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Abstract 

 In this thesis, sequential logic circuits have been implemented using spatial wavefunction-

switched field-effect transistor (SWSFET). The spatial wavefunction-switched field-effect transistor 

(SWSFET) is one of the promising quantum well devices that transfers electrons from one quantum well 

channel to the other channel based on the applied gate voltage. This eliminates the use of more transistors 

as we have coupled channels in the same device operating at different threshold voltages. This feature can 

be exploited in many digital integrated circuits thus reducing the count of transistors which translates to 

less die area. The simulations of basic sequential circuits like SR latch, D latch are presented here using 

SWSFET based binary logic gates. The circuit model of a SWSFET was developed using Berkeley short 

channel IGFET model (BSIM3) in Cadence simulator. Multi-valued logic is an interesting aspect of 

SWSFET as it is capable of having multiple channels. Since each channel has a threshold voltage and can 

be selected by applying the appropriate gate voltage, SWSFET offers several design possibilities with 

more than just two states. In this thesis, a quaternary D flip flop is presented with simulations done using 

VHDL Behavioral model. The number of transistors is reduced by nearly 80% when compared to the 

conventional CMOS circuits. By using quaternary to binary and binary to quaternary conversion circuits, 

it is possible to integrate the quaternary circuits with the existing binary circuits.  
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1. Introduction 

 The need for high speed, power efficient and compact integrated circuits has led to the invention 

of novel quantum devices like quantum dot gate FETs (QDGFETs), quantum dot channel FETs 

(QDCFETs) [1,2] and spatial wavefunction-switched FETs (SWSFETs) [3]. These devices use 

semiconductor materials like Ge, InGaAs and high-k lattice matched layers as gate insulator which 

reduces the leakage current as opposed to the regular SiO2 gate oxide in the sub-12-nm regime. Multi-

state behavior has also been seen in these devices which can be utilized in multi-valued logic circuits [4].  

 As an alternative technology to the existing CMOS technology, several circuit demonstrations are 

needed to prove the viability of SWSFETs as promising building blocks for energy efficient digital 

circuits. Chapter 2 introduces the SWSFET device that was first developed and patented by Jain et al 

illustrating the two well and four well structures along with the quantum mechanical simulations [6]. The 

transfer of charge between wells, channel charge density and experimental capacitance voltage 

characteristics are shown in this chapter.  

 The logic gates which are essential for any digital system have been designed using SWSFETs. 

Chapter 3 shows the circuit designs of Inverter, NAND, NOR using lesser number of SWSFETs. The 

simulations were carried out in Cadence and the truth tables were verified. The combination of logic gates 

can be used in the implementation of sequential logic circuits. The basic latches and edge triggered flip 

flops have been demonstrated in Chapter 4. This in turn can be used to build more complex sequential 

circuits such as shift registers, counters and memory devices. The functionality was verified using VHDL 

behavioral simulation. 

  Quaternary logic circuits have been designed and simulated using SWSFETs [5]. Quantum well 

devices allow us to realize applications that are beyond the capability of the conventional CMOS 

technology. This gives impetus to simulate circuits and understand the potential of new quantum devices. 

Chapter 4 demonstrates a quaternary flip flop and integration with binary logic. Finally a comparison is 

done with CMOS technology and suggestions for future work are discussed. 
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2. Spatial Wavefunction Switched (SWS) FETs 

 SWSFET devices are based on the idea of incorporating asymmetric quantum well channels so 

that the electron wavefunctions switch from one well to the other as a function of the gate voltage. 

2.1 SWSFET: Structure and Operation 

 III-V compounds are used in the asymmetric channels of SWSFET where wells are made of 

InGaAs with alternating barriers of AlInAs on p-InGaAs that is grown on InP substrate. InGaAs which 

has carrier mobility higher than that of Silicon is used in the SWSFET configuration to provide faster 

switching feature in the device [6].  

 II-VI gate dielectric ZnMgSeTe is used in placed of the amorphous SiO2 or HfO2. “The 

heteroepitaxial barrier stack can stabilize the threshold voltage by minimizing the interface charge at the 

barrier-channel interface. The magnesium incorporation increases the energy barrier but introduces 

dislocation that can leak charge. The ZnS and ZnSe layers have a lower bandgap but a lower dislocation 

density to assist with gate leakage prevention” [8].      

 

2.1.1 Two well SWSFET 

 

Fig 1. Two well InGaAs-AlInAs SWSFET with twin Source and Drain. 
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 Figure1 shows the cross-sectional view of a two well SWSFET. The asymmetric dimensions of 

the two wells determine the way the channels conduct electrons. The lower well is comparatively larger 

than the upper well so as the gate voltage applied increases (VG > VTH2), the electrons appear first in the 

bottom well (well 2). The electron wavefunctions spatially switch from the lower well to the upper well 

(well 1) with an applied voltage (VG > VTH1). 

 

2.1.2 Four well SWSFET  

 The four channel SWSFET configuration with common drain is shown in Figure 2. Each channel 

in this device has a different threshold voltage which makes it viable for quaternary logic. While the twin 

channel device is used to implement binary logic, the quaternary logic holds huge promise and offers 

several alternatives to more complex design systems. 

 

 

Fig 2. Four channel SWSFET with common drain configuration [7] 

 

2.2   SWSFET Characteristics and Simulations 

 The quantum simulations showing the transfer of charges between the two wells, channel charge 

density as a function of gate voltage are presented in Figure 3. The peak seen in the C- V characteristics 

shows the transfer of electrons from well 2 to well 1 [6]. 



4 
 

 

 

 

Fig 3. Simulations of the two well SWSFET device [6] 

 

 

 
 The experimental capacitance voltage (C-V) plot for a fabricated two quantum well InGaAs - 

AlInAs MOS capacitor can be seen in Fig 4. The C–V plot at 10 kHz for an InGaAs SWS sample (#1962) 

having two quantum wells can be seen in Fig 4(a). The accumulation region shows the presence of two 

threshold voltages corresponding to the two quantum wells. “The peak on the left (at approximately -

3.2V) is due to the holes first appearing in the lower well W2 and subsequently transferring to the upper 

well W1 as we move away from threshold towards accumulation”[6]. Fig4(b) shows the C-V plot for a 

different InGaAs two-well sample (#1965). Here, the peaks are more distinct in the accumulation region. 
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Fig 4. Experimental capacitance–voltage characteristics of a two-well SWS device [6] 
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Fig 5: Simulations of four well SWSFET device [7] 

 
 

As a function of gate voltage the transfer of charge between the wells can be seen in Fig 5(a)-(c). When 

Vg = -3.8 V the SWS wavefunction is present in W4 then switches to W3 for Vg = -3.5 V and SWS 

wavefunction finally is seen in W2  for an increased gate voltage of Vg = -3.2 V. The charge density plot 

as a function of gate voltage in various quantum wells can be seen in Fig 5(d). 

 

(a) (b) 

(c) 
(d) 
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3. SWSFET Logic gates 

 By taking advantage of the twin channel feature, some of the basic logic gates like Inverter, NOR 

and NAND that serve as the fundamental building blocks of any digital system have been designed. The 

logic cells use the n-channel type SWSFETs and work on binary logic. The common uses of 

combinational logic gates are in half adders, full adders, multiplexer, demultiplexer, encoder, decoder 

type circuits. SWSFET based logic gates can be used to design efficient circuits using less number of 

transistors. In SWSFETs, the gate voltage is similar to the select signal of a multiplexer and the data 

inputs connected to the sources of the channels can be selectively chosen using the gate signal. Different 

logic states are assigned to the device according to the current levels in the channels. So the device 

provides four states 00, 01, 10, 11 corresponding to the wavefunction being OFF (00), in well W2 (01), in 

Well 1 (10) and in both wells W2-W1 (11) [6]. The state assignments can be used in the implementation 

of efficient logic circuits. Quaternary logic gates have been designed and simulated using SWSFETs that 

drastically reduced the count of transistors in comparison with the CMOS logic cells [7]. 

 

3.1 SWSFET Inverter 

 The Inverter design uses two n-channel SWSFETs [1]. The twin source and drain configuration is 

operated in such a way that either of the two wells is chosen according to the applied input voltage. Fig 6 

shows the connections of SWS1 and SWS2 with the conducting paths marked in dotted lines. The lower 

wells are designated as S2, D2 and upper wells as S1, D1 respectively. When the input voltage Vin is 0, 

the lower wells of the two SWSFETs are in the conducting mode. The D2 of SWS2 is a floating node 

whereas D2 of SWS1 connects the output to Vdd thus giving logic ‘1’. When the input voltage Vin is 1, 

the upper wells of the two SWSFETs are in the conducting mode. The D1 of SWS1 is a floating node 

whereas D1 of SWS2 connects the output to Gnd thus giving logic ‘0’.  

http://www.electronics-tutorials.ws/combination/comb_2.html
http://www.electronics-tutorials.ws/combination/comb_3.html
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Fig 6. Inverter design using SWSFETs. 

3.2 SWSFET NOR gate 

 The NOR design uses one SWS inverter and one n-channel SWSFET. Figure 7 shows the 

connections of the circuit. Input A is given to the inverter and Input B is given to SWS3. The lower 

channel of SWS3 is connected to the output of the inverter so whenever Input B is logic ‘0’, the inverted 

value of Input A is propagated to the output. The upper channel of  SWS3 is connected to Gnd so 

whenever Input B is logic ‘1’, the output is connected to Gnd  giving logic ‘0’ irrespective of Input A. 

         

 

Fig 7. Schematic diagram of SWSFET NOR gate. 
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3.3 SWSFET NAND gate 

 The NAND design uses one SWS inverter and one n-channel SWSFET. Figure 8 shows the 

connections of the circuit. Input A is given to the inverter and Input B is given to SWS3. The upper 

channel of SWS3 is connected to the output of the inverter so whenever Input B is logic ‘1’, the inverted 

value of Input A is propagated to the output. The lower channel of  SWS3 is connected to Vdd so 

whenever Input B is logic ‘0’, the output is connected to Vdd  giving logic ‘1’ irrespective of Input B. 

D2

D1S1

S2

SWS Inverter 

2 transistors

Input A

Input B

Output

SWS 3

Vdd

 Fig 8. Schematic diagram of SWSFET NAND gate. 

 

3.4  SWSFET circuit model 

 The circuit model of a SWSFET was developed using Berkeley short channel IGFET model 

(BSIM 3).  The two SWSFET channels are represented by two conventional transistors with each one 

having a different threshold voltage which is characteristic of a SWSFET. For the two channel SWSFET, 

the threshold voltage of the lower channel is 0.5V and the upper channel is 0.7V as seen in Fig 9.  

 The drain current for MOSFET is given by Eq(1) and this equation can be applied to SWSFET 

to represent  the drain current in well 1 and well 2 given by Eq.(2) and Eq.(3) respectively by 

S.Karmakar [9]. Simulations were done using Cadence tool and the results of the logic design 

simulations using SWSFET are in accordance with the truth tables.  
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                IDS = (
W

L
) COXμn ((VGS − VTH)VDS −

VDS
2

2
)     (1) 

               IDS−well 1 = (
W

L
) COXμn ((VGS − Vth1)VDS −

VDS
2

2
)     (2) 

               IDS−well 2 = (
W

L
) COXμn ((VGS − Vth−well2)VDS −

VDS
2

2
)             (3) 

 

The threshold voltage in well2 Vth-well 2 can be expressed as 

 Vth-well 2  =  Vth2        when VGSeff < VqL          (4) 

 Vth2 +  α (VGSeff – VqL)    when VGSeff > VqL 

Where α is the matching parameter and is given by 

 α   =        
𝑉𝐺𝑆−𝑉𝑞𝐿

𝑉𝑞1−𝑉𝑞𝐿
                   (5) 

Here α controls the slope of the characteristics. 

The effective gate voltage can be expressed as 

 VGSeff = VGS- VPolyEff               (6) 

where 

Vth-well2 developed threshold voltage of well 2 

Vth2  threshold voltage of well 2 

Vth1  threshold voltage of well 1 

VqL  is the transition voltage 

Vq1  is the voltage corresponding to peak current in well 2 

α  is a matching parameter  

VGS  is the gate-source voltage 

VPolyEff   is the voltage drop in the Poly Si gate 

VGSeff  is the effective gate-source voltage  
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Fig 9. SWSFET IDS-VGS Characteristics 

 

 

 

Table 1. SWSFET circuit model parameters 

 

Parameter Value 

L 5.0 µm 

W 10 µm 

Vth2 0.5 V 

Vth1 0.7 V 

VqL 0.6 V 

Vq1 1.5 V 

VDD 3.0 V 

 

The SWSFET circuit was modelled with parameters as shown in Table 1 to verify its functionality in 

different logic circuits. The functionality of this SWSFET model can be compared to 25 nm channel 

length SWSFET model reported earlier [5]. 
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4. Sequential Circuits 

 Sequential circuits are made up of a block of combinational logic circuits along with a feedback 

component that gives the state information. In this type of logic the output depends not only on the latest 

inputs, but also on the condition of earlier inputs. So they implicitly contain memory elements. 

 These circuits are usually two state or bistable devices which can have its output set in one of the 

two basic states, a logic level “1” or a logic level “0” and will remain “latched”  in this current state until 

some other input trigger pulse is applied which will cause a change of state again. The trigger pulse or 

signal is a clock signal that determines what comes one after the other in a sequential circuit. Simple 

sequential logic circuits can be constructed from basic circuits such as flip flops, latches and counters. 

These basic circuits can be made by simply connecting together logic gates like NOT, NAND Gates and 

NOR Gates in a certain combinational way to obtain the required sequential circuit. 

 

Fig 10. Block diagram of a Sequential logic circuit 

4.1  Timing metrics 

 An important aspect of sequential logic circuit is the timing parameter namely set-up time, hold 

time and propagation delay associated with the proper functioning of the circuit as seen in Fig 11 [10].  

“The set-up time (tsu) is the time that the data inputs (D input) must be valid before the clock transition 

(this is, the 0 to 1 transition for a positive edge-triggered register). The hold time (thold) is the time the 

http://www.electronics-tutorials.ws/waveforms/bistable.html
http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_6.html
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data input must remain valid after the clock edge. Assuming that the set-up and hold-times are met, the 

data at the D input is copied to the Q output after a worst-case propagation delay (with reference to the 

clock edge) denoted by tc-q” [10]. 

 If the worst-case propagation delay of the logic equals tplogic and its minimum delay 

(contamination delay) is tcd then the minimum clock period T, required for proper operation of the 

sequential circuit is given by Eq(7) [10]. 

                    

      (7) 

 

The hold time of the register imposes an extra constraint for proper operation given by Eq(8) [10] 

       

            (8) 

 

tcdregister is the minimum propagation delay (or contamination delay) of the register. 

 

Fig 11. Timing metrics of a synchronous register [10] 
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 It is necessary to reduce the impact of timing parameters in a register. This can be done 

by having a very-low logic depth and having the register propagation delay and set-up time 

account for a significant portion of the clock period [10]. 

4.2  Latches and Flip flops 

 Latches are level sensitive which means the D input is seen at the output as long as the clock is 

high or low in a positive or negative latch respectively. This is called the transparent mode of the latch 

and any change in the D input is passed to the Q output. When the next clock transition occurs, the latch 

stops sampling the input data and the previous state of the output is held stable. This is the hold mode of 

the latch. The inputs must be stable for a short period around a falling or rising edge of the clock to meet 

the set-up and hold requirements [10].  

 Unlike the latches, flip flops are edge-triggered devices. The input is sampled only when the 

clock makes a low to high or high to low transition in a positive edge triggered or negative edge triggered 

flip flop respectively. The flip flops are constructed using the basic latches by cascading two latches to 

form a master-slave configuration. If the master is a positive latch and slave is a negative latch then it is 

called negative edge-triggered flip flop.   

4.3   SR Latch 

 The SR latch is a type of memory element with inputs Set (S) and Reset (R) and outputs Q and its 

complementary Q_bar. The circuit is implemented using SWSFET based NOR logic gates. This being 

one of the basic sequential logic circuits, several other latches and flip flops can be constructed using this 

SWSFET based circuit. When S=0 and R=1 the output Q is reset to zero and Q_bar is logic ‘1’. In the 

case of set condition when S=1 and R=0 the output Q is set to logic’1’ whereas Q_bar goes to logic’0’. 

But there is no change in outputs Q and Q_bar when both S=0 and R=0 which is called the hold 

condition. The last condition when S=1 and R= 1 both outputs go to logic ‘0’ which is a forbidden state.   
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Figure 12 shows the circuit diagram. This is asynchronous as it does not have a clock signal.   

         

 

Fig 12. SR Latch circuit using SWSFET NOR gates. 

                                          

Table 2. Truth table of SR Latch 

 

 

 

 

 

 

4.4  D Latch 

 The D Latch design uses two SWSFET inverters. This is a synchronous circuit with a clock signal 

so the output changes only when a clock event or transition occurs. Unlike the SR latch the illegal 

condition is avoided such that Q and Q_bar are complementary to each other under all input conditions. 

The clock signal is given to the gate of a twin channel SWSFET with common drain configuration where 

each of the channels is selected by a gate input of logic ‘0’ and logic ‘1’ respectively.  

S R Q Q_BAR 

0 0 No change 

0  1 0 1 

1 0 1 0 

1 1 0 0 
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 This simple design when implemented using CMOS, NMOS only pass transistors are used to 

clock in the D input to the first inverter and control the feedback path. So when clock is high, a degraded 

high voltage of VDD-VTn  is passed to the input of the first CMOS inverter. This impacts both noise margin 

and the switching performance, especially in the case of low values of VDD and high values of VTn [10]. It 

causes static power dissipation in first CMOS inverter. Since there is a threshold voltage drop in the 

NMOS pass transistor, the resulting output voltage is VDD-VTn. This is the maximum input voltage given 

to the CMOS inverter and the PMOS device of the inverter is not turned off, resulting in a static current 

flow. 

4.4.1  Positive D Latch 

 The input D is applied to the source of channel 1 and the feedback input is given to the source of 

channel 2 to store the previous data. When the clock state is ‘1’ all the changes in input D is seen at the 

output and when the clock goes to ‘0’ the feedback component is activated and latches the output Q at 

either logic ‘0’ or ‘1’. Depending on the voltage applied the corresponding channel is activated and 

connected to the output. The device functions as a level sensitive positive D latch. 

 

 

Fig 13. Positive D latch circuit using SWSFET 
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 Table 3. Truth table of D Latch 

 

 

 

 

 

 

4.4.2  Negative D Latch 

 The input D is applied to the source of channel 0 and the feedback input is given to the source of 

channel 1 to store the previous data. When the clock state is ‘0’ all the changes in input D is seen at the 

output and when the clock goes to ‘1’ the feedback component is activated and latches the output Q at 

either logic ‘0’ or ‘1’. Depending on the voltage applied the corresponding channel is activated and 

connected to the output. The device functions as a level sensitive negative D latch. 

 

1

0

CLK

SWS
INV 1

SWS
INV 2

Q_bar

Q

D

 

Fig 14. Negative D latch circuit using SWSFET 

 

D CLK Q Q_BAR 

X 0 Hold State (no change) 

0  1 0 1 

1 1 1 0 
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4.5  Simulations 

The simulation of SR Latch was done in Cadence using the SWSFET circuit model developed using 

Berkeley short channel IGFET model (BSIM 3). The functionality is similar to that of a CMOS 

equivalent circuit and the results are shown in Fig 15. For the simulation of D latch, VHDL behavioral 

model was used. The functionality of the D latch can be seen in Fig 16 and 17. 

 

 

 

 

Fig 15. Simulations of SR Latch using SWSFET NOR logic gates 
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Fig 16. Behavioral simulation of SWS based positive D latch circuit       

 

 

 

 

Fig 17. Behavioral simulation of SWS based negative D latch circuit   
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5. Quaternary Logic 

 The multiple channels in SWSFETs can be used in designing circuits with more than two states 

that is not possible using the conventional single channel CMOS transistors. Quaternary logic designs 

previously done using SWSFET prove the capability of the device as multi-bit logic cells [5].The logic 

gates can process two bit operations at a time whereas the equivalent CMOS binary logic circuit will 

require four times as many transistors as used in the SWSFET design [7]. The four quaternary levels 0, 1, 

2 and 3 can be represented in two bit binary form as 00, 01, 10 and 11 states. “Therefore at any node in an 

electronic circuit a quaternary logic could be converted to binary levels and vice-versa, given the 

availability of the right number of binary bits” [7]. 

 

5.1 Quaternary inverter 

 The NOT operation is done on the novel quaternary logic and its truth table is presented in Table 

4 [7].  The logical block is shown in Fig 18 and it can be seen that only one SWSFET is used to perform 

the quaternary NOT operation. In case of CMOS binary logic, four transistors would be needed. 

 

    

 

 

 

 

 

 

Fig 18. Quaternary NOT gate [5,7] 
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Table 4. Truth table of NOT gate [7] 

 

 

 

 

 

 

 

 

5.2  Quaternary D Flip flop 

 Multi-valued flip flops have been researched for quite some time now [11-13].Ternary flip flops 

have been reported earlier using resonant tunneling diode (RTD) [20].Two latches using SWSFET based 

quaternary inverters are cascaded to form the master slave flip flop circuit. The quaternary inverter is 

designed by the selection of appropriate sources at different gate voltages for a single SWSFET [5].The 

two CLK driven SWSFETs turn on the latches in such a way that the master stage is transparent during 

the high phase of the clock and the D input is passed to the master stage output QM. So it behaves like a 

positive latch. During this period, the slave stage is in the hold mode, keeping its previous value using 

feedback. On the falling edge of the clock, the master slave stops sampling the input, and the slave stage 

starts sampling. During the low phase of the clock, the slave stage which is a negative latch samples the 

output of the master stage (QM), while the master stage remains in a hold mode. The value of Q is the 

value of D right before the falling edge of the clock, achieving the negative edge-triggered effect.  

 

 

 

A(A1,A2) NOT A = Y( Y1,Y2) 

0(00) 3(11) 

1(01)  2(10) 

2(10) 1(01) 

3(11) 0(00) 
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Fig 19.Quaternary negative edge-triggered D flip flop using four channel SWSFET 

 

5.2.1   Simulations 

 The quaternary inverter was simulated using the Advanced Design Simulator (ADS) tool with 

Berkeley short-channel insulated gate field-effect transistor (IGFET) model (BSIM) equivalent channel 

models for SWS FETs with channel length of 25 nm [5]. Figure 20(b) gives the output waveform for an 

SWS FET-based inverter for the input waveform shown in Figure 20(a). The circuit modelling was done 

using four conventional transistors each one having a different threshold voltage which is characteristic of 

a SWSFET device. The four voltages corresponding to the four channels are Vcc, 0.66 Vcc, 0.33Vcc and 

Gnd. 
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Fig 20. Inverter Simulation (a) Input versus time waveform (b) Output versus time waveform [5] 

 

 The simulation shown in Figure 21 was done using VHDL behavioral model to demonstrate the 

functionality of a quaternary flip flop. The output of the master stage is shown as ‘qm’ and the final 

output from the slave stage is ‘q’. In the VHDL simulation as seen below, the two bit binary equivalent of 

the analog voltage levels was implemented in the circuit for ease of usage and understanding. Similarly 

simulations were verified for a positive edge triggered flip flop by cascading a negative latch and a 

positive latch.  
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Fig 21. Behavioral simulation of SWS based Quaternary D flip flop 

 

5.3 Integration with Binary logic 

 Quaternary logic can be easily converted to binary logic and vice versa using conversion circuits. 

Several methods have been proposed for binary to quaternary and vice versa converters [14,15,16,17]. 

If a complicated design is implemented using quaternary logic while the rest of the chip uses binary logic 

then such conversion circuits are very essential to integrate the different logic designs. This helps the 

quaternary and binary circuits to co-exist on the same die [7]. The binary to quaternary circuit shown in 

Figure 22 simply converts the 2 bit wide binary signal into 4 state analog signal by deploying an Analog 

multiplexer. The analog voltages are mapped to the 2 bit binary signals as shown in Table 5.  
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Fig 22. Binary to quaternary conversion circuit [7] 

 

Table 5: Mapping of analog voltages to two bit binary logic 

 

 

 

 

 

 

 

 The quaternary to binary circuit shown in Figure 23 uses a comparator circuit with some logic 

gates to produce the corresponding binary MSB and LSB digits. The Table 6 shows the binary LSB and 

MSB extraction from the quaternary analog signals. The reference voltages of the comparator can be 

adjusted according to the input analog voltages. The realization of this circuit may require many 

transistors but it can be used for integrating several quaternary logic circuits with binary logic on a chip. 

 

Analog signal 2 bit binary logic 

Gnd 00 

0.33 Vcc 01 

0.66 Vcc 10 

Vcc 11 
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Comp A

Comp B

Comp C

Binary LSB

Binary MSB

4 state Logic 

signal

0.82 Vcc

0.5 Vcc

0.18 Vcc

 

 

Fig 23. Quaternary to binary conversion circuit [7] 

 

Table 6. Binary MSB and LSB outputs 

 

 

4 state 

input 

Comp 

A 

Comp 

B 

Comp 

C 

Binary 

MSB 

Binary 

LSB 

Gnd 0 0 0 0 0 

0.33Vcc 0 0 1 0 1 

0.66Vcc 0 1 1 1 0 

Vcc 1 1 1 1 1 
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5.3.1 Quaternary to Binary Convertor using multiple-input floating gate MOSFETs  

 A quaternary to binary convertor was presented in a paper [18]. The LSB and MSB separation 

from a quaternary digit is done using floating gate MOSFETs. Figure 24 and 25 show the MSB circuit 

diagram which gives logic ‘1’ for Vin > 1.45 V. 

   

 

  

 

 

 

 

Fig 24. Floating gate potential diagram for the conversion of quaternary to MSB output [18] 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 25. Circuit diagram for implementation of quaternary logic to binary logic – MSB using 

floating gate MOSFETs [18] 
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 Similarly Figure 26 gives the floating point potential diagram (FPD) for extracting LSB from the 

quaternary signal [18]. The full circuit diagram for conversion quaternary digit to binary bits using 

floating gate MOSFETs is shown in Figure 28  [18]. 

 

 

 

 

 

 

 

 

Fig 26. Floating gate potential diagram for conversion of quaternary to LSB output [18] 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 27.Floating point potential diagram for conversion of quaternary to LSB output Circuit diagram 

            for implementation of quaternary to binary logic – LSB using floating gate MOSFETs [18] 
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Fig 28.Full circuit diagram for conversion of quaternary (4-valued) logic to binary bits 

using floating gate MOSFETs [18] 

 

5.3.2 Binary to Quaternary Convertor using Pass gates 

 The binary to convertor circuit diagram was presented in [19]. The LSB is used to select the 

appropriate voltage levels using pass transistor logic. The MSB signal drives the inverter to select the 

voltage from either the upper or lower branch to give a quaternary output Q0.The design was simulated 

for 0.13µm process technology using SPICE simulator and performed functionally well at 500MHz [19].  
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Fig 29. Binary to quaternary encoder using pass gate [19]. 

.  

 

 

  

 

 

 

 

 

 

 

 

Fig  30. Quaternary to binary encoder (left) and XOR gate (right) using pass gate [19]. 
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6. Applications of SWSFET based Sequential circuits 

 

In the previous chapters, SWSFET based latches and flip flop designs were demonstrated along 

with its simulations. Several other circuits can be designed using these sequential circuits and some of the 

common applications are counters and shift registers. An interesting dimension to these circuits will be 

the multi-valued logic of SWSFET which can increase the memory capacity of the system. The higher the 

radix, the more is the information that can be stored.  

6.1 Counters 

A counter is a sequential circuit that goes through a certain sequence of states (like counting up or 

down) based on the input pulse. It can be an asynchronous or synchronous counter. The asynchronous 

counters will have the flip flops arranged in a way such that the output of one flip flop is fed as the clock 

of the following flip flop. The asynchronous counter (also called the ripple counter) is comparatively slow 

because each flip flop’s clock is dependent on the output of the previous flip flop. Since there is always a 

non-zero propagation delay it slows down the system altogether. In the case of synchronous counters each 

flip flop is triggered by the same clock source, thus avoiding the cumulative delay found in asynchronous 

counters. The conventional counter is an n-bit binary counter. This has n flip flops and 2
n
 states that go 

through the order from 0 to 2
n-1

. The various uses of counters are counting, frequency divider circuits, 

sequencers for control logic in a processor, digital clock, time measurement, A to D converter, digital 

triangular wave generator and creating delays of a specific duration.  

6.1.1 Multi-valued Counters 

 In multi-valued logic domain several counters have been reported. Tai haur kuo in paper [21] 

describes the use of resonant tunneling diodes (RTDs) for multi-valued counters. This counter was 

implemented using a unique state-dependent current source to successively trigger RTD-based counter 

[21]. In another paper [22] J. G. Lomsdalen demonstrates a multi-valued counter based on recharged semi 

floating gate structures. By using a clock signal as an input, the counter starts counting up or down 

depending on the sampled value and the phase of the clock signal.  
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 The multi-valued counters will use ‘N’counters to count upto m
N
. Here ‘m’ represents the multi-

valued logic used. So for a quaternary logic, when two flip flops are cascaded the count goes to 16 (4
2
) 

steps. In binary logic the same implementation (mod 16) counter would require four flip flops.  

 

Table 7. State table of Quaternary Up-counter [11] 
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6.2 Shift Registers 

 The shift register stores data and also moves data. Since it stores data it can be implemented using 

flip-flops. The flip flop operation has already been discussed in an earlier chapter. So when a clock edge 

is detected the flip flop stores the value of the input data. In a conventional binary type, one flip flop is 

required for each bit that needs to be stored. The number of individual flip flops that constitute a single 

shift register is ascertained by the number of bits to be stored. Therefore if four bits are to be stored then 

four flip-flops are needed. Each flip flop stores one bit which means each stage of the register stores one 

bit. The data can be fed in or out of the register serially (left or the right direction) or in parallel.  

 

6.2.1 Types of Shift Registers 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 31. Shift register in different modes [23]. 
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 Shift registers can be classified into four different types. The Serial Input Serial Output register 

shifts data in or out one at a time in left or right direction whereas the Serial Input Parallel Output register 

loads data serially and outputs in parallel format. Next, the Parallel Input Serial Output register feeds the 

data all at a time but shifts the output one at a time and Parallel Input Parallel Output register inputs data 

and shifts simultaneously in one clock pulse. 

6.2.2 Multi-valued Shift Registers 

 A multiple-valued shift register can be constructed by cascading multi-valued flip flops. A three-

valued shift register has been reported earlier [20]. This uses a three- valued D flip flop built from InGaAs 

based multiple-junction surface tunnel transistors (MJSTT). The shift register constructed by cascading 

two D flip flops has to maintain the input voltage each time clock goes to zero because of gate leakage 

current. To mitigate this leakage, a level shift circuit of the source-follower type consisting of two 

depletion-type HJFETs was inserted between the two D flip flop circuits [20]. By using a quaternary D 

flip flop two bits can be stored in one register and by cascading two of those flip flops will result in a four 

bit shift register. The same implementation using conventional binary logic would require four flip flops. 

 A simple Serial Input Serial Output shift register can be designed using a quaternary flip flop.  

The block diagram in Figure 32 shows four serially connected negative flip flops that are capable of 

handling 8 bits because each flip flop can store two bits.  

FF -3 FF -2 FF -1 FF -0

Din

CLK

D3 Q3 D2 Q2 D1 Q1 D0 Q0

Output

 

Fig 32. 8 bit Serial Input Serial Output Shift register  



35 
 

 The flip flops are initially in the reset condition where signals Q3 Q2 Q1 Q0 are equal to 0000. If a 

quaternary input ‘3333’ is applied to the input D, the data is passed on serially starting from the LSB. On 

the first falling edge of clock, data is clocked into FF-3 thus giving ‘3000’. 

FF -3 FF -2 FF -1 FF -0

Din

CLK

D3 Q3 D2 Q2 D1 Q1 D0 Q0

Output

3 0 0 0

 

Next bit is applied to the input and on the second falling edge of clock the stored data becomes 

‘3300’. 

FF -3 FF -2 FF -1 FF -0

Din

CLK

D3 Q3 D2 Q2 D1 Q1 D0 Q0

Output

0033

 

Consecutively the next bit is applied and on the next negative pulse Q3 Q2 Q1 Q0  becomes ‘3330’. 

FF -3 FF -2 FF -1 FF -0

Din

CLK

D3 Q3 D2 Q2 D1 Q1 D0 Q0

Output

3 3 3 0
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On the fourth falling clock edge, the stored data in the register is ‘3333’. 

FF -3 FF -2 FF -1 FF -0

Din

CLK

D3 Q3 D2 Q2 D1 Q1 D0 Q0

Output

3333

 

Table 8: Truth table of 8 bit Serial Input Serial Output Shift register 

CLK Din =D3 Q3= D2 Q2= D1 Q1= D0 Q0 

  0 0 0 0 

↓ 3 3 0 0 0 

↓ 3 3 3 0 0 

↓ 3 3 3 3 0 

↓ 3 3 3 3 3 

                           Direction of data movement 

 It requires four clock cycles to shift the quaternary input ‘3333’ serially. The binary equivalent of 

‘3333’ is ‘11111111’ which has a length of 8 bits and it could be implemented with only four quaternary 

flip flops. In the conventional CMOS technology, eight flip flops will be required and the number of 

clock cycles will also be doubled. By using quaternary logic, there is a reduction in device count and 

number of clock cycles.  

 

 



37 
 

7. Conclusion 

 The implementation of binary logic designs and sequential circuits using SWSFET has been 

successful. SR latch and D flip flop are the fundamental blocks of sequential circuits so several other 

circuits can be designed using these basic units. As the number of devices decreases, the complexity of 

wiring is reduced and so is the die area. Also it could lower the power consumption and improve the 

efficiency of the device [5]. The higher radix logic designs using multi-channel SWSFETs show a 

pronounced reduction in the transistor count. Even though multi-valued logic is not prevalent much in the 

existing digital designs, SWSFET has good prospects for future multi-valued logical designs.   

 

7.1 Comparison with CMOS technology 

 The logic cells designed using SWSFETs use lesser number of transistors than the CMOS 

technology. It can be seen from the bar chart in Fig.33 that the number of transistors used in the 

conventional CMOS two bit logic design is much higher than the SWSFET logic design. 

 

 

Fig 33. Percentage decrease in number of transistors between CMOS and SWSFET technology. 
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7.2 Suggestions for future work 

 SWSFET model was created to verify the functionality of device in several logic circuits. The 

quantum effects of the device have to be incorporated in the model to simulate a more precise functioning 

of the device. The most interesting dimension of these SWSFETs is the multi-valued logic but there are 

several challenges pertinent to fabrication in sub nm regime and realization of these circuits. The voltage 

separation between the different levels in the multi-valued voltages is very small. So the noise margin has 

to be improved which is poor in any multi-valued signal. 

 The multi-valued structures are compact structures with fewer interconnections and higher 

memory capacity. There could be lower power consumption because fewer blocks are used. However 

actual power measurements are require to gauge the efficiency of the circuit. Measurements like energy-

delay product, a metric of energy efficiency can also be done.  
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