource-limited 

environments.  
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